a6c34d9e26
The patches are unexpectedly causing gcc to fail while building ports/graphics/ImageMagick even when the cpu flags are not used. Reported by: Andreas Tobler
2309 lines
87 KiB
C++
2309 lines
87 KiB
C++
/* Definitions of target machine for GCC for IA-32.
|
||
Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
/* The purpose of this file is to define the characteristics of the i386,
|
||
independent of assembler syntax or operating system.
|
||
|
||
Three other files build on this one to describe a specific assembler syntax:
|
||
bsd386.h, att386.h, and sun386.h.
|
||
|
||
The actual tm.h file for a particular system should include
|
||
this file, and then the file for the appropriate assembler syntax.
|
||
|
||
Many macros that specify assembler syntax are omitted entirely from
|
||
this file because they really belong in the files for particular
|
||
assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
|
||
ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
|
||
that start with ASM_ or end in ASM_OP. */
|
||
|
||
/* Define the specific costs for a given cpu */
|
||
|
||
struct processor_costs {
|
||
const int add; /* cost of an add instruction */
|
||
const int lea; /* cost of a lea instruction */
|
||
const int shift_var; /* variable shift costs */
|
||
const int shift_const; /* constant shift costs */
|
||
const int mult_init[5]; /* cost of starting a multiply
|
||
in QImode, HImode, SImode, DImode, TImode*/
|
||
const int mult_bit; /* cost of multiply per each bit set */
|
||
const int divide[5]; /* cost of a divide/mod
|
||
in QImode, HImode, SImode, DImode, TImode*/
|
||
int movsx; /* The cost of movsx operation. */
|
||
int movzx; /* The cost of movzx operation. */
|
||
const int large_insn; /* insns larger than this cost more */
|
||
const int move_ratio; /* The threshold of number of scalar
|
||
memory-to-memory move insns. */
|
||
const int movzbl_load; /* cost of loading using movzbl */
|
||
const int int_load[3]; /* cost of loading integer registers
|
||
in QImode, HImode and SImode relative
|
||
to reg-reg move (2). */
|
||
const int int_store[3]; /* cost of storing integer register
|
||
in QImode, HImode and SImode */
|
||
const int fp_move; /* cost of reg,reg fld/fst */
|
||
const int fp_load[3]; /* cost of loading FP register
|
||
in SFmode, DFmode and XFmode */
|
||
const int fp_store[3]; /* cost of storing FP register
|
||
in SFmode, DFmode and XFmode */
|
||
const int mmx_move; /* cost of moving MMX register. */
|
||
const int mmx_load[2]; /* cost of loading MMX register
|
||
in SImode and DImode */
|
||
const int mmx_store[2]; /* cost of storing MMX register
|
||
in SImode and DImode */
|
||
const int sse_move; /* cost of moving SSE register. */
|
||
const int sse_load[3]; /* cost of loading SSE register
|
||
in SImode, DImode and TImode*/
|
||
const int sse_store[3]; /* cost of storing SSE register
|
||
in SImode, DImode and TImode*/
|
||
const int mmxsse_to_integer; /* cost of moving mmxsse register to
|
||
integer and vice versa. */
|
||
const int prefetch_block; /* bytes moved to cache for prefetch. */
|
||
const int simultaneous_prefetches; /* number of parallel prefetch
|
||
operations. */
|
||
const int branch_cost; /* Default value for BRANCH_COST. */
|
||
const int fadd; /* cost of FADD and FSUB instructions. */
|
||
const int fmul; /* cost of FMUL instruction. */
|
||
const int fdiv; /* cost of FDIV instruction. */
|
||
const int fabs; /* cost of FABS instruction. */
|
||
const int fchs; /* cost of FCHS instruction. */
|
||
const int fsqrt; /* cost of FSQRT instruction. */
|
||
};
|
||
|
||
extern const struct processor_costs *ix86_cost;
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/* configure can arrange to make this 2, to force a 486. */
|
||
|
||
#ifndef TARGET_CPU_DEFAULT
|
||
#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
|
||
#endif
|
||
|
||
#ifndef TARGET_FPMATH_DEFAULT
|
||
#define TARGET_FPMATH_DEFAULT \
|
||
(TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
|
||
#endif
|
||
|
||
#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
|
||
|
||
/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
|
||
compile-time constant. */
|
||
#ifdef IN_LIBGCC2
|
||
#undef TARGET_64BIT
|
||
#ifdef __x86_64__
|
||
#define TARGET_64BIT 1
|
||
#else
|
||
#define TARGET_64BIT 0
|
||
#endif
|
||
#else
|
||
#ifndef TARGET_BI_ARCH
|
||
#undef TARGET_64BIT
|
||
#if TARGET_64BIT_DEFAULT
|
||
#define TARGET_64BIT 1
|
||
#else
|
||
#define TARGET_64BIT 0
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
#define HAS_LONG_COND_BRANCH 1
|
||
#define HAS_LONG_UNCOND_BRANCH 1
|
||
|
||
#define TARGET_386 (ix86_tune == PROCESSOR_I386)
|
||
#define TARGET_486 (ix86_tune == PROCESSOR_I486)
|
||
#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
|
||
#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
|
||
#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
|
||
#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
|
||
#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
|
||
#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
|
||
#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
|
||
#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
|
||
#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
|
||
#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
|
||
#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
|
||
#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
|
||
#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
|
||
|
||
#define TUNEMASK (1 << ix86_tune)
|
||
extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
|
||
extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
|
||
extern const int x86_branch_hints, x86_unroll_strlen;
|
||
extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
|
||
extern const int x86_use_himode_fiop, x86_use_simode_fiop;
|
||
extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
|
||
extern const int x86_read_modify, x86_split_long_moves;
|
||
extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
|
||
extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
|
||
extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
|
||
extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
|
||
extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
|
||
extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
|
||
extern const int x86_epilogue_using_move, x86_decompose_lea;
|
||
extern const int x86_arch_always_fancy_math_387, x86_shift1;
|
||
extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
|
||
extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
|
||
extern const int x86_use_ffreep;
|
||
extern const int x86_inter_unit_moves, x86_schedule;
|
||
extern const int x86_use_bt;
|
||
extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
|
||
extern const int x86_use_incdec;
|
||
extern const int x86_pad_returns;
|
||
extern const int x86_partial_flag_reg_stall;
|
||
extern int x86_prefetch_sse;
|
||
|
||
#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
|
||
#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
|
||
#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
|
||
#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
|
||
#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
|
||
/* For sane SSE instruction set generation we need fcomi instruction. It is
|
||
safe to enable all CMOVE instructions. */
|
||
#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
|
||
#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
|
||
#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
|
||
#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
|
||
#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
|
||
#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
|
||
#define TARGET_MOVX (x86_movx & TUNEMASK)
|
||
#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
|
||
#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
|
||
#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
|
||
#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
|
||
#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
|
||
#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
|
||
#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
|
||
#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
|
||
#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
|
||
#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
|
||
#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
|
||
#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
|
||
#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
|
||
#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
|
||
#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
|
||
#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
|
||
#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
|
||
#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
|
||
#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
|
||
#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
|
||
#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
|
||
#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
|
||
#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
|
||
(x86_sse_partial_reg_dependency & TUNEMASK)
|
||
#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
|
||
#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
|
||
#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
|
||
#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
|
||
#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
|
||
#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
|
||
#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
|
||
#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
|
||
#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
|
||
#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
|
||
#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
|
||
#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
|
||
#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
|
||
#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
|
||
#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
|
||
#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
|
||
|
||
#define ASSEMBLER_DIALECT (ix86_asm_dialect)
|
||
|
||
#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
|
||
#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
|
||
&& (ix86_fpmath & FPMATH_387))
|
||
|
||
#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
|
||
#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
|
||
#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
|
||
#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
|
||
|
||
#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
|
||
#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
|
||
#define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
|
||
#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
|
||
|
||
#ifndef TARGET_64BIT_DEFAULT
|
||
#define TARGET_64BIT_DEFAULT 0
|
||
#endif
|
||
#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
|
||
#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
|
||
#endif
|
||
|
||
/* Once GDB has been enhanced to deal with functions without frame
|
||
pointers, we can change this to allow for elimination of
|
||
the frame pointer in leaf functions. */
|
||
#define TARGET_DEFAULT 0
|
||
|
||
/* This is not really a target flag, but is done this way so that
|
||
it's analogous to similar code for Mach-O on PowerPC. darwin.h
|
||
redefines this to 1. */
|
||
#define TARGET_MACHO 0
|
||
|
||
/* Subtargets may reset this to 1 in order to enable 96-bit long double
|
||
with the rounding mode forced to 53 bits. */
|
||
#define TARGET_96_ROUND_53_LONG_DOUBLE 0
|
||
|
||
/* Sometimes certain combinations of command options do not make
|
||
sense on a particular target machine. You can define a macro
|
||
`OVERRIDE_OPTIONS' to take account of this. This macro, if
|
||
defined, is executed once just after all the command options have
|
||
been parsed.
|
||
|
||
Don't use this macro to turn on various extra optimizations for
|
||
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
|
||
|
||
#define OVERRIDE_OPTIONS override_options ()
|
||
|
||
/* Define this to change the optimizations performed by default. */
|
||
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
|
||
optimization_options ((LEVEL), (SIZE))
|
||
|
||
/* -march=native handling only makes sense with compiler running on
|
||
an x86 or x86_64 chip. If changing this condition, also change
|
||
the condition in driver-i386.c. */
|
||
#if defined(__i386__) || defined(__x86_64__)
|
||
/* In driver-i386.c. */
|
||
extern const char *host_detect_local_cpu (int argc, const char **argv);
|
||
#define EXTRA_SPEC_FUNCTIONS \
|
||
{ "local_cpu_detect", host_detect_local_cpu },
|
||
#define HAVE_LOCAL_CPU_DETECT
|
||
#endif
|
||
|
||
/* Support for configure-time defaults of some command line options.
|
||
The order here is important so that -march doesn't squash the
|
||
tune or cpu values. */
|
||
#define OPTION_DEFAULT_SPECS \
|
||
{"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
|
||
{"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
|
||
{"arch", "%{!march=*:-march=%(VALUE)}"}
|
||
|
||
/* Specs for the compiler proper */
|
||
|
||
#ifndef CC1_CPU_SPEC
|
||
#define CC1_CPU_SPEC_1 "\
|
||
%{!mtune*: \
|
||
%{m386:mtune=i386 \
|
||
%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
|
||
%{m486:-mtune=i486 \
|
||
%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
|
||
%{mpentium:-mtune=pentium \
|
||
%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
|
||
%{mpentiumpro:-mtune=pentiumpro \
|
||
%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
|
||
%{mcpu=*:-mtune=%* \
|
||
%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
|
||
%<mcpu=* \
|
||
%{mintel-syntax:-masm=intel \
|
||
%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
|
||
%{mno-intel-syntax:-masm=att \
|
||
%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
|
||
|
||
#ifndef HAVE_LOCAL_CPU_DETECT
|
||
#define CC1_CPU_SPEC CC1_CPU_SPEC_1
|
||
#else
|
||
#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
|
||
"%{march=native:%<march=native %:local_cpu_detect(arch) \
|
||
%{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
|
||
%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
|
||
#endif
|
||
#endif
|
||
|
||
/* Target CPU builtins. */
|
||
#define TARGET_CPU_CPP_BUILTINS() \
|
||
do \
|
||
{ \
|
||
size_t arch_len = strlen (ix86_arch_string); \
|
||
size_t tune_len = strlen (ix86_tune_string); \
|
||
int last_arch_char = ix86_arch_string[arch_len - 1]; \
|
||
int last_tune_char = ix86_tune_string[tune_len - 1]; \
|
||
\
|
||
if (TARGET_64BIT) \
|
||
{ \
|
||
builtin_assert ("cpu=x86_64"); \
|
||
builtin_assert ("machine=x86_64"); \
|
||
builtin_define ("__amd64"); \
|
||
builtin_define ("__amd64__"); \
|
||
builtin_define ("__x86_64"); \
|
||
builtin_define ("__x86_64__"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
builtin_assert ("cpu=i386"); \
|
||
builtin_assert ("machine=i386"); \
|
||
builtin_define_std ("i386"); \
|
||
} \
|
||
\
|
||
/* Built-ins based on -mtune= (or -march= if no \
|
||
-mtune= given). */ \
|
||
if (TARGET_386) \
|
||
builtin_define ("__tune_i386__"); \
|
||
else if (TARGET_486) \
|
||
builtin_define ("__tune_i486__"); \
|
||
else if (TARGET_PENTIUM) \
|
||
{ \
|
||
builtin_define ("__tune_i586__"); \
|
||
builtin_define ("__tune_pentium__"); \
|
||
if (last_tune_char == 'x') \
|
||
builtin_define ("__tune_pentium_mmx__"); \
|
||
} \
|
||
else if (TARGET_PENTIUMPRO) \
|
||
{ \
|
||
builtin_define ("__tune_i686__"); \
|
||
builtin_define ("__tune_pentiumpro__"); \
|
||
switch (last_tune_char) \
|
||
{ \
|
||
case '3': \
|
||
builtin_define ("__tune_pentium3__"); \
|
||
/* FALLTHRU */ \
|
||
case '2': \
|
||
builtin_define ("__tune_pentium2__"); \
|
||
break; \
|
||
} \
|
||
} \
|
||
else if (TARGET_GEODE) \
|
||
{ \
|
||
builtin_define ("__tune_geode__"); \
|
||
} \
|
||
else if (TARGET_K6) \
|
||
{ \
|
||
builtin_define ("__tune_k6__"); \
|
||
if (last_tune_char == '2') \
|
||
builtin_define ("__tune_k6_2__"); \
|
||
else if (last_tune_char == '3') \
|
||
builtin_define ("__tune_k6_3__"); \
|
||
} \
|
||
else if (TARGET_ATHLON) \
|
||
{ \
|
||
builtin_define ("__tune_athlon__"); \
|
||
/* Plain "athlon" & "athlon-tbird" lacks SSE. */ \
|
||
if (last_tune_char != 'n' && last_tune_char != 'd') \
|
||
builtin_define ("__tune_athlon_sse__"); \
|
||
} \
|
||
else if (TARGET_K8) \
|
||
builtin_define ("__tune_k8__"); \
|
||
else if (TARGET_PENTIUM4) \
|
||
builtin_define ("__tune_pentium4__"); \
|
||
else if (TARGET_NOCONA) \
|
||
builtin_define ("__tune_nocona__"); \
|
||
else if (TARGET_CORE2) \
|
||
builtin_define ("__tune_core2__"); \
|
||
\
|
||
if (TARGET_MMX) \
|
||
builtin_define ("__MMX__"); \
|
||
if (TARGET_3DNOW) \
|
||
builtin_define ("__3dNOW__"); \
|
||
if (TARGET_3DNOW_A) \
|
||
builtin_define ("__3dNOW_A__"); \
|
||
if (TARGET_SSE) \
|
||
builtin_define ("__SSE__"); \
|
||
if (TARGET_SSE2) \
|
||
builtin_define ("__SSE2__"); \
|
||
if (TARGET_SSE3) \
|
||
builtin_define ("__SSE3__"); \
|
||
if (TARGET_SSSE3) \
|
||
builtin_define ("__SSSE3__"); \
|
||
if (TARGET_SSE_MATH && TARGET_SSE) \
|
||
builtin_define ("__SSE_MATH__"); \
|
||
if (TARGET_SSE_MATH && TARGET_SSE2) \
|
||
builtin_define ("__SSE2_MATH__"); \
|
||
\
|
||
/* Built-ins based on -march=. */ \
|
||
if (ix86_arch == PROCESSOR_I486) \
|
||
{ \
|
||
builtin_define ("__i486"); \
|
||
builtin_define ("__i486__"); \
|
||
} \
|
||
else if (ix86_arch == PROCESSOR_PENTIUM) \
|
||
{ \
|
||
builtin_define ("__i586"); \
|
||
builtin_define ("__i586__"); \
|
||
builtin_define ("__pentium"); \
|
||
builtin_define ("__pentium__"); \
|
||
if (last_arch_char == 'x') \
|
||
builtin_define ("__pentium_mmx__"); \
|
||
} \
|
||
else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
|
||
{ \
|
||
builtin_define ("__i686"); \
|
||
builtin_define ("__i686__"); \
|
||
builtin_define ("__pentiumpro"); \
|
||
builtin_define ("__pentiumpro__"); \
|
||
} \
|
||
else if (ix86_arch == PROCESSOR_GEODE) \
|
||
{ \
|
||
builtin_define ("__geode"); \
|
||
builtin_define ("__geode__"); \
|
||
} \
|
||
else if (ix86_arch == PROCESSOR_K6) \
|
||
{ \
|
||
\
|
||
builtin_define ("__k6"); \
|
||
builtin_define ("__k6__"); \
|
||
if (last_arch_char == '2') \
|
||
builtin_define ("__k6_2__"); \
|
||
else if (last_arch_char == '3') \
|
||
builtin_define ("__k6_3__"); \
|
||
} \
|
||
else if (ix86_arch == PROCESSOR_ATHLON) \
|
||
{ \
|
||
builtin_define ("__athlon"); \
|
||
builtin_define ("__athlon__"); \
|
||
/* Plain "athlon" & "athlon-tbird" lacks SSE. */ \
|
||
if (last_tune_char != 'n' && last_tune_char != 'd') \
|
||
builtin_define ("__athlon_sse__"); \
|
||
} \
|
||
else if (ix86_arch == PROCESSOR_K8) \
|
||
{ \
|
||
builtin_define ("__k8"); \
|
||
builtin_define ("__k8__"); \
|
||
} \
|
||
else if (ix86_arch == PROCESSOR_PENTIUM4) \
|
||
{ \
|
||
builtin_define ("__pentium4"); \
|
||
builtin_define ("__pentium4__"); \
|
||
} \
|
||
else if (ix86_arch == PROCESSOR_NOCONA) \
|
||
{ \
|
||
builtin_define ("__nocona"); \
|
||
builtin_define ("__nocona__"); \
|
||
} \
|
||
else if (ix86_arch == PROCESSOR_CORE2) \
|
||
{ \
|
||
builtin_define ("__core2"); \
|
||
builtin_define ("__core2__"); \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
#define TARGET_CPU_DEFAULT_i386 0
|
||
#define TARGET_CPU_DEFAULT_i486 1
|
||
#define TARGET_CPU_DEFAULT_pentium 2
|
||
#define TARGET_CPU_DEFAULT_pentium_mmx 3
|
||
#define TARGET_CPU_DEFAULT_pentiumpro 4
|
||
#define TARGET_CPU_DEFAULT_pentium2 5
|
||
#define TARGET_CPU_DEFAULT_pentium3 6
|
||
#define TARGET_CPU_DEFAULT_pentium4 7
|
||
#define TARGET_CPU_DEFAULT_geode 8
|
||
#define TARGET_CPU_DEFAULT_k6 9
|
||
#define TARGET_CPU_DEFAULT_k6_2 10
|
||
#define TARGET_CPU_DEFAULT_k6_3 11
|
||
#define TARGET_CPU_DEFAULT_athlon 12
|
||
#define TARGET_CPU_DEFAULT_athlon_sse 13
|
||
#define TARGET_CPU_DEFAULT_k8 14
|
||
#define TARGET_CPU_DEFAULT_pentium_m 15
|
||
#define TARGET_CPU_DEFAULT_prescott 16
|
||
#define TARGET_CPU_DEFAULT_nocona 17
|
||
#define TARGET_CPU_DEFAULT_core2 18
|
||
#define TARGET_CPU_DEFAULT_generic 19
|
||
|
||
#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
|
||
"pentiumpro", "pentium2", "pentium3", \
|
||
"pentium4", "geode", "k6", "k6-2", "k6-3", \
|
||
"athlon", "athlon-4", "k8", \
|
||
"pentium-m", "prescott", "nocona", \
|
||
"core2", "generic"}
|
||
|
||
#ifndef CC1_SPEC
|
||
#define CC1_SPEC "%(cc1_cpu) "
|
||
#endif
|
||
|
||
/* This macro defines names of additional specifications to put in the
|
||
specs that can be used in various specifications like CC1_SPEC. Its
|
||
definition is an initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
specification name, and a string constant that used by the GCC driver
|
||
program.
|
||
|
||
Do not define this macro if it does not need to do anything. */
|
||
|
||
#ifndef SUBTARGET_EXTRA_SPECS
|
||
#define SUBTARGET_EXTRA_SPECS
|
||
#endif
|
||
|
||
#define EXTRA_SPECS \
|
||
{ "cc1_cpu", CC1_CPU_SPEC }, \
|
||
SUBTARGET_EXTRA_SPECS
|
||
|
||
/* target machine storage layout */
|
||
|
||
#define LONG_DOUBLE_TYPE_SIZE 80
|
||
|
||
/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
|
||
FPU, assume that the fpcw is set to extended precision; when using
|
||
only SSE, rounding is correct; when using both SSE and the FPU,
|
||
the rounding precision is indeterminate, since either may be chosen
|
||
apparently at random. */
|
||
#define TARGET_FLT_EVAL_METHOD \
|
||
(TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
|
||
|
||
#define SHORT_TYPE_SIZE 16
|
||
#define INT_TYPE_SIZE 32
|
||
#define FLOAT_TYPE_SIZE 32
|
||
#ifndef LONG_TYPE_SIZE
|
||
#define LONG_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
|
||
#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
|
||
#define MAX_BITS_PER_WORD 64
|
||
#else
|
||
#define MAX_BITS_PER_WORD 32
|
||
#endif
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is true on the 80386. */
|
||
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is not true on the 80386. */
|
||
#define BYTES_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered. */
|
||
/* Not true for 80386 */
|
||
#define WORDS_BIG_ENDIAN 0
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
|
||
#ifdef IN_LIBGCC2
|
||
#define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
|
||
#else
|
||
#define MIN_UNITS_PER_WORD 4
|
||
#endif
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY BITS_PER_WORD
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY BITS_PER_WORD
|
||
|
||
/* Boundary (in *bits*) on which the stack pointer prefers to be
|
||
aligned; the compiler cannot rely on having this alignment. */
|
||
#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
|
||
|
||
/* As of July 2001, many runtimes do not align the stack properly when
|
||
entering main. This causes expand_main_function to forcibly align
|
||
the stack, which results in aligned frames for functions called from
|
||
main, though it does nothing for the alignment of main itself. */
|
||
#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
|
||
(ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
|
||
|
||
/* Minimum allocation boundary for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 8
|
||
|
||
/* C++ stores the virtual bit in the lowest bit of function pointers. */
|
||
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
|
||
#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
|
||
|
||
/* Minimum size in bits of the largest boundary to which any
|
||
and all fundamental data types supported by the hardware
|
||
might need to be aligned. No data type wants to be aligned
|
||
rounder than this.
|
||
|
||
Pentium+ prefers DFmode values to be aligned to 64 bit boundary
|
||
and Pentium Pro XFmode values at 128 bit boundaries. */
|
||
|
||
#define BIGGEST_ALIGNMENT 128
|
||
|
||
/* Decide whether a variable of mode MODE should be 128 bit aligned. */
|
||
#define ALIGN_MODE_128(MODE) \
|
||
((MODE) == XFmode || SSE_REG_MODE_P (MODE))
|
||
|
||
/* The published ABIs say that doubles should be aligned on word
|
||
boundaries, so lower the alignment for structure fields unless
|
||
-malign-double is set. */
|
||
|
||
/* ??? Blah -- this macro is used directly by libobjc. Since it
|
||
supports no vector modes, cut out the complexity and fall back
|
||
on BIGGEST_FIELD_ALIGNMENT. */
|
||
#ifdef IN_TARGET_LIBS
|
||
#ifdef __x86_64__
|
||
#define BIGGEST_FIELD_ALIGNMENT 128
|
||
#else
|
||
#define BIGGEST_FIELD_ALIGNMENT 32
|
||
#endif
|
||
#else
|
||
#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
|
||
x86_field_alignment (FIELD, COMPUTED)
|
||
#endif
|
||
|
||
/* If defined, a C expression to compute the alignment given to a
|
||
constant that is being placed in memory. EXP is the constant
|
||
and ALIGN is the alignment that the object would ordinarily have.
|
||
The value of this macro is used instead of that alignment to align
|
||
the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
The typical use of this macro is to increase alignment for string
|
||
constants to be word aligned so that `strcpy' calls that copy
|
||
constants can be done inline. */
|
||
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
|
||
|
||
/* If defined, a C expression to compute the alignment for a static
|
||
variable. TYPE is the data type, and ALIGN is the alignment that
|
||
the object would ordinarily have. The value of this macro is used
|
||
instead of that alignment to align the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
One use of this macro is to increase alignment of medium-size
|
||
data to make it all fit in fewer cache lines. Another is to
|
||
cause character arrays to be word-aligned so that `strcpy' calls
|
||
that copy constants to character arrays can be done inline. */
|
||
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
|
||
|
||
/* If defined, a C expression to compute the alignment for a local
|
||
variable. TYPE is the data type, and ALIGN is the alignment that
|
||
the object would ordinarily have. The value of this macro is used
|
||
instead of that alignment to align the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
One use of this macro is to increase alignment of medium-size
|
||
data to make it all fit in fewer cache lines. */
|
||
|
||
#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
|
||
|
||
/* If defined, a C expression that gives the alignment boundary, in
|
||
bits, of an argument with the specified mode and type. If it is
|
||
not defined, `PARM_BOUNDARY' is used for all arguments. */
|
||
|
||
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
|
||
ix86_function_arg_boundary ((MODE), (TYPE))
|
||
|
||
/* Set this nonzero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 0
|
||
|
||
/* If bit field type is int, don't let it cross an int,
|
||
and give entire struct the alignment of an int. */
|
||
/* Required on the 386 since it doesn't have bit-field insns. */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* This processor has special stack-like registers. See reg-stack.c
|
||
for details. */
|
||
|
||
#define STACK_REGS
|
||
#define IS_STACK_MODE(MODE) \
|
||
(((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
|
||
|| ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
|
||
|| (MODE) == XFmode)
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
|
||
In the 80386 we give the 8 general purpose registers the numbers 0-7.
|
||
We number the floating point registers 8-15.
|
||
Note that registers 0-7 can be accessed as a short or int,
|
||
while only 0-3 may be used with byte `mov' instructions.
|
||
|
||
Reg 16 does not correspond to any hardware register, but instead
|
||
appears in the RTL as an argument pointer prior to reload, and is
|
||
eliminated during reloading in favor of either the stack or frame
|
||
pointer. */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 53
|
||
|
||
/* Number of hardware registers that go into the DWARF-2 unwind info.
|
||
If not defined, equals FIRST_PSEUDO_REGISTER. */
|
||
|
||
#define DWARF_FRAME_REGISTERS 17
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
On the 80386, the stack pointer is such, as is the arg pointer.
|
||
|
||
The value is zero if the register is not fixed on either 32 or
|
||
64 bit targets, one if the register if fixed on both 32 and 64
|
||
bit targets, two if it is only fixed on 32bit targets and three
|
||
if its only fixed on 64bit targets.
|
||
Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
|
||
*/
|
||
#define FIXED_REGISTERS \
|
||
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
|
||
{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/*arg,flags,fpsr,dir,frame*/ \
|
||
1, 1, 1, 1, 1, \
|
||
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
|
||
2, 2, 2, 2, 2, 2, 2, 2, \
|
||
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
|
||
2, 2, 2, 2, 2, 2, 2, 2}
|
||
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like.
|
||
|
||
The value is zero if the register is not call used on either 32 or
|
||
64 bit targets, one if the register if call used on both 32 and 64
|
||
bit targets, two if it is only call used on 32bit targets and three
|
||
if its only call used on 64bit targets.
|
||
Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
|
||
*/
|
||
#define CALL_USED_REGISTERS \
|
||
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
|
||
{ 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/*arg,flags,fpsr,dir,frame*/ \
|
||
1, 1, 1, 1, 1, \
|
||
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
|
||
1, 1, 1, 1, 2, 2, 2, 2, \
|
||
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
|
||
1, 1, 1, 1, 1, 1, 1, 1} \
|
||
|
||
/* Order in which to allocate registers. Each register must be
|
||
listed once, even those in FIXED_REGISTERS. List frame pointer
|
||
late and fixed registers last. Note that, in general, we prefer
|
||
registers listed in CALL_USED_REGISTERS, keeping the others
|
||
available for storage of persistent values.
|
||
|
||
The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
|
||
so this is just empty initializer for array. */
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
|
||
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
|
||
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
|
||
48, 49, 50, 51, 52 }
|
||
|
||
/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
|
||
to be rearranged based on a particular function. When using sse math,
|
||
we want to allocate SSE before x87 registers and vice vera. */
|
||
|
||
#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
|
||
|
||
|
||
/* Macro to conditionally modify fixed_regs/call_used_regs. */
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
do { \
|
||
int i; \
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
|
||
{ \
|
||
if (fixed_regs[i] > 1) \
|
||
fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
|
||
if (call_used_regs[i] > 1) \
|
||
call_used_regs[i] = (call_used_regs[i] \
|
||
== (TARGET_64BIT ? 3 : 2)); \
|
||
} \
|
||
if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
|
||
{ \
|
||
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
} \
|
||
if (! TARGET_MMX) \
|
||
{ \
|
||
int i; \
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
|
||
fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
|
||
} \
|
||
if (! TARGET_SSE) \
|
||
{ \
|
||
int i; \
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
|
||
fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
|
||
} \
|
||
if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
|
||
{ \
|
||
int i; \
|
||
HARD_REG_SET x; \
|
||
COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
|
||
if (TEST_HARD_REG_BIT (x, i)) \
|
||
fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
|
||
} \
|
||
if (! TARGET_64BIT) \
|
||
{ \
|
||
int i; \
|
||
for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
|
||
reg_names[i] = ""; \
|
||
for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
|
||
reg_names[i] = ""; \
|
||
} \
|
||
} while (0)
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
Actually there are no two word move instructions for consecutive
|
||
registers. And only registers 0-3 may have mov byte instructions
|
||
applied to them.
|
||
*/
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
(FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
|
||
? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
|
||
: ((MODE) == XFmode \
|
||
? (TARGET_64BIT ? 2 : 3) \
|
||
: (MODE) == XCmode \
|
||
? (TARGET_64BIT ? 4 : 6) \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
|
||
|
||
#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
|
||
((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
|
||
? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
|
||
? 0 \
|
||
: ((MODE) == XFmode || (MODE) == XCmode)) \
|
||
: 0)
|
||
|
||
#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
|
||
|
||
#define VALID_SSE2_REG_MODE(MODE) \
|
||
((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
|
||
|| (MODE) == V2DImode || (MODE) == DFmode)
|
||
|
||
#define VALID_SSE_REG_MODE(MODE) \
|
||
((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
|
||
|| (MODE) == SFmode || (MODE) == TFmode)
|
||
|
||
#define VALID_MMX_REG_MODE_3DNOW(MODE) \
|
||
((MODE) == V2SFmode || (MODE) == SFmode)
|
||
|
||
#define VALID_MMX_REG_MODE(MODE) \
|
||
((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
|
||
|| (MODE) == V2SImode || (MODE) == SImode)
|
||
|
||
/* ??? No autovectorization into MMX or 3DNOW until we can reliably
|
||
place emms and femms instructions. */
|
||
#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
|
||
|
||
#define VALID_FP_MODE_P(MODE) \
|
||
((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
|
||
|| (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
|
||
|
||
#define VALID_INT_MODE_P(MODE) \
|
||
((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
|
||
|| (MODE) == DImode \
|
||
|| (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
|
||
|| (MODE) == CDImode \
|
||
|| (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
|
||
|| (MODE) == TFmode || (MODE) == TCmode)))
|
||
|
||
/* Return true for modes passed in SSE registers. */
|
||
#define SSE_REG_MODE_P(MODE) \
|
||
((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
|
||
|| (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
|
||
|| (MODE) == V4SFmode || (MODE) == V4SImode)
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
|
||
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
ix86_hard_regno_mode_ok ((REGNO), (MODE))
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
|
||
|
||
/* It is possible to write patterns to move flags; but until someone
|
||
does it, */
|
||
#define AVOID_CCMODE_COPIES
|
||
|
||
/* Specify the modes required to caller save a given hard regno.
|
||
We do this on i386 to prevent flags from being saved at all.
|
||
|
||
Kill any attempts to combine saving of modes. */
|
||
|
||
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
|
||
(CC_REGNO_P (REGNO) ? VOIDmode \
|
||
: (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
|
||
: (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
|
||
: (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
|
||
: (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
|
||
: (MODE))
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* on the 386 the pc register is %eip, and is not usable as a general
|
||
register. The ordinary mov instructions won't work */
|
||
/* #define PC_REGNUM */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 7
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define HARD_FRAME_POINTER_REGNUM 6
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 20
|
||
|
||
/* First floating point reg */
|
||
#define FIRST_FLOAT_REG 8
|
||
|
||
/* First & last stack-like regs */
|
||
#define FIRST_STACK_REG FIRST_FLOAT_REG
|
||
#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
|
||
|
||
#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
|
||
#define LAST_SSE_REG (FIRST_SSE_REG + 7)
|
||
|
||
#define FIRST_MMX_REG (LAST_SSE_REG + 1)
|
||
#define LAST_MMX_REG (FIRST_MMX_REG + 7)
|
||
|
||
#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
|
||
#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
|
||
|
||
#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
|
||
#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
|
||
|
||
/* Override this in other tm.h files to cope with various OS lossage
|
||
requiring a frame pointer. */
|
||
#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
|
||
#define SUBTARGET_FRAME_POINTER_REQUIRED 0
|
||
#endif
|
||
|
||
/* Make sure we can access arbitrary call frames. */
|
||
#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 16
|
||
|
||
/* Register in which static-chain is passed to a function.
|
||
We do use ECX as static chain register for 32 bit ABI. On the
|
||
64bit ABI, ECX is an argument register, so we use R10 instead. */
|
||
#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
|
||
|
||
/* Register to hold the addressing base for position independent
|
||
code access to data items. We don't use PIC pointer for 64bit
|
||
mode. Define the regnum to dummy value to prevent gcc from
|
||
pessimizing code dealing with EBX.
|
||
|
||
To avoid clobbering a call-saved register unnecessarily, we renumber
|
||
the pic register when possible. The change is visible after the
|
||
prologue has been emitted. */
|
||
|
||
#define REAL_PIC_OFFSET_TABLE_REGNUM 3
|
||
|
||
#define PIC_OFFSET_TABLE_REGNUM \
|
||
((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
|
||
|| !flag_pic ? INVALID_REGNUM \
|
||
: reload_completed ? REGNO (pic_offset_table_rtx) \
|
||
: REAL_PIC_OFFSET_TABLE_REGNUM)
|
||
|
||
#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
|
||
|
||
/* A C expression which can inhibit the returning of certain function
|
||
values in registers, based on the type of value. A nonzero value
|
||
says to return the function value in memory, just as large
|
||
structures are always returned. Here TYPE will be a C expression
|
||
of type `tree', representing the data type of the value.
|
||
|
||
Note that values of mode `BLKmode' must be explicitly handled by
|
||
this macro. Also, the option `-fpcc-struct-return' takes effect
|
||
regardless of this macro. On most systems, it is possible to
|
||
leave the macro undefined; this causes a default definition to be
|
||
used, whose value is the constant 1 for `BLKmode' values, and 0
|
||
otherwise.
|
||
|
||
Do not use this macro to indicate that structures and unions
|
||
should always be returned in memory. You should instead use
|
||
`DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
|
||
|
||
#define RETURN_IN_MEMORY(TYPE) \
|
||
ix86_return_in_memory (TYPE)
|
||
|
||
/* This is overridden by <cygwin.h>. */
|
||
#define MS_AGGREGATE_RETURN 0
|
||
|
||
/* This is overridden by <netware.h>. */
|
||
#define KEEP_AGGREGATE_RETURN_POINTER 0
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union.
|
||
|
||
It might seem that class BREG is unnecessary, since no useful 386
|
||
opcode needs reg %ebx. But some systems pass args to the OS in ebx,
|
||
and the "b" register constraint is useful in asms for syscalls.
|
||
|
||
The flags and fpsr registers are in no class. */
|
||
|
||
enum reg_class
|
||
{
|
||
NO_REGS,
|
||
AREG, DREG, CREG, BREG, SIREG, DIREG,
|
||
AD_REGS, /* %eax/%edx for DImode */
|
||
Q_REGS, /* %eax %ebx %ecx %edx */
|
||
NON_Q_REGS, /* %esi %edi %ebp %esp */
|
||
INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
|
||
LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
|
||
GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
|
||
FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
|
||
FLOAT_REGS,
|
||
SSE_REGS,
|
||
MMX_REGS,
|
||
FP_TOP_SSE_REGS,
|
||
FP_SECOND_SSE_REGS,
|
||
FLOAT_SSE_REGS,
|
||
FLOAT_INT_REGS,
|
||
INT_SSE_REGS,
|
||
FLOAT_INT_SSE_REGS,
|
||
ALL_REGS, LIM_REG_CLASSES
|
||
};
|
||
|
||
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
|
||
|
||
#define INTEGER_CLASS_P(CLASS) \
|
||
reg_class_subset_p ((CLASS), GENERAL_REGS)
|
||
#define FLOAT_CLASS_P(CLASS) \
|
||
reg_class_subset_p ((CLASS), FLOAT_REGS)
|
||
#define SSE_CLASS_P(CLASS) \
|
||
((CLASS) == SSE_REGS)
|
||
#define MMX_CLASS_P(CLASS) \
|
||
((CLASS) == MMX_REGS)
|
||
#define MAYBE_INTEGER_CLASS_P(CLASS) \
|
||
reg_classes_intersect_p ((CLASS), GENERAL_REGS)
|
||
#define MAYBE_FLOAT_CLASS_P(CLASS) \
|
||
reg_classes_intersect_p ((CLASS), FLOAT_REGS)
|
||
#define MAYBE_SSE_CLASS_P(CLASS) \
|
||
reg_classes_intersect_p (SSE_REGS, (CLASS))
|
||
#define MAYBE_MMX_CLASS_P(CLASS) \
|
||
reg_classes_intersect_p (MMX_REGS, (CLASS))
|
||
|
||
#define Q_CLASS_P(CLASS) \
|
||
reg_class_subset_p ((CLASS), Q_REGS)
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ "NO_REGS", \
|
||
"AREG", "DREG", "CREG", "BREG", \
|
||
"SIREG", "DIREG", \
|
||
"AD_REGS", \
|
||
"Q_REGS", "NON_Q_REGS", \
|
||
"INDEX_REGS", \
|
||
"LEGACY_REGS", \
|
||
"GENERAL_REGS", \
|
||
"FP_TOP_REG", "FP_SECOND_REG", \
|
||
"FLOAT_REGS", \
|
||
"SSE_REGS", \
|
||
"MMX_REGS", \
|
||
"FP_TOP_SSE_REGS", \
|
||
"FP_SECOND_SSE_REGS", \
|
||
"FLOAT_SSE_REGS", \
|
||
"FLOAT_INT_REGS", \
|
||
"INT_SSE_REGS", \
|
||
"FLOAT_INT_SSE_REGS", \
|
||
"ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ { 0x00, 0x0 }, \
|
||
{ 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
|
||
{ 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
|
||
{ 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
|
||
{ 0x03, 0x0 }, /* AD_REGS */ \
|
||
{ 0x0f, 0x0 }, /* Q_REGS */ \
|
||
{ 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
|
||
{ 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
|
||
{ 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
|
||
{ 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
|
||
{ 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
|
||
{ 0xff00, 0x0 }, /* FLOAT_REGS */ \
|
||
{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
|
||
{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
|
||
{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
|
||
{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
|
||
{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
|
||
{ 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
|
||
{ 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
|
||
{ 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
|
||
{ 0xffffffff,0x1fffff } \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
|
||
|
||
/* When defined, the compiler allows registers explicitly used in the
|
||
rtl to be used as spill registers but prevents the compiler from
|
||
extending the lifetime of these registers. */
|
||
|
||
#define SMALL_REGISTER_CLASSES 1
|
||
|
||
#define QI_REG_P(X) \
|
||
(REG_P (X) && REGNO (X) < 4)
|
||
|
||
#define GENERAL_REGNO_P(N) \
|
||
((N) < 8 || REX_INT_REGNO_P (N))
|
||
|
||
#define GENERAL_REG_P(X) \
|
||
(REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
|
||
|
||
#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
|
||
|
||
#define NON_QI_REG_P(X) \
|
||
(REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
|
||
|
||
#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
|
||
#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
|
||
|
||
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
|
||
#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
|
||
#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
|
||
#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
|
||
|
||
#define SSE_REGNO_P(N) \
|
||
(((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
|
||
|| ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
|
||
|
||
#define REX_SSE_REGNO_P(N) \
|
||
((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
|
||
|
||
#define SSE_REGNO(N) \
|
||
((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
|
||
#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
|
||
|
||
#define SSE_FLOAT_MODE_P(MODE) \
|
||
((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
|
||
|
||
#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
|
||
#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
|
||
|
||
#define STACK_REG_P(XOP) \
|
||
(REG_P (XOP) && \
|
||
REGNO (XOP) >= FIRST_STACK_REG && \
|
||
REGNO (XOP) <= LAST_STACK_REG)
|
||
|
||
#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
|
||
|
||
#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
|
||
|
||
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
|
||
#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
|
||
#define INDEX_REG_CLASS INDEX_REGS
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* Place additional restrictions on the register class to use when it
|
||
is necessary to be able to hold a value of mode MODE in a reload
|
||
register for which class CLASS would ordinarily be used. */
|
||
|
||
#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
|
||
((MODE) == QImode && !TARGET_64BIT \
|
||
&& ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
|
||
|| (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
|
||
? Q_REGS : (CLASS))
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class.
|
||
On the 80386 series, we prevent floating constants from being
|
||
reloaded into floating registers (since no move-insn can do that)
|
||
and we ensure that QImodes aren't reloaded into the esi or edi reg. */
|
||
|
||
/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
|
||
QImode must go into class Q_REGS.
|
||
Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
|
||
movdf to do mem-to-mem moves through integer regs. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
|
||
ix86_preferred_reload_class ((X), (CLASS))
|
||
|
||
/* Discourage putting floating-point values in SSE registers unless
|
||
SSE math is being used, and likewise for the 387 registers. */
|
||
|
||
#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
|
||
ix86_preferred_output_reload_class ((X), (CLASS))
|
||
|
||
/* If we are copying between general and FP registers, we need a memory
|
||
location. The same is true for SSE and MMX registers. */
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
||
ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
|
||
|
||
/* QImode spills from non-QI registers need a scratch. This does not
|
||
happen often -- the only example so far requires an uninitialized
|
||
pseudo. */
|
||
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
|
||
(((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
|
||
|| (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
|
||
? Q_REGS : NO_REGS)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
/* On the 80386, this is the size of MODE in words,
|
||
except in the FP regs, where a single reg is always enough. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
(!MAYBE_INTEGER_CLASS_P (CLASS) \
|
||
? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
|
||
: (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
|
||
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* A C expression whose value is nonzero if pseudos that have been
|
||
assigned to registers of class CLASS would likely be spilled
|
||
because registers of CLASS are needed for spill registers.
|
||
|
||
The default value of this macro returns 1 if CLASS has exactly one
|
||
register and zero otherwise. On most machines, this default
|
||
should be used. Only define this macro to some other expression
|
||
if pseudo allocated by `local-alloc.c' end up in memory because
|
||
their hard registers were needed for spill registers. If this
|
||
macro returns nonzero for those classes, those pseudos will only
|
||
be allocated by `global.c', which knows how to reallocate the
|
||
pseudo to another register. If there would not be another
|
||
register available for reallocation, you should not change the
|
||
definition of this macro since the only effect of such a
|
||
definition would be to slow down register allocation. */
|
||
|
||
#define CLASS_LIKELY_SPILLED_P(CLASS) \
|
||
(((CLASS) == AREG) \
|
||
|| ((CLASS) == DREG) \
|
||
|| ((CLASS) == CREG) \
|
||
|| ((CLASS) == BREG) \
|
||
|| ((CLASS) == AD_REGS) \
|
||
|| ((CLASS) == SIREG) \
|
||
|| ((CLASS) == DIREG) \
|
||
|| ((CLASS) == FP_TOP_REG) \
|
||
|| ((CLASS) == FP_SECOND_REG))
|
||
|
||
/* Return a class of registers that cannot change FROM mode to TO mode. */
|
||
|
||
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
||
ix86_cannot_change_mode_class (FROM, TO, CLASS)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this to nonzero if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD 1
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On 386, we have pushw instruction that decrements by exactly 2 no
|
||
matter what the position was, there is no pushb.
|
||
But as CIE data alignment factor on this arch is -4, we need to make
|
||
sure all stack pointer adjustments are in multiple of 4.
|
||
|
||
For 64bit ABI we round up to 8 bytes.
|
||
*/
|
||
|
||
#define PUSH_ROUNDING(BYTES) \
|
||
(TARGET_64BIT \
|
||
? (((BYTES) + 7) & (-8)) \
|
||
: (((BYTES) + 3) & (-4)))
|
||
|
||
/* If defined, the maximum amount of space required for outgoing arguments will
|
||
be computed and placed into the variable
|
||
`current_function_outgoing_args_size'. No space will be pushed onto the
|
||
stack for each call; instead, the function prologue should increase the stack
|
||
frame size by this amount. */
|
||
|
||
#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
|
||
|
||
/* If defined, a C expression whose value is nonzero when we want to use PUSH
|
||
instructions to pass outgoing arguments. */
|
||
|
||
#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
|
||
|
||
/* We want the stack and args grow in opposite directions, even if
|
||
PUSH_ARGS is 0. */
|
||
#define PUSH_ARGS_REVERSED 1
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
|
||
/* Define this macro if functions should assume that stack space has been
|
||
allocated for arguments even when their values are passed in registers.
|
||
|
||
The value of this macro is the size, in bytes, of the area reserved for
|
||
arguments passed in registers for the function represented by FNDECL.
|
||
|
||
This space can be allocated by the caller, or be a part of the
|
||
machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
|
||
which. */
|
||
#define REG_PARM_STACK_SPACE(FNDECL) 0
|
||
|
||
/* Value is the number of bytes of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the 80386, the RTD insn may be used to pop them if the number
|
||
of args is fixed, but if the number is variable then the caller
|
||
must pop them all. RTD can't be used for library calls now
|
||
because the library is compiled with the Unix compiler.
|
||
Use of RTD is a selectable option, since it is incompatible with
|
||
standard Unix calling sequences. If the option is not selected,
|
||
the caller must always pop the args.
|
||
|
||
The attribute stdcall is equivalent to RTD on a per module basis. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
|
||
ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) \
|
||
ix86_function_value_regno_p (N)
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
ix86_libcall_value (MODE)
|
||
|
||
/* Define the size of the result block used for communication between
|
||
untyped_call and untyped_return. The block contains a DImode value
|
||
followed by the block used by fnsave and frstor. */
|
||
|
||
#define APPLY_RESULT_SIZE (8+108)
|
||
|
||
/* 1 if N is a possible register number for function argument passing. */
|
||
#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go. */
|
||
|
||
typedef struct ix86_args {
|
||
int words; /* # words passed so far */
|
||
int nregs; /* # registers available for passing */
|
||
int regno; /* next available register number */
|
||
int fastcall; /* fastcall calling convention is used */
|
||
int sse_words; /* # sse words passed so far */
|
||
int sse_nregs; /* # sse registers available for passing */
|
||
int warn_sse; /* True when we want to warn about SSE ABI. */
|
||
int warn_mmx; /* True when we want to warn about MMX ABI. */
|
||
int sse_regno; /* next available sse register number */
|
||
int mmx_words; /* # mmx words passed so far */
|
||
int mmx_nregs; /* # mmx registers available for passing */
|
||
int mmx_regno; /* next available mmx register number */
|
||
int maybe_vaarg; /* true for calls to possibly vardic fncts. */
|
||
int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
|
||
be passed in SSE registers. Otherwise 0. */
|
||
} CUMULATIVE_ARGS;
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
|
||
init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
function_arg (&(CUM), (MODE), (TYPE), (NAMED))
|
||
|
||
/* Implement `va_start' for varargs and stdarg. */
|
||
#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
|
||
ix86_va_start (VALIST, NEXTARG)
|
||
|
||
#define TARGET_ASM_FILE_END ix86_file_end
|
||
#define NEED_INDICATE_EXEC_STACK 0
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
|
||
|
||
#define MCOUNT_NAME "_mcount"
|
||
|
||
#define PROFILE_COUNT_REGISTER "edx"
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
/* Note on the 386 it might be more efficient not to define this since
|
||
we have to restore it ourselves from the frame pointer, in order to
|
||
use pop */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts. */
|
||
|
||
/* On the 386, the trampoline contains two instructions:
|
||
mov #STATIC,ecx
|
||
jmp FUNCTION
|
||
The trampoline is generated entirely at runtime. The operand of JMP
|
||
is the address of FUNCTION relative to the instruction following the
|
||
JMP (which is 5 bytes long). */
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
|
||
|
||
/* Definitions for register eliminations.
|
||
|
||
This is an array of structures. Each structure initializes one pair
|
||
of eliminable registers. The "from" register number is given first,
|
||
followed by "to". Eliminations of the same "from" register are listed
|
||
in order of preference.
|
||
|
||
There are two registers that can always be eliminated on the i386.
|
||
The frame pointer and the arg pointer can be replaced by either the
|
||
hard frame pointer or to the stack pointer, depending upon the
|
||
circumstances. The hard frame pointer is not used before reload and
|
||
so it is not eligible for elimination. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
|
||
|
||
/* Given FROM and TO register numbers, say whether this elimination is
|
||
allowed. Frame pointer elimination is automatically handled.
|
||
|
||
All other eliminations are valid. */
|
||
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
|
||
|
||
/* Define the offset between two registers, one to be eliminated, and the other
|
||
its replacement, at the start of a routine. */
|
||
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
((REGNO) < STACK_POINTER_REGNUM \
|
||
|| (REGNO >= FIRST_REX_INT_REG \
|
||
&& (REGNO) <= LAST_REX_INT_REG) \
|
||
|| ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
|
||
&& (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
|
||
|| (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
|
||
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
((REGNO) <= STACK_POINTER_REGNUM \
|
||
|| (REGNO) == ARG_POINTER_REGNUM \
|
||
|| (REGNO) == FRAME_POINTER_REGNUM \
|
||
|| (REGNO >= FIRST_REX_INT_REG \
|
||
&& (REGNO) <= LAST_REX_INT_REG) \
|
||
|| ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
|
||
&& (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
|
||
|| (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
|
||
|
||
#define REGNO_OK_FOR_SIREG_P(REGNO) \
|
||
((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
|
||
#define REGNO_OK_FOR_DIREG_P(REGNO) \
|
||
((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
|
||
/* Non strict versions, pseudos are ok. */
|
||
#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
|
||
(REGNO (X) < STACK_POINTER_REGNUM \
|
||
|| (REGNO (X) >= FIRST_REX_INT_REG \
|
||
&& REGNO (X) <= LAST_REX_INT_REG) \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
||
|
||
#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
|
||
(REGNO (X) <= STACK_POINTER_REGNUM \
|
||
|| REGNO (X) == ARG_POINTER_REGNUM \
|
||
|| REGNO (X) == FRAME_POINTER_REGNUM \
|
||
|| (REGNO (X) >= FIRST_REX_INT_REG \
|
||
&& REGNO (X) <= LAST_REX_INT_REG) \
|
||
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
||
|
||
/* Strict versions, hard registers only */
|
||
#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#ifndef REG_OK_STRICT
|
||
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
|
||
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
|
||
|
||
#else
|
||
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
|
||
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
|
||
except for CONSTANT_ADDRESS_P which is usually machine-independent.
|
||
|
||
See legitimize_pic_address in i386.c for details as to what
|
||
constitutes a legitimate address when -fpic is used. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
|
||
|
||
#ifdef REG_OK_STRICT
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
do { \
|
||
if (legitimate_address_p ((MODE), (X), 1)) \
|
||
goto ADDR; \
|
||
} while (0)
|
||
|
||
#else
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
do { \
|
||
if (legitimate_address_p ((MODE), (X), 0)) \
|
||
goto ADDR; \
|
||
} while (0)
|
||
|
||
#endif
|
||
|
||
/* If defined, a C expression to determine the base term of address X.
|
||
This macro is used in only one place: `find_base_term' in alias.c.
|
||
|
||
It is always safe for this macro to not be defined. It exists so
|
||
that alias analysis can understand machine-dependent addresses.
|
||
|
||
The typical use of this macro is to handle addresses containing
|
||
a label_ref or symbol_ref within an UNSPEC. */
|
||
|
||
#define FIND_BASE_TERM(X) ix86_find_base_term (X)
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
For the 80386, we handle X+REG by loading X into a register R and
|
||
using R+REG. R will go in a general reg and indexing will be used.
|
||
However, if REG is a broken-out memory address or multiplication,
|
||
nothing needs to be done because REG can certainly go in a general reg.
|
||
|
||
When -fpic is used, special handling is needed for symbolic references.
|
||
See comments by legitimize_pic_address in i386.c for details. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
do { \
|
||
(X) = legitimize_address ((X), (OLDX), (MODE)); \
|
||
if (memory_address_p ((MODE), (X))) \
|
||
goto WIN; \
|
||
} while (0)
|
||
|
||
#define REWRITE_ADDRESS(X) rewrite_address (X)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand
|
||
when generating PIC code. It is given that flag_pic is on and
|
||
that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
|
||
|
||
#define SYMBOLIC_CONST(X) \
|
||
(GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == LABEL_REF \
|
||
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
On the 80386, only postdecrement and postincrement address depend thus
|
||
(the amount of decrement or increment being the length of the operand). */
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
do { \
|
||
if (GET_CODE (ADDR) == POST_INC \
|
||
|| GET_CODE (ADDR) == POST_DEC) \
|
||
goto LABEL; \
|
||
} while (0)
|
||
|
||
/* Max number of args passed in registers. If this is more than 3, we will
|
||
have problems with ebx (register #4), since it is a caller save register and
|
||
is also used as the pic register in ELF. So for now, don't allow more than
|
||
3 registers to be passed in registers. */
|
||
|
||
#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
|
||
|
||
#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
|
||
|
||
#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
|
||
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* Number of bytes moved into a data cache for a single prefetch operation. */
|
||
#define PREFETCH_BLOCK ix86_cost->prefetch_block
|
||
|
||
/* Number of prefetch operations that can be done in parallel. */
|
||
#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 16
|
||
|
||
/* MOVE_MAX_PIECES is the number of bytes at a time which we can
|
||
move efficiently, as opposed to MOVE_MAX which is the maximum
|
||
number of bytes we can move with a single instruction. */
|
||
#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
|
||
|
||
/* If a memory-to-memory move would take MOVE_RATIO or more simple
|
||
move-instruction pairs, we will do a movmem or libcall instead.
|
||
Increasing the value will always make code faster, but eventually
|
||
incurs high cost in increased code size.
|
||
|
||
If you don't define this, a reasonable default is used. */
|
||
|
||
#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
|
||
|
||
/* If a clear memory operation would take CLEAR_RATIO or more simple
|
||
move-instruction sequences, we will do a clrmem or libcall instead. */
|
||
|
||
#define CLEAR_RATIO (optimize_size ? 2 \
|
||
: ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
|
||
|
||
/* Define if shifts truncate the shift count
|
||
which implies one can omit a sign-extension or zero-extension
|
||
of a shift count. */
|
||
/* On i386, shifts do truncate the count. But bit opcodes don't. */
|
||
|
||
/* #define SHIFT_COUNT_TRUNCATED */
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* A macro to update M and UNSIGNEDP when an object whose type is
|
||
TYPE and which has the specified mode and signedness is to be
|
||
stored in a register. This macro is only called when TYPE is a
|
||
scalar type.
|
||
|
||
On i386 it is sometimes useful to promote HImode and QImode
|
||
quantities to SImode. The choice depends on target type. */
|
||
|
||
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
||
do { \
|
||
if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
|
||
|| ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
|
||
(MODE) = SImode; \
|
||
} while (0)
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode (TARGET_64BIT ? DImode : SImode)
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE QImode
|
||
|
||
/* A C expression for the cost of moving data from a register in class FROM to
|
||
one in class TO. The classes are expressed using the enumeration values
|
||
such as `GENERAL_REGS'. A value of 2 is the default; other values are
|
||
interpreted relative to that.
|
||
|
||
It is not required that the cost always equal 2 when FROM is the same as TO;
|
||
on some machines it is expensive to move between registers if they are not
|
||
general registers. */
|
||
|
||
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
|
||
ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
|
||
|
||
/* A C expression for the cost of moving data of mode M between a
|
||
register and memory. A value of 2 is the default; this cost is
|
||
relative to those in `REGISTER_MOVE_COST'.
|
||
|
||
If moving between registers and memory is more expensive than
|
||
between two registers, you should define this macro to express the
|
||
relative cost. */
|
||
|
||
#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
|
||
ix86_memory_move_cost ((MODE), (CLASS), (IN))
|
||
|
||
/* A C expression for the cost of a branch instruction. A value of 1
|
||
is the default; other values are interpreted relative to that. */
|
||
|
||
#define BRANCH_COST ix86_branch_cost
|
||
|
||
/* Define this macro as a C expression which is nonzero if accessing
|
||
less than a word of memory (i.e. a `char' or a `short') is no
|
||
faster than accessing a word of memory, i.e., if such access
|
||
require more than one instruction or if there is no difference in
|
||
cost between byte and (aligned) word loads.
|
||
|
||
When this macro is not defined, the compiler will access a field by
|
||
finding the smallest containing object; when it is defined, a
|
||
fullword load will be used if alignment permits. Unless bytes
|
||
accesses are faster than word accesses, using word accesses is
|
||
preferable since it may eliminate subsequent memory access if
|
||
subsequent accesses occur to other fields in the same word of the
|
||
structure, but to different bytes. */
|
||
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Nonzero if access to memory by shorts is slow and undesirable. */
|
||
#define SLOW_SHORT_ACCESS 0
|
||
|
||
/* Define this macro to be the value 1 if unaligned accesses have a
|
||
cost many times greater than aligned accesses, for example if they
|
||
are emulated in a trap handler.
|
||
|
||
When this macro is nonzero, the compiler will act as if
|
||
`STRICT_ALIGNMENT' were nonzero when generating code for block
|
||
moves. This can cause significantly more instructions to be
|
||
produced. Therefore, do not set this macro nonzero if unaligned
|
||
accesses only add a cycle or two to the time for a memory access.
|
||
|
||
If the value of this macro is always zero, it need not be defined. */
|
||
|
||
/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
|
||
|
||
/* Define this macro if it is as good or better to call a constant
|
||
function address than to call an address kept in a register.
|
||
|
||
Desirable on the 386 because a CALL with a constant address is
|
||
faster than one with a register address. */
|
||
|
||
#define NO_FUNCTION_CSE
|
||
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison.
|
||
|
||
For floating-point equality comparisons, CCFPEQmode should be used.
|
||
VOIDmode should be used in all other cases.
|
||
|
||
For integer comparisons against zero, reduce to CCNOmode or CCZmode if
|
||
possible, to allow for more combinations. */
|
||
|
||
#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
|
||
|
||
/* Return nonzero if MODE implies a floating point inequality can be
|
||
reversed. */
|
||
|
||
#define REVERSIBLE_CC_MODE(MODE) 1
|
||
|
||
/* A C expression whose value is reversed condition code of the CODE for
|
||
comparison done in CC_MODE mode. */
|
||
#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
|
||
|
||
|
||
/* Control the assembler format that we output, to the extent
|
||
this does not vary between assemblers. */
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
|
||
For non floating point regs, the following are the HImode names.
|
||
|
||
For float regs, the stack top is sometimes referred to as "%st(0)"
|
||
instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
|
||
|
||
#define HI_REGISTER_NAMES \
|
||
{"ax","dx","cx","bx","si","di","bp","sp", \
|
||
"st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
|
||
"argp", "flags", "fpsr", "dirflag", "frame", \
|
||
"xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
|
||
"mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
|
||
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
|
||
|
||
#define REGISTER_NAMES HI_REGISTER_NAMES
|
||
|
||
/* Table of additional register names to use in user input. */
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
|
||
{ "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
|
||
{ "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
|
||
{ "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
|
||
{ "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
|
||
{ "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
|
||
|
||
/* Note we are omitting these since currently I don't know how
|
||
to get gcc to use these, since they want the same but different
|
||
number as al, and ax.
|
||
*/
|
||
|
||
#define QI_REGISTER_NAMES \
|
||
{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
|
||
|
||
/* These parallel the array above, and can be used to access bits 8:15
|
||
of regs 0 through 3. */
|
||
|
||
#define QI_HIGH_REGISTER_NAMES \
|
||
{"ah", "dh", "ch", "bh", }
|
||
|
||
/* How to renumber registers for dbx and gdb. */
|
||
|
||
#define DBX_REGISTER_NUMBER(N) \
|
||
(TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
|
||
|
||
extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
|
||
extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
|
||
extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Before the prologue, RA is at 0(%esp). */
|
||
#define INCOMING_RETURN_ADDR_RTX \
|
||
gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
|
||
|
||
/* After the prologue, RA is at -4(AP) in the current frame. */
|
||
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
||
((COUNT) == 0 \
|
||
? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
|
||
: gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
|
||
|
||
/* PC is dbx register 8; let's use that column for RA. */
|
||
#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
|
||
|
||
/* Before the prologue, the top of the frame is at 4(%esp). */
|
||
#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
|
||
|
||
/* Describe how we implement __builtin_eh_return. */
|
||
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
|
||
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
|
||
|
||
|
||
/* Select a format to encode pointers in exception handling data. CODE
|
||
is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
|
||
true if the symbol may be affected by dynamic relocations.
|
||
|
||
??? All x86 object file formats are capable of representing this.
|
||
After all, the relocation needed is the same as for the call insn.
|
||
Whether or not a particular assembler allows us to enter such, I
|
||
guess we'll have to see. */
|
||
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
|
||
asm_preferred_eh_data_format ((CODE), (GLOBAL))
|
||
|
||
/* This is how to output an insn to push a register on the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
|
||
do { \
|
||
if (TARGET_64BIT) \
|
||
asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
|
||
reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
|
||
else \
|
||
asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
|
||
} while (0)
|
||
|
||
/* This is how to output an insn to pop a register from the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
|
||
do { \
|
||
if (TARGET_64BIT) \
|
||
asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
|
||
reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
|
||
else \
|
||
asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
|
||
} while (0)
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
ix86_output_addr_vec_elt ((FILE), (VALUE))
|
||
|
||
/* This is how to output an element of a case-vector that is relative. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
||
ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
|
||
|
||
/* Under some conditions we need jump tables in the text section,
|
||
because the assembler cannot handle label differences between
|
||
sections. This is the case for x86_64 on Mach-O for example. */
|
||
|
||
#define JUMP_TABLES_IN_TEXT_SECTION \
|
||
(flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
|
||
|| (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
|
||
|
||
/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
|
||
and switch back. For x86 we do this only to save a few bytes that
|
||
would otherwise be unused in the text section. */
|
||
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
||
asm (SECTION_OP "\n\t" \
|
||
"call " USER_LABEL_PREFIX #FUNC "\n" \
|
||
TEXT_SECTION_ASM_OP);
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
Effect of various CODE letters is described in i386.c near
|
||
print_operand function. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) \
|
||
print_operand ((FILE), (X), (CODE))
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
print_operand_address ((FILE), (ADDR))
|
||
|
||
#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
|
||
do { \
|
||
if (! output_addr_const_extra (FILE, (X))) \
|
||
goto FAIL; \
|
||
} while (0);
|
||
|
||
/* a letter which is not needed by the normal asm syntax, which
|
||
we can use for operand syntax in the extended asm */
|
||
|
||
#define ASM_OPERAND_LETTER '#'
|
||
#define RET return ""
|
||
#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
|
||
|
||
/* Which processor to schedule for. The cpu attribute defines a list that
|
||
mirrors this list, so changes to i386.md must be made at the same time. */
|
||
|
||
enum processor_type
|
||
{
|
||
PROCESSOR_I386, /* 80386 */
|
||
PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
|
||
PROCESSOR_PENTIUM,
|
||
PROCESSOR_PENTIUMPRO,
|
||
PROCESSOR_GEODE,
|
||
PROCESSOR_K6,
|
||
PROCESSOR_ATHLON,
|
||
PROCESSOR_PENTIUM4,
|
||
PROCESSOR_K8,
|
||
PROCESSOR_NOCONA,
|
||
PROCESSOR_CORE2,
|
||
PROCESSOR_GENERIC32,
|
||
PROCESSOR_GENERIC64,
|
||
PROCESSOR_max
|
||
};
|
||
|
||
extern enum processor_type ix86_tune;
|
||
extern enum processor_type ix86_arch;
|
||
|
||
enum fpmath_unit
|
||
{
|
||
FPMATH_387 = 1,
|
||
FPMATH_SSE = 2
|
||
};
|
||
|
||
extern enum fpmath_unit ix86_fpmath;
|
||
|
||
enum tls_dialect
|
||
{
|
||
TLS_DIALECT_GNU,
|
||
TLS_DIALECT_GNU2,
|
||
TLS_DIALECT_SUN
|
||
};
|
||
|
||
extern enum tls_dialect ix86_tls_dialect;
|
||
|
||
enum cmodel {
|
||
CM_32, /* The traditional 32-bit ABI. */
|
||
CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
|
||
CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
|
||
CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
|
||
CM_LARGE, /* No assumptions. */
|
||
CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
|
||
CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region. */
|
||
};
|
||
|
||
extern enum cmodel ix86_cmodel;
|
||
|
||
/* Size of the RED_ZONE area. */
|
||
#define RED_ZONE_SIZE 128
|
||
/* Reserved area of the red zone for temporaries. */
|
||
#define RED_ZONE_RESERVE 8
|
||
|
||
enum asm_dialect {
|
||
ASM_ATT,
|
||
ASM_INTEL
|
||
};
|
||
|
||
extern enum asm_dialect ix86_asm_dialect;
|
||
extern unsigned int ix86_preferred_stack_boundary;
|
||
extern int ix86_branch_cost, ix86_section_threshold;
|
||
|
||
/* Smallest class containing REGNO. */
|
||
extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
|
||
|
||
extern rtx ix86_compare_op0; /* operand 0 for comparisons */
|
||
extern rtx ix86_compare_op1; /* operand 1 for comparisons */
|
||
extern rtx ix86_compare_emitted;
|
||
|
||
/* To properly truncate FP values into integers, we need to set i387 control
|
||
word. We can't emit proper mode switching code before reload, as spills
|
||
generated by reload may truncate values incorrectly, but we still can avoid
|
||
redundant computation of new control word by the mode switching pass.
|
||
The fldcw instructions are still emitted redundantly, but this is probably
|
||
not going to be noticeable problem, as most CPUs do have fast path for
|
||
the sequence.
|
||
|
||
The machinery is to emit simple truncation instructions and split them
|
||
before reload to instructions having USEs of two memory locations that
|
||
are filled by this code to old and new control word.
|
||
|
||
Post-reload pass may be later used to eliminate the redundant fildcw if
|
||
needed. */
|
||
|
||
enum ix86_entity
|
||
{
|
||
I387_TRUNC = 0,
|
||
I387_FLOOR,
|
||
I387_CEIL,
|
||
I387_MASK_PM,
|
||
MAX_386_ENTITIES
|
||
};
|
||
|
||
enum ix86_stack_slot
|
||
{
|
||
SLOT_VIRTUAL = 0,
|
||
SLOT_TEMP,
|
||
SLOT_CW_STORED,
|
||
SLOT_CW_TRUNC,
|
||
SLOT_CW_FLOOR,
|
||
SLOT_CW_CEIL,
|
||
SLOT_CW_MASK_PM,
|
||
MAX_386_STACK_LOCALS
|
||
};
|
||
|
||
/* Define this macro if the port needs extra instructions inserted
|
||
for mode switching in an optimizing compilation. */
|
||
|
||
#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
|
||
ix86_optimize_mode_switching[(ENTITY)]
|
||
|
||
/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
|
||
initializer for an array of integers. Each initializer element N
|
||
refers to an entity that needs mode switching, and specifies the
|
||
number of different modes that might need to be set for this
|
||
entity. The position of the initializer in the initializer -
|
||
starting counting at zero - determines the integer that is used to
|
||
refer to the mode-switched entity in question. */
|
||
|
||
#define NUM_MODES_FOR_MODE_SWITCHING \
|
||
{ I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
|
||
|
||
/* ENTITY is an integer specifying a mode-switched entity. If
|
||
`OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
|
||
return an integer value not larger than the corresponding element
|
||
in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
|
||
must be switched into prior to the execution of INSN. */
|
||
|
||
#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
|
||
|
||
/* This macro specifies the order in which modes for ENTITY are
|
||
processed. 0 is the highest priority. */
|
||
|
||
#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
|
||
|
||
/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
|
||
is the set of hard registers live at the point where the insn(s)
|
||
are to be inserted. */
|
||
|
||
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
|
||
((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
|
||
? emit_i387_cw_initialization (MODE), 0 \
|
||
: 0)
|
||
|
||
|
||
/* Avoid renaming of stack registers, as doing so in combination with
|
||
scheduling just increases amount of live registers at time and in
|
||
the turn amount of fxch instructions needed.
|
||
|
||
??? Maybe Pentium chips benefits from renaming, someone can try.... */
|
||
|
||
#define HARD_REGNO_RENAME_OK(SRC, TARGET) \
|
||
((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
|
||
|
||
|
||
#define DLL_IMPORT_EXPORT_PREFIX '#'
|
||
|
||
#define FASTCALL_PREFIX '@'
|
||
|
||
struct machine_function GTY(())
|
||
{
|
||
struct stack_local_entry *stack_locals;
|
||
const char *some_ld_name;
|
||
rtx force_align_arg_pointer;
|
||
int save_varrargs_registers;
|
||
int accesses_prev_frame;
|
||
int optimize_mode_switching[MAX_386_ENTITIES];
|
||
/* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
|
||
determine the style used. */
|
||
int use_fast_prologue_epilogue;
|
||
/* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
|
||
for. */
|
||
int use_fast_prologue_epilogue_nregs;
|
||
/* If true, the current function needs the default PIC register, not
|
||
an alternate register (on x86) and must not use the red zone (on
|
||
x86_64), even if it's a leaf function. We don't want the
|
||
function to be regarded as non-leaf because TLS calls need not
|
||
affect register allocation. This flag is set when a TLS call
|
||
instruction is expanded within a function, and never reset, even
|
||
if all such instructions are optimized away. Use the
|
||
ix86_current_function_calls_tls_descriptor macro for a better
|
||
approximation. */
|
||
int tls_descriptor_call_expanded_p;
|
||
};
|
||
|
||
#define ix86_stack_locals (cfun->machine->stack_locals)
|
||
#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
|
||
#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
|
||
#define ix86_tls_descriptor_calls_expanded_in_cfun \
|
||
(cfun->machine->tls_descriptor_call_expanded_p)
|
||
/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
|
||
calls are optimized away, we try to detect cases in which it was
|
||
optimized away. Since such instructions (use (reg REG_SP)), we can
|
||
verify whether there's any such instruction live by testing that
|
||
REG_SP is live. */
|
||
#define ix86_current_function_calls_tls_descriptor \
|
||
(ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
|
||
|
||
/* Control behavior of x86_file_start. */
|
||
#define X86_FILE_START_VERSION_DIRECTIVE false
|
||
#define X86_FILE_START_FLTUSED false
|
||
|
||
/* Flag to mark data that is in the large address area. */
|
||
#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
|
||
#define SYMBOL_REF_FAR_ADDR_P(X) \
|
||
((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
|
||
/*
|
||
Local variables:
|
||
version-control: t
|
||
End:
|
||
*/
|