12a43d0d5d
including the TCP header in the first IP packet. Enforce this in tcp_output(). In addition make sure that at least one byte payload fits in the TCP segement to allow making progress. Without this check, a kernel with INVARIANTS will panic. This issue was found by running an instance of syzkaller. Reviewed by: jtl@ MFC after: 3 days Sponsored by: Netflix, Inc. Differential Revision: https://reviews.freebsd.org/D21665
10579 lines
313 KiB
C
10579 lines
313 KiB
C
/*-
|
|
* Copyright (c) 2016-2019 Netflix, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_tcpdebug.h"
|
|
#include "opt_ratelimit.h"
|
|
#include "opt_kern_tls.h"
|
|
#include <sys/param.h>
|
|
#include <sys/module.h>
|
|
#include <sys/kernel.h>
|
|
#ifdef TCP_HHOOK
|
|
#include <sys/hhook.h>
|
|
#endif
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/proc.h> /* for proc0 declaration */
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#ifdef KERN_TLS
|
|
#include <sys/ktls.h>
|
|
#endif
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#ifdef NETFLIX_STATS
|
|
#include <sys/qmath.h>
|
|
#include <sys/tree.h>
|
|
#include <sys/stats.h> /* Must come after qmath.h and tree.h */
|
|
#endif
|
|
#include <sys/refcount.h>
|
|
#include <sys/tree.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/kern_prefetch.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/route.h>
|
|
#include <net/vnet.h>
|
|
|
|
#define TCPSTATES /* for logging */
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_kdtrace.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip_icmp.h> /* required for icmp_var.h */
|
|
#include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet/tcp.h>
|
|
#define TCPOUTFLAGS
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_log_buf.h>
|
|
#include <netinet/tcp_seq.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcp_hpts.h>
|
|
#include <netinet/tcpip.h>
|
|
#include <netinet/cc/cc.h>
|
|
#include <netinet/tcp_fastopen.h>
|
|
#include <netinet/tcp_lro.h>
|
|
#ifdef TCPDEBUG
|
|
#include <netinet/tcp_debug.h>
|
|
#endif /* TCPDEBUG */
|
|
#ifdef TCP_OFFLOAD
|
|
#include <netinet/tcp_offload.h>
|
|
#endif
|
|
#ifdef INET6
|
|
#include <netinet6/tcp6_var.h>
|
|
#endif
|
|
|
|
#include <netipsec/ipsec_support.h>
|
|
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/ipsec6.h>
|
|
#endif /* IPSEC */
|
|
|
|
#include <netinet/udp.h>
|
|
#include <netinet/udp_var.h>
|
|
#include <machine/in_cksum.h>
|
|
|
|
#ifdef MAC
|
|
#include <security/mac/mac_framework.h>
|
|
#endif
|
|
#include "sack_filter.h"
|
|
#include "tcp_rack.h"
|
|
#include "rack_bbr_common.h"
|
|
|
|
uma_zone_t rack_zone;
|
|
uma_zone_t rack_pcb_zone;
|
|
|
|
#ifndef TICKS2SBT
|
|
#define TICKS2SBT(__t) (tick_sbt * ((sbintime_t)(__t)))
|
|
#endif
|
|
|
|
struct sysctl_ctx_list rack_sysctl_ctx;
|
|
struct sysctl_oid *rack_sysctl_root;
|
|
|
|
#define CUM_ACKED 1
|
|
#define SACKED 2
|
|
|
|
/*
|
|
* The RACK module incorporates a number of
|
|
* TCP ideas that have been put out into the IETF
|
|
* over the last few years:
|
|
* - Matt Mathis's Rate Halving which slowly drops
|
|
* the congestion window so that the ack clock can
|
|
* be maintained during a recovery.
|
|
* - Yuchung Cheng's RACK TCP (for which its named) that
|
|
* will stop us using the number of dup acks and instead
|
|
* use time as the gage of when we retransmit.
|
|
* - Reorder Detection of RFC4737 and the Tail-Loss probe draft
|
|
* of Dukkipati et.al.
|
|
* RACK depends on SACK, so if an endpoint arrives that
|
|
* cannot do SACK the state machine below will shuttle the
|
|
* connection back to using the "default" TCP stack that is
|
|
* in FreeBSD.
|
|
*
|
|
* To implement RACK the original TCP stack was first decomposed
|
|
* into a functional state machine with individual states
|
|
* for each of the possible TCP connection states. The do_segement
|
|
* functions role in life is to mandate the connection supports SACK
|
|
* initially and then assure that the RACK state matches the conenction
|
|
* state before calling the states do_segment function. Each
|
|
* state is simplified due to the fact that the original do_segment
|
|
* has been decomposed and we *know* what state we are in (no
|
|
* switches on the state) and all tests for SACK are gone. This
|
|
* greatly simplifies what each state does.
|
|
*
|
|
* TCP output is also over-written with a new version since it
|
|
* must maintain the new rack scoreboard.
|
|
*
|
|
*/
|
|
static int32_t rack_tlp_thresh = 1;
|
|
static int32_t rack_reorder_thresh = 2;
|
|
static int32_t rack_reorder_fade = 60000; /* 0 - never fade, def 60,000
|
|
* - 60 seconds */
|
|
/* Attack threshold detections */
|
|
static uint32_t rack_highest_sack_thresh_seen = 0;
|
|
static uint32_t rack_highest_move_thresh_seen = 0;
|
|
|
|
static int32_t rack_pkt_delay = 1;
|
|
static int32_t rack_min_pace_time = 0;
|
|
static int32_t rack_early_recovery = 1;
|
|
static int32_t rack_send_a_lot_in_prr = 1;
|
|
static int32_t rack_min_to = 1; /* Number of ms minimum timeout */
|
|
static int32_t rack_verbose_logging = 0;
|
|
static int32_t rack_ignore_data_after_close = 1;
|
|
static int32_t use_rack_cheat = 1;
|
|
static int32_t rack_persist_min = 250; /* 250ms */
|
|
static int32_t rack_persist_max = 1000; /* 1 Second */
|
|
static int32_t rack_sack_not_required = 0; /* set to one to allow non-sack to use rack */
|
|
static int32_t rack_hw_tls_max_seg = 0; /* 0 means use hw-tls single segment */
|
|
|
|
/* Sack attack detection thresholds and such */
|
|
static int32_t tcp_force_detection = 0;
|
|
|
|
#ifdef NETFLIX_EXP_DETECTION
|
|
static int32_t tcp_sack_to_ack_thresh = 700; /* 70 % */
|
|
static int32_t tcp_sack_to_move_thresh = 600; /* 60 % */
|
|
static int32_t tcp_restoral_thresh = 650; /* 65 % (sack:2:ack -5%) */
|
|
static int32_t tcp_attack_on_turns_on_logging = 0;
|
|
static int32_t tcp_map_minimum = 500;
|
|
#endif
|
|
static int32_t tcp_sad_decay_val = 800;
|
|
static int32_t tcp_sad_pacing_interval = 2000;
|
|
static int32_t tcp_sad_low_pps = 100;
|
|
|
|
|
|
/*
|
|
* Currently regular tcp has a rto_min of 30ms
|
|
* the backoff goes 12 times so that ends up
|
|
* being a total of 122.850 seconds before a
|
|
* connection is killed.
|
|
*/
|
|
static int32_t rack_tlp_min = 10;
|
|
static int32_t rack_rto_min = 30; /* 30ms same as main freebsd */
|
|
static int32_t rack_rto_max = 4000; /* 4 seconds */
|
|
static const int32_t rack_free_cache = 2;
|
|
static int32_t rack_hptsi_segments = 40;
|
|
static int32_t rack_rate_sample_method = USE_RTT_LOW;
|
|
static int32_t rack_pace_every_seg = 0;
|
|
static int32_t rack_delayed_ack_time = 200; /* 200ms */
|
|
static int32_t rack_slot_reduction = 4;
|
|
static int32_t rack_lower_cwnd_at_tlp = 0;
|
|
static int32_t rack_use_proportional_reduce = 0;
|
|
static int32_t rack_proportional_rate = 10;
|
|
static int32_t rack_tlp_max_resend = 2;
|
|
static int32_t rack_limited_retran = 0;
|
|
static int32_t rack_always_send_oldest = 0;
|
|
static int32_t rack_use_sack_filter = 1;
|
|
static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE;
|
|
static int32_t rack_per_of_gp = 50;
|
|
static int32_t rack_tcp_map_entries_limit = 1500;
|
|
static int32_t rack_tcp_map_split_limit = 256;
|
|
|
|
|
|
/* Rack specific counters */
|
|
counter_u64_t rack_badfr;
|
|
counter_u64_t rack_badfr_bytes;
|
|
counter_u64_t rack_rtm_prr_retran;
|
|
counter_u64_t rack_rtm_prr_newdata;
|
|
counter_u64_t rack_timestamp_mismatch;
|
|
counter_u64_t rack_reorder_seen;
|
|
counter_u64_t rack_paced_segments;
|
|
counter_u64_t rack_unpaced_segments;
|
|
counter_u64_t rack_calc_zero;
|
|
counter_u64_t rack_calc_nonzero;
|
|
counter_u64_t rack_saw_enobuf;
|
|
counter_u64_t rack_saw_enetunreach;
|
|
counter_u64_t rack_per_timer_hole;
|
|
|
|
/* Tail loss probe counters */
|
|
counter_u64_t rack_tlp_tot;
|
|
counter_u64_t rack_tlp_newdata;
|
|
counter_u64_t rack_tlp_retran;
|
|
counter_u64_t rack_tlp_retran_bytes;
|
|
counter_u64_t rack_tlp_retran_fail;
|
|
counter_u64_t rack_to_tot;
|
|
counter_u64_t rack_to_arm_rack;
|
|
counter_u64_t rack_to_arm_tlp;
|
|
counter_u64_t rack_to_alloc;
|
|
counter_u64_t rack_to_alloc_hard;
|
|
counter_u64_t rack_to_alloc_emerg;
|
|
counter_u64_t rack_to_alloc_limited;
|
|
counter_u64_t rack_alloc_limited_conns;
|
|
counter_u64_t rack_split_limited;
|
|
|
|
counter_u64_t rack_sack_proc_all;
|
|
counter_u64_t rack_sack_proc_short;
|
|
counter_u64_t rack_sack_proc_restart;
|
|
counter_u64_t rack_sack_attacks_detected;
|
|
counter_u64_t rack_sack_attacks_reversed;
|
|
counter_u64_t rack_sack_used_next_merge;
|
|
counter_u64_t rack_sack_splits;
|
|
counter_u64_t rack_sack_used_prev_merge;
|
|
counter_u64_t rack_sack_skipped_acked;
|
|
counter_u64_t rack_ack_total;
|
|
counter_u64_t rack_express_sack;
|
|
counter_u64_t rack_sack_total;
|
|
counter_u64_t rack_move_none;
|
|
counter_u64_t rack_move_some;
|
|
|
|
counter_u64_t rack_used_tlpmethod;
|
|
counter_u64_t rack_used_tlpmethod2;
|
|
counter_u64_t rack_enter_tlp_calc;
|
|
counter_u64_t rack_input_idle_reduces;
|
|
counter_u64_t rack_collapsed_win;
|
|
counter_u64_t rack_tlp_does_nada;
|
|
|
|
/* Counters for HW TLS */
|
|
counter_u64_t rack_tls_rwnd;
|
|
counter_u64_t rack_tls_cwnd;
|
|
counter_u64_t rack_tls_app;
|
|
counter_u64_t rack_tls_other;
|
|
counter_u64_t rack_tls_filled;
|
|
counter_u64_t rack_tls_rxt;
|
|
counter_u64_t rack_tls_tlp;
|
|
|
|
/* Temp CPU counters */
|
|
counter_u64_t rack_find_high;
|
|
|
|
counter_u64_t rack_progress_drops;
|
|
counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE];
|
|
counter_u64_t rack_opts_arry[RACK_OPTS_SIZE];
|
|
|
|
static void
|
|
rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line);
|
|
|
|
static int
|
|
rack_process_ack(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to,
|
|
uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val);
|
|
static int
|
|
rack_process_data(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
|
|
static void
|
|
rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery);
|
|
static struct rack_sendmap *rack_alloc(struct tcp_rack *rack);
|
|
static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack,
|
|
uint8_t limit_type);
|
|
static struct rack_sendmap *
|
|
rack_check_recovery_mode(struct tcpcb *tp,
|
|
uint32_t tsused);
|
|
static void
|
|
rack_cong_signal(struct tcpcb *tp, struct tcphdr *th,
|
|
uint32_t type);
|
|
static void rack_counter_destroy(void);
|
|
static int
|
|
rack_ctloutput(struct socket *so, struct sockopt *sopt,
|
|
struct inpcb *inp, struct tcpcb *tp);
|
|
static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how);
|
|
static void
|
|
rack_do_segment(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
|
|
uint8_t iptos);
|
|
static void rack_dtor(void *mem, int32_t size, void *arg);
|
|
static void
|
|
rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
|
|
uint32_t t, uint32_t cts);
|
|
static struct rack_sendmap *
|
|
rack_find_high_nonack(struct tcp_rack *rack,
|
|
struct rack_sendmap *rsm);
|
|
static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack);
|
|
static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm);
|
|
static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged);
|
|
static int
|
|
rack_get_sockopt(struct socket *so, struct sockopt *sopt,
|
|
struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
|
|
static int32_t rack_handoff_ok(struct tcpcb *tp);
|
|
static int32_t rack_init(struct tcpcb *tp);
|
|
static void rack_init_sysctls(void);
|
|
static void
|
|
rack_log_ack(struct tcpcb *tp, struct tcpopt *to,
|
|
struct tcphdr *th);
|
|
static void
|
|
rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
|
|
uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
|
|
uint8_t pass, struct rack_sendmap *hintrsm);
|
|
static void
|
|
rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct rack_sendmap *rsm);
|
|
static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int num);
|
|
static int32_t rack_output(struct tcpcb *tp);
|
|
|
|
static uint32_t
|
|
rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm,
|
|
uint32_t cts, int *moved_two);
|
|
static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th);
|
|
static void rack_remxt_tmr(struct tcpcb *tp);
|
|
static int
|
|
rack_set_sockopt(struct socket *so, struct sockopt *sopt,
|
|
struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack);
|
|
static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack);
|
|
static int32_t rack_stopall(struct tcpcb *tp);
|
|
static void
|
|
rack_timer_activate(struct tcpcb *tp, uint32_t timer_type,
|
|
uint32_t delta);
|
|
static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type);
|
|
static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line);
|
|
static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type);
|
|
static uint32_t
|
|
rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp);
|
|
static void
|
|
rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct rack_sendmap *rsm, uint32_t ts);
|
|
static int
|
|
rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type);
|
|
static int32_t tcp_addrack(module_t mod, int32_t type, void *data);
|
|
static int
|
|
rack_do_close_wait(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
|
|
int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
|
|
static int
|
|
rack_do_closing(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
|
|
int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
|
|
static int
|
|
rack_do_established(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
|
|
int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
|
|
static int
|
|
rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
|
|
int32_t tlen, uint32_t tiwin, int32_t nxt_pkt);
|
|
static int
|
|
rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
|
|
int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
|
|
static int
|
|
rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
|
|
int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
|
|
static int
|
|
rack_do_lastack(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
|
|
int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
|
|
static int
|
|
rack_do_syn_recv(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
|
|
int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
|
|
static int
|
|
rack_do_syn_sent(struct mbuf *m, struct tcphdr *th,
|
|
struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen,
|
|
int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt);
|
|
struct rack_sendmap *
|
|
tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack,
|
|
uint32_t tsused);
|
|
static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt);
|
|
static void
|
|
tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th);
|
|
|
|
int32_t rack_clear_counter=0;
|
|
|
|
|
|
static int
|
|
sysctl_rack_clear(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
uint32_t stat;
|
|
int32_t error;
|
|
|
|
error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t));
|
|
if (error || req->newptr == NULL)
|
|
return error;
|
|
|
|
error = SYSCTL_IN(req, &stat, sizeof(uint32_t));
|
|
if (error)
|
|
return (error);
|
|
if (stat == 1) {
|
|
#ifdef INVARIANTS
|
|
printf("Clearing RACK counters\n");
|
|
#endif
|
|
counter_u64_zero(rack_badfr);
|
|
counter_u64_zero(rack_badfr_bytes);
|
|
counter_u64_zero(rack_rtm_prr_retran);
|
|
counter_u64_zero(rack_rtm_prr_newdata);
|
|
counter_u64_zero(rack_timestamp_mismatch);
|
|
counter_u64_zero(rack_reorder_seen);
|
|
counter_u64_zero(rack_tlp_tot);
|
|
counter_u64_zero(rack_tlp_newdata);
|
|
counter_u64_zero(rack_tlp_retran);
|
|
counter_u64_zero(rack_tlp_retran_bytes);
|
|
counter_u64_zero(rack_tlp_retran_fail);
|
|
counter_u64_zero(rack_to_tot);
|
|
counter_u64_zero(rack_to_arm_rack);
|
|
counter_u64_zero(rack_to_arm_tlp);
|
|
counter_u64_zero(rack_paced_segments);
|
|
counter_u64_zero(rack_calc_zero);
|
|
counter_u64_zero(rack_calc_nonzero);
|
|
counter_u64_zero(rack_unpaced_segments);
|
|
counter_u64_zero(rack_saw_enobuf);
|
|
counter_u64_zero(rack_saw_enetunreach);
|
|
counter_u64_zero(rack_per_timer_hole);
|
|
counter_u64_zero(rack_to_alloc_hard);
|
|
counter_u64_zero(rack_to_alloc_emerg);
|
|
counter_u64_zero(rack_sack_proc_all);
|
|
counter_u64_zero(rack_sack_proc_short);
|
|
counter_u64_zero(rack_sack_proc_restart);
|
|
counter_u64_zero(rack_to_alloc);
|
|
counter_u64_zero(rack_to_alloc_limited);
|
|
counter_u64_zero(rack_alloc_limited_conns);
|
|
counter_u64_zero(rack_split_limited);
|
|
counter_u64_zero(rack_find_high);
|
|
counter_u64_zero(rack_tls_rwnd);
|
|
counter_u64_zero(rack_tls_cwnd);
|
|
counter_u64_zero(rack_tls_app);
|
|
counter_u64_zero(rack_tls_other);
|
|
counter_u64_zero(rack_tls_filled);
|
|
counter_u64_zero(rack_tls_rxt);
|
|
counter_u64_zero(rack_tls_tlp);
|
|
counter_u64_zero(rack_sack_attacks_detected);
|
|
counter_u64_zero(rack_sack_attacks_reversed);
|
|
counter_u64_zero(rack_sack_used_next_merge);
|
|
counter_u64_zero(rack_sack_used_prev_merge);
|
|
counter_u64_zero(rack_sack_splits);
|
|
counter_u64_zero(rack_sack_skipped_acked);
|
|
counter_u64_zero(rack_ack_total);
|
|
counter_u64_zero(rack_express_sack);
|
|
counter_u64_zero(rack_sack_total);
|
|
counter_u64_zero(rack_move_none);
|
|
counter_u64_zero(rack_move_some);
|
|
counter_u64_zero(rack_used_tlpmethod);
|
|
counter_u64_zero(rack_used_tlpmethod2);
|
|
counter_u64_zero(rack_enter_tlp_calc);
|
|
counter_u64_zero(rack_progress_drops);
|
|
counter_u64_zero(rack_tlp_does_nada);
|
|
counter_u64_zero(rack_collapsed_win);
|
|
|
|
}
|
|
rack_clear_counter = 0;
|
|
return (0);
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
rack_init_sysctls(void)
|
|
{
|
|
struct sysctl_oid *rack_counters;
|
|
struct sysctl_oid *rack_attack;
|
|
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "rate_sample_method", CTLFLAG_RW,
|
|
&rack_rate_sample_method , USE_RTT_LOW,
|
|
"What method should we use for rate sampling 0=high, 1=low ");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "hw_tlsmax", CTLFLAG_RW,
|
|
&rack_hw_tls_max_seg , 0,
|
|
"Do we have a multplier of TLS records we can send as a max (0=1 TLS record)? ");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "data_after_close", CTLFLAG_RW,
|
|
&rack_ignore_data_after_close, 0,
|
|
"Do we hold off sending a RST until all pending data is ack'd");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "cheat_rxt", CTLFLAG_RW,
|
|
&use_rack_cheat, 1,
|
|
"Do we use the rxt cheat for rack?");
|
|
|
|
SYSCTL_ADD_U32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "persmin", CTLFLAG_RW,
|
|
&rack_persist_min, 250,
|
|
"What is the minimum time in milliseconds between persists");
|
|
SYSCTL_ADD_U32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "persmax", CTLFLAG_RW,
|
|
&rack_persist_max, 1000,
|
|
"What is the largest delay in milliseconds between persists");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "no_sack_needed", CTLFLAG_RW,
|
|
&rack_sack_not_required, 0,
|
|
"Do we allow rack to run on connections not supporting SACK?");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "tlpmethod", CTLFLAG_RW,
|
|
&rack_tlp_threshold_use, TLP_USE_TWO_ONE,
|
|
"What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "gp_percentage", CTLFLAG_RW,
|
|
&rack_per_of_gp, 50,
|
|
"Do we pace to percentage of goodput (0=old method)?");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "min_pace_time", CTLFLAG_RW,
|
|
&rack_min_pace_time, 0,
|
|
"Should we enforce a minimum pace time of 1ms");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "bb_verbose", CTLFLAG_RW,
|
|
&rack_verbose_logging, 0,
|
|
"Should RACK black box logging be verbose");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "sackfiltering", CTLFLAG_RW,
|
|
&rack_use_sack_filter, 1,
|
|
"Do we use sack filtering?");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "delayed_ack", CTLFLAG_RW,
|
|
&rack_delayed_ack_time, 200,
|
|
"Delayed ack time (200ms)");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "tlpminto", CTLFLAG_RW,
|
|
&rack_tlp_min, 10,
|
|
"TLP minimum timeout per the specification (10ms)");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "send_oldest", CTLFLAG_RW,
|
|
&rack_always_send_oldest, 1,
|
|
"Should we always send the oldest TLP and RACK-TLP");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "rack_tlimit", CTLFLAG_RW,
|
|
&rack_limited_retran, 0,
|
|
"How many times can a rack timeout drive out sends");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "minrto", CTLFLAG_RW,
|
|
&rack_rto_min, 0,
|
|
"Minimum RTO in ms -- set with caution below 1000 due to TLP");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "maxrto", CTLFLAG_RW,
|
|
&rack_rto_max, 0,
|
|
"Maxiumum RTO in ms -- should be at least as large as min_rto");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "tlp_retry", CTLFLAG_RW,
|
|
&rack_tlp_max_resend, 2,
|
|
"How many times does TLP retry a single segment or multiple with no ACK");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "recovery_loss_prop", CTLFLAG_RW,
|
|
&rack_use_proportional_reduce, 0,
|
|
"Should we proportionaly reduce cwnd based on the number of losses ");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "recovery_prop", CTLFLAG_RW,
|
|
&rack_proportional_rate, 10,
|
|
"What percent reduction per loss");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW,
|
|
&rack_lower_cwnd_at_tlp, 0,
|
|
"When a TLP completes a retran should we enter recovery?");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "hptsi_reduces", CTLFLAG_RW,
|
|
&rack_slot_reduction, 4,
|
|
"When setting a slot should we reduce by divisor");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "hptsi_every_seg", CTLFLAG_RW,
|
|
&rack_pace_every_seg, 0,
|
|
"Should we use the original pacing mechanism that did not pace much?");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "hptsi_seg_max", CTLFLAG_RW,
|
|
&rack_hptsi_segments, 40,
|
|
"Should we pace out only a limited size of segments");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "prr_sendalot", CTLFLAG_RW,
|
|
&rack_send_a_lot_in_prr, 1,
|
|
"Send a lot in prr");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "minto", CTLFLAG_RW,
|
|
&rack_min_to, 1,
|
|
"Minimum rack timeout in milliseconds");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "earlyrecovery", CTLFLAG_RW,
|
|
&rack_early_recovery, 1,
|
|
"Do we do early recovery with rack");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "reorder_thresh", CTLFLAG_RW,
|
|
&rack_reorder_thresh, 2,
|
|
"What factor for rack will be added when seeing reordering (shift right)");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW,
|
|
&rack_tlp_thresh, 1,
|
|
"what divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "reorder_fade", CTLFLAG_RW,
|
|
&rack_reorder_fade, 0,
|
|
"Does reorder detection fade, if so how many ms (0 means never)");
|
|
SYSCTL_ADD_S32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "pktdelay", CTLFLAG_RW,
|
|
&rack_pkt_delay, 1,
|
|
"Extra RACK time (in ms) besides reordering thresh");
|
|
|
|
rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO,
|
|
"stats",
|
|
CTLFLAG_RW, 0,
|
|
"Rack Counters");
|
|
rack_badfr = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "badfr", CTLFLAG_RD,
|
|
&rack_badfr, "Total number of bad FRs");
|
|
rack_badfr_bytes = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "badfr_bytes", CTLFLAG_RD,
|
|
&rack_badfr_bytes, "Total number of bad FRs");
|
|
rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "prrsndret", CTLFLAG_RD,
|
|
&rack_rtm_prr_retran,
|
|
"Total number of prr based retransmits");
|
|
rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "prrsndnew", CTLFLAG_RD,
|
|
&rack_rtm_prr_newdata,
|
|
"Total number of prr based new transmits");
|
|
rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tsnf", CTLFLAG_RD,
|
|
&rack_timestamp_mismatch,
|
|
"Total number of timestamps that we could not find the reported ts");
|
|
rack_find_high = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "findhigh", CTLFLAG_RD,
|
|
&rack_find_high,
|
|
"Total number of FIN causing find-high");
|
|
rack_reorder_seen = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "reordering", CTLFLAG_RD,
|
|
&rack_reorder_seen,
|
|
"Total number of times we added delay due to reordering");
|
|
rack_tlp_tot = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tlp_to_total", CTLFLAG_RD,
|
|
&rack_tlp_tot,
|
|
"Total number of tail loss probe expirations");
|
|
rack_tlp_newdata = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tlp_new", CTLFLAG_RD,
|
|
&rack_tlp_newdata,
|
|
"Total number of tail loss probe sending new data");
|
|
|
|
rack_tlp_retran = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tlp_retran", CTLFLAG_RD,
|
|
&rack_tlp_retran,
|
|
"Total number of tail loss probe sending retransmitted data");
|
|
rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD,
|
|
&rack_tlp_retran_bytes,
|
|
"Total bytes of tail loss probe sending retransmitted data");
|
|
rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tlp_retran_fail", CTLFLAG_RD,
|
|
&rack_tlp_retran_fail,
|
|
"Total number of tail loss probe sending retransmitted data that failed (wait for t3)");
|
|
rack_to_tot = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "rack_to_tot", CTLFLAG_RD,
|
|
&rack_to_tot,
|
|
"Total number of times the rack to expired?");
|
|
rack_to_arm_rack = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "arm_rack", CTLFLAG_RD,
|
|
&rack_to_arm_rack,
|
|
"Total number of times the rack timer armed?");
|
|
rack_to_arm_tlp = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "arm_tlp", CTLFLAG_RD,
|
|
&rack_to_arm_tlp,
|
|
"Total number of times the tlp timer armed?");
|
|
|
|
rack_calc_zero = counter_u64_alloc(M_WAITOK);
|
|
rack_calc_nonzero = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "calc_zero", CTLFLAG_RD,
|
|
&rack_calc_zero,
|
|
"Total number of times pacing time worked out to zero?");
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "calc_nonzero", CTLFLAG_RD,
|
|
&rack_calc_nonzero,
|
|
"Total number of times pacing time worked out to non-zero?");
|
|
rack_paced_segments = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "paced", CTLFLAG_RD,
|
|
&rack_paced_segments,
|
|
"Total number of times a segment send caused hptsi");
|
|
rack_unpaced_segments = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "unpaced", CTLFLAG_RD,
|
|
&rack_unpaced_segments,
|
|
"Total number of times a segment did not cause hptsi");
|
|
rack_saw_enobuf = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "saw_enobufs", CTLFLAG_RD,
|
|
&rack_saw_enobuf,
|
|
"Total number of times a segment did not cause hptsi");
|
|
rack_saw_enetunreach = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "saw_enetunreach", CTLFLAG_RD,
|
|
&rack_saw_enetunreach,
|
|
"Total number of times a segment did not cause hptsi");
|
|
rack_to_alloc = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "allocs", CTLFLAG_RD,
|
|
&rack_to_alloc,
|
|
"Total allocations of tracking structures");
|
|
rack_to_alloc_hard = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "allochard", CTLFLAG_RD,
|
|
&rack_to_alloc_hard,
|
|
"Total allocations done with sleeping the hard way");
|
|
rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "allocemerg", CTLFLAG_RD,
|
|
&rack_to_alloc_emerg,
|
|
"Total allocations done from emergency cache");
|
|
rack_to_alloc_limited = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "alloc_limited", CTLFLAG_RD,
|
|
&rack_to_alloc_limited,
|
|
"Total allocations dropped due to limit");
|
|
rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "alloc_limited_conns", CTLFLAG_RD,
|
|
&rack_alloc_limited_conns,
|
|
"Connections with allocations dropped due to limit");
|
|
rack_split_limited = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "split_limited", CTLFLAG_RD,
|
|
&rack_split_limited,
|
|
"Split allocations dropped due to limit");
|
|
rack_sack_proc_all = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "sack_long", CTLFLAG_RD,
|
|
&rack_sack_proc_all,
|
|
"Total times we had to walk whole list for sack processing");
|
|
|
|
rack_sack_proc_restart = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "sack_restart", CTLFLAG_RD,
|
|
&rack_sack_proc_restart,
|
|
"Total times we had to walk whole list due to a restart");
|
|
rack_sack_proc_short = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "sack_short", CTLFLAG_RD,
|
|
&rack_sack_proc_short,
|
|
"Total times we took shortcut for sack processing");
|
|
rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tlp_calc_entered", CTLFLAG_RD,
|
|
&rack_enter_tlp_calc,
|
|
"Total times we called calc-tlp");
|
|
rack_used_tlpmethod = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "hit_tlp_method", CTLFLAG_RD,
|
|
&rack_used_tlpmethod,
|
|
"Total number of runt sacks");
|
|
rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "hit_tlp_method2", CTLFLAG_RD,
|
|
&rack_used_tlpmethod2,
|
|
"Total number of times we hit TLP method 2");
|
|
/* Sack Attacker detection stuff */
|
|
rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO,
|
|
"sack_attack",
|
|
CTLFLAG_RW, 0,
|
|
"Rack Sack Attack Counters and Controls");
|
|
SYSCTL_ADD_U32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "detect_highsackratio", CTLFLAG_RW,
|
|
&rack_highest_sack_thresh_seen, 0,
|
|
"Highest sack to ack ratio seen");
|
|
SYSCTL_ADD_U32(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "detect_highmoveratio", CTLFLAG_RW,
|
|
&rack_highest_move_thresh_seen, 0,
|
|
"Highest move to non-move ratio seen");
|
|
rack_ack_total = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "acktotal", CTLFLAG_RD,
|
|
&rack_ack_total,
|
|
"Total number of Ack's");
|
|
|
|
rack_express_sack = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "exp_sacktotal", CTLFLAG_RD,
|
|
&rack_express_sack,
|
|
"Total expresss number of Sack's");
|
|
rack_sack_total = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "sacktotal", CTLFLAG_RD,
|
|
&rack_sack_total,
|
|
"Total number of SACK's");
|
|
rack_move_none = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "move_none", CTLFLAG_RD,
|
|
&rack_move_none,
|
|
"Total number of SACK index reuse of postions under threshold");
|
|
rack_move_some = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "move_some", CTLFLAG_RD,
|
|
&rack_move_some,
|
|
"Total number of SACK index reuse of postions over threshold");
|
|
rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "attacks", CTLFLAG_RD,
|
|
&rack_sack_attacks_detected,
|
|
"Total number of SACK attackers that had sack disabled");
|
|
rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "reversed", CTLFLAG_RD,
|
|
&rack_sack_attacks_reversed,
|
|
"Total number of SACK attackers that were later determined false positive");
|
|
rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "nextmerge", CTLFLAG_RD,
|
|
&rack_sack_used_next_merge,
|
|
"Total number of times we used the next merge");
|
|
rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "prevmerge", CTLFLAG_RD,
|
|
&rack_sack_used_prev_merge,
|
|
"Total number of times we used the prev merge");
|
|
rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "skipacked", CTLFLAG_RD,
|
|
&rack_sack_skipped_acked,
|
|
"Total number of times we skipped previously sacked");
|
|
rack_sack_splits = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_attack),
|
|
OID_AUTO, "ofsplit", CTLFLAG_RD,
|
|
&rack_sack_splits,
|
|
"Total number of times we did the old fashion tree split");
|
|
rack_progress_drops = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "prog_drops", CTLFLAG_RD,
|
|
&rack_progress_drops,
|
|
"Total number of progress drops");
|
|
rack_input_idle_reduces = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD,
|
|
&rack_input_idle_reduces,
|
|
"Total number of idle reductions on input");
|
|
rack_collapsed_win = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "collapsed_win", CTLFLAG_RD,
|
|
&rack_collapsed_win,
|
|
"Total number of collapsed windows");
|
|
rack_tlp_does_nada = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tlp_nada", CTLFLAG_RD,
|
|
&rack_tlp_does_nada,
|
|
"Total number of nada tlp calls");
|
|
|
|
rack_tls_rwnd = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tls_rwnd", CTLFLAG_RD,
|
|
&rack_tls_rwnd,
|
|
"Total hdwr tls rwnd limited");
|
|
|
|
rack_tls_cwnd = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tls_cwnd", CTLFLAG_RD,
|
|
&rack_tls_cwnd,
|
|
"Total hdwr tls cwnd limited");
|
|
|
|
rack_tls_app = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tls_app", CTLFLAG_RD,
|
|
&rack_tls_app,
|
|
"Total hdwr tls app limited");
|
|
|
|
rack_tls_other = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tls_other", CTLFLAG_RD,
|
|
&rack_tls_other,
|
|
"Total hdwr tls other limited");
|
|
|
|
rack_tls_filled = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tls_filled", CTLFLAG_RD,
|
|
&rack_tls_filled,
|
|
"Total hdwr tls filled");
|
|
|
|
rack_tls_rxt = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tls_rxt", CTLFLAG_RD,
|
|
&rack_tls_rxt,
|
|
"Total hdwr rxt");
|
|
|
|
rack_tls_tlp = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "tls_tlp", CTLFLAG_RD,
|
|
&rack_tls_tlp,
|
|
"Total hdwr tls tlp");
|
|
rack_per_timer_hole = counter_u64_alloc(M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_counters),
|
|
OID_AUTO, "timer_hole", CTLFLAG_RD,
|
|
&rack_per_timer_hole,
|
|
"Total persists start in timer hole");
|
|
|
|
COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "outsize", CTLFLAG_RD,
|
|
rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes");
|
|
COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK);
|
|
SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "opts", CTLFLAG_RD,
|
|
rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats");
|
|
SYSCTL_ADD_PROC(&rack_sysctl_ctx,
|
|
SYSCTL_CHILDREN(rack_sysctl_root),
|
|
OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
|
|
&rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters");
|
|
}
|
|
|
|
static __inline int
|
|
rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a)
|
|
{
|
|
if (SEQ_GEQ(b->r_start, a->r_start) &&
|
|
SEQ_LT(b->r_start, a->r_end)) {
|
|
/*
|
|
* The entry b is within the
|
|
* block a. i.e.:
|
|
* a -- |-------------|
|
|
* b -- |----|
|
|
* <or>
|
|
* b -- |------|
|
|
* <or>
|
|
* b -- |-----------|
|
|
*/
|
|
return (0);
|
|
} else if (SEQ_GEQ(b->r_start, a->r_end)) {
|
|
/*
|
|
* b falls as either the next
|
|
* sequence block after a so a
|
|
* is said to be smaller than b.
|
|
* i.e:
|
|
* a -- |------|
|
|
* b -- |--------|
|
|
* or
|
|
* b -- |-----|
|
|
*/
|
|
return (1);
|
|
}
|
|
/*
|
|
* Whats left is where a is
|
|
* larger than b. i.e:
|
|
* a -- |-------|
|
|
* b -- |---|
|
|
* or even possibly
|
|
* b -- |--------------|
|
|
*/
|
|
return (-1);
|
|
}
|
|
|
|
RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
|
|
RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp);
|
|
|
|
static inline int32_t
|
|
rack_progress_timeout_check(struct tcpcb *tp)
|
|
{
|
|
if (tp->t_maxunacktime && tp->t_acktime && TSTMP_GT(ticks, tp->t_acktime)) {
|
|
if ((ticks - tp->t_acktime) >= tp->t_maxunacktime) {
|
|
/*
|
|
* There is an assumption that the caller
|
|
* will drop the connection so we will
|
|
* increment the counters here.
|
|
*/
|
|
struct tcp_rack *rack;
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
counter_u64_add(rack_progress_drops, 1);
|
|
#ifdef NETFLIX_STATS
|
|
TCPSTAT_INC(tcps_progdrops);
|
|
#endif
|
|
rack_log_progress_event(rack, tp, ticks, PROGRESS_DROP, __LINE__);
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.flex1 = tsused;
|
|
log.u_bbr.flex2 = thresh;
|
|
log.u_bbr.flex3 = rsm->r_flags;
|
|
log.u_bbr.flex4 = rsm->r_dupack;
|
|
log.u_bbr.flex5 = rsm->r_start;
|
|
log.u_bbr.flex6 = rsm->r_end;
|
|
log.u_bbr.flex8 = mod;
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_SETTINGS_CHG, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT);
|
|
log.u_bbr.flex2 = to;
|
|
log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex4 = slot;
|
|
log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot;
|
|
log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
|
|
log.u_bbr.flex7 = rack->rc_in_persist;
|
|
log.u_bbr.flex8 = which;
|
|
log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_TIMERSTAR, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_to_event(struct tcp_rack *rack, int32_t to_num, int no)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.flex8 = to_num;
|
|
log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt;
|
|
log.u_bbr.flex2 = rack->rc_rack_rtt;
|
|
log.u_bbr.flex3 = no;
|
|
log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_RTO, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, int32_t t,
|
|
uint32_t o_srtt, uint32_t o_var)
|
|
{
|
|
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.flex1 = t;
|
|
log.u_bbr.flex2 = o_srtt;
|
|
log.u_bbr.flex3 = o_var;
|
|
log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest;
|
|
log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest;
|
|
log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt;
|
|
log.u_bbr.rttProp = rack->r_ctl.rack_rs.rs_rtt_tot;
|
|
log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method;
|
|
log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_BBRRTT, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt)
|
|
{
|
|
/*
|
|
* Log the rtt sample we are
|
|
* applying to the srtt algorithm in
|
|
* useconds.
|
|
*/
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
/* Convert our ms to a microsecond */
|
|
memset(&log, 0, sizeof(log));
|
|
log.u_bbr.flex1 = rtt * 1000;
|
|
log.u_bbr.flex2 = rack->r_ctl.ack_count;
|
|
log.u_bbr.flex3 = rack->r_ctl.sack_count;
|
|
log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
|
|
log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra;
|
|
log.u_bbr.flex8 = rack->sack_attack_disable;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
TCP_LOG_RTT, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
|
|
static inline void
|
|
rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line)
|
|
{
|
|
if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.flex1 = line;
|
|
log.u_bbr.flex2 = tick;
|
|
log.u_bbr.flex3 = tp->t_maxunacktime;
|
|
log.u_bbr.flex4 = tp->t_acktime;
|
|
log.u_bbr.flex8 = event;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_PROGRESS, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.flex1 = slot;
|
|
log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags);
|
|
log.u_bbr.flex8 = rack->rc_in_persist;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_BBRSND, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log, 0, sizeof(log));
|
|
log.u_bbr.flex1 = did_out;
|
|
log.u_bbr.flex2 = nxt_pkt;
|
|
log.u_bbr.flex3 = way_out;
|
|
log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs;
|
|
log.u_bbr.flex7 = rack->r_wanted_output;
|
|
log.u_bbr.flex8 = rack->rc_in_persist;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_DOSEG_DONE, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_type_hrdwtso(struct tcpcb *tp, struct tcp_rack *rack, int len, int mod, int32_t orig_len, int frm)
|
|
{
|
|
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
uint32_t cts;
|
|
|
|
memset(&log, 0, sizeof(log));
|
|
cts = tcp_get_usecs(&tv);
|
|
log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs;
|
|
log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
|
|
log.u_bbr.flex4 = len;
|
|
log.u_bbr.flex5 = orig_len;
|
|
log.u_bbr.flex6 = rack->r_ctl.rc_sacked;
|
|
log.u_bbr.flex7 = mod;
|
|
log.u_bbr.flex8 = frm;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(tp, NULL,
|
|
&tp->t_inpcb->inp_socket->so_rcv,
|
|
&tp->t_inpcb->inp_socket->so_snd,
|
|
TCP_HDWR_TLS, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.flex1 = slot;
|
|
log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.flex7 = hpts_calling;
|
|
log.u_bbr.flex8 = rack->rc_in_persist;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_JUSTRET, 0,
|
|
tlen, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.flex1 = line;
|
|
log.u_bbr.flex2 = 0;
|
|
log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex4 = 0;
|
|
log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.flex6 = rack->rc_tp->t_rxtcur;
|
|
log.u_bbr.flex8 = hpts_removed;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_TIMERCANC, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.flex1 = timers;
|
|
log.u_bbr.flex2 = ret;
|
|
log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp;
|
|
log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags;
|
|
log.u_bbr.flex5 = cts;
|
|
log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_TO_PROCESS, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_to_prr(struct tcp_rack *rack, int frm)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.flex1 = rack->r_ctl.rc_prr_out;
|
|
log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs;
|
|
log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered;
|
|
log.u_bbr.flex5 = rack->r_ctl.rc_sacked;
|
|
log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt;
|
|
log.u_bbr.flex8 = frm;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
BBR_LOG_BBRUPD, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
#ifdef NETFLIX_EXP_DETECTION
|
|
static void
|
|
rack_log_sad(struct tcp_rack *rack, int event)
|
|
{
|
|
if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.flex1 = rack->r_ctl.sack_count;
|
|
log.u_bbr.flex2 = rack->r_ctl.ack_count;
|
|
log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra;
|
|
log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move;
|
|
log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced;
|
|
log.u_bbr.flex6 = tcp_sack_to_ack_thresh;
|
|
log.u_bbr.pkts_out = tcp_sack_to_move_thresh;
|
|
log.u_bbr.lt_epoch = (tcp_force_detection << 8);
|
|
log.u_bbr.lt_epoch |= rack->do_detection;
|
|
log.u_bbr.applimited = tcp_map_minimum;
|
|
log.u_bbr.flex7 = rack->sack_attack_disable;
|
|
log.u_bbr.flex8 = event;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
log.u_bbr.delivered = tcp_sad_decay_val;
|
|
TCP_LOG_EVENTP(rack->rc_tp, NULL,
|
|
&rack->rc_inp->inp_socket->so_rcv,
|
|
&rack->rc_inp->inp_socket->so_snd,
|
|
TCP_SAD_DETECTION, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
rack_counter_destroy(void)
|
|
{
|
|
counter_u64_free(rack_badfr);
|
|
counter_u64_free(rack_badfr_bytes);
|
|
counter_u64_free(rack_rtm_prr_retran);
|
|
counter_u64_free(rack_rtm_prr_newdata);
|
|
counter_u64_free(rack_timestamp_mismatch);
|
|
counter_u64_free(rack_reorder_seen);
|
|
counter_u64_free(rack_tlp_tot);
|
|
counter_u64_free(rack_tlp_newdata);
|
|
counter_u64_free(rack_tlp_retran);
|
|
counter_u64_free(rack_tlp_retran_bytes);
|
|
counter_u64_free(rack_tlp_retran_fail);
|
|
counter_u64_free(rack_to_tot);
|
|
counter_u64_free(rack_to_arm_rack);
|
|
counter_u64_free(rack_to_arm_tlp);
|
|
counter_u64_free(rack_paced_segments);
|
|
counter_u64_free(rack_unpaced_segments);
|
|
counter_u64_free(rack_saw_enobuf);
|
|
counter_u64_free(rack_saw_enetunreach);
|
|
counter_u64_free(rack_to_alloc_hard);
|
|
counter_u64_free(rack_to_alloc_emerg);
|
|
counter_u64_free(rack_sack_proc_all);
|
|
counter_u64_free(rack_sack_proc_short);
|
|
counter_u64_free(rack_sack_proc_restart);
|
|
counter_u64_free(rack_to_alloc);
|
|
counter_u64_free(rack_to_alloc_limited);
|
|
counter_u64_free(rack_alloc_limited_conns);
|
|
counter_u64_free(rack_split_limited);
|
|
counter_u64_free(rack_find_high);
|
|
counter_u64_free(rack_enter_tlp_calc);
|
|
counter_u64_free(rack_used_tlpmethod);
|
|
counter_u64_free(rack_used_tlpmethod2);
|
|
counter_u64_free(rack_progress_drops);
|
|
counter_u64_free(rack_input_idle_reduces);
|
|
counter_u64_free(rack_collapsed_win);
|
|
counter_u64_free(rack_tlp_does_nada);
|
|
COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE);
|
|
COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE);
|
|
}
|
|
|
|
static struct rack_sendmap *
|
|
rack_alloc(struct tcp_rack *rack)
|
|
{
|
|
struct rack_sendmap *rsm;
|
|
|
|
rsm = uma_zalloc(rack_zone, M_NOWAIT);
|
|
if (rsm) {
|
|
rack->r_ctl.rc_num_maps_alloced++;
|
|
counter_u64_add(rack_to_alloc, 1);
|
|
return (rsm);
|
|
}
|
|
if (rack->rc_free_cnt) {
|
|
counter_u64_add(rack_to_alloc_emerg, 1);
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
|
|
TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
|
|
rack->rc_free_cnt--;
|
|
return (rsm);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static struct rack_sendmap *
|
|
rack_alloc_full_limit(struct tcp_rack *rack)
|
|
{
|
|
if ((rack_tcp_map_entries_limit > 0) &&
|
|
(rack->do_detection == 0) &&
|
|
(rack->r_ctl.rc_num_maps_alloced >= rack_tcp_map_entries_limit)) {
|
|
counter_u64_add(rack_to_alloc_limited, 1);
|
|
if (!rack->alloc_limit_reported) {
|
|
rack->alloc_limit_reported = 1;
|
|
counter_u64_add(rack_alloc_limited_conns, 1);
|
|
}
|
|
return (NULL);
|
|
}
|
|
return (rack_alloc(rack));
|
|
}
|
|
|
|
/* wrapper to allocate a sendmap entry, subject to a specific limit */
|
|
static struct rack_sendmap *
|
|
rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type)
|
|
{
|
|
struct rack_sendmap *rsm;
|
|
|
|
if (limit_type) {
|
|
/* currently there is only one limit type */
|
|
if (rack_tcp_map_split_limit > 0 &&
|
|
(rack->do_detection == 0) &&
|
|
rack->r_ctl.rc_num_split_allocs >= rack_tcp_map_split_limit) {
|
|
counter_u64_add(rack_split_limited, 1);
|
|
if (!rack->alloc_limit_reported) {
|
|
rack->alloc_limit_reported = 1;
|
|
counter_u64_add(rack_alloc_limited_conns, 1);
|
|
}
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
/* allocate and mark in the limit type, if set */
|
|
rsm = rack_alloc(rack);
|
|
if (rsm != NULL && limit_type) {
|
|
rsm->r_limit_type = limit_type;
|
|
rack->r_ctl.rc_num_split_allocs++;
|
|
}
|
|
return (rsm);
|
|
}
|
|
|
|
static void
|
|
rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm)
|
|
{
|
|
if (rsm->r_limit_type) {
|
|
/* currently there is only one limit type */
|
|
rack->r_ctl.rc_num_split_allocs--;
|
|
}
|
|
if (rack->r_ctl.rc_tlpsend == rsm)
|
|
rack->r_ctl.rc_tlpsend = NULL;
|
|
if (rack->r_ctl.rc_sacklast == rsm)
|
|
rack->r_ctl.rc_sacklast = NULL;
|
|
if (rack->rc_free_cnt < rack_free_cache) {
|
|
memset(rsm, 0, sizeof(struct rack_sendmap));
|
|
TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
|
|
rsm->r_limit_type = 0;
|
|
rack->rc_free_cnt++;
|
|
return;
|
|
}
|
|
rack->r_ctl.rc_num_maps_alloced--;
|
|
uma_zfree(rack_zone, rsm);
|
|
}
|
|
|
|
/*
|
|
* CC wrapper hook functions
|
|
*/
|
|
static void
|
|
rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs,
|
|
uint16_t type, int32_t recovery)
|
|
{
|
|
#ifdef NETFLIX_STATS
|
|
int32_t gput;
|
|
#endif
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
tp->ccv->nsegs = nsegs;
|
|
tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
|
|
if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) {
|
|
uint32_t max;
|
|
|
|
max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp);
|
|
if (tp->ccv->bytes_this_ack > max) {
|
|
tp->ccv->bytes_this_ack = max;
|
|
}
|
|
}
|
|
if (tp->snd_cwnd <= tp->snd_wnd)
|
|
tp->ccv->flags |= CCF_CWND_LIMITED;
|
|
else
|
|
tp->ccv->flags &= ~CCF_CWND_LIMITED;
|
|
|
|
if (type == CC_ACK) {
|
|
#ifdef NETFLIX_STATS
|
|
stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
|
|
((int32_t) tp->snd_cwnd) - tp->snd_wnd);
|
|
if ((tp->t_flags & TF_GPUTINPROG) &&
|
|
SEQ_GEQ(th->th_ack, tp->gput_ack)) {
|
|
gput = (((int64_t) (th->th_ack - tp->gput_seq)) << 3) /
|
|
max(1, tcp_ts_getticks() - tp->gput_ts);
|
|
/* We store it in bytes per ms (or kbytes per sec) */
|
|
rack->r_ctl.rc_gp_history[rack->r_ctl.rc_gp_hist_idx] = gput / 8;
|
|
rack->r_ctl.rc_gp_hist_idx++;
|
|
if (rack->r_ctl.rc_gp_hist_idx >= RACK_GP_HIST)
|
|
rack->r_ctl.rc_gp_hist_filled = 1;
|
|
rack->r_ctl.rc_gp_hist_idx %= RACK_GP_HIST;
|
|
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
|
|
gput);
|
|
/*
|
|
* XXXLAS: This is a temporary hack, and should be
|
|
* chained off VOI_TCP_GPUT when stats(9) grows an
|
|
* API to deal with chained VOIs.
|
|
*/
|
|
if (tp->t_stats_gput_prev > 0)
|
|
stats_voi_update_abs_s32(tp->t_stats,
|
|
VOI_TCP_GPUT_ND,
|
|
((gput - tp->t_stats_gput_prev) * 100) /
|
|
tp->t_stats_gput_prev);
|
|
tp->t_flags &= ~TF_GPUTINPROG;
|
|
tp->t_stats_gput_prev = gput;
|
|
|
|
if (tp->t_maxpeakrate) {
|
|
/*
|
|
* We update t_peakrate_thr. This gives us roughly
|
|
* one update per round trip time.
|
|
*/
|
|
tcp_update_peakrate_thr(tp);
|
|
}
|
|
}
|
|
#endif
|
|
if (tp->snd_cwnd > tp->snd_ssthresh) {
|
|
tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
|
|
nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp));
|
|
if (tp->t_bytes_acked >= tp->snd_cwnd) {
|
|
tp->t_bytes_acked -= tp->snd_cwnd;
|
|
tp->ccv->flags |= CCF_ABC_SENTAWND;
|
|
}
|
|
} else {
|
|
tp->ccv->flags &= ~CCF_ABC_SENTAWND;
|
|
tp->t_bytes_acked = 0;
|
|
}
|
|
}
|
|
if (CC_ALGO(tp)->ack_received != NULL) {
|
|
/* XXXLAS: Find a way to live without this */
|
|
tp->ccv->curack = th->th_ack;
|
|
CC_ALGO(tp)->ack_received(tp->ccv, type);
|
|
}
|
|
#ifdef NETFLIX_STATS
|
|
stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
|
|
#endif
|
|
if (rack->r_ctl.rc_rack_largest_cwnd < tp->snd_cwnd) {
|
|
rack->r_ctl.rc_rack_largest_cwnd = tp->snd_cwnd;
|
|
}
|
|
/* we enforce max peak rate if it is set. */
|
|
if (tp->t_peakrate_thr && tp->snd_cwnd > tp->t_peakrate_thr) {
|
|
tp->snd_cwnd = tp->t_peakrate_thr;
|
|
}
|
|
}
|
|
|
|
static void
|
|
tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th)
|
|
{
|
|
struct tcp_rack *rack;
|
|
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (rack->r_ctl.rc_prr_sndcnt > 0)
|
|
rack->r_wanted_output++;
|
|
}
|
|
|
|
static void
|
|
rack_post_recovery(struct tcpcb *tp, struct tcphdr *th)
|
|
{
|
|
struct tcp_rack *rack;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (CC_ALGO(tp)->post_recovery != NULL) {
|
|
tp->ccv->curack = th->th_ack;
|
|
CC_ALGO(tp)->post_recovery(tp->ccv);
|
|
}
|
|
/*
|
|
* Here we can in theory adjust cwnd to be based on the number of
|
|
* losses in the window (rack->r_ctl.rc_loss_count). This is done
|
|
* based on the rack_use_proportional flag.
|
|
*/
|
|
if (rack->r_ctl.rc_prop_reduce && rack->r_ctl.rc_prop_rate) {
|
|
int32_t reduce;
|
|
|
|
reduce = (rack->r_ctl.rc_loss_count * rack->r_ctl.rc_prop_rate);
|
|
if (reduce > 50) {
|
|
reduce = 50;
|
|
}
|
|
tp->snd_cwnd -= ((reduce * tp->snd_cwnd) / 100);
|
|
} else {
|
|
if (tp->snd_cwnd > tp->snd_ssthresh) {
|
|
/* Drop us down to the ssthresh (1/2 cwnd at loss) */
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
|
}
|
|
}
|
|
if (rack->r_ctl.rc_prr_sndcnt > 0) {
|
|
/* Suck the next prr cnt back into cwnd */
|
|
tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt;
|
|
rack->r_ctl.rc_prr_sndcnt = 0;
|
|
rack_log_to_prr(rack, 1);
|
|
}
|
|
tp->snd_recover = tp->snd_una;
|
|
EXIT_RECOVERY(tp->t_flags);
|
|
|
|
|
|
}
|
|
|
|
static void
|
|
rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
|
|
{
|
|
struct tcp_rack *rack;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
switch (type) {
|
|
case CC_NDUPACK:
|
|
tp->t_flags &= ~TF_WASFRECOVERY;
|
|
tp->t_flags &= ~TF_WASCRECOVERY;
|
|
if (!IN_FASTRECOVERY(tp->t_flags)) {
|
|
rack->r_ctl.rc_tlp_rtx_out = 0;
|
|
rack->r_ctl.rc_prr_delivered = 0;
|
|
rack->r_ctl.rc_prr_out = 0;
|
|
rack->r_ctl.rc_loss_count = 0;
|
|
rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
|
|
rack_log_to_prr(rack, 2);
|
|
rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una;
|
|
tp->snd_recover = tp->snd_max;
|
|
if (tp->t_flags & TF_ECN_PERMIT)
|
|
tp->t_flags |= TF_ECN_SND_CWR;
|
|
}
|
|
break;
|
|
case CC_ECN:
|
|
if (!IN_CONGRECOVERY(tp->t_flags)) {
|
|
TCPSTAT_INC(tcps_ecn_rcwnd);
|
|
tp->snd_recover = tp->snd_max;
|
|
if (tp->t_flags & TF_ECN_PERMIT)
|
|
tp->t_flags |= TF_ECN_SND_CWR;
|
|
}
|
|
break;
|
|
case CC_RTO:
|
|
tp->t_dupacks = 0;
|
|
tp->t_bytes_acked = 0;
|
|
EXIT_RECOVERY(tp->t_flags);
|
|
tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
|
|
ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp);
|
|
tp->snd_cwnd = ctf_fixed_maxseg(tp);
|
|
break;
|
|
case CC_RTO_ERR:
|
|
TCPSTAT_INC(tcps_sndrexmitbad);
|
|
/* RTO was unnecessary, so reset everything. */
|
|
tp->snd_cwnd = tp->snd_cwnd_prev;
|
|
tp->snd_ssthresh = tp->snd_ssthresh_prev;
|
|
tp->snd_recover = tp->snd_recover_prev;
|
|
if (tp->t_flags & TF_WASFRECOVERY) {
|
|
ENTER_FASTRECOVERY(tp->t_flags);
|
|
tp->t_flags &= ~TF_WASFRECOVERY;
|
|
}
|
|
if (tp->t_flags & TF_WASCRECOVERY) {
|
|
ENTER_CONGRECOVERY(tp->t_flags);
|
|
tp->t_flags &= ~TF_WASCRECOVERY;
|
|
}
|
|
tp->snd_nxt = tp->snd_max;
|
|
tp->t_badrxtwin = 0;
|
|
break;
|
|
}
|
|
|
|
if (CC_ALGO(tp)->cong_signal != NULL) {
|
|
if (th != NULL)
|
|
tp->ccv->curack = th->th_ack;
|
|
CC_ALGO(tp)->cong_signal(tp->ccv, type);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
rack_cc_after_idle(struct tcpcb *tp)
|
|
{
|
|
uint32_t i_cwnd;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
#ifdef NETFLIX_STATS
|
|
TCPSTAT_INC(tcps_idle_restarts);
|
|
if (tp->t_state == TCPS_ESTABLISHED)
|
|
TCPSTAT_INC(tcps_idle_estrestarts);
|
|
#endif
|
|
if (CC_ALGO(tp)->after_idle != NULL)
|
|
CC_ALGO(tp)->after_idle(tp->ccv);
|
|
|
|
if (tp->snd_cwnd == 1)
|
|
i_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */
|
|
else
|
|
i_cwnd = tcp_compute_initwnd(tcp_maxseg(tp));
|
|
|
|
/*
|
|
* Being idle is no differnt than the initial window. If the cc
|
|
* clamps it down below the initial window raise it to the initial
|
|
* window.
|
|
*/
|
|
if (tp->snd_cwnd < i_cwnd) {
|
|
tp->snd_cwnd = i_cwnd;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Indicate whether this ack should be delayed. We can delay the ack if
|
|
* following conditions are met:
|
|
* - There is no delayed ack timer in progress.
|
|
* - Our last ack wasn't a 0-sized window. We never want to delay
|
|
* the ack that opens up a 0-sized window.
|
|
* - LRO wasn't used for this segment. We make sure by checking that the
|
|
* segment size is not larger than the MSS.
|
|
* - Delayed acks are enabled or this is a half-synchronized T/TCP
|
|
* connection.
|
|
*/
|
|
#define DELAY_ACK(tp, tlen) \
|
|
(((tp->t_flags & TF_RXWIN0SENT) == 0) && \
|
|
((tp->t_flags & TF_DELACK) == 0) && \
|
|
(tlen <= tp->t_maxseg) && \
|
|
(tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN)))
|
|
|
|
static struct rack_sendmap *
|
|
rack_find_lowest_rsm(struct tcp_rack *rack)
|
|
{
|
|
struct rack_sendmap *rsm;
|
|
|
|
/*
|
|
* Walk the time-order transmitted list looking for an rsm that is
|
|
* not acked. This will be the one that was sent the longest time
|
|
* ago that is still outstanding.
|
|
*/
|
|
TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) {
|
|
if (rsm->r_flags & RACK_ACKED) {
|
|
continue;
|
|
}
|
|
goto finish;
|
|
}
|
|
finish:
|
|
return (rsm);
|
|
}
|
|
|
|
static struct rack_sendmap *
|
|
rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm)
|
|
{
|
|
struct rack_sendmap *prsm;
|
|
|
|
/*
|
|
* Walk the sequence order list backward until we hit and arrive at
|
|
* the highest seq not acked. In theory when this is called it
|
|
* should be the last segment (which it was not).
|
|
*/
|
|
counter_u64_add(rack_find_high, 1);
|
|
prsm = rsm;
|
|
RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) {
|
|
if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) {
|
|
continue;
|
|
}
|
|
return (prsm);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
static uint32_t
|
|
rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts)
|
|
{
|
|
int32_t lro;
|
|
uint32_t thresh;
|
|
|
|
/*
|
|
* lro is the flag we use to determine if we have seen reordering.
|
|
* If it gets set we have seen reordering. The reorder logic either
|
|
* works in one of two ways:
|
|
*
|
|
* If reorder-fade is configured, then we track the last time we saw
|
|
* re-ordering occur. If we reach the point where enough time as
|
|
* passed we no longer consider reordering has occuring.
|
|
*
|
|
* Or if reorder-face is 0, then once we see reordering we consider
|
|
* the connection to alway be subject to reordering and just set lro
|
|
* to 1.
|
|
*
|
|
* In the end if lro is non-zero we add the extra time for
|
|
* reordering in.
|
|
*/
|
|
if (srtt == 0)
|
|
srtt = 1;
|
|
if (rack->r_ctl.rc_reorder_ts) {
|
|
if (rack->r_ctl.rc_reorder_fade) {
|
|
if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) {
|
|
lro = cts - rack->r_ctl.rc_reorder_ts;
|
|
if (lro == 0) {
|
|
/*
|
|
* No time as passed since the last
|
|
* reorder, mark it as reordering.
|
|
*/
|
|
lro = 1;
|
|
}
|
|
} else {
|
|
/* Negative time? */
|
|
lro = 0;
|
|
}
|
|
if (lro > rack->r_ctl.rc_reorder_fade) {
|
|
/* Turn off reordering seen too */
|
|
rack->r_ctl.rc_reorder_ts = 0;
|
|
lro = 0;
|
|
}
|
|
} else {
|
|
/* Reodering does not fade */
|
|
lro = 1;
|
|
}
|
|
} else {
|
|
lro = 0;
|
|
}
|
|
thresh = srtt + rack->r_ctl.rc_pkt_delay;
|
|
if (lro) {
|
|
/* It must be set, if not you get 1/4 rtt */
|
|
if (rack->r_ctl.rc_reorder_shift)
|
|
thresh += (srtt >> rack->r_ctl.rc_reorder_shift);
|
|
else
|
|
thresh += (srtt >> 2);
|
|
} else {
|
|
thresh += 1;
|
|
}
|
|
/* We don't let the rack timeout be above a RTO */
|
|
if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) {
|
|
thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur);
|
|
}
|
|
/* And we don't want it above the RTO max either */
|
|
if (thresh > rack_rto_max) {
|
|
thresh = rack_rto_max;
|
|
}
|
|
return (thresh);
|
|
}
|
|
|
|
static uint32_t
|
|
rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct rack_sendmap *rsm, uint32_t srtt)
|
|
{
|
|
struct rack_sendmap *prsm;
|
|
uint32_t thresh, len;
|
|
int maxseg;
|
|
|
|
if (srtt == 0)
|
|
srtt = 1;
|
|
if (rack->r_ctl.rc_tlp_threshold)
|
|
thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold);
|
|
else
|
|
thresh = (srtt * 2);
|
|
|
|
/* Get the previous sent packet, if any */
|
|
maxseg = ctf_fixed_maxseg(tp);
|
|
counter_u64_add(rack_enter_tlp_calc, 1);
|
|
len = rsm->r_end - rsm->r_start;
|
|
if (rack->rack_tlp_threshold_use == TLP_USE_ID) {
|
|
/* Exactly like the ID */
|
|
if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= maxseg) {
|
|
uint32_t alt_thresh;
|
|
/*
|
|
* Compensate for delayed-ack with the d-ack time.
|
|
*/
|
|
counter_u64_add(rack_used_tlpmethod, 1);
|
|
alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
|
|
if (alt_thresh > thresh)
|
|
thresh = alt_thresh;
|
|
}
|
|
} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) {
|
|
/* 2.1 behavior */
|
|
prsm = TAILQ_PREV(rsm, rack_head, r_tnext);
|
|
if (prsm && (len <= maxseg)) {
|
|
/*
|
|
* Two packets outstanding, thresh should be (2*srtt) +
|
|
* possible inter-packet delay (if any).
|
|
*/
|
|
uint32_t inter_gap = 0;
|
|
int idx, nidx;
|
|
|
|
counter_u64_add(rack_used_tlpmethod, 1);
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
nidx = prsm->r_rtr_cnt - 1;
|
|
if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) {
|
|
/* Yes it was sent later (or at the same time) */
|
|
inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx];
|
|
}
|
|
thresh += inter_gap;
|
|
} else if (len <= maxseg) {
|
|
/*
|
|
* Possibly compensate for delayed-ack.
|
|
*/
|
|
uint32_t alt_thresh;
|
|
|
|
counter_u64_add(rack_used_tlpmethod2, 1);
|
|
alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
|
|
if (alt_thresh > thresh)
|
|
thresh = alt_thresh;
|
|
}
|
|
} else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) {
|
|
/* 2.2 behavior */
|
|
if (len <= maxseg) {
|
|
uint32_t alt_thresh;
|
|
/*
|
|
* Compensate for delayed-ack with the d-ack time.
|
|
*/
|
|
counter_u64_add(rack_used_tlpmethod, 1);
|
|
alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time;
|
|
if (alt_thresh > thresh)
|
|
thresh = alt_thresh;
|
|
}
|
|
}
|
|
/* Not above an RTO */
|
|
if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) {
|
|
thresh = TICKS_2_MSEC(tp->t_rxtcur);
|
|
}
|
|
/* Not above a RTO max */
|
|
if (thresh > rack_rto_max) {
|
|
thresh = rack_rto_max;
|
|
}
|
|
/* Apply user supplied min TLP */
|
|
if (thresh < rack_tlp_min) {
|
|
thresh = rack_tlp_min;
|
|
}
|
|
return (thresh);
|
|
}
|
|
|
|
static uint32_t
|
|
rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack)
|
|
{
|
|
/*
|
|
* We want the rack_rtt which is the
|
|
* last rtt we measured. However if that
|
|
* does not exist we fallback to the srtt (which
|
|
* we probably will never do) and then as a last
|
|
* resort we use RACK_INITIAL_RTO if no srtt is
|
|
* yet set.
|
|
*/
|
|
if (rack->rc_rack_rtt)
|
|
return(rack->rc_rack_rtt);
|
|
else if (tp->t_srtt == 0)
|
|
return(RACK_INITIAL_RTO);
|
|
return (TICKS_2_MSEC(tp->t_srtt >> TCP_RTT_SHIFT));
|
|
}
|
|
|
|
static struct rack_sendmap *
|
|
rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused)
|
|
{
|
|
/*
|
|
* Check to see that we don't need to fall into recovery. We will
|
|
* need to do so if our oldest transmit is past the time we should
|
|
* have had an ack.
|
|
*/
|
|
struct tcp_rack *rack;
|
|
struct rack_sendmap *rsm;
|
|
int32_t idx;
|
|
uint32_t srtt, thresh;
|
|
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
|
|
return (NULL);
|
|
}
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
|
|
if (rsm == NULL)
|
|
return (NULL);
|
|
|
|
if (rsm->r_flags & RACK_ACKED) {
|
|
rsm = rack_find_lowest_rsm(rack);
|
|
if (rsm == NULL)
|
|
return (NULL);
|
|
}
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
srtt = rack_grab_rtt(tp, rack);
|
|
thresh = rack_calc_thresh_rack(rack, srtt, tsused);
|
|
if (tsused < rsm->r_tim_lastsent[idx]) {
|
|
return (NULL);
|
|
}
|
|
if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) {
|
|
return (NULL);
|
|
}
|
|
/* Ok if we reach here we are over-due */
|
|
rack->r_ctl.rc_rsm_start = rsm->r_start;
|
|
rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
|
|
rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
|
|
rack_cong_signal(tp, NULL, CC_NDUPACK);
|
|
return (rsm);
|
|
}
|
|
|
|
static uint32_t
|
|
rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack)
|
|
{
|
|
int32_t t;
|
|
int32_t tt;
|
|
uint32_t ret_val;
|
|
|
|
t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT));
|
|
TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift],
|
|
rack_persist_min, rack_persist_max);
|
|
if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
|
|
tp->t_rxtshift++;
|
|
rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT;
|
|
ret_val = (uint32_t)tt;
|
|
return (ret_val);
|
|
}
|
|
|
|
static uint32_t
|
|
rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack)
|
|
{
|
|
/*
|
|
* Start the FR timer, we do this based on getting the first one in
|
|
* the rc_tmap. Note that if its NULL we must stop the timer. in all
|
|
* events we need to stop the running timer (if its running) before
|
|
* starting the new one.
|
|
*/
|
|
uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse;
|
|
uint32_t srtt_cur;
|
|
int32_t idx;
|
|
int32_t is_tlp_timer = 0;
|
|
struct rack_sendmap *rsm;
|
|
|
|
if (rack->t_timers_stopped) {
|
|
/* All timers have been stopped none are to run */
|
|
return (0);
|
|
}
|
|
if (rack->rc_in_persist) {
|
|
/* We can't start any timer in persists */
|
|
return (rack_get_persists_timer_val(tp, rack));
|
|
}
|
|
if ((tp->t_state < TCPS_ESTABLISHED) ||
|
|
((tp->t_flags & TF_SACK_PERMIT) == 0))
|
|
goto activate_rxt;
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
|
|
if ((rsm == NULL) || sup_rack) {
|
|
/* Nothing on the send map */
|
|
activate_rxt:
|
|
time_since_sent = 0;
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
|
|
if (rsm) {
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
|
|
tstmp_touse = rsm->r_tim_lastsent[idx];
|
|
else
|
|
tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
|
|
if (TSTMP_GT(tstmp_touse, cts))
|
|
time_since_sent = cts - tstmp_touse;
|
|
}
|
|
if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) {
|
|
rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT;
|
|
to = TICKS_2_MSEC(tp->t_rxtcur);
|
|
if (to > time_since_sent)
|
|
to -= time_since_sent;
|
|
else
|
|
to = rack->r_ctl.rc_min_to;
|
|
if (to == 0)
|
|
to = 1;
|
|
return (to);
|
|
}
|
|
return (0);
|
|
}
|
|
if (rsm->r_flags & RACK_ACKED) {
|
|
rsm = rack_find_lowest_rsm(rack);
|
|
if (rsm == NULL) {
|
|
/* No lowest? */
|
|
goto activate_rxt;
|
|
}
|
|
}
|
|
if (rack->sack_attack_disable) {
|
|
/*
|
|
* We don't want to do
|
|
* any TLP's if you are an attacker.
|
|
* Though if you are doing what
|
|
* is expected you may still have
|
|
* SACK-PASSED marks.
|
|
*/
|
|
goto activate_rxt;
|
|
}
|
|
/* Convert from ms to usecs */
|
|
if (rsm->r_flags & RACK_SACK_PASSED) {
|
|
if ((tp->t_flags & TF_SENTFIN) &&
|
|
((tp->snd_max - tp->snd_una) == 1) &&
|
|
(rsm->r_flags & RACK_HAS_FIN)) {
|
|
/*
|
|
* We don't start a rack timer if all we have is a
|
|
* FIN outstanding.
|
|
*/
|
|
goto activate_rxt;
|
|
}
|
|
if ((rack->use_rack_cheat == 0) &&
|
|
(IN_RECOVERY(tp->t_flags)) &&
|
|
(rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
|
|
/*
|
|
* We are not cheating, in recovery and
|
|
* not enough ack's to yet get our next
|
|
* retransmission out.
|
|
*
|
|
* Note that classified attackers do not
|
|
* get to use the rack-cheat.
|
|
*/
|
|
goto activate_tlp;
|
|
}
|
|
srtt = rack_grab_rtt(tp, rack);
|
|
thresh = rack_calc_thresh_rack(rack, srtt, cts);
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
exp = rsm->r_tim_lastsent[idx] + thresh;
|
|
if (SEQ_GEQ(exp, cts)) {
|
|
to = exp - cts;
|
|
if (to < rack->r_ctl.rc_min_to) {
|
|
to = rack->r_ctl.rc_min_to;
|
|
}
|
|
} else {
|
|
to = rack->r_ctl.rc_min_to;
|
|
}
|
|
} else {
|
|
/* Ok we need to do a TLP not RACK */
|
|
activate_tlp:
|
|
if ((rack->rc_tlp_in_progress != 0) ||
|
|
(rack->r_ctl.rc_tlp_rtx_out != 0)) {
|
|
/*
|
|
* The previous send was a TLP or a tlp_rtx is in
|
|
* process.
|
|
*/
|
|
goto activate_rxt;
|
|
}
|
|
rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
|
|
if (rsm == NULL) {
|
|
/* We found no rsm to TLP with. */
|
|
goto activate_rxt;
|
|
}
|
|
if (rsm->r_flags & RACK_HAS_FIN) {
|
|
/* If its a FIN we dont do TLP */
|
|
rsm = NULL;
|
|
goto activate_rxt;
|
|
}
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
time_since_sent = 0;
|
|
if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time))
|
|
tstmp_touse = rsm->r_tim_lastsent[idx];
|
|
else
|
|
tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time;
|
|
if (TSTMP_GT(tstmp_touse, cts))
|
|
time_since_sent = cts - tstmp_touse;
|
|
is_tlp_timer = 1;
|
|
if (tp->t_srtt) {
|
|
srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT);
|
|
srtt = TICKS_2_MSEC(srtt_cur);
|
|
} else
|
|
srtt = RACK_INITIAL_RTO;
|
|
thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt);
|
|
if (thresh > time_since_sent)
|
|
to = thresh - time_since_sent;
|
|
else
|
|
to = rack->r_ctl.rc_min_to;
|
|
if (to > TCPTV_REXMTMAX) {
|
|
/*
|
|
* If the TLP time works out to larger than the max
|
|
* RTO lets not do TLP.. just RTO.
|
|
*/
|
|
goto activate_rxt;
|
|
}
|
|
if (rsm->r_start != rack->r_ctl.rc_last_tlp_seq) {
|
|
/*
|
|
* The tail is no longer the last one I did a probe
|
|
* on
|
|
*/
|
|
rack->r_ctl.rc_tlp_seg_send_cnt = 0;
|
|
rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
|
|
}
|
|
}
|
|
if (is_tlp_timer == 0) {
|
|
rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK;
|
|
} else {
|
|
if ((rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) ||
|
|
(rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
|
|
/*
|
|
* We have exceeded how many times we can retran the
|
|
* current TLP timer, switch to the RTO timer.
|
|
*/
|
|
goto activate_rxt;
|
|
} else {
|
|
rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP;
|
|
}
|
|
}
|
|
if (to == 0)
|
|
to = 1;
|
|
return (to);
|
|
}
|
|
|
|
static void
|
|
rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
|
|
{
|
|
if (rack->rc_in_persist == 0) {
|
|
rack->r_ctl.rc_went_idle_time = cts;
|
|
rack_timer_cancel(tp, rack, cts, __LINE__);
|
|
tp->t_rxtshift = 0;
|
|
rack->rc_in_persist = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack)
|
|
{
|
|
if (rack->rc_inp->inp_in_hpts) {
|
|
tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
|
|
rack->r_ctl.rc_hpts_flags = 0;
|
|
}
|
|
rack->rc_in_persist = 0;
|
|
rack->r_ctl.rc_went_idle_time = 0;
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
tp->t_rxtshift = 0;
|
|
}
|
|
|
|
static void
|
|
rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts,
|
|
int32_t slot, uint32_t tot_len_this_send, int sup_rack)
|
|
{
|
|
struct inpcb *inp;
|
|
uint32_t delayed_ack = 0;
|
|
uint32_t hpts_timeout;
|
|
uint8_t stopped;
|
|
uint32_t left = 0;
|
|
|
|
inp = tp->t_inpcb;
|
|
if (inp->inp_in_hpts) {
|
|
/* A previous call is already set up */
|
|
return;
|
|
}
|
|
if ((tp->t_state == TCPS_CLOSED) ||
|
|
(tp->t_state == TCPS_LISTEN)) {
|
|
return;
|
|
}
|
|
stopped = rack->rc_tmr_stopped;
|
|
if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) {
|
|
left = rack->r_ctl.rc_timer_exp - cts;
|
|
}
|
|
rack->tlp_timer_up = 0;
|
|
rack->r_ctl.rc_timer_exp = 0;
|
|
if (rack->rc_inp->inp_in_hpts == 0) {
|
|
rack->r_ctl.rc_hpts_flags = 0;
|
|
}
|
|
if (slot) {
|
|
/* We are hptsi too */
|
|
rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT;
|
|
} else if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
|
|
/*
|
|
* We are still left on the hpts when the to goes
|
|
* it will be for output.
|
|
*/
|
|
if (TSTMP_GT(rack->r_ctl.rc_last_output_to, cts))
|
|
slot = rack->r_ctl.rc_last_output_to - cts;
|
|
else
|
|
slot = 1;
|
|
}
|
|
hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack);
|
|
if (rack->sack_attack_disable &&
|
|
(slot < USEC_TO_MSEC(tcp_sad_pacing_interval))) {
|
|
/*
|
|
* We have a potential attacker on
|
|
* the line. We have possibly some
|
|
* (or now) pacing time set. We want to
|
|
* slow down the processing of sacks by some
|
|
* amount (if it is an attacker). Set the default
|
|
* slot for attackers in place (unless the orginal
|
|
* interval is longer). Its stored in
|
|
* micro-seconds, so lets convert to msecs.
|
|
*/
|
|
slot = USEC_TO_MSEC(tcp_sad_pacing_interval);
|
|
}
|
|
if (tp->t_flags & TF_DELACK) {
|
|
delayed_ack = TICKS_2_MSEC(tcp_delacktime);
|
|
rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK;
|
|
}
|
|
if (delayed_ack && ((hpts_timeout == 0) ||
|
|
(delayed_ack < hpts_timeout)))
|
|
hpts_timeout = delayed_ack;
|
|
else
|
|
rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
|
|
/*
|
|
* If no timers are going to run and we will fall off the hptsi
|
|
* wheel, we resort to a keep-alive timer if its configured.
|
|
*/
|
|
if ((hpts_timeout == 0) &&
|
|
(slot == 0)) {
|
|
if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
|
|
(tp->t_state <= TCPS_CLOSING)) {
|
|
/*
|
|
* Ok we have no timer (persists, rack, tlp, rxt or
|
|
* del-ack), we don't have segments being paced. So
|
|
* all that is left is the keepalive timer.
|
|
*/
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state)) {
|
|
/* Get the established keep-alive time */
|
|
hpts_timeout = TP_KEEPIDLE(tp);
|
|
} else {
|
|
/* Get the initial setup keep-alive time */
|
|
hpts_timeout = TP_KEEPINIT(tp);
|
|
}
|
|
rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP;
|
|
}
|
|
}
|
|
if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) ==
|
|
(rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) {
|
|
/*
|
|
* RACK, TLP, persists and RXT timers all are restartable
|
|
* based on actions input .. i.e we received a packet (ack
|
|
* or sack) and that changes things (rw, or snd_una etc).
|
|
* Thus we can restart them with a new value. For
|
|
* keep-alive, delayed_ack we keep track of what was left
|
|
* and restart the timer with a smaller value.
|
|
*/
|
|
if (left < hpts_timeout)
|
|
hpts_timeout = left;
|
|
}
|
|
if (hpts_timeout) {
|
|
/*
|
|
* Hack alert for now we can't time-out over 2,147,483
|
|
* seconds (a bit more than 596 hours), which is probably ok
|
|
* :).
|
|
*/
|
|
if (hpts_timeout > 0x7ffffffe)
|
|
hpts_timeout = 0x7ffffffe;
|
|
rack->r_ctl.rc_timer_exp = cts + hpts_timeout;
|
|
}
|
|
if (slot) {
|
|
rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
|
|
if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)
|
|
inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
|
|
else
|
|
inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
|
|
rack->r_ctl.rc_last_output_to = cts + slot;
|
|
if ((hpts_timeout == 0) || (hpts_timeout > slot)) {
|
|
if (rack->rc_inp->inp_in_hpts == 0)
|
|
tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(slot));
|
|
rack_log_to_start(rack, cts, hpts_timeout, slot, 1);
|
|
} else {
|
|
/*
|
|
* Arrange for the hpts to kick back in after the
|
|
* t-o if the t-o does not cause a send.
|
|
*/
|
|
if (rack->rc_inp->inp_in_hpts == 0)
|
|
tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
|
|
rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
|
|
}
|
|
} else if (hpts_timeout) {
|
|
if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) {
|
|
/* For a rack timer, don't wake us */
|
|
rack->rc_inp->inp_flags2 |= INP_MBUF_QUEUE_READY;
|
|
inp->inp_flags2 |= INP_DONT_SACK_QUEUE;
|
|
} else {
|
|
/* All other timers wake us up */
|
|
rack->rc_inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
|
|
inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE;
|
|
}
|
|
if (rack->rc_inp->inp_in_hpts == 0)
|
|
tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout));
|
|
rack_log_to_start(rack, cts, hpts_timeout, slot, 0);
|
|
} else {
|
|
/* No timer starting */
|
|
#ifdef INVARIANTS
|
|
if (SEQ_GT(tp->snd_max, tp->snd_una)) {
|
|
panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?",
|
|
tp, rack, tot_len_this_send, cts, slot, hpts_timeout);
|
|
}
|
|
#endif
|
|
}
|
|
rack->rc_tmr_stopped = 0;
|
|
if (slot)
|
|
rack_log_type_bbrsnd(rack, tot_len_this_send, slot, cts);
|
|
}
|
|
|
|
/*
|
|
* RACK Timer, here we simply do logging and house keeping.
|
|
* the normal rack_output() function will call the
|
|
* appropriate thing to check if we need to do a RACK retransmit.
|
|
* We return 1, saying don't proceed with rack_output only
|
|
* when all timers have been stopped (destroyed PCB?).
|
|
*/
|
|
static int
|
|
rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
|
|
{
|
|
/*
|
|
* This timer simply provides an internal trigger to send out data.
|
|
* The check_recovery_mode call will see if there are needed
|
|
* retransmissions, if so we will enter fast-recovery. The output
|
|
* call may or may not do the same thing depending on sysctl
|
|
* settings.
|
|
*/
|
|
struct rack_sendmap *rsm;
|
|
int32_t recovery, ll;
|
|
|
|
if (tp->t_timers->tt_flags & TT_STOPPED) {
|
|
return (1);
|
|
}
|
|
if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
|
|
/* Its not time yet */
|
|
return (0);
|
|
}
|
|
recovery = IN_RECOVERY(tp->t_flags);
|
|
counter_u64_add(rack_to_tot, 1);
|
|
if (rack->r_state && (rack->r_state != tp->t_state))
|
|
rack_set_state(tp, rack);
|
|
rsm = rack_check_recovery_mode(tp, cts);
|
|
if (rsm)
|
|
ll = rsm->r_end - rsm->r_start;
|
|
else
|
|
ll = 0;
|
|
rack_log_to_event(rack, RACK_TO_FRM_RACK, ll);
|
|
if (rsm) {
|
|
uint32_t rtt;
|
|
|
|
rtt = rack->rc_rack_rtt;
|
|
if (rtt == 0)
|
|
rtt = 1;
|
|
if ((recovery == 0) &&
|
|
(rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) {
|
|
/*
|
|
* The rack-timeout that enter's us into recovery
|
|
* will force out one MSS and set us up so that we
|
|
* can do one more send in 2*rtt (transitioning the
|
|
* rack timeout into a rack-tlp).
|
|
*/
|
|
rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
|
|
rack_log_to_prr(rack, 3);
|
|
} else if ((rack->r_ctl.rc_prr_sndcnt < (rsm->r_end - rsm->r_start)) &&
|
|
rack->use_rack_cheat) {
|
|
/*
|
|
* When a rack timer goes, if the rack cheat is
|
|
* on, arrange it so we can send a full segment.
|
|
*/
|
|
rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
|
|
rack_log_to_prr(rack, 4);
|
|
}
|
|
} else {
|
|
/* This is a case that should happen rarely if ever */
|
|
counter_u64_add(rack_tlp_does_nada, 1);
|
|
#ifdef TCP_BLACKBOX
|
|
tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
|
|
#endif
|
|
rack->r_ctl.rc_resend = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
|
|
}
|
|
rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK;
|
|
return (0);
|
|
}
|
|
|
|
static __inline void
|
|
rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm,
|
|
struct rack_sendmap *rsm, uint32_t start)
|
|
{
|
|
int idx;
|
|
|
|
nrsm->r_start = start;
|
|
nrsm->r_end = rsm->r_end;
|
|
nrsm->r_rtr_cnt = rsm->r_rtr_cnt;
|
|
nrsm->r_flags = rsm->r_flags;
|
|
nrsm->r_dupack = rsm->r_dupack;
|
|
nrsm->r_rtr_bytes = 0;
|
|
rsm->r_end = nrsm->r_start;
|
|
for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) {
|
|
nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx];
|
|
}
|
|
}
|
|
|
|
static struct rack_sendmap *
|
|
rack_merge_rsm(struct tcp_rack *rack,
|
|
struct rack_sendmap *l_rsm,
|
|
struct rack_sendmap *r_rsm)
|
|
{
|
|
/*
|
|
* We are merging two ack'd RSM's,
|
|
* the l_rsm is on the left (lower seq
|
|
* values) and the r_rsm is on the right
|
|
* (higher seq value). The simplest way
|
|
* to merge these is to move the right
|
|
* one into the left. I don't think there
|
|
* is any reason we need to try to find
|
|
* the oldest (or last oldest retransmitted).
|
|
*/
|
|
struct rack_sendmap *rm;
|
|
|
|
l_rsm->r_end = r_rsm->r_end;
|
|
if (l_rsm->r_dupack < r_rsm->r_dupack)
|
|
l_rsm->r_dupack = r_rsm->r_dupack;
|
|
if (r_rsm->r_rtr_bytes)
|
|
l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes;
|
|
if (r_rsm->r_in_tmap) {
|
|
/* This really should not happen */
|
|
TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext);
|
|
r_rsm->r_in_tmap = 0;
|
|
}
|
|
/* Now the flags */
|
|
if (r_rsm->r_flags & RACK_HAS_FIN)
|
|
l_rsm->r_flags |= RACK_HAS_FIN;
|
|
if (r_rsm->r_flags & RACK_TLP)
|
|
l_rsm->r_flags |= RACK_TLP;
|
|
if (r_rsm->r_flags & RACK_RWND_COLLAPSED)
|
|
l_rsm->r_flags |= RACK_RWND_COLLAPSED;
|
|
rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm);
|
|
#ifdef INVARIANTS
|
|
if (rm != r_rsm) {
|
|
panic("removing head in rack:%p rsm:%p rm:%p",
|
|
rack, r_rsm, rm);
|
|
}
|
|
#endif
|
|
if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) {
|
|
/* Transfer the split limit to the map we free */
|
|
r_rsm->r_limit_type = l_rsm->r_limit_type;
|
|
l_rsm->r_limit_type = 0;
|
|
}
|
|
rack_free(rack, r_rsm);
|
|
return(l_rsm);
|
|
}
|
|
|
|
/*
|
|
* TLP Timer, here we simply setup what segment we want to
|
|
* have the TLP expire on, the normal rack_output() will then
|
|
* send it out.
|
|
*
|
|
* We return 1, saying don't proceed with rack_output only
|
|
* when all timers have been stopped (destroyed PCB?).
|
|
*/
|
|
static int
|
|
rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
|
|
{
|
|
/*
|
|
* Tail Loss Probe.
|
|
*/
|
|
struct rack_sendmap *rsm = NULL;
|
|
struct rack_sendmap *insret;
|
|
struct socket *so;
|
|
uint32_t amm, old_prr_snd = 0;
|
|
uint32_t out, avail;
|
|
int collapsed_win = 0;
|
|
|
|
if (tp->t_timers->tt_flags & TT_STOPPED) {
|
|
return (1);
|
|
}
|
|
if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
|
|
/* Its not time yet */
|
|
return (0);
|
|
}
|
|
if (rack_progress_timeout_check(tp)) {
|
|
tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
|
|
return (1);
|
|
}
|
|
/*
|
|
* A TLP timer has expired. We have been idle for 2 rtts. So we now
|
|
* need to figure out how to force a full MSS segment out.
|
|
*/
|
|
rack_log_to_event(rack, RACK_TO_FRM_TLP, 0);
|
|
counter_u64_add(rack_tlp_tot, 1);
|
|
if (rack->r_state && (rack->r_state != tp->t_state))
|
|
rack_set_state(tp, rack);
|
|
so = tp->t_inpcb->inp_socket;
|
|
#ifdef KERN_TLS
|
|
if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
|
|
/*
|
|
* For hardware TLS we do *not* want to send
|
|
* new data, lets instead just do a retransmission.
|
|
*/
|
|
goto need_retran;
|
|
}
|
|
#endif
|
|
avail = sbavail(&so->so_snd);
|
|
out = tp->snd_max - tp->snd_una;
|
|
rack->tlp_timer_up = 1;
|
|
if (out > tp->snd_wnd) {
|
|
/* special case, we need a retransmission */
|
|
collapsed_win = 1;
|
|
goto need_retran;
|
|
}
|
|
/*
|
|
* If we are in recovery we can jazz out a segment if new data is
|
|
* present simply by setting rc_prr_sndcnt to a segment.
|
|
*/
|
|
if ((avail > out) &&
|
|
((rack_always_send_oldest == 0) || (TAILQ_EMPTY(&rack->r_ctl.rc_tmap)))) {
|
|
/* New data is available */
|
|
amm = avail - out;
|
|
if (amm > ctf_fixed_maxseg(tp)) {
|
|
amm = ctf_fixed_maxseg(tp);
|
|
} else if ((amm < ctf_fixed_maxseg(tp)) && ((tp->t_flags & TF_NODELAY) == 0)) {
|
|
/* not enough to fill a MTU and no-delay is off */
|
|
goto need_retran;
|
|
}
|
|
if (IN_RECOVERY(tp->t_flags)) {
|
|
/* Unlikely */
|
|
old_prr_snd = rack->r_ctl.rc_prr_sndcnt;
|
|
if (out + amm <= tp->snd_wnd) {
|
|
rack->r_ctl.rc_prr_sndcnt = amm;
|
|
rack_log_to_prr(rack, 4);
|
|
} else
|
|
goto need_retran;
|
|
} else {
|
|
/* Set the send-new override */
|
|
if (out + amm <= tp->snd_wnd)
|
|
rack->r_ctl.rc_tlp_new_data = amm;
|
|
else
|
|
goto need_retran;
|
|
}
|
|
rack->r_ctl.rc_tlp_seg_send_cnt = 0;
|
|
rack->r_ctl.rc_last_tlp_seq = tp->snd_max;
|
|
rack->r_ctl.rc_tlpsend = NULL;
|
|
counter_u64_add(rack_tlp_newdata, 1);
|
|
goto send;
|
|
}
|
|
need_retran:
|
|
/*
|
|
* Ok we need to arrange the last un-acked segment to be re-sent, or
|
|
* optionally the first un-acked segment.
|
|
*/
|
|
if (collapsed_win == 0) {
|
|
if (rack_always_send_oldest)
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
|
|
else {
|
|
rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
|
|
if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) {
|
|
rsm = rack_find_high_nonack(rack, rsm);
|
|
}
|
|
}
|
|
if (rsm == NULL) {
|
|
counter_u64_add(rack_tlp_does_nada, 1);
|
|
#ifdef TCP_BLACKBOX
|
|
tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
|
|
#endif
|
|
goto out;
|
|
}
|
|
} else {
|
|
/*
|
|
* We must find the last segment
|
|
* that was acceptable by the client.
|
|
*/
|
|
RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
|
|
if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) {
|
|
/* Found one */
|
|
break;
|
|
}
|
|
}
|
|
if (rsm == NULL) {
|
|
/* None? if so send the first */
|
|
rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
|
|
if (rsm == NULL) {
|
|
counter_u64_add(rack_tlp_does_nada, 1);
|
|
#ifdef TCP_BLACKBOX
|
|
tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true);
|
|
#endif
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) {
|
|
/*
|
|
* We need to split this the last segment in two.
|
|
*/
|
|
struct rack_sendmap *nrsm;
|
|
|
|
|
|
nrsm = rack_alloc_full_limit(rack);
|
|
if (nrsm == NULL) {
|
|
/*
|
|
* No memory to split, we will just exit and punt
|
|
* off to the RXT timer.
|
|
*/
|
|
counter_u64_add(rack_tlp_does_nada, 1);
|
|
goto out;
|
|
}
|
|
rack_clone_rsm(rack, nrsm, rsm,
|
|
(rsm->r_end - ctf_fixed_maxseg(tp)));
|
|
insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
|
|
#ifdef INVARIANTS
|
|
if (insret != NULL) {
|
|
panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
|
|
nrsm, insret, rack, rsm);
|
|
}
|
|
#endif
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
rsm->r_flags &= (~RACK_HAS_FIN);
|
|
rsm = nrsm;
|
|
}
|
|
rack->r_ctl.rc_tlpsend = rsm;
|
|
rack->r_ctl.rc_tlp_rtx_out = 1;
|
|
if (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) {
|
|
rack->r_ctl.rc_tlp_seg_send_cnt++;
|
|
tp->t_rxtshift++;
|
|
} else {
|
|
rack->r_ctl.rc_last_tlp_seq = rsm->r_start;
|
|
rack->r_ctl.rc_tlp_seg_send_cnt = 1;
|
|
}
|
|
send:
|
|
rack->r_ctl.rc_tlp_send_cnt++;
|
|
if (rack->r_ctl.rc_tlp_send_cnt > rack_tlp_max_resend) {
|
|
/*
|
|
* Can't [re]/transmit a segment we have not heard from the
|
|
* peer in max times. We need the retransmit timer to take
|
|
* over.
|
|
*/
|
|
restore:
|
|
rack->r_ctl.rc_tlpsend = NULL;
|
|
if (rsm)
|
|
rsm->r_flags &= ~RACK_TLP;
|
|
rack->r_ctl.rc_prr_sndcnt = old_prr_snd;
|
|
rack_log_to_prr(rack, 5);
|
|
counter_u64_add(rack_tlp_retran_fail, 1);
|
|
goto out;
|
|
} else if (rsm) {
|
|
rsm->r_flags |= RACK_TLP;
|
|
}
|
|
if (rsm && (rsm->r_start == rack->r_ctl.rc_last_tlp_seq) &&
|
|
(rack->r_ctl.rc_tlp_seg_send_cnt > rack_tlp_max_resend)) {
|
|
/*
|
|
* We don't want to send a single segment more than the max
|
|
* either.
|
|
*/
|
|
goto restore;
|
|
}
|
|
rack->r_timer_override = 1;
|
|
rack->r_tlp_running = 1;
|
|
rack->rc_tlp_in_progress = 1;
|
|
rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
|
|
return (0);
|
|
out:
|
|
rack->tlp_timer_up = 0;
|
|
rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Delayed ack Timer, here we simply need to setup the
|
|
* ACK_NOW flag and remove the DELACK flag. From there
|
|
* the output routine will send the ack out.
|
|
*
|
|
* We only return 1, saying don't proceed, if all timers
|
|
* are stopped (destroyed PCB?).
|
|
*/
|
|
static int
|
|
rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
|
|
{
|
|
if (tp->t_timers->tt_flags & TT_STOPPED) {
|
|
return (1);
|
|
}
|
|
rack_log_to_event(rack, RACK_TO_FRM_DELACK, 0);
|
|
tp->t_flags &= ~TF_DELACK;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
TCPSTAT_INC(tcps_delack);
|
|
rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Persists timer, here we simply need to setup the
|
|
* FORCE-DATA flag the output routine will send
|
|
* the one byte send.
|
|
*
|
|
* We only return 1, saying don't proceed, if all timers
|
|
* are stopped (destroyed PCB?).
|
|
*/
|
|
static int
|
|
rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
|
|
{
|
|
struct tcptemp *t_template;
|
|
struct inpcb *inp;
|
|
int32_t retval = 1;
|
|
|
|
inp = tp->t_inpcb;
|
|
|
|
if (tp->t_timers->tt_flags & TT_STOPPED) {
|
|
return (1);
|
|
}
|
|
if (rack->rc_in_persist == 0)
|
|
return (0);
|
|
if (rack_progress_timeout_check(tp)) {
|
|
tcp_set_inp_to_drop(inp, ETIMEDOUT);
|
|
return (1);
|
|
}
|
|
KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
|
|
/*
|
|
* Persistence timer into zero window. Force a byte to be output, if
|
|
* possible.
|
|
*/
|
|
TCPSTAT_INC(tcps_persisttimeo);
|
|
/*
|
|
* Hack: if the peer is dead/unreachable, we do not time out if the
|
|
* window is closed. After a full backoff, drop the connection if
|
|
* the idle time (no responses to probes) reaches the maximum
|
|
* backoff that we would use if retransmitting.
|
|
*/
|
|
if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
|
|
(ticks - tp->t_rcvtime >= tcp_maxpersistidle ||
|
|
ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
|
|
TCPSTAT_INC(tcps_persistdrop);
|
|
retval = 1;
|
|
tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
|
|
goto out;
|
|
}
|
|
if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) &&
|
|
tp->snd_una == tp->snd_max)
|
|
rack_exit_persist(tp, rack);
|
|
rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT;
|
|
/*
|
|
* If the user has closed the socket then drop a persisting
|
|
* connection after a much reduced timeout.
|
|
*/
|
|
if (tp->t_state > TCPS_CLOSE_WAIT &&
|
|
(ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) {
|
|
retval = 1;
|
|
TCPSTAT_INC(tcps_persistdrop);
|
|
tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
|
|
goto out;
|
|
}
|
|
t_template = tcpip_maketemplate(rack->rc_inp);
|
|
if (t_template) {
|
|
tcp_respond(tp, t_template->tt_ipgen,
|
|
&t_template->tt_t, (struct mbuf *)NULL,
|
|
tp->rcv_nxt, tp->snd_una - 1, 0);
|
|
/* This sends an ack */
|
|
if (tp->t_flags & TF_DELACK)
|
|
tp->t_flags &= ~TF_DELACK;
|
|
free(t_template, M_TEMP);
|
|
}
|
|
if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
|
|
tp->t_rxtshift++;
|
|
out:
|
|
rack_log_to_event(rack, RACK_TO_FRM_PERSIST, 0);
|
|
rack_start_hpts_timer(rack, tp, cts,
|
|
0, 0, 0);
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* If a keepalive goes off, we had no other timers
|
|
* happening. We always return 1 here since this
|
|
* routine either drops the connection or sends
|
|
* out a segment with respond.
|
|
*/
|
|
static int
|
|
rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
|
|
{
|
|
struct tcptemp *t_template;
|
|
struct inpcb *inp;
|
|
|
|
if (tp->t_timers->tt_flags & TT_STOPPED) {
|
|
return (1);
|
|
}
|
|
rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP;
|
|
inp = tp->t_inpcb;
|
|
rack_log_to_event(rack, RACK_TO_FRM_KEEP, 0);
|
|
/*
|
|
* Keep-alive timer went off; send something or drop connection if
|
|
* idle for too long.
|
|
*/
|
|
TCPSTAT_INC(tcps_keeptimeo);
|
|
if (tp->t_state < TCPS_ESTABLISHED)
|
|
goto dropit;
|
|
if ((tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
|
|
tp->t_state <= TCPS_CLOSING) {
|
|
if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp))
|
|
goto dropit;
|
|
/*
|
|
* Send a packet designed to force a response if the peer is
|
|
* up and reachable: either an ACK if the connection is
|
|
* still alive, or an RST if the peer has closed the
|
|
* connection due to timeout or reboot. Using sequence
|
|
* number tp->snd_una-1 causes the transmitted zero-length
|
|
* segment to lie outside the receive window; by the
|
|
* protocol spec, this requires the correspondent TCP to
|
|
* respond.
|
|
*/
|
|
TCPSTAT_INC(tcps_keepprobe);
|
|
t_template = tcpip_maketemplate(inp);
|
|
if (t_template) {
|
|
tcp_respond(tp, t_template->tt_ipgen,
|
|
&t_template->tt_t, (struct mbuf *)NULL,
|
|
tp->rcv_nxt, tp->snd_una - 1, 0);
|
|
free(t_template, M_TEMP);
|
|
}
|
|
}
|
|
rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
|
|
return (1);
|
|
dropit:
|
|
TCPSTAT_INC(tcps_keepdrops);
|
|
tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Retransmit helper function, clear up all the ack
|
|
* flags and take care of important book keeping.
|
|
*/
|
|
static void
|
|
rack_remxt_tmr(struct tcpcb *tp)
|
|
{
|
|
/*
|
|
* The retransmit timer went off, all sack'd blocks must be
|
|
* un-acked.
|
|
*/
|
|
struct rack_sendmap *rsm, *trsm = NULL;
|
|
struct tcp_rack *rack;
|
|
int32_t cnt = 0;
|
|
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__);
|
|
rack_log_to_event(rack, RACK_TO_FRM_TMR, 0);
|
|
if (rack->r_state && (rack->r_state != tp->t_state))
|
|
rack_set_state(tp, rack);
|
|
/*
|
|
* Ideally we would like to be able to
|
|
* mark SACK-PASS on anything not acked here.
|
|
* However, if we do that we would burst out
|
|
* all that data 1ms apart. This would be unwise,
|
|
* so for now we will just let the normal rxt timer
|
|
* and tlp timer take care of it.
|
|
*/
|
|
RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
|
|
if (rsm->r_flags & RACK_ACKED) {
|
|
cnt++;
|
|
rsm->r_dupack = 0;
|
|
rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
|
|
if (rsm->r_in_tmap == 0) {
|
|
/* We must re-add it back to the tlist */
|
|
if (trsm == NULL) {
|
|
TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
|
|
} else {
|
|
TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext);
|
|
}
|
|
rsm->r_in_tmap = 1;
|
|
}
|
|
}
|
|
trsm = rsm;
|
|
rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS);
|
|
}
|
|
/* Clear the count (we just un-acked them) */
|
|
rack->r_ctl.rc_sacked = 0;
|
|
/* Clear the tlp rtx mark */
|
|
rack->r_ctl.rc_tlp_rtx_out = 0;
|
|
rack->r_ctl.rc_tlp_seg_send_cnt = 0;
|
|
rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
|
|
rack->r_ctl.rc_prr_sndcnt = 0;
|
|
rack_log_to_prr(rack, 6);
|
|
rack->r_timer_override = 1;
|
|
}
|
|
|
|
/*
|
|
* Re-transmit timeout! If we drop the PCB we will return 1, otherwise
|
|
* we will setup to retransmit the lowest seq number outstanding.
|
|
*/
|
|
static int
|
|
rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts)
|
|
{
|
|
int32_t rexmt;
|
|
struct inpcb *inp;
|
|
int32_t retval = 0;
|
|
|
|
inp = tp->t_inpcb;
|
|
if (tp->t_timers->tt_flags & TT_STOPPED) {
|
|
return (1);
|
|
}
|
|
if (rack_progress_timeout_check(tp)) {
|
|
tcp_set_inp_to_drop(inp, ETIMEDOUT);
|
|
return (1);
|
|
}
|
|
rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT;
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->snd_una == tp->snd_max)) {
|
|
/* Nothing outstanding .. nothing to do */
|
|
return (0);
|
|
}
|
|
/*
|
|
* Retransmission timer went off. Message has not been acked within
|
|
* retransmit interval. Back off to a longer retransmit interval
|
|
* and retransmit one segment.
|
|
*/
|
|
rack_remxt_tmr(tp);
|
|
if ((rack->r_ctl.rc_resend == NULL) ||
|
|
((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) {
|
|
/*
|
|
* If the rwnd collapsed on
|
|
* the one we are retransmitting
|
|
* it does not count against the
|
|
* rxt count.
|
|
*/
|
|
tp->t_rxtshift++;
|
|
}
|
|
if (tp->t_rxtshift > TCP_MAXRXTSHIFT) {
|
|
tp->t_rxtshift = TCP_MAXRXTSHIFT;
|
|
TCPSTAT_INC(tcps_timeoutdrop);
|
|
retval = 1;
|
|
tcp_set_inp_to_drop(rack->rc_inp,
|
|
(tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT));
|
|
goto out;
|
|
}
|
|
if (tp->t_state == TCPS_SYN_SENT) {
|
|
/*
|
|
* If the SYN was retransmitted, indicate CWND to be limited
|
|
* to 1 segment in cc_conn_init().
|
|
*/
|
|
tp->snd_cwnd = 1;
|
|
} else if (tp->t_rxtshift == 1) {
|
|
/*
|
|
* first retransmit; record ssthresh and cwnd so they can be
|
|
* recovered if this turns out to be a "bad" retransmit. A
|
|
* retransmit is considered "bad" if an ACK for this segment
|
|
* is received within RTT/2 interval; the assumption here is
|
|
* that the ACK was already in flight. See "On Estimating
|
|
* End-to-End Network Path Properties" by Allman and Paxson
|
|
* for more details.
|
|
*/
|
|
tp->snd_cwnd_prev = tp->snd_cwnd;
|
|
tp->snd_ssthresh_prev = tp->snd_ssthresh;
|
|
tp->snd_recover_prev = tp->snd_recover;
|
|
if (IN_FASTRECOVERY(tp->t_flags))
|
|
tp->t_flags |= TF_WASFRECOVERY;
|
|
else
|
|
tp->t_flags &= ~TF_WASFRECOVERY;
|
|
if (IN_CONGRECOVERY(tp->t_flags))
|
|
tp->t_flags |= TF_WASCRECOVERY;
|
|
else
|
|
tp->t_flags &= ~TF_WASCRECOVERY;
|
|
tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
|
|
tp->t_flags |= TF_PREVVALID;
|
|
} else
|
|
tp->t_flags &= ~TF_PREVVALID;
|
|
TCPSTAT_INC(tcps_rexmttimeo);
|
|
if ((tp->t_state == TCPS_SYN_SENT) ||
|
|
(tp->t_state == TCPS_SYN_RECEIVED))
|
|
rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]);
|
|
else
|
|
rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
|
|
TCPT_RANGESET(tp->t_rxtcur, rexmt,
|
|
max(MSEC_2_TICKS(rack_rto_min), rexmt),
|
|
MSEC_2_TICKS(rack_rto_max));
|
|
/*
|
|
* We enter the path for PLMTUD if connection is established or, if
|
|
* connection is FIN_WAIT_1 status, reason for the last is that if
|
|
* amount of data we send is very small, we could send it in couple
|
|
* of packets and process straight to FIN. In that case we won't
|
|
* catch ESTABLISHED state.
|
|
*/
|
|
if (V_tcp_pmtud_blackhole_detect && (((tp->t_state == TCPS_ESTABLISHED))
|
|
|| (tp->t_state == TCPS_FIN_WAIT_1))) {
|
|
#ifdef INET6
|
|
int32_t isipv6;
|
|
#endif
|
|
|
|
/*
|
|
* Idea here is that at each stage of mtu probe (usually,
|
|
* 1448 -> 1188 -> 524) should be given 2 chances to recover
|
|
* before further clamping down. 'tp->t_rxtshift % 2 == 0'
|
|
* should take care of that.
|
|
*/
|
|
if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) ==
|
|
(TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) &&
|
|
(tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 &&
|
|
tp->t_rxtshift % 2 == 0)) {
|
|
/*
|
|
* Enter Path MTU Black-hole Detection mechanism: -
|
|
* Disable Path MTU Discovery (IP "DF" bit). -
|
|
* Reduce MTU to lower value than what we negotiated
|
|
* with peer.
|
|
*/
|
|
if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) {
|
|
/* Record that we may have found a black hole. */
|
|
tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE;
|
|
/* Keep track of previous MSS. */
|
|
tp->t_pmtud_saved_maxseg = tp->t_maxseg;
|
|
}
|
|
|
|
/*
|
|
* Reduce the MSS to blackhole value or to the
|
|
* default in an attempt to retransmit.
|
|
*/
|
|
#ifdef INET6
|
|
isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? 1 : 0;
|
|
if (isipv6 &&
|
|
tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) {
|
|
/* Use the sysctl tuneable blackhole MSS. */
|
|
tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_activated);
|
|
} else if (isipv6) {
|
|
/* Use the default MSS. */
|
|
tp->t_maxseg = V_tcp_v6mssdflt;
|
|
/*
|
|
* Disable Path MTU Discovery when we switch
|
|
* to minmss.
|
|
*/
|
|
tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
|
|
}
|
|
#endif
|
|
#if defined(INET6) && defined(INET)
|
|
else
|
|
#endif
|
|
#ifdef INET
|
|
if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) {
|
|
/* Use the sysctl tuneable blackhole MSS. */
|
|
tp->t_maxseg = V_tcp_pmtud_blackhole_mss;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_activated);
|
|
} else {
|
|
/* Use the default MSS. */
|
|
tp->t_maxseg = V_tcp_mssdflt;
|
|
/*
|
|
* Disable Path MTU Discovery when we switch
|
|
* to minmss.
|
|
*/
|
|
tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss);
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* If further retransmissions are still unsuccessful
|
|
* with a lowered MTU, maybe this isn't a blackhole
|
|
* and we restore the previous MSS and blackhole
|
|
* detection flags. The limit '6' is determined by
|
|
* giving each probe stage (1448, 1188, 524) 2
|
|
* chances to recover.
|
|
*/
|
|
if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) &&
|
|
(tp->t_rxtshift >= 6)) {
|
|
tp->t_flags2 |= TF2_PLPMTU_PMTUD;
|
|
tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE;
|
|
tp->t_maxseg = tp->t_pmtud_saved_maxseg;
|
|
TCPSTAT_INC(tcps_pmtud_blackhole_failed);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* If we backed off this far, our srtt estimate is probably bogus.
|
|
* Clobber it so we'll take the next rtt measurement as our srtt;
|
|
* move the current srtt into rttvar to keep the current retransmit
|
|
* times until then.
|
|
*/
|
|
if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
|
|
#ifdef INET6
|
|
if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
|
|
in6_losing(tp->t_inpcb);
|
|
else
|
|
#endif
|
|
in_losing(tp->t_inpcb);
|
|
tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
|
|
tp->t_srtt = 0;
|
|
}
|
|
if (rack_use_sack_filter)
|
|
sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
|
|
tp->snd_recover = tp->snd_max;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tp->t_rtttime = 0;
|
|
rack_cong_signal(tp, NULL, CC_RTO);
|
|
out:
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling)
|
|
{
|
|
int32_t ret = 0;
|
|
int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK);
|
|
|
|
if (timers == 0) {
|
|
return (0);
|
|
}
|
|
if (tp->t_state == TCPS_LISTEN) {
|
|
/* no timers on listen sockets */
|
|
if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) {
|
|
uint32_t left;
|
|
|
|
if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) {
|
|
ret = -1;
|
|
rack_log_to_processing(rack, cts, ret, 0);
|
|
return (0);
|
|
}
|
|
if (hpts_calling == 0) {
|
|
ret = -2;
|
|
rack_log_to_processing(rack, cts, ret, 0);
|
|
return (0);
|
|
}
|
|
/*
|
|
* Ok our timer went off early and we are not paced false
|
|
* alarm, go back to sleep.
|
|
*/
|
|
ret = -3;
|
|
left = rack->r_ctl.rc_timer_exp - cts;
|
|
tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left));
|
|
rack_log_to_processing(rack, cts, ret, left);
|
|
rack->rc_last_pto_set = 0;
|
|
return (1);
|
|
}
|
|
rack->rc_tmr_stopped = 0;
|
|
rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK;
|
|
if (timers & PACE_TMR_DELACK) {
|
|
ret = rack_timeout_delack(tp, rack, cts);
|
|
} else if (timers & PACE_TMR_RACK) {
|
|
rack->r_ctl.rc_tlp_rxt_last_time = cts;
|
|
ret = rack_timeout_rack(tp, rack, cts);
|
|
} else if (timers & PACE_TMR_TLP) {
|
|
rack->r_ctl.rc_tlp_rxt_last_time = cts;
|
|
ret = rack_timeout_tlp(tp, rack, cts);
|
|
} else if (timers & PACE_TMR_RXT) {
|
|
rack->r_ctl.rc_tlp_rxt_last_time = cts;
|
|
ret = rack_timeout_rxt(tp, rack, cts);
|
|
} else if (timers & PACE_TMR_PERSIT) {
|
|
ret = rack_timeout_persist(tp, rack, cts);
|
|
} else if (timers & PACE_TMR_KEEP) {
|
|
ret = rack_timeout_keepalive(tp, rack, cts);
|
|
}
|
|
rack_log_to_processing(rack, cts, ret, timers);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line)
|
|
{
|
|
uint8_t hpts_removed = 0;
|
|
|
|
if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) &&
|
|
TSTMP_GEQ(cts, rack->r_ctl.rc_last_output_to)) {
|
|
tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
|
|
hpts_removed = 1;
|
|
}
|
|
if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
|
|
rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
|
|
if (rack->rc_inp->inp_in_hpts &&
|
|
((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) {
|
|
/*
|
|
* Canceling timer's when we have no output being
|
|
* paced. We also must remove ourselves from the
|
|
* hpts.
|
|
*/
|
|
tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
|
|
hpts_removed = 1;
|
|
}
|
|
rack_log_to_cancel(rack, hpts_removed, line);
|
|
rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_timer_stop(struct tcpcb *tp, uint32_t timer_type)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static int
|
|
rack_stopall(struct tcpcb *tp)
|
|
{
|
|
struct tcp_rack *rack;
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
rack->t_timers_stopped = 1;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static int
|
|
rack_timer_active(struct tcpcb *tp, uint32_t timer_type)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
rack_stop_all_timers(struct tcpcb *tp)
|
|
{
|
|
struct tcp_rack *rack;
|
|
|
|
/*
|
|
* Assure no timers are running.
|
|
*/
|
|
if (tcp_timer_active(tp, TT_PERSIST)) {
|
|
/* We enter in persists, set the flag appropriately */
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
rack->rc_in_persist = 1;
|
|
}
|
|
tcp_timer_suspend(tp, TT_PERSIST);
|
|
tcp_timer_suspend(tp, TT_REXMT);
|
|
tcp_timer_suspend(tp, TT_KEEP);
|
|
tcp_timer_suspend(tp, TT_DELACK);
|
|
}
|
|
|
|
static void
|
|
rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct rack_sendmap *rsm, uint32_t ts)
|
|
{
|
|
int32_t idx;
|
|
|
|
rsm->r_rtr_cnt++;
|
|
rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
|
|
rsm->r_dupack = 0;
|
|
if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) {
|
|
rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS;
|
|
rsm->r_flags |= RACK_OVERMAX;
|
|
}
|
|
if ((rsm->r_rtr_cnt > 1) && (rack->r_tlp_running == 0)) {
|
|
rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start);
|
|
rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start);
|
|
}
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
rsm->r_tim_lastsent[idx] = ts;
|
|
if (rsm->r_flags & RACK_ACKED) {
|
|
/* Problably MTU discovery messing with us */
|
|
rsm->r_flags &= ~RACK_ACKED;
|
|
rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
|
|
}
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 0;
|
|
}
|
|
TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 1;
|
|
if (rsm->r_flags & RACK_SACK_PASSED) {
|
|
/* We have retransmitted due to the SACK pass */
|
|
rsm->r_flags &= ~RACK_SACK_PASSED;
|
|
rsm->r_flags |= RACK_WAS_SACKPASS;
|
|
}
|
|
}
|
|
|
|
|
|
static uint32_t
|
|
rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct rack_sendmap *rsm, uint32_t ts, int32_t *lenp)
|
|
{
|
|
/*
|
|
* We (re-)transmitted starting at rsm->r_start for some length
|
|
* (possibly less than r_end.
|
|
*/
|
|
struct rack_sendmap *nrsm, *insret;
|
|
uint32_t c_end;
|
|
int32_t len;
|
|
|
|
len = *lenp;
|
|
c_end = rsm->r_start + len;
|
|
if (SEQ_GEQ(c_end, rsm->r_end)) {
|
|
/*
|
|
* We retransmitted the whole piece or more than the whole
|
|
* slopping into the next rsm.
|
|
*/
|
|
rack_update_rsm(tp, rack, rsm, ts);
|
|
if (c_end == rsm->r_end) {
|
|
*lenp = 0;
|
|
return (0);
|
|
} else {
|
|
int32_t act_len;
|
|
|
|
/* Hangs over the end return whats left */
|
|
act_len = rsm->r_end - rsm->r_start;
|
|
*lenp = (len - act_len);
|
|
return (rsm->r_end);
|
|
}
|
|
/* We don't get out of this block. */
|
|
}
|
|
/*
|
|
* Here we retransmitted less than the whole thing which means we
|
|
* have to split this into what was transmitted and what was not.
|
|
*/
|
|
nrsm = rack_alloc_full_limit(rack);
|
|
if (nrsm == NULL) {
|
|
/*
|
|
* We can't get memory, so lets not proceed.
|
|
*/
|
|
*lenp = 0;
|
|
return (0);
|
|
}
|
|
/*
|
|
* So here we are going to take the original rsm and make it what we
|
|
* retransmitted. nrsm will be the tail portion we did not
|
|
* retransmit. For example say the chunk was 1, 11 (10 bytes). And
|
|
* we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to
|
|
* 1, 6 and the new piece will be 6, 11.
|
|
*/
|
|
rack_clone_rsm(rack, nrsm, rsm, c_end);
|
|
nrsm->r_dupack = 0;
|
|
rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
|
|
insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
|
|
#ifdef INVARIANTS
|
|
if (insret != NULL) {
|
|
panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
|
|
nrsm, insret, rack, rsm);
|
|
}
|
|
#endif
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
rsm->r_flags &= (~RACK_HAS_FIN);
|
|
rack_update_rsm(tp, rack, rsm, ts);
|
|
*lenp = 0;
|
|
return (0);
|
|
}
|
|
|
|
|
|
static void
|
|
rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len,
|
|
uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts,
|
|
uint8_t pass, struct rack_sendmap *hintrsm)
|
|
{
|
|
struct tcp_rack *rack;
|
|
struct rack_sendmap *rsm, *nrsm, *insret, fe;
|
|
register uint32_t snd_max, snd_una;
|
|
|
|
/*
|
|
* Add to the RACK log of packets in flight or retransmitted. If
|
|
* there is a TS option we will use the TS echoed, if not we will
|
|
* grab a TS.
|
|
*
|
|
* Retransmissions will increment the count and move the ts to its
|
|
* proper place. Note that if options do not include TS's then we
|
|
* won't be able to effectively use the ACK for an RTT on a retran.
|
|
*
|
|
* Notes about r_start and r_end. Lets consider a send starting at
|
|
* sequence 1 for 10 bytes. In such an example the r_start would be
|
|
* 1 (starting sequence) but the r_end would be r_start+len i.e. 11.
|
|
* This means that r_end is actually the first sequence for the next
|
|
* slot (11).
|
|
*
|
|
*/
|
|
/*
|
|
* If err is set what do we do XXXrrs? should we not add the thing?
|
|
* -- i.e. return if err != 0 or should we pretend we sent it? --
|
|
* i.e. proceed with add ** do this for now.
|
|
*/
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (err)
|
|
/*
|
|
* We don't log errors -- we could but snd_max does not
|
|
* advance in this case either.
|
|
*/
|
|
return;
|
|
|
|
if (th_flags & TH_RST) {
|
|
/*
|
|
* We don't log resets and we return immediately from
|
|
* sending
|
|
*/
|
|
return;
|
|
}
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
snd_una = tp->snd_una;
|
|
if (SEQ_LEQ((seq_out + len), snd_una)) {
|
|
/* Are sending an old segment to induce an ack (keep-alive)? */
|
|
return;
|
|
}
|
|
if (SEQ_LT(seq_out, snd_una)) {
|
|
/* huh? should we panic? */
|
|
uint32_t end;
|
|
|
|
end = seq_out + len;
|
|
seq_out = snd_una;
|
|
if (SEQ_GEQ(end, seq_out))
|
|
len = end - seq_out;
|
|
else
|
|
len = 0;
|
|
}
|
|
snd_max = tp->snd_max;
|
|
if (th_flags & (TH_SYN | TH_FIN)) {
|
|
/*
|
|
* The call to rack_log_output is made before bumping
|
|
* snd_max. This means we can record one extra byte on a SYN
|
|
* or FIN if seq_out is adding more on and a FIN is present
|
|
* (and we are not resending).
|
|
*/
|
|
if (th_flags & TH_SYN)
|
|
len++;
|
|
if (th_flags & TH_FIN)
|
|
len++;
|
|
if (SEQ_LT(snd_max, tp->snd_nxt)) {
|
|
/*
|
|
* The add/update as not been done for the FIN/SYN
|
|
* yet.
|
|
*/
|
|
snd_max = tp->snd_nxt;
|
|
}
|
|
}
|
|
if (len == 0) {
|
|
/* We don't log zero window probes */
|
|
return;
|
|
}
|
|
rack->r_ctl.rc_time_last_sent = ts;
|
|
if (IN_RECOVERY(tp->t_flags)) {
|
|
rack->r_ctl.rc_prr_out += len;
|
|
}
|
|
/* First question is it a retransmission or new? */
|
|
if (seq_out == snd_max) {
|
|
/* Its new */
|
|
again:
|
|
rsm = rack_alloc(rack);
|
|
if (rsm == NULL) {
|
|
/*
|
|
* Hmm out of memory and the tcb got destroyed while
|
|
* we tried to wait.
|
|
*/
|
|
return;
|
|
}
|
|
if (th_flags & TH_FIN) {
|
|
rsm->r_flags = RACK_HAS_FIN;
|
|
} else {
|
|
rsm->r_flags = 0;
|
|
}
|
|
rsm->r_tim_lastsent[0] = ts;
|
|
rsm->r_rtr_cnt = 1;
|
|
rsm->r_rtr_bytes = 0;
|
|
if (th_flags & TH_SYN) {
|
|
/* The data space is one beyond snd_una */
|
|
rsm->r_start = seq_out + 1;
|
|
rsm->r_end = rsm->r_start + (len - 1);
|
|
} else {
|
|
/* Normal case */
|
|
rsm->r_start = seq_out;
|
|
rsm->r_end = rsm->r_start + len;
|
|
}
|
|
rsm->r_dupack = 0;
|
|
rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
|
|
insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
#ifdef INVARIANTS
|
|
if (insret != NULL) {
|
|
panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
|
|
nrsm, insret, rack, rsm);
|
|
}
|
|
#endif
|
|
TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 1;
|
|
return;
|
|
}
|
|
/*
|
|
* If we reach here its a retransmission and we need to find it.
|
|
*/
|
|
memset(&fe, 0, sizeof(fe));
|
|
more:
|
|
if (hintrsm && (hintrsm->r_start == seq_out)) {
|
|
rsm = hintrsm;
|
|
hintrsm = NULL;
|
|
} else {
|
|
/* No hints sorry */
|
|
rsm = NULL;
|
|
}
|
|
if ((rsm) && (rsm->r_start == seq_out)) {
|
|
seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
|
|
if (len == 0) {
|
|
return;
|
|
} else {
|
|
goto more;
|
|
}
|
|
}
|
|
/* Ok it was not the last pointer go through it the hard way. */
|
|
refind:
|
|
fe.r_start = seq_out;
|
|
rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
|
|
if (rsm) {
|
|
if (rsm->r_start == seq_out) {
|
|
seq_out = rack_update_entry(tp, rack, rsm, ts, &len);
|
|
if (len == 0) {
|
|
return;
|
|
} else {
|
|
goto refind;
|
|
}
|
|
}
|
|
if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) {
|
|
/* Transmitted within this piece */
|
|
/*
|
|
* Ok we must split off the front and then let the
|
|
* update do the rest
|
|
*/
|
|
nrsm = rack_alloc_full_limit(rack);
|
|
if (nrsm == NULL) {
|
|
rack_update_rsm(tp, rack, rsm, ts);
|
|
return;
|
|
}
|
|
/*
|
|
* copy rsm to nrsm and then trim the front of rsm
|
|
* to not include this part.
|
|
*/
|
|
rack_clone_rsm(rack, nrsm, rsm, seq_out);
|
|
insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
|
|
#ifdef INVARIANTS
|
|
if (insret != NULL) {
|
|
panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
|
|
nrsm, insret, rack, rsm);
|
|
}
|
|
#endif
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
rsm->r_flags &= (~RACK_HAS_FIN);
|
|
seq_out = rack_update_entry(tp, rack, nrsm, ts, &len);
|
|
if (len == 0) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Hmm not found in map did they retransmit both old and on into the
|
|
* new?
|
|
*/
|
|
if (seq_out == tp->snd_max) {
|
|
goto again;
|
|
} else if (SEQ_LT(seq_out, tp->snd_max)) {
|
|
#ifdef INVARIANTS
|
|
printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n",
|
|
seq_out, len, tp->snd_una, tp->snd_max);
|
|
printf("Starting Dump of all rack entries\n");
|
|
RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
|
|
printf("rsm:%p start:%u end:%u\n",
|
|
rsm, rsm->r_start, rsm->r_end);
|
|
}
|
|
printf("Dump complete\n");
|
|
panic("seq_out not found rack:%p tp:%p",
|
|
rack, tp);
|
|
#endif
|
|
} else {
|
|
#ifdef INVARIANTS
|
|
/*
|
|
* Hmm beyond sndmax? (only if we are using the new rtt-pack
|
|
* flag)
|
|
*/
|
|
panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p",
|
|
seq_out, len, tp->snd_max, tp);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Record one of the RTT updates from an ack into
|
|
* our sample structure.
|
|
*/
|
|
static void
|
|
tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt)
|
|
{
|
|
if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
|
|
(rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) {
|
|
rack->r_ctl.rack_rs.rs_rtt_lowest = rtt;
|
|
}
|
|
if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) ||
|
|
(rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) {
|
|
rack->r_ctl.rack_rs.rs_rtt_highest = rtt;
|
|
}
|
|
rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID;
|
|
rack->r_ctl.rack_rs.rs_rtt_tot += rtt;
|
|
rack->r_ctl.rack_rs.rs_rtt_cnt++;
|
|
}
|
|
|
|
/*
|
|
* Collect new round-trip time estimate
|
|
* and update averages and current timeout.
|
|
*/
|
|
static void
|
|
tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp)
|
|
{
|
|
int32_t delta;
|
|
uint32_t o_srtt, o_var;
|
|
int32_t rtt;
|
|
|
|
if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY)
|
|
/* No valid sample */
|
|
return;
|
|
if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) {
|
|
/* We are to use the lowest RTT seen in a single ack */
|
|
rtt = rack->r_ctl.rack_rs.rs_rtt_lowest;
|
|
} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) {
|
|
/* We are to use the highest RTT seen in a single ack */
|
|
rtt = rack->r_ctl.rack_rs.rs_rtt_highest;
|
|
} else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) {
|
|
/* We are to use the average RTT seen in a single ack */
|
|
rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot /
|
|
(uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt);
|
|
} else {
|
|
#ifdef INVARIANTS
|
|
panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method);
|
|
#endif
|
|
return;
|
|
}
|
|
if (rtt == 0)
|
|
rtt = 1;
|
|
rack_log_rtt_sample(rack, rtt);
|
|
o_srtt = tp->t_srtt;
|
|
o_var = tp->t_rttvar;
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (tp->t_srtt != 0) {
|
|
/*
|
|
* srtt is stored as fixed point with 5 bits after the
|
|
* binary point (i.e., scaled by 8). The following magic is
|
|
* equivalent to the smoothing algorithm in rfc793 with an
|
|
* alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point).
|
|
* Adjust rtt to origin 0.
|
|
*/
|
|
delta = ((rtt - 1) << TCP_DELTA_SHIFT)
|
|
- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
|
|
|
|
tp->t_srtt += delta;
|
|
if (tp->t_srtt <= 0)
|
|
tp->t_srtt = 1;
|
|
|
|
/*
|
|
* We accumulate a smoothed rtt variance (actually, a
|
|
* smoothed mean difference), then set the retransmit timer
|
|
* to smoothed rtt + 4 times the smoothed variance. rttvar
|
|
* is stored as fixed point with 4 bits after the binary
|
|
* point (scaled by 16). The following is equivalent to
|
|
* rfc793 smoothing with an alpha of .75 (rttvar =
|
|
* rttvar*3/4 + |delta| / 4). This replaces rfc793's
|
|
* wired-in beta.
|
|
*/
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
|
|
tp->t_rttvar += delta;
|
|
if (tp->t_rttvar <= 0)
|
|
tp->t_rttvar = 1;
|
|
if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
|
|
tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
|
|
} else {
|
|
/*
|
|
* No rtt measurement yet - use the unsmoothed rtt. Set the
|
|
* variance to half the rtt (so our first retransmit happens
|
|
* at 3*rtt).
|
|
*/
|
|
tp->t_srtt = rtt << TCP_RTT_SHIFT;
|
|
tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
|
|
tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
|
|
}
|
|
TCPSTAT_INC(tcps_rttupdated);
|
|
rack_log_rtt_upd(tp, rack, rtt, o_srtt, o_var);
|
|
tp->t_rttupdated++;
|
|
#ifdef NETFLIX_STATS
|
|
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt));
|
|
#endif
|
|
tp->t_rxtshift = 0;
|
|
|
|
/*
|
|
* the retransmit should happen at rtt + 4 * rttvar. Because of the
|
|
* way we do the smoothing, srtt and rttvar will each average +1/2
|
|
* tick of bias. When we compute the retransmit timer, we want 1/2
|
|
* tick of rounding and 1 extra tick because of +-1/2 tick
|
|
* uncertainty in the firing of the timer. The bias will give us
|
|
* exactly the 1.5 tick we need. But, because the bias is
|
|
* statistical, we have to test that we don't drop below the minimum
|
|
* feasible timer (which is 2 ticks).
|
|
*/
|
|
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
|
|
max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max));
|
|
tp->t_softerror = 0;
|
|
}
|
|
|
|
static void
|
|
rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm,
|
|
uint32_t t, uint32_t cts)
|
|
{
|
|
/*
|
|
* For this RSM, we acknowledged the data from a previous
|
|
* transmission, not the last one we made. This means we did a false
|
|
* retransmit.
|
|
*/
|
|
struct tcp_rack *rack;
|
|
|
|
if (rsm->r_flags & RACK_HAS_FIN) {
|
|
/*
|
|
* The sending of the FIN often is multiple sent when we
|
|
* have everything outstanding ack'd. We ignore this case
|
|
* since its over now.
|
|
*/
|
|
return;
|
|
}
|
|
if (rsm->r_flags & RACK_TLP) {
|
|
/*
|
|
* We expect TLP's to have this occur.
|
|
*/
|
|
return;
|
|
}
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
/* should we undo cc changes and exit recovery? */
|
|
if (IN_RECOVERY(tp->t_flags)) {
|
|
if (rack->r_ctl.rc_rsm_start == rsm->r_start) {
|
|
/*
|
|
* Undo what we ratched down and exit recovery if
|
|
* possible
|
|
*/
|
|
EXIT_RECOVERY(tp->t_flags);
|
|
tp->snd_recover = tp->snd_una;
|
|
if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd)
|
|
tp->snd_cwnd = rack->r_ctl.rc_cwnd_at;
|
|
if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh)
|
|
tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at;
|
|
}
|
|
}
|
|
if (rsm->r_flags & RACK_WAS_SACKPASS) {
|
|
/*
|
|
* We retransmitted based on a sack and the earlier
|
|
* retransmission ack'd it - re-ordering is occuring.
|
|
*/
|
|
counter_u64_add(rack_reorder_seen, 1);
|
|
rack->r_ctl.rc_reorder_ts = cts;
|
|
}
|
|
counter_u64_add(rack_badfr, 1);
|
|
counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start));
|
|
}
|
|
|
|
|
|
static int
|
|
rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack,
|
|
struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type)
|
|
{
|
|
int32_t i;
|
|
uint32_t t;
|
|
|
|
if (rsm->r_flags & RACK_ACKED)
|
|
/* Already done */
|
|
return (0);
|
|
|
|
|
|
if ((rsm->r_rtr_cnt == 1) ||
|
|
((ack_type == CUM_ACKED) &&
|
|
(to->to_flags & TOF_TS) &&
|
|
(to->to_tsecr) &&
|
|
(rsm->r_tim_lastsent[rsm->r_rtr_cnt - 1] == to->to_tsecr))
|
|
) {
|
|
/*
|
|
* We will only find a matching timestamp if its cum-acked.
|
|
* But if its only one retransmission its for-sure matching
|
|
* :-)
|
|
*/
|
|
t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
|
|
if ((int)t <= 0)
|
|
t = 1;
|
|
if (!tp->t_rttlow || tp->t_rttlow > t)
|
|
tp->t_rttlow = t;
|
|
if (!rack->r_ctl.rc_rack_min_rtt ||
|
|
SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
|
|
rack->r_ctl.rc_rack_min_rtt = t;
|
|
if (rack->r_ctl.rc_rack_min_rtt == 0) {
|
|
rack->r_ctl.rc_rack_min_rtt = 1;
|
|
}
|
|
}
|
|
tcp_rack_xmit_timer(rack, t + 1);
|
|
if ((rsm->r_flags & RACK_TLP) &&
|
|
(!IN_RECOVERY(tp->t_flags))) {
|
|
/* Segment was a TLP and our retrans matched */
|
|
if (rack->r_ctl.rc_tlp_cwnd_reduce) {
|
|
rack->r_ctl.rc_rsm_start = tp->snd_max;
|
|
rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
|
|
rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
|
|
rack_cong_signal(tp, NULL, CC_NDUPACK);
|
|
/*
|
|
* When we enter recovery we need to assure
|
|
* we send one packet.
|
|
*/
|
|
rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
|
|
rack_log_to_prr(rack, 7);
|
|
}
|
|
}
|
|
if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
|
|
/* New more recent rack_tmit_time */
|
|
rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
|
|
rack->rc_rack_rtt = t;
|
|
}
|
|
return (1);
|
|
}
|
|
/*
|
|
* We clear the soft/rxtshift since we got an ack.
|
|
* There is no assurance we will call the commit() function
|
|
* so we need to clear these to avoid incorrect handling.
|
|
*/
|
|
tp->t_rxtshift = 0;
|
|
tp->t_softerror = 0;
|
|
if ((to->to_flags & TOF_TS) &&
|
|
(ack_type == CUM_ACKED) &&
|
|
(to->to_tsecr) &&
|
|
((rsm->r_flags & RACK_OVERMAX) == 0)) {
|
|
/*
|
|
* Now which timestamp does it match? In this block the ACK
|
|
* must be coming from a previous transmission.
|
|
*/
|
|
for (i = 0; i < rsm->r_rtr_cnt; i++) {
|
|
if (rsm->r_tim_lastsent[i] == to->to_tsecr) {
|
|
t = cts - rsm->r_tim_lastsent[i];
|
|
if ((int)t <= 0)
|
|
t = 1;
|
|
if ((i + 1) < rsm->r_rtr_cnt) {
|
|
/* Likely */
|
|
rack_earlier_retran(tp, rsm, t, cts);
|
|
}
|
|
if (!tp->t_rttlow || tp->t_rttlow > t)
|
|
tp->t_rttlow = t;
|
|
if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
|
|
rack->r_ctl.rc_rack_min_rtt = t;
|
|
if (rack->r_ctl.rc_rack_min_rtt == 0) {
|
|
rack->r_ctl.rc_rack_min_rtt = 1;
|
|
}
|
|
}
|
|
/*
|
|
* Note the following calls to
|
|
* tcp_rack_xmit_timer() are being commented
|
|
* out for now. They give us no more accuracy
|
|
* and often lead to a wrong choice. We have
|
|
* enough samples that have not been
|
|
* retransmitted. I leave the commented out
|
|
* code in here in case in the future we
|
|
* decide to add it back (though I can't forsee
|
|
* doing that). That way we will easily see
|
|
* where they need to be placed.
|
|
*/
|
|
if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time,
|
|
rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) {
|
|
/* New more recent rack_tmit_time */
|
|
rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)];
|
|
rack->rc_rack_rtt = t;
|
|
}
|
|
return (1);
|
|
}
|
|
}
|
|
goto ts_not_found;
|
|
} else {
|
|
/*
|
|
* Ok its a SACK block that we retransmitted. or a windows
|
|
* machine without timestamps. We can tell nothing from the
|
|
* time-stamp since its not there or the time the peer last
|
|
* recieved a segment that moved forward its cum-ack point.
|
|
*/
|
|
ts_not_found:
|
|
i = rsm->r_rtr_cnt - 1;
|
|
t = cts - rsm->r_tim_lastsent[i];
|
|
if ((int)t <= 0)
|
|
t = 1;
|
|
if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
|
|
/*
|
|
* We retransmitted and the ack came back in less
|
|
* than the smallest rtt we have observed. We most
|
|
* likey did an improper retransmit as outlined in
|
|
* 4.2 Step 3 point 2 in the rack-draft.
|
|
*/
|
|
i = rsm->r_rtr_cnt - 2;
|
|
t = cts - rsm->r_tim_lastsent[i];
|
|
rack_earlier_retran(tp, rsm, t, cts);
|
|
} else if (rack->r_ctl.rc_rack_min_rtt) {
|
|
/*
|
|
* We retransmitted it and the retransmit did the
|
|
* job.
|
|
*/
|
|
if (!rack->r_ctl.rc_rack_min_rtt ||
|
|
SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) {
|
|
rack->r_ctl.rc_rack_min_rtt = t;
|
|
if (rack->r_ctl.rc_rack_min_rtt == 0) {
|
|
rack->r_ctl.rc_rack_min_rtt = 1;
|
|
}
|
|
}
|
|
if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) {
|
|
/* New more recent rack_tmit_time */
|
|
rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i];
|
|
rack->rc_rack_rtt = t;
|
|
}
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Mark the SACK_PASSED flag on all entries prior to rsm send wise.
|
|
*/
|
|
static void
|
|
rack_log_sack_passed(struct tcpcb *tp,
|
|
struct tcp_rack *rack, struct rack_sendmap *rsm)
|
|
{
|
|
struct rack_sendmap *nrsm;
|
|
|
|
nrsm = rsm;
|
|
TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap,
|
|
rack_head, r_tnext) {
|
|
if (nrsm == rsm) {
|
|
/* Skip orginal segment he is acked */
|
|
continue;
|
|
}
|
|
if (nrsm->r_flags & RACK_ACKED) {
|
|
/*
|
|
* Skip ack'd segments, though we
|
|
* should not see these, since tmap
|
|
* should not have ack'd segments.
|
|
*/
|
|
continue;
|
|
}
|
|
if (nrsm->r_flags & RACK_SACK_PASSED) {
|
|
/*
|
|
* We found one that is already marked
|
|
* passed, we have been here before and
|
|
* so all others below this are marked.
|
|
*/
|
|
break;
|
|
}
|
|
nrsm->r_flags |= RACK_SACK_PASSED;
|
|
nrsm->r_flags &= ~RACK_WAS_SACKPASS;
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack,
|
|
struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two)
|
|
{
|
|
uint32_t start, end, changed = 0;
|
|
struct rack_sendmap stack_map;
|
|
struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next;
|
|
int32_t used_ref = 1;
|
|
int moved = 0;
|
|
|
|
start = sack->start;
|
|
end = sack->end;
|
|
rsm = *prsm;
|
|
memset(&fe, 0, sizeof(fe));
|
|
do_rest_ofb:
|
|
if ((rsm == NULL) ||
|
|
(SEQ_LT(end, rsm->r_start)) ||
|
|
(SEQ_GEQ(start, rsm->r_end)) ||
|
|
(SEQ_LT(start, rsm->r_start))) {
|
|
/*
|
|
* We are not in the right spot,
|
|
* find the correct spot in the tree.
|
|
*/
|
|
used_ref = 0;
|
|
fe.r_start = start;
|
|
rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
|
|
moved++;
|
|
}
|
|
if (rsm == NULL) {
|
|
/* TSNH */
|
|
goto out;
|
|
}
|
|
/* Ok we have an ACK for some piece of this rsm */
|
|
if (rsm->r_start != start) {
|
|
if ((rsm->r_flags & RACK_ACKED) == 0) {
|
|
/**
|
|
* Need to split this in two pieces the before and after,
|
|
* the before remains in the map, the after must be
|
|
* added. In other words we have:
|
|
* rsm |--------------|
|
|
* sackblk |------->
|
|
* rsm will become
|
|
* rsm |---|
|
|
* and nrsm will be the sacked piece
|
|
* nrsm |----------|
|
|
*
|
|
* But before we start down that path lets
|
|
* see if the sack spans over on top of
|
|
* the next guy and it is already sacked.
|
|
*/
|
|
next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
if (next && (next->r_flags & RACK_ACKED) &&
|
|
SEQ_GEQ(end, next->r_start)) {
|
|
/**
|
|
* So the next one is already acked, and
|
|
* we can thus by hookery use our stack_map
|
|
* to reflect the piece being sacked and
|
|
* then adjust the two tree entries moving
|
|
* the start and ends around. So we start like:
|
|
* rsm |------------| (not-acked)
|
|
* next |-----------| (acked)
|
|
* sackblk |-------->
|
|
* We want to end like so:
|
|
* rsm |------| (not-acked)
|
|
* next |-----------------| (acked)
|
|
* nrsm |-----|
|
|
* Where nrsm is a temporary stack piece we
|
|
* use to update all the gizmos.
|
|
*/
|
|
/* Copy up our fudge block */
|
|
nrsm = &stack_map;
|
|
memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
|
|
/* Now adjust our tree blocks */
|
|
rsm->r_end = start;
|
|
next->r_start = start;
|
|
/* Clear out the dup ack count of the remainder */
|
|
rsm->r_dupack = 0;
|
|
rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
|
|
/* Now lets make sure our fudge block is right */
|
|
nrsm->r_start = start;
|
|
/* Now lets update all the stats and such */
|
|
rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
|
|
changed += (nrsm->r_end - nrsm->r_start);
|
|
rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
|
|
if (nrsm->r_flags & RACK_SACK_PASSED) {
|
|
counter_u64_add(rack_reorder_seen, 1);
|
|
rack->r_ctl.rc_reorder_ts = cts;
|
|
}
|
|
/*
|
|
* Now we want to go up from rsm (the
|
|
* one left un-acked) to the next one
|
|
* in the tmap. We do this so when
|
|
* we walk backwards we include marking
|
|
* sack-passed on rsm (The one passed in
|
|
* is skipped since it is generally called
|
|
* on something sacked before removing it
|
|
* from the tmap).
|
|
*/
|
|
if (rsm->r_in_tmap) {
|
|
nrsm = TAILQ_NEXT(rsm, r_tnext);
|
|
/*
|
|
* Now that we have the next
|
|
* one walk backwards from there.
|
|
*/
|
|
if (nrsm && nrsm->r_in_tmap)
|
|
rack_log_sack_passed(tp, rack, nrsm);
|
|
}
|
|
/* Now are we done? */
|
|
if (SEQ_LT(end, next->r_end) ||
|
|
(end == next->r_end)) {
|
|
/* Done with block */
|
|
goto out;
|
|
}
|
|
counter_u64_add(rack_sack_used_next_merge, 1);
|
|
/* Postion for the next block */
|
|
start = next->r_end;
|
|
rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next);
|
|
if (rsm == NULL)
|
|
goto out;
|
|
} else {
|
|
/**
|
|
* We can't use any hookery here, so we
|
|
* need to split the map. We enter like
|
|
* so:
|
|
* rsm |--------|
|
|
* sackblk |----->
|
|
* We will add the new block nrsm and
|
|
* that will be the new portion, and then
|
|
* fall through after reseting rsm. So we
|
|
* split and look like this:
|
|
* rsm |----|
|
|
* sackblk |----->
|
|
* nrsm |---|
|
|
* We then fall through reseting
|
|
* rsm to nrsm, so the next block
|
|
* picks it up.
|
|
*/
|
|
nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
|
|
if (nrsm == NULL) {
|
|
/*
|
|
* failed XXXrrs what can we do but loose the sack
|
|
* info?
|
|
*/
|
|
goto out;
|
|
}
|
|
counter_u64_add(rack_sack_splits, 1);
|
|
rack_clone_rsm(rack, nrsm, rsm, start);
|
|
insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
|
|
#ifdef INVARIANTS
|
|
if (insret != NULL) {
|
|
panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
|
|
nrsm, insret, rack, rsm);
|
|
}
|
|
#endif
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
rsm->r_flags &= (~RACK_HAS_FIN);
|
|
/* Position us to point to the new nrsm that starts the sack blk */
|
|
rsm = nrsm;
|
|
}
|
|
} else {
|
|
/* Already sacked this piece */
|
|
counter_u64_add(rack_sack_skipped_acked, 1);
|
|
moved++;
|
|
if (end == rsm->r_end) {
|
|
/* Done with block */
|
|
rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
goto out;
|
|
} else if (SEQ_LT(end, rsm->r_end)) {
|
|
/* A partial sack to a already sacked block */
|
|
moved++;
|
|
rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
goto out;
|
|
} else {
|
|
/*
|
|
* The end goes beyond this guy
|
|
* repostion the start to the
|
|
* next block.
|
|
*/
|
|
start = rsm->r_end;
|
|
rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
if (rsm == NULL)
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
if (SEQ_GEQ(end, rsm->r_end)) {
|
|
/**
|
|
* The end of this block is either beyond this guy or right
|
|
* at this guy. I.e.:
|
|
* rsm --- |-----|
|
|
* end |-----|
|
|
* <or>
|
|
* end |---------|
|
|
*/
|
|
if (rsm->r_flags & RACK_TLP)
|
|
rack->r_ctl.rc_tlp_rtx_out = 0;
|
|
if ((rsm->r_flags & RACK_ACKED) == 0) {
|
|
rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
|
|
changed += (rsm->r_end - rsm->r_start);
|
|
rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
|
|
if (rsm->r_in_tmap) /* should be true */
|
|
rack_log_sack_passed(tp, rack, rsm);
|
|
/* Is Reordering occuring? */
|
|
if (rsm->r_flags & RACK_SACK_PASSED) {
|
|
rsm->r_flags &= ~RACK_SACK_PASSED;
|
|
counter_u64_add(rack_reorder_seen, 1);
|
|
rack->r_ctl.rc_reorder_ts = cts;
|
|
}
|
|
rsm->r_flags |= RACK_ACKED;
|
|
rsm->r_flags &= ~RACK_TLP;
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 0;
|
|
}
|
|
} else {
|
|
counter_u64_add(rack_sack_skipped_acked, 1);
|
|
moved++;
|
|
}
|
|
if (end == rsm->r_end) {
|
|
/* This block only - done, setup for next */
|
|
goto out;
|
|
}
|
|
/*
|
|
* There is more not coverend by this rsm move on
|
|
* to the next block in the RB tree.
|
|
*/
|
|
nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
start = rsm->r_end;
|
|
rsm = nrsm;
|
|
if (rsm == NULL)
|
|
goto out;
|
|
goto do_rest_ofb;
|
|
}
|
|
/**
|
|
* The end of this sack block is smaller than
|
|
* our rsm i.e.:
|
|
* rsm --- |-----|
|
|
* end |--|
|
|
*/
|
|
if ((rsm->r_flags & RACK_ACKED) == 0) {
|
|
prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
if (prev && (prev->r_flags & RACK_ACKED)) {
|
|
/**
|
|
* Goal, we want the right remainder of rsm to shrink
|
|
* in place and span from (rsm->r_start = end) to rsm->r_end.
|
|
* We want to expand prev to go all the way
|
|
* to prev->r_end <- end.
|
|
* so in the tree we have before:
|
|
* prev |--------| (acked)
|
|
* rsm |-------| (non-acked)
|
|
* sackblk |-|
|
|
* We churn it so we end up with
|
|
* prev |----------| (acked)
|
|
* rsm |-----| (non-acked)
|
|
* nrsm |-| (temporary)
|
|
*/
|
|
nrsm = &stack_map;
|
|
memcpy(nrsm, rsm, sizeof(struct rack_sendmap));
|
|
prev->r_end = end;
|
|
rsm->r_start = end;
|
|
/* Now adjust nrsm (stack copy) to be
|
|
* the one that is the small
|
|
* piece that was "sacked".
|
|
*/
|
|
nrsm->r_end = end;
|
|
rsm->r_dupack = 0;
|
|
rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
|
|
/*
|
|
* Now nrsm is our new little piece
|
|
* that is acked (which was merged
|
|
* to prev). Update the rtt and changed
|
|
* based on that. Also check for reordering.
|
|
*/
|
|
rack_update_rtt(tp, rack, nrsm, to, cts, SACKED);
|
|
changed += (nrsm->r_end - nrsm->r_start);
|
|
rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start);
|
|
if (nrsm->r_flags & RACK_SACK_PASSED) {
|
|
counter_u64_add(rack_reorder_seen, 1);
|
|
rack->r_ctl.rc_reorder_ts = cts;
|
|
}
|
|
rsm = prev;
|
|
counter_u64_add(rack_sack_used_prev_merge, 1);
|
|
} else {
|
|
/**
|
|
* This is the case where our previous
|
|
* block is not acked either, so we must
|
|
* split the block in two.
|
|
*/
|
|
nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
|
|
if (nrsm == NULL) {
|
|
/* failed rrs what can we do but loose the sack info? */
|
|
goto out;
|
|
}
|
|
/**
|
|
* In this case nrsm becomes
|
|
* nrsm->r_start = end;
|
|
* nrsm->r_end = rsm->r_end;
|
|
* which is un-acked.
|
|
* <and>
|
|
* rsm->r_end = nrsm->r_start;
|
|
* i.e. the remaining un-acked
|
|
* piece is left on the left
|
|
* hand side.
|
|
*
|
|
* So we start like this
|
|
* rsm |----------| (not acked)
|
|
* sackblk |---|
|
|
* build it so we have
|
|
* rsm |---| (acked)
|
|
* nrsm |------| (not acked)
|
|
*/
|
|
counter_u64_add(rack_sack_splits, 1);
|
|
rack_clone_rsm(rack, nrsm, rsm, end);
|
|
rsm->r_flags &= (~RACK_HAS_FIN);
|
|
insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
|
|
#ifdef INVARIANTS
|
|
if (insret != NULL) {
|
|
panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
|
|
nrsm, insret, rack, rsm);
|
|
}
|
|
#endif
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
nrsm->r_dupack = 0;
|
|
rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2);
|
|
if (rsm->r_flags & RACK_TLP)
|
|
rack->r_ctl.rc_tlp_rtx_out = 0;
|
|
rack_update_rtt(tp, rack, rsm, to, cts, SACKED);
|
|
changed += (rsm->r_end - rsm->r_start);
|
|
rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start);
|
|
if (rsm->r_in_tmap) /* should be true */
|
|
rack_log_sack_passed(tp, rack, rsm);
|
|
/* Is Reordering occuring? */
|
|
if (rsm->r_flags & RACK_SACK_PASSED) {
|
|
rsm->r_flags &= ~RACK_SACK_PASSED;
|
|
counter_u64_add(rack_reorder_seen, 1);
|
|
rack->r_ctl.rc_reorder_ts = cts;
|
|
}
|
|
rsm->r_flags |= RACK_ACKED;
|
|
rsm->r_flags &= ~RACK_TLP;
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 0;
|
|
}
|
|
}
|
|
} else if (start != end){
|
|
/*
|
|
* The block was already acked.
|
|
*/
|
|
counter_u64_add(rack_sack_skipped_acked, 1);
|
|
moved++;
|
|
}
|
|
out:
|
|
if (rsm && (rsm->r_flags & RACK_ACKED)) {
|
|
/*
|
|
* Now can we merge where we worked
|
|
* with either the previous or
|
|
* next block?
|
|
*/
|
|
next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
while (next) {
|
|
if (next->r_flags & RACK_ACKED) {
|
|
/* yep this and next can be merged */
|
|
rsm = rack_merge_rsm(rack, rsm, next);
|
|
next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
} else
|
|
break;
|
|
}
|
|
/* Now what about the previous? */
|
|
prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
while (prev) {
|
|
if (prev->r_flags & RACK_ACKED) {
|
|
/* yep the previous and this can be merged */
|
|
rsm = rack_merge_rsm(rack, prev, rsm);
|
|
prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
if (used_ref == 0) {
|
|
counter_u64_add(rack_sack_proc_all, 1);
|
|
} else {
|
|
counter_u64_add(rack_sack_proc_short, 1);
|
|
}
|
|
/* Save off the next one for quick reference. */
|
|
if (rsm)
|
|
nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
else
|
|
nrsm = NULL;
|
|
*prsm = rack->r_ctl.rc_sacklast = nrsm;
|
|
/* Pass back the moved. */
|
|
*moved_two = moved;
|
|
return (changed);
|
|
}
|
|
|
|
static void inline
|
|
rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack)
|
|
{
|
|
struct rack_sendmap *tmap;
|
|
|
|
tmap = NULL;
|
|
while (rsm && (rsm->r_flags & RACK_ACKED)) {
|
|
/* Its no longer sacked, mark it so */
|
|
rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
|
|
#ifdef INVARIANTS
|
|
if (rsm->r_in_tmap) {
|
|
panic("rack:%p rsm:%p flags:0x%x in tmap?",
|
|
rack, rsm, rsm->r_flags);
|
|
}
|
|
#endif
|
|
rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS);
|
|
/* Rebuild it into our tmap */
|
|
if (tmap == NULL) {
|
|
TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext);
|
|
tmap = rsm;
|
|
} else {
|
|
TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext);
|
|
tmap = rsm;
|
|
}
|
|
tmap->r_in_tmap = 1;
|
|
rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
}
|
|
/*
|
|
* Now lets possibly clear the sack filter so we start
|
|
* recognizing sacks that cover this area.
|
|
*/
|
|
if (rack_use_sack_filter)
|
|
sack_filter_clear(&rack->r_ctl.rack_sf, th_ack);
|
|
|
|
}
|
|
|
|
static void
|
|
rack_do_decay(struct tcp_rack *rack)
|
|
{
|
|
struct timeval res;
|
|
|
|
#define timersub(tvp, uvp, vvp) \
|
|
do { \
|
|
(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \
|
|
(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \
|
|
if ((vvp)->tv_usec < 0) { \
|
|
(vvp)->tv_sec--; \
|
|
(vvp)->tv_usec += 1000000; \
|
|
} \
|
|
} while (0)
|
|
|
|
timersub(&rack->r_ctl.rc_last_ack, &rack->r_ctl.rc_last_time_decay, &res);
|
|
#undef timersub
|
|
|
|
rack->r_ctl.input_pkt++;
|
|
if ((rack->rc_in_persist) ||
|
|
(res.tv_sec >= 1) ||
|
|
(rack->rc_tp->snd_max == rack->rc_tp->snd_una)) {
|
|
/*
|
|
* Check for decay of non-SAD,
|
|
* we want all SAD detection metrics to
|
|
* decay 1/4 per second (or more) passed.
|
|
*/
|
|
uint32_t pkt_delta;
|
|
|
|
pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt;
|
|
/* Update our saved tracking values */
|
|
rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt;
|
|
rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
|
|
/* Now do we escape without decay? */
|
|
if (rack->rc_in_persist ||
|
|
(rack->rc_tp->snd_max == rack->rc_tp->snd_una) ||
|
|
(pkt_delta < tcp_sad_low_pps)){
|
|
/*
|
|
* We don't decay idle connections
|
|
* or ones that have a low input pps.
|
|
*/
|
|
return;
|
|
}
|
|
/* Decay the counters */
|
|
rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count,
|
|
tcp_sad_decay_val);
|
|
rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count,
|
|
tcp_sad_decay_val);
|
|
rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra,
|
|
tcp_sad_decay_val);
|
|
rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move,
|
|
tcp_sad_decay_val);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
|
|
{
|
|
uint32_t changed, entered_recovery = 0;
|
|
struct tcp_rack *rack;
|
|
struct rack_sendmap *rsm, *rm;
|
|
struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1];
|
|
register uint32_t th_ack;
|
|
int32_t i, j, k, num_sack_blks = 0;
|
|
uint32_t cts, acked, ack_point, sack_changed = 0;
|
|
int loop_start = 0, moved_two = 0;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (th->th_flags & TH_RST) {
|
|
/* We don't log resets */
|
|
return;
|
|
}
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
cts = tcp_ts_getticks();
|
|
rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
|
|
changed = 0;
|
|
th_ack = th->th_ack;
|
|
if (rack->sack_attack_disable == 0)
|
|
rack_do_decay(rack);
|
|
if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) {
|
|
/*
|
|
* You only get credit for
|
|
* MSS and greater (and you get extra
|
|
* credit for larger cum-ack moves).
|
|
*/
|
|
int ac;
|
|
|
|
ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp);
|
|
rack->r_ctl.ack_count += ac;
|
|
counter_u64_add(rack_ack_total, ac);
|
|
}
|
|
if (rack->r_ctl.ack_count > 0xfff00000) {
|
|
/*
|
|
* reduce the number to keep us under
|
|
* a uint32_t.
|
|
*/
|
|
rack->r_ctl.ack_count /= 2;
|
|
rack->r_ctl.sack_count /= 2;
|
|
}
|
|
if (SEQ_GT(th_ack, tp->snd_una)) {
|
|
rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__);
|
|
tp->t_acktime = ticks;
|
|
}
|
|
if (rsm && SEQ_GT(th_ack, rsm->r_start))
|
|
changed = th_ack - rsm->r_start;
|
|
if (changed) {
|
|
/*
|
|
* The ACK point is advancing to th_ack, we must drop off
|
|
* the packets in the rack log and calculate any eligble
|
|
* RTT's.
|
|
*/
|
|
rack->r_wanted_output++;
|
|
more:
|
|
rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
|
|
if (rsm == NULL) {
|
|
if ((th_ack - 1) == tp->iss) {
|
|
/*
|
|
* For the SYN incoming case we will not
|
|
* have called tcp_output for the sending of
|
|
* the SYN, so there will be no map. All
|
|
* other cases should probably be a panic.
|
|
*/
|
|
goto proc_sack;
|
|
}
|
|
if (tp->t_flags & TF_SENTFIN) {
|
|
/* if we send a FIN we will not hav a map */
|
|
goto proc_sack;
|
|
}
|
|
#ifdef INVARIANTS
|
|
panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n",
|
|
tp,
|
|
th, tp->t_state, rack,
|
|
tp->snd_una, tp->snd_max, tp->snd_nxt, changed);
|
|
#endif
|
|
goto proc_sack;
|
|
}
|
|
if (SEQ_LT(th_ack, rsm->r_start)) {
|
|
/* Huh map is missing this */
|
|
#ifdef INVARIANTS
|
|
printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n",
|
|
rsm->r_start,
|
|
th_ack, tp->t_state, rack->r_state);
|
|
#endif
|
|
goto proc_sack;
|
|
}
|
|
rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED);
|
|
/* Now do we consume the whole thing? */
|
|
if (SEQ_GEQ(th_ack, rsm->r_end)) {
|
|
/* Its all consumed. */
|
|
uint32_t left;
|
|
|
|
rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes;
|
|
rsm->r_rtr_bytes = 0;
|
|
if (rsm->r_flags & RACK_TLP)
|
|
rack->r_ctl.rc_tlp_rtx_out = 0;
|
|
rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
#ifdef INVARIANTS
|
|
if (rm != rsm) {
|
|
panic("removing head in rack:%p rsm:%p rm:%p",
|
|
rack, rsm, rm);
|
|
}
|
|
#endif
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 0;
|
|
}
|
|
if (rsm->r_flags & RACK_ACKED) {
|
|
/*
|
|
* It was acked on the scoreboard -- remove
|
|
* it from total
|
|
*/
|
|
rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start);
|
|
} else if (rsm->r_flags & RACK_SACK_PASSED) {
|
|
/*
|
|
* There are segments ACKED on the
|
|
* scoreboard further up. We are seeing
|
|
* reordering.
|
|
*/
|
|
rsm->r_flags &= ~RACK_SACK_PASSED;
|
|
counter_u64_add(rack_reorder_seen, 1);
|
|
rsm->r_flags |= RACK_ACKED;
|
|
rack->r_ctl.rc_reorder_ts = cts;
|
|
}
|
|
left = th_ack - rsm->r_end;
|
|
if (rsm->r_rtr_cnt > 1) {
|
|
/*
|
|
* Technically we should make r_rtr_cnt be
|
|
* monotonicly increasing and just mod it to
|
|
* the timestamp it is replacing.. that way
|
|
* we would have the last 3 retransmits. Now
|
|
* rc_loss_count will be wrong if we
|
|
* retransmit something more than 2 times in
|
|
* recovery :(
|
|
*/
|
|
rack->r_ctl.rc_loss_count += (rsm->r_rtr_cnt - 1);
|
|
}
|
|
/* Free back to zone */
|
|
rack_free(rack, rsm);
|
|
if (left) {
|
|
goto more;
|
|
}
|
|
goto proc_sack;
|
|
}
|
|
if (rsm->r_flags & RACK_ACKED) {
|
|
/*
|
|
* It was acked on the scoreboard -- remove it from
|
|
* total for the part being cum-acked.
|
|
*/
|
|
rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start);
|
|
}
|
|
/*
|
|
* Clear the dup ack count for
|
|
* the piece that remains.
|
|
*/
|
|
rsm->r_dupack = 0;
|
|
rack_log_retran_reason(rack, rsm, __LINE__, 0, 2);
|
|
if (rsm->r_rtr_bytes) {
|
|
/*
|
|
* It was retransmitted adjust the
|
|
* sack holes for what was acked.
|
|
*/
|
|
int ack_am;
|
|
|
|
ack_am = (th_ack - rsm->r_start);
|
|
if (ack_am >= rsm->r_rtr_bytes) {
|
|
rack->r_ctl.rc_holes_rxt -= ack_am;
|
|
rsm->r_rtr_bytes -= ack_am;
|
|
}
|
|
}
|
|
/* Update where the piece starts */
|
|
rsm->r_start = th_ack;
|
|
}
|
|
proc_sack:
|
|
/* Check for reneging */
|
|
rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree);
|
|
if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) {
|
|
/*
|
|
* The peer has moved snd_una up to
|
|
* the edge of this send, i.e. one
|
|
* that it had previously acked. The only
|
|
* way that can be true if the peer threw
|
|
* away data (space issues) that it had
|
|
* previously sacked (else it would have
|
|
* given us snd_una up to (rsm->r_end).
|
|
* We need to undo the acked markings here.
|
|
*
|
|
* Note we have to look to make sure th_ack is
|
|
* our rsm->r_start in case we get an old ack
|
|
* where th_ack is behind snd_una.
|
|
*/
|
|
rack_peer_reneges(rack, rsm, th->th_ack);
|
|
}
|
|
if ((to->to_flags & TOF_SACK) == 0) {
|
|
/* We are done nothing left */
|
|
goto out;
|
|
}
|
|
/* Sack block processing */
|
|
if (SEQ_GT(th_ack, tp->snd_una))
|
|
ack_point = th_ack;
|
|
else
|
|
ack_point = tp->snd_una;
|
|
for (i = 0; i < to->to_nsacks; i++) {
|
|
bcopy((to->to_sacks + i * TCPOLEN_SACK),
|
|
&sack, sizeof(sack));
|
|
sack.start = ntohl(sack.start);
|
|
sack.end = ntohl(sack.end);
|
|
if (SEQ_GT(sack.end, sack.start) &&
|
|
SEQ_GT(sack.start, ack_point) &&
|
|
SEQ_LT(sack.start, tp->snd_max) &&
|
|
SEQ_GT(sack.end, ack_point) &&
|
|
SEQ_LEQ(sack.end, tp->snd_max)) {
|
|
sack_blocks[num_sack_blks] = sack;
|
|
num_sack_blks++;
|
|
#ifdef NETFLIX_STATS
|
|
} else if (SEQ_LEQ(sack.start, th_ack) &&
|
|
SEQ_LEQ(sack.end, th_ack)) {
|
|
/*
|
|
* Its a D-SACK block.
|
|
*/
|
|
tcp_record_dsack(sack.start, sack.end);
|
|
#endif
|
|
}
|
|
|
|
}
|
|
/*
|
|
* Sort the SACK blocks so we can update the rack scoreboard with
|
|
* just one pass.
|
|
*/
|
|
if (rack_use_sack_filter) {
|
|
num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks,
|
|
num_sack_blks, th->th_ack);
|
|
ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks);
|
|
}
|
|
if (num_sack_blks == 0) {
|
|
/* Nothing to sack (DSACKs?) */
|
|
goto out_with_totals;
|
|
}
|
|
if (num_sack_blks < 2) {
|
|
/* Only one, we don't need to sort */
|
|
goto do_sack_work;
|
|
}
|
|
/* Sort the sacks */
|
|
for (i = 0; i < num_sack_blks; i++) {
|
|
for (j = i + 1; j < num_sack_blks; j++) {
|
|
if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
|
|
sack = sack_blocks[i];
|
|
sack_blocks[i] = sack_blocks[j];
|
|
sack_blocks[j] = sack;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Now are any of the sack block ends the same (yes some
|
|
* implementations send these)?
|
|
*/
|
|
again:
|
|
if (num_sack_blks == 0)
|
|
goto out_with_totals;
|
|
if (num_sack_blks > 1) {
|
|
for (i = 0; i < num_sack_blks; i++) {
|
|
for (j = i + 1; j < num_sack_blks; j++) {
|
|
if (sack_blocks[i].end == sack_blocks[j].end) {
|
|
/*
|
|
* Ok these two have the same end we
|
|
* want the smallest end and then
|
|
* throw away the larger and start
|
|
* again.
|
|
*/
|
|
if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) {
|
|
/*
|
|
* The second block covers
|
|
* more area use that
|
|
*/
|
|
sack_blocks[i].start = sack_blocks[j].start;
|
|
}
|
|
/*
|
|
* Now collapse out the dup-sack and
|
|
* lower the count
|
|
*/
|
|
for (k = (j + 1); k < num_sack_blks; k++) {
|
|
sack_blocks[j].start = sack_blocks[k].start;
|
|
sack_blocks[j].end = sack_blocks[k].end;
|
|
j++;
|
|
}
|
|
num_sack_blks--;
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
do_sack_work:
|
|
/*
|
|
* First lets look to see if
|
|
* we have retransmitted and
|
|
* can use the transmit next?
|
|
*/
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
|
|
if (rsm &&
|
|
SEQ_GT(sack_blocks[0].end, rsm->r_start) &&
|
|
SEQ_LT(sack_blocks[0].start, rsm->r_end)) {
|
|
/*
|
|
* We probably did the FR and the next
|
|
* SACK in continues as we would expect.
|
|
*/
|
|
acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two);
|
|
if (acked) {
|
|
rack->r_wanted_output++;
|
|
changed += acked;
|
|
sack_changed += acked;
|
|
}
|
|
if (num_sack_blks == 1) {
|
|
/*
|
|
* This is what we would expect from
|
|
* a normal implementation to happen
|
|
* after we have retransmitted the FR,
|
|
* i.e the sack-filter pushes down
|
|
* to 1 block and the next to be retransmitted
|
|
* is the sequence in the sack block (has more
|
|
* are acked). Count this as ACK'd data to boost
|
|
* up the chances of recovering any false positives.
|
|
*/
|
|
rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp));
|
|
counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp)));
|
|
counter_u64_add(rack_express_sack, 1);
|
|
if (rack->r_ctl.ack_count > 0xfff00000) {
|
|
/*
|
|
* reduce the number to keep us under
|
|
* a uint32_t.
|
|
*/
|
|
rack->r_ctl.ack_count /= 2;
|
|
rack->r_ctl.sack_count /= 2;
|
|
}
|
|
goto out_with_totals;
|
|
} else {
|
|
/*
|
|
* Start the loop through the
|
|
* rest of blocks, past the first block.
|
|
*/
|
|
moved_two = 0;
|
|
loop_start = 1;
|
|
}
|
|
}
|
|
/* Its a sack of some sort */
|
|
rack->r_ctl.sack_count++;
|
|
if (rack->r_ctl.sack_count > 0xfff00000) {
|
|
/*
|
|
* reduce the number to keep us under
|
|
* a uint32_t.
|
|
*/
|
|
rack->r_ctl.ack_count /= 2;
|
|
rack->r_ctl.sack_count /= 2;
|
|
}
|
|
counter_u64_add(rack_sack_total, 1);
|
|
if (rack->sack_attack_disable) {
|
|
/* An attacker disablement is in place */
|
|
if (num_sack_blks > 1) {
|
|
rack->r_ctl.sack_count += (num_sack_blks - 1);
|
|
rack->r_ctl.sack_moved_extra++;
|
|
counter_u64_add(rack_move_some, 1);
|
|
if (rack->r_ctl.sack_moved_extra > 0xfff00000) {
|
|
rack->r_ctl.sack_moved_extra /= 2;
|
|
rack->r_ctl.sack_noextra_move /= 2;
|
|
}
|
|
}
|
|
goto out;
|
|
}
|
|
rsm = rack->r_ctl.rc_sacklast;
|
|
for (i = loop_start; i < num_sack_blks; i++) {
|
|
acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two);
|
|
if (acked) {
|
|
rack->r_wanted_output++;
|
|
changed += acked;
|
|
sack_changed += acked;
|
|
}
|
|
if (moved_two) {
|
|
/*
|
|
* If we did not get a SACK for at least a MSS and
|
|
* had to move at all, or if we moved more than our
|
|
* threshold, it counts against the "extra" move.
|
|
*/
|
|
rack->r_ctl.sack_moved_extra += moved_two;
|
|
counter_u64_add(rack_move_some, 1);
|
|
} else {
|
|
/*
|
|
* else we did not have to move
|
|
* any more than we would expect.
|
|
*/
|
|
rack->r_ctl.sack_noextra_move++;
|
|
counter_u64_add(rack_move_none, 1);
|
|
}
|
|
if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) {
|
|
/*
|
|
* If the SACK was not a full MSS then
|
|
* we add to sack_count the number of
|
|
* MSS's (or possibly more than
|
|
* a MSS if its a TSO send) we had to skip by.
|
|
*/
|
|
rack->r_ctl.sack_count += moved_two;
|
|
counter_u64_add(rack_sack_total, moved_two);
|
|
}
|
|
/*
|
|
* Now we need to setup for the next
|
|
* round. First we make sure we won't
|
|
* exceed the size of our uint32_t on
|
|
* the various counts, and then clear out
|
|
* moved_two.
|
|
*/
|
|
if ((rack->r_ctl.sack_moved_extra > 0xfff00000) ||
|
|
(rack->r_ctl.sack_noextra_move > 0xfff00000)) {
|
|
rack->r_ctl.sack_moved_extra /= 2;
|
|
rack->r_ctl.sack_noextra_move /= 2;
|
|
}
|
|
if (rack->r_ctl.sack_count > 0xfff00000) {
|
|
rack->r_ctl.ack_count /= 2;
|
|
rack->r_ctl.sack_count /= 2;
|
|
}
|
|
moved_two = 0;
|
|
}
|
|
out_with_totals:
|
|
if (num_sack_blks > 1) {
|
|
/*
|
|
* You get an extra stroke if
|
|
* you have more than one sack-blk, this
|
|
* could be where we are skipping forward
|
|
* and the sack-filter is still working, or
|
|
* it could be an attacker constantly
|
|
* moving us.
|
|
*/
|
|
rack->r_ctl.sack_moved_extra++;
|
|
counter_u64_add(rack_move_some, 1);
|
|
}
|
|
out:
|
|
#ifdef NETFLIX_EXP_DETECTION
|
|
if ((rack->do_detection || tcp_force_detection) &&
|
|
tcp_sack_to_ack_thresh &&
|
|
tcp_sack_to_move_thresh &&
|
|
((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) {
|
|
/*
|
|
* We have thresholds set to find
|
|
* possible attackers and disable sack.
|
|
* Check them.
|
|
*/
|
|
uint64_t ackratio, moveratio, movetotal;
|
|
|
|
/* Log detecting */
|
|
rack_log_sad(rack, 1);
|
|
ackratio = (uint64_t)(rack->r_ctl.sack_count);
|
|
ackratio *= (uint64_t)(1000);
|
|
if (rack->r_ctl.ack_count)
|
|
ackratio /= (uint64_t)(rack->r_ctl.ack_count);
|
|
else {
|
|
/* We really should not hit here */
|
|
ackratio = 1000;
|
|
}
|
|
if ((rack->sack_attack_disable == 0) &&
|
|
(ackratio > rack_highest_sack_thresh_seen))
|
|
rack_highest_sack_thresh_seen = (uint32_t)ackratio;
|
|
movetotal = rack->r_ctl.sack_moved_extra;
|
|
movetotal += rack->r_ctl.sack_noextra_move;
|
|
moveratio = rack->r_ctl.sack_moved_extra;
|
|
moveratio *= (uint64_t)1000;
|
|
if (movetotal)
|
|
moveratio /= movetotal;
|
|
else {
|
|
/* No moves, thats pretty good */
|
|
moveratio = 0;
|
|
}
|
|
if ((rack->sack_attack_disable == 0) &&
|
|
(moveratio > rack_highest_move_thresh_seen))
|
|
rack_highest_move_thresh_seen = (uint32_t)moveratio;
|
|
if (rack->sack_attack_disable == 0) {
|
|
if ((ackratio > tcp_sack_to_ack_thresh) &&
|
|
(moveratio > tcp_sack_to_move_thresh)) {
|
|
/* Disable sack processing */
|
|
rack->sack_attack_disable = 1;
|
|
if (rack->r_rep_attack == 0) {
|
|
rack->r_rep_attack = 1;
|
|
counter_u64_add(rack_sack_attacks_detected, 1);
|
|
}
|
|
if (tcp_attack_on_turns_on_logging) {
|
|
/*
|
|
* Turn on logging, used for debugging
|
|
* false positives.
|
|
*/
|
|
rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging;
|
|
}
|
|
/* Clamp the cwnd at flight size */
|
|
rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd;
|
|
rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
rack_log_sad(rack, 2);
|
|
}
|
|
} else {
|
|
/* We are sack-disabled check for false positives */
|
|
if ((ackratio <= tcp_restoral_thresh) ||
|
|
(rack->r_ctl.rc_num_maps_alloced < tcp_map_minimum)) {
|
|
rack->sack_attack_disable = 0;
|
|
rack_log_sad(rack, 3);
|
|
/* Restart counting */
|
|
rack->r_ctl.sack_count = 0;
|
|
rack->r_ctl.sack_moved_extra = 0;
|
|
rack->r_ctl.sack_noextra_move = 1;
|
|
rack->r_ctl.ack_count = max(1,
|
|
(BYTES_THIS_ACK(tp, th)/ctf_fixed_maxseg(rack->rc_tp)));
|
|
|
|
if (rack->r_rep_reverse == 0) {
|
|
rack->r_rep_reverse = 1;
|
|
counter_u64_add(rack_sack_attacks_reversed, 1);
|
|
}
|
|
/* Restore the cwnd */
|
|
if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd)
|
|
rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (changed) {
|
|
/* Something changed cancel the rack timer */
|
|
rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
|
|
}
|
|
if ((sack_changed) && (!IN_RECOVERY(tp->t_flags))) {
|
|
/*
|
|
* Ok we have a high probability that we need to go in to
|
|
* recovery since we have data sack'd
|
|
*/
|
|
struct rack_sendmap *rsm;
|
|
uint32_t tsused;
|
|
|
|
tsused = tcp_ts_getticks();
|
|
rsm = tcp_rack_output(tp, rack, tsused);
|
|
if (rsm) {
|
|
/* Enter recovery */
|
|
rack->r_ctl.rc_rsm_start = rsm->r_start;
|
|
rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
|
|
rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
|
|
entered_recovery = 1;
|
|
rack_cong_signal(tp, NULL, CC_NDUPACK);
|
|
/*
|
|
* When we enter recovery we need to assure we send
|
|
* one packet.
|
|
*/
|
|
rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
|
|
rack_log_to_prr(rack, 8);
|
|
rack->r_timer_override = 1;
|
|
}
|
|
}
|
|
if (IN_RECOVERY(tp->t_flags) && (entered_recovery == 0)) {
|
|
/* Deal with changed and PRR here (in recovery only) */
|
|
uint32_t pipe, snd_una;
|
|
|
|
rack->r_ctl.rc_prr_delivered += changed;
|
|
/* Compute prr_sndcnt */
|
|
if (SEQ_GT(tp->snd_una, th_ack)) {
|
|
snd_una = tp->snd_una;
|
|
} else {
|
|
snd_una = th_ack;
|
|
}
|
|
pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt;
|
|
if (pipe > tp->snd_ssthresh) {
|
|
long sndcnt;
|
|
|
|
sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh;
|
|
if (rack->r_ctl.rc_prr_recovery_fs > 0)
|
|
sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs;
|
|
else {
|
|
rack->r_ctl.rc_prr_sndcnt = 0;
|
|
rack_log_to_prr(rack, 9);
|
|
sndcnt = 0;
|
|
}
|
|
sndcnt++;
|
|
if (sndcnt > (long)rack->r_ctl.rc_prr_out)
|
|
sndcnt -= rack->r_ctl.rc_prr_out;
|
|
else
|
|
sndcnt = 0;
|
|
rack->r_ctl.rc_prr_sndcnt = sndcnt;
|
|
rack_log_to_prr(rack, 10);
|
|
} else {
|
|
uint32_t limit;
|
|
|
|
if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out)
|
|
limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out);
|
|
else
|
|
limit = 0;
|
|
if (changed > limit)
|
|
limit = changed;
|
|
limit += ctf_fixed_maxseg(tp);
|
|
if (tp->snd_ssthresh > pipe) {
|
|
rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit);
|
|
rack_log_to_prr(rack, 11);
|
|
} else {
|
|
rack->r_ctl.rc_prr_sndcnt = min(0, limit);
|
|
rack_log_to_prr(rack, 12);
|
|
}
|
|
}
|
|
if (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) {
|
|
rack->r_timer_override = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_strike_dupack(struct tcp_rack *rack)
|
|
{
|
|
struct rack_sendmap *rsm;
|
|
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
|
|
if (rsm && (rsm->r_dupack < 0xff)) {
|
|
rsm->r_dupack++;
|
|
if (rsm->r_dupack >= DUP_ACK_THRESHOLD) {
|
|
rack->r_wanted_output = 1;
|
|
rack_log_retran_reason(rack, rsm, __LINE__, 1, 3);
|
|
} else {
|
|
rack_log_retran_reason(rack, rsm, __LINE__, 0, 3);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, we do not need to call rack_process_data().
|
|
* return value of 0, rack_process_data can be called.
|
|
* For ret_val if its 0 the TCP is locked, if its non-zero
|
|
* its unlocked and probably unsafe to touch the TCB.
|
|
*/
|
|
static int
|
|
rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to,
|
|
uint32_t tiwin, int32_t tlen,
|
|
int32_t * ofia, int32_t thflags, int32_t * ret_val)
|
|
{
|
|
int32_t ourfinisacked = 0;
|
|
int32_t nsegs, acked_amount;
|
|
int32_t acked;
|
|
struct mbuf *mfree;
|
|
struct tcp_rack *rack;
|
|
int32_t recovery = 0;
|
|
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (SEQ_GT(th->th_ack, tp->snd_max)) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
|
|
rack->r_wanted_output++;
|
|
return (1);
|
|
}
|
|
if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) {
|
|
if (rack->rc_in_persist)
|
|
tp->t_rxtshift = 0;
|
|
if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd))
|
|
rack_strike_dupack(rack);
|
|
rack_log_ack(tp, to, th);
|
|
}
|
|
if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
|
|
/*
|
|
* Old ack, behind (or duplicate to) the last one rcv'd
|
|
* Note: Should mark reordering is occuring! We should also
|
|
* look for sack blocks arriving e.g. ack 1, 4-4 then ack 1,
|
|
* 3-3, 4-4 would be reording. As well as ack 1, 3-3 <no
|
|
* retran and> ack 3
|
|
*/
|
|
return (0);
|
|
}
|
|
/*
|
|
* If we reach this point, ACK is not a duplicate, i.e., it ACKs
|
|
* something we sent.
|
|
*/
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
/*
|
|
* T/TCP: Connection was half-synchronized, and our SYN has
|
|
* been ACK'd (so connection is now fully synchronized). Go
|
|
* to non-starred state, increment snd_una for ACK of SYN,
|
|
* and check if we can do window scaling.
|
|
*/
|
|
tp->t_flags &= ~TF_NEEDSYN;
|
|
tp->snd_una++;
|
|
/* Do window scaling? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE | TF_REQ_SCALE)) {
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
/* Send window already scaled. */
|
|
}
|
|
}
|
|
nsegs = max(1, m->m_pkthdr.lro_nsegs);
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
acked = BYTES_THIS_ACK(tp, th);
|
|
TCPSTAT_ADD(tcps_rcvackpack, nsegs);
|
|
TCPSTAT_ADD(tcps_rcvackbyte, acked);
|
|
|
|
/*
|
|
* If we just performed our first retransmit, and the ACK arrives
|
|
* within our recovery window, then it was a mistake to do the
|
|
* retransmit in the first place. Recover our original cwnd and
|
|
* ssthresh, and proceed to transmit where we left off.
|
|
*/
|
|
if (tp->t_flags & TF_PREVVALID) {
|
|
tp->t_flags &= ~TF_PREVVALID;
|
|
if (tp->t_rxtshift == 1 &&
|
|
(int)(ticks - tp->t_badrxtwin) < 0)
|
|
rack_cong_signal(tp, th, CC_RTO_ERR);
|
|
}
|
|
/*
|
|
* If we have a timestamp reply, update smoothed round trip time. If
|
|
* no timestamp is present but transmit timer is running and timed
|
|
* sequence number was acked, update smoothed round trip time. Since
|
|
* we now have an rtt measurement, cancel the timer backoff (cf.,
|
|
* Phil Karn's retransmit alg.). Recompute the initial retransmit
|
|
* timer.
|
|
*
|
|
* Some boxes send broken timestamp replies during the SYN+ACK
|
|
* phase, ignore timestamps of 0 or we could calculate a huge RTT
|
|
* and blow up the retransmit timer.
|
|
*/
|
|
/*
|
|
* If all outstanding data is acked, stop retransmit timer and
|
|
* remember to restart (more output or persist). If there is more
|
|
* data to be acked, restart retransmit timer, using current
|
|
* (possibly backed-off) value.
|
|
*/
|
|
if (th->th_ack == tp->snd_max) {
|
|
rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
|
|
rack->r_wanted_output++;
|
|
}
|
|
if (acked == 0) {
|
|
if (ofia)
|
|
*ofia = ourfinisacked;
|
|
return (0);
|
|
}
|
|
if (rack->r_ctl.rc_early_recovery) {
|
|
if (IN_RECOVERY(tp->t_flags)) {
|
|
if (SEQ_LT(th->th_ack, tp->snd_recover) &&
|
|
(SEQ_LT(th->th_ack, tp->snd_max))) {
|
|
tcp_rack_partialack(tp, th);
|
|
} else {
|
|
rack_post_recovery(tp, th);
|
|
recovery = 1;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Let the congestion control algorithm update congestion control
|
|
* related information. This typically means increasing the
|
|
* congestion window.
|
|
*/
|
|
rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery);
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
acked_amount = min(acked, (int)sbavail(&so->so_snd));
|
|
tp->snd_wnd -= acked_amount;
|
|
mfree = sbcut_locked(&so->so_snd, acked_amount);
|
|
if ((sbused(&so->so_snd) == 0) &&
|
|
(acked > acked_amount) &&
|
|
(tp->t_state >= TCPS_FIN_WAIT_1)) {
|
|
ourfinisacked = 1;
|
|
}
|
|
/* NB: sowwakeup_locked() does an implicit unlock. */
|
|
sowwakeup_locked(so);
|
|
m_freem(mfree);
|
|
if (rack->r_ctl.rc_early_recovery == 0) {
|
|
if (IN_RECOVERY(tp->t_flags)) {
|
|
if (SEQ_LT(th->th_ack, tp->snd_recover) &&
|
|
(SEQ_LT(th->th_ack, tp->snd_max))) {
|
|
tcp_rack_partialack(tp, th);
|
|
} else {
|
|
rack_post_recovery(tp, th);
|
|
}
|
|
}
|
|
}
|
|
tp->snd_una = th->th_ack;
|
|
if (SEQ_GT(tp->snd_una, tp->snd_recover))
|
|
tp->snd_recover = tp->snd_una;
|
|
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_una)) {
|
|
tp->snd_nxt = tp->snd_una;
|
|
}
|
|
if (tp->snd_una == tp->snd_max) {
|
|
/* Nothing left outstanding */
|
|
rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
|
|
if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
|
|
tp->t_acktime = 0;
|
|
rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
|
|
/* Set need output so persist might get set */
|
|
rack->r_wanted_output++;
|
|
if (rack_use_sack_filter)
|
|
sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
|
|
if ((tp->t_state >= TCPS_FIN_WAIT_1) &&
|
|
(sbavail(&so->so_snd) == 0) &&
|
|
(tp->t_flags2 & TF2_DROP_AF_DATA)) {
|
|
/*
|
|
* The socket was gone and the
|
|
* peer sent data, time to
|
|
* reset him.
|
|
*/
|
|
*ret_val = 1;
|
|
tp = tcp_close(tp);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
if (ofia)
|
|
*ofia = ourfinisacked;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
rack_collapsed_window(struct tcp_rack *rack)
|
|
{
|
|
/*
|
|
* Now we must walk the
|
|
* send map and divide the
|
|
* ones left stranded. These
|
|
* guys can't cause us to abort
|
|
* the connection and are really
|
|
* "unsent". However if a buggy
|
|
* client actually did keep some
|
|
* of the data i.e. collapsed the win
|
|
* and refused to ack and then opened
|
|
* the win and acked that data. We would
|
|
* get into an ack war, the simplier
|
|
* method then of just pretending we
|
|
* did not send those segments something
|
|
* won't work.
|
|
*/
|
|
struct rack_sendmap *rsm, *nrsm, fe, *insret;
|
|
tcp_seq max_seq;
|
|
uint32_t maxseg;
|
|
|
|
max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd;
|
|
maxseg = ctf_fixed_maxseg(rack->rc_tp);
|
|
memset(&fe, 0, sizeof(fe));
|
|
fe.r_start = max_seq;
|
|
/* Find the first seq past or at maxseq */
|
|
rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe);
|
|
if (rsm == NULL) {
|
|
/* Nothing to do strange */
|
|
rack->rc_has_collapsed = 0;
|
|
return;
|
|
}
|
|
/*
|
|
* Now do we need to split at
|
|
* the collapse point?
|
|
*/
|
|
if (SEQ_GT(max_seq, rsm->r_start)) {
|
|
nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT);
|
|
if (nrsm == NULL) {
|
|
/* We can't get a rsm, mark all? */
|
|
nrsm = rsm;
|
|
goto no_split;
|
|
}
|
|
/* Clone it */
|
|
rack_clone_rsm(rack, nrsm, rsm, max_seq);
|
|
insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm);
|
|
#ifdef INVARIANTS
|
|
if (insret != NULL) {
|
|
panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p",
|
|
nrsm, insret, rack, rsm);
|
|
}
|
|
#endif
|
|
if (rsm->r_in_tmap) {
|
|
TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext);
|
|
nrsm->r_in_tmap = 1;
|
|
}
|
|
/*
|
|
* Set in the new RSM as the
|
|
* collapsed starting point
|
|
*/
|
|
rsm = nrsm;
|
|
}
|
|
no_split:
|
|
counter_u64_add(rack_collapsed_win, 1);
|
|
RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) {
|
|
nrsm->r_flags |= RACK_RWND_COLLAPSED;
|
|
rack->rc_has_collapsed = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
rack_un_collapse_window(struct tcp_rack *rack)
|
|
{
|
|
struct rack_sendmap *rsm;
|
|
|
|
RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) {
|
|
if (rsm->r_flags & RACK_RWND_COLLAPSED)
|
|
rsm->r_flags &= ~RACK_RWND_COLLAPSED;
|
|
else
|
|
break;
|
|
}
|
|
rack->rc_has_collapsed = 0;
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCP is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
/*
|
|
* Update window information. Don't look at window if no ACK: TAC's
|
|
* send garbage on first SYN.
|
|
*/
|
|
int32_t nsegs;
|
|
int32_t tfo_syn;
|
|
struct tcp_rack *rack;
|
|
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
nsegs = max(1, m->m_pkthdr.lro_nsegs);
|
|
if ((thflags & TH_ACK) &&
|
|
(SEQ_LT(tp->snd_wl1, th->th_seq) ||
|
|
(tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
|
|
(tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
|
|
/* keep track of pure window updates */
|
|
if (tlen == 0 &&
|
|
tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
|
|
TCPSTAT_INC(tcps_rcvwinupd);
|
|
tp->snd_wnd = tiwin;
|
|
tp->snd_wl1 = th->th_seq;
|
|
tp->snd_wl2 = th->th_ack;
|
|
if (tp->snd_wnd > tp->max_sndwnd)
|
|
tp->max_sndwnd = tp->snd_wnd;
|
|
rack->r_wanted_output++;
|
|
} else if (thflags & TH_ACK) {
|
|
if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) {
|
|
tp->snd_wnd = tiwin;
|
|
tp->snd_wl1 = th->th_seq;
|
|
tp->snd_wl2 = th->th_ack;
|
|
}
|
|
}
|
|
if (tp->snd_wnd < ctf_outstanding(tp))
|
|
/* The peer collapsed the window */
|
|
rack_collapsed_window(rack);
|
|
else if (rack->rc_has_collapsed)
|
|
rack_un_collapse_window(rack);
|
|
/* Was persist timer active and now we have window space? */
|
|
if ((rack->rc_in_persist != 0) &&
|
|
(tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
|
|
rack->r_ctl.rc_pace_min_segs))) {
|
|
rack_exit_persist(tp, rack);
|
|
tp->snd_nxt = tp->snd_max;
|
|
/* Make sure we output to start the timer */
|
|
rack->r_wanted_output++;
|
|
}
|
|
/* Do we enter persists? */
|
|
if ((rack->rc_in_persist == 0) &&
|
|
(tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
|
|
TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->snd_max == tp->snd_una) &&
|
|
sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
|
|
(sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
|
|
/*
|
|
* Here the rwnd is less than
|
|
* the pacing size, we are established,
|
|
* nothing is outstanding, and there is
|
|
* data to send. Enter persists.
|
|
*/
|
|
tp->snd_nxt = tp->snd_una;
|
|
rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
|
|
}
|
|
if (tp->t_flags2 & TF2_DROP_AF_DATA) {
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
/*
|
|
* Process segments with URG.
|
|
*/
|
|
if ((thflags & TH_URG) && th->th_urp &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
/*
|
|
* This is a kludge, but if we receive and accept random
|
|
* urgent pointers, we'll crash in soreceive. It's hard to
|
|
* imagine someone actually wanting to send this much urgent
|
|
* data.
|
|
*/
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
|
|
th->th_urp = 0; /* XXX */
|
|
thflags &= ~TH_URG; /* XXX */
|
|
SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */
|
|
goto dodata; /* XXX */
|
|
}
|
|
/*
|
|
* If this segment advances the known urgent pointer, then
|
|
* mark the data stream. This should not happen in
|
|
* CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since a
|
|
* FIN has been received from the remote side. In these
|
|
* states we ignore the URG.
|
|
*
|
|
* According to RFC961 (Assigned Protocols), the urgent
|
|
* pointer points to the last octet of urgent data. We
|
|
* continue, however, to consider it to indicate the first
|
|
* octet of data past the urgent section as the original
|
|
* spec states (in one of two places).
|
|
*/
|
|
if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) {
|
|
tp->rcv_up = th->th_seq + th->th_urp;
|
|
so->so_oobmark = sbavail(&so->so_rcv) +
|
|
(tp->rcv_up - tp->rcv_nxt) - 1;
|
|
if (so->so_oobmark == 0)
|
|
so->so_rcv.sb_state |= SBS_RCVATMARK;
|
|
sohasoutofband(so);
|
|
tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
|
|
}
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
/*
|
|
* Remove out of band data so doesn't get presented to user.
|
|
* This can happen independent of advancing the URG pointer,
|
|
* but if two URG's are pending at once, some out-of-band
|
|
* data may creep in... ick.
|
|
*/
|
|
if (th->th_urp <= (uint32_t) tlen &&
|
|
!(so->so_options & SO_OOBINLINE)) {
|
|
/* hdr drop is delayed */
|
|
tcp_pulloutofband(so, th, m, drop_hdrlen);
|
|
}
|
|
} else {
|
|
/*
|
|
* If no out of band data is expected, pull receive urgent
|
|
* pointer along with the receive window.
|
|
*/
|
|
if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
|
|
tp->rcv_up = tp->rcv_nxt;
|
|
}
|
|
dodata: /* XXX */
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
/*
|
|
* Process the segment text, merging it into the TCP sequencing
|
|
* queue, and arranging for acknowledgment of receipt if necessary.
|
|
* This process logically involves adjusting tp->rcv_wnd as data is
|
|
* presented to the user (this happens in tcp_usrreq.c, case
|
|
* PRU_RCVD). If a FIN has already been received on this connection
|
|
* then we just ignore the text.
|
|
*/
|
|
tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
|
|
IS_FASTOPEN(tp->t_flags));
|
|
if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
tcp_seq save_start = th->th_seq;
|
|
tcp_seq save_rnxt = tp->rcv_nxt;
|
|
int save_tlen = tlen;
|
|
|
|
m_adj(m, drop_hdrlen); /* delayed header drop */
|
|
/*
|
|
* Insert segment which includes th into TCP reassembly
|
|
* queue with control block tp. Set thflags to whether
|
|
* reassembly now includes a segment with FIN. This handles
|
|
* the common case inline (segment is the next to be
|
|
* received on an established connection, and the queue is
|
|
* empty), avoiding linkage into and removal from the queue
|
|
* and repetition of various conversions. Set DELACK for
|
|
* segments received in order, but ack immediately when
|
|
* segments are out of order (so fast retransmit can work).
|
|
*/
|
|
if (th->th_seq == tp->rcv_nxt &&
|
|
SEGQ_EMPTY(tp) &&
|
|
(TCPS_HAVEESTABLISHED(tp->t_state) ||
|
|
tfo_syn)) {
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
u_int mcnt, appended;
|
|
|
|
if (so->so_rcv.sb_shlim) {
|
|
mcnt = m_memcnt(m);
|
|
appended = 0;
|
|
if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
|
|
CFO_NOSLEEP, NULL) == false) {
|
|
counter_u64_add(tcp_sb_shlim_fails, 1);
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
}
|
|
#endif
|
|
if (DELAY_ACK(tp, tlen) || tfo_syn) {
|
|
rack_timer_cancel(tp, rack,
|
|
rack->r_ctl.rc_rcvtime, __LINE__);
|
|
tp->t_flags |= TF_DELACK;
|
|
} else {
|
|
rack->r_wanted_output++;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
tp->rcv_nxt += tlen;
|
|
thflags = th->th_flags & TH_FIN;
|
|
TCPSTAT_ADD(tcps_rcvpack, nsegs);
|
|
TCPSTAT_ADD(tcps_rcvbyte, tlen);
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
m_freem(m);
|
|
} else
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
appended =
|
|
#endif
|
|
sbappendstream_locked(&so->so_rcv, m, 0);
|
|
/* NB: sorwakeup_locked() does an implicit unlock. */
|
|
sorwakeup_locked(so);
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
if (so->so_rcv.sb_shlim && appended != mcnt)
|
|
counter_fo_release(so->so_rcv.sb_shlim,
|
|
mcnt - appended);
|
|
#endif
|
|
} else {
|
|
/*
|
|
* XXX: Due to the header drop above "th" is
|
|
* theoretically invalid by now. Fortunately
|
|
* m_adj() doesn't actually frees any mbufs when
|
|
* trimming from the head.
|
|
*/
|
|
tcp_seq temp = save_start;
|
|
thflags = tcp_reass(tp, th, &temp, &tlen, m);
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
|
|
if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
|
|
/*
|
|
* DSACK actually handled in the fastpath
|
|
* above.
|
|
*/
|
|
tcp_update_sack_list(tp, save_start,
|
|
save_start + save_tlen);
|
|
} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
|
|
if ((tp->rcv_numsacks >= 1) &&
|
|
(tp->sackblks[0].end == save_start)) {
|
|
/*
|
|
* Partial overlap, recorded at todrop
|
|
* above.
|
|
*/
|
|
tcp_update_sack_list(tp,
|
|
tp->sackblks[0].start,
|
|
tp->sackblks[0].end);
|
|
} else {
|
|
tcp_update_dsack_list(tp, save_start,
|
|
save_start + save_tlen);
|
|
}
|
|
} else if (tlen >= save_tlen) {
|
|
/* Update of sackblks. */
|
|
tcp_update_dsack_list(tp, save_start,
|
|
save_start + save_tlen);
|
|
} else if (tlen > 0) {
|
|
tcp_update_dsack_list(tp, save_start,
|
|
save_start + tlen);
|
|
}
|
|
}
|
|
} else {
|
|
m_freem(m);
|
|
thflags &= ~TH_FIN;
|
|
}
|
|
|
|
/*
|
|
* If FIN is received ACK the FIN and let the user know that the
|
|
* connection is closing.
|
|
*/
|
|
if (thflags & TH_FIN) {
|
|
if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
|
socantrcvmore(so);
|
|
/*
|
|
* If connection is half-synchronized (ie NEEDSYN
|
|
* flag on) then delay ACK, so it may be piggybacked
|
|
* when SYN is sent. Otherwise, since we received a
|
|
* FIN then no more input can be expected, send ACK
|
|
* now.
|
|
*/
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
rack_timer_cancel(tp, rack,
|
|
rack->r_ctl.rc_rcvtime, __LINE__);
|
|
tp->t_flags |= TF_DELACK;
|
|
} else {
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
tp->rcv_nxt++;
|
|
}
|
|
switch (tp->t_state) {
|
|
|
|
/*
|
|
* In SYN_RECEIVED and ESTABLISHED STATES enter the
|
|
* CLOSE_WAIT state.
|
|
*/
|
|
case TCPS_SYN_RECEIVED:
|
|
tp->t_starttime = ticks;
|
|
/* FALLTHROUGH */
|
|
case TCPS_ESTABLISHED:
|
|
rack_timer_cancel(tp, rack,
|
|
rack->r_ctl.rc_rcvtime, __LINE__);
|
|
tcp_state_change(tp, TCPS_CLOSE_WAIT);
|
|
break;
|
|
|
|
/*
|
|
* If still in FIN_WAIT_1 STATE FIN has not been
|
|
* acked so enter the CLOSING state.
|
|
*/
|
|
case TCPS_FIN_WAIT_1:
|
|
rack_timer_cancel(tp, rack,
|
|
rack->r_ctl.rc_rcvtime, __LINE__);
|
|
tcp_state_change(tp, TCPS_CLOSING);
|
|
break;
|
|
|
|
/*
|
|
* In FIN_WAIT_2 state enter the TIME_WAIT state,
|
|
* starting the time-wait timer, turning off the
|
|
* other standard timers.
|
|
*/
|
|
case TCPS_FIN_WAIT_2:
|
|
rack_timer_cancel(tp, rack,
|
|
rack->r_ctl.rc_rcvtime, __LINE__);
|
|
INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
|
|
tcp_twstart(tp);
|
|
return (1);
|
|
}
|
|
}
|
|
/*
|
|
* Return any desired output.
|
|
*/
|
|
if ((tp->t_flags & TF_ACKNOW) ||
|
|
(sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) {
|
|
rack->r_wanted_output++;
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Here nothing is really faster, its just that we
|
|
* have broken out the fast-data path also just like
|
|
* the fast-ack.
|
|
*/
|
|
static int
|
|
rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t nxt_pkt)
|
|
{
|
|
int32_t nsegs;
|
|
int32_t newsize = 0; /* automatic sockbuf scaling */
|
|
struct tcp_rack *rack;
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
u_int mcnt, appended;
|
|
#endif
|
|
#ifdef TCPDEBUG
|
|
/*
|
|
* The size of tcp_saveipgen must be the size of the max ip header,
|
|
* now IPv6.
|
|
*/
|
|
u_char tcp_saveipgen[IP6_HDR_LEN];
|
|
struct tcphdr tcp_savetcp;
|
|
short ostate = 0;
|
|
|
|
#endif
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* the timestamp. NOTE that the test is modified according to the
|
|
* latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
|
|
*/
|
|
if (__predict_false(th->th_seq != tp->rcv_nxt)) {
|
|
return (0);
|
|
}
|
|
if (__predict_false(tp->snd_nxt != tp->snd_max)) {
|
|
return (0);
|
|
}
|
|
if (tiwin && tiwin != tp->snd_wnd) {
|
|
return (0);
|
|
}
|
|
if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) {
|
|
return (0);
|
|
}
|
|
if (__predict_false((to->to_flags & TOF_TS) &&
|
|
(TSTMP_LT(to->to_tsval, tp->ts_recent)))) {
|
|
return (0);
|
|
}
|
|
if (__predict_false((th->th_ack != tp->snd_una))) {
|
|
return (0);
|
|
}
|
|
if (__predict_false(tlen > sbspace(&so->so_rcv))) {
|
|
return (0);
|
|
}
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
|
tp->ts_recent_age = tcp_ts_getticks();
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
/*
|
|
* This is a pure, in-sequence data packet with nothing on the
|
|
* reassembly queue and we have enough buffer space to take it.
|
|
*/
|
|
nsegs = max(1, m->m_pkthdr.lro_nsegs);
|
|
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
if (so->so_rcv.sb_shlim) {
|
|
mcnt = m_memcnt(m);
|
|
appended = 0;
|
|
if (counter_fo_get(so->so_rcv.sb_shlim, mcnt,
|
|
CFO_NOSLEEP, NULL) == false) {
|
|
counter_u64_add(tcp_sb_shlim_fails, 1);
|
|
m_freem(m);
|
|
return (1);
|
|
}
|
|
}
|
|
#endif
|
|
/* Clean receiver SACK report if present */
|
|
if (tp->rcv_numsacks)
|
|
tcp_clean_sackreport(tp);
|
|
TCPSTAT_INC(tcps_preddat);
|
|
tp->rcv_nxt += tlen;
|
|
/*
|
|
* Pull snd_wl1 up to prevent seq wrap relative to th_seq.
|
|
*/
|
|
tp->snd_wl1 = th->th_seq;
|
|
/*
|
|
* Pull rcv_up up to prevent seq wrap relative to rcv_nxt.
|
|
*/
|
|
tp->rcv_up = tp->rcv_nxt;
|
|
TCPSTAT_ADD(tcps_rcvpack, nsegs);
|
|
TCPSTAT_ADD(tcps_rcvbyte, tlen);
|
|
#ifdef TCPDEBUG
|
|
if (so->so_options & SO_DEBUG)
|
|
tcp_trace(TA_INPUT, ostate, tp,
|
|
(void *)tcp_saveipgen, &tcp_savetcp, 0);
|
|
#endif
|
|
newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
|
|
|
|
/* Add data to socket buffer. */
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
m_freem(m);
|
|
} else {
|
|
/*
|
|
* Set new socket buffer size. Give up when limit is
|
|
* reached.
|
|
*/
|
|
if (newsize)
|
|
if (!sbreserve_locked(&so->so_rcv,
|
|
newsize, so, NULL))
|
|
so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
|
|
m_adj(m, drop_hdrlen); /* delayed header drop */
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
appended =
|
|
#endif
|
|
sbappendstream_locked(&so->so_rcv, m, 0);
|
|
ctf_calc_rwin(so, tp);
|
|
}
|
|
/* NB: sorwakeup_locked() does an implicit unlock. */
|
|
sorwakeup_locked(so);
|
|
#ifdef NETFLIX_SB_LIMITS
|
|
if (so->so_rcv.sb_shlim && mcnt != appended)
|
|
counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended);
|
|
#endif
|
|
if (DELAY_ACK(tp, tlen)) {
|
|
rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
|
|
tp->t_flags |= TF_DELACK;
|
|
} else {
|
|
tp->t_flags |= TF_ACKNOW;
|
|
rack->r_wanted_output++;
|
|
}
|
|
if ((tp->snd_una == tp->snd_max) && rack_use_sack_filter)
|
|
sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* This subfunction is used to try to highly optimize the
|
|
* fast path. We again allow window updates that are
|
|
* in sequence to remain in the fast-path. We also add
|
|
* in the __predict's to attempt to help the compiler.
|
|
* Note that if we return a 0, then we can *not* process
|
|
* it and the caller should push the packet into the
|
|
* slow-path.
|
|
*/
|
|
static int
|
|
rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t nxt_pkt, uint32_t cts)
|
|
{
|
|
int32_t acked;
|
|
int32_t nsegs;
|
|
|
|
#ifdef TCPDEBUG
|
|
/*
|
|
* The size of tcp_saveipgen must be the size of the max ip header,
|
|
* now IPv6.
|
|
*/
|
|
u_char tcp_saveipgen[IP6_HDR_LEN];
|
|
struct tcphdr tcp_savetcp;
|
|
short ostate = 0;
|
|
|
|
#endif
|
|
struct tcp_rack *rack;
|
|
|
|
if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) {
|
|
/* Old ack, behind (or duplicate to) the last one rcv'd */
|
|
return (0);
|
|
}
|
|
if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) {
|
|
/* Above what we have sent? */
|
|
return (0);
|
|
}
|
|
if (__predict_false(tp->snd_nxt != tp->snd_max)) {
|
|
/* We are retransmitting */
|
|
return (0);
|
|
}
|
|
if (__predict_false(tiwin == 0)) {
|
|
/* zero window */
|
|
return (0);
|
|
}
|
|
if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) {
|
|
/* We need a SYN or a FIN, unlikely.. */
|
|
return (0);
|
|
}
|
|
if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) {
|
|
/* Timestamp is behind .. old ack with seq wrap? */
|
|
return (0);
|
|
}
|
|
if (__predict_false(IN_RECOVERY(tp->t_flags))) {
|
|
/* Still recovering */
|
|
return (0);
|
|
}
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (rack->r_ctl.rc_sacked) {
|
|
/* We have sack holes on our scoreboard */
|
|
return (0);
|
|
}
|
|
/* Ok if we reach here, we can process a fast-ack */
|
|
nsegs = max(1, m->m_pkthdr.lro_nsegs);
|
|
rack_log_ack(tp, to, th);
|
|
/*
|
|
* We made progress, clear the tlp
|
|
* out flag so we could start a TLP
|
|
* again.
|
|
*/
|
|
rack->r_ctl.rc_tlp_rtx_out = 0;
|
|
/* Did the window get updated? */
|
|
if (tiwin != tp->snd_wnd) {
|
|
tp->snd_wnd = tiwin;
|
|
tp->snd_wl1 = th->th_seq;
|
|
if (tp->snd_wnd > tp->max_sndwnd)
|
|
tp->max_sndwnd = tp->snd_wnd;
|
|
}
|
|
/* Do we exit persists? */
|
|
if ((rack->rc_in_persist != 0) &&
|
|
(tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
|
|
rack->r_ctl.rc_pace_min_segs))) {
|
|
rack_exit_persist(tp, rack);
|
|
}
|
|
/* Do we enter persists? */
|
|
if ((rack->rc_in_persist == 0) &&
|
|
(tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
|
|
TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->snd_max == tp->snd_una) &&
|
|
sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
|
|
(sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) {
|
|
/*
|
|
* Here the rwnd is less than
|
|
* the pacing size, we are established,
|
|
* nothing is outstanding, and there is
|
|
* data to send. Enter persists.
|
|
*/
|
|
tp->snd_nxt = tp->snd_una;
|
|
rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* the timestamp. NOTE that the test is modified according to the
|
|
* latest proposal of the tcplw@cray.com list (Braden 1993/04/26).
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
|
tp->ts_recent_age = tcp_ts_getticks();
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* This is a pure ack for outstanding data.
|
|
*/
|
|
TCPSTAT_INC(tcps_predack);
|
|
|
|
/*
|
|
* "bad retransmit" recovery.
|
|
*/
|
|
if (tp->t_flags & TF_PREVVALID) {
|
|
tp->t_flags &= ~TF_PREVVALID;
|
|
if (tp->t_rxtshift == 1 &&
|
|
(int)(ticks - tp->t_badrxtwin) < 0)
|
|
rack_cong_signal(tp, th, CC_RTO_ERR);
|
|
}
|
|
/*
|
|
* Recalculate the transmit timer / rtt.
|
|
*
|
|
* Some boxes send broken timestamp replies during the SYN+ACK
|
|
* phase, ignore timestamps of 0 or we could calculate a huge RTT
|
|
* and blow up the retransmit timer.
|
|
*/
|
|
acked = BYTES_THIS_ACK(tp, th);
|
|
|
|
#ifdef TCP_HHOOK
|
|
/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
|
|
hhook_run_tcp_est_in(tp, th, to);
|
|
#endif
|
|
|
|
TCPSTAT_ADD(tcps_rcvackpack, nsegs);
|
|
TCPSTAT_ADD(tcps_rcvackbyte, acked);
|
|
sbdrop(&so->so_snd, acked);
|
|
/*
|
|
* Let the congestion control algorithm update congestion control
|
|
* related information. This typically means increasing the
|
|
* congestion window.
|
|
*/
|
|
rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0);
|
|
|
|
tp->snd_una = th->th_ack;
|
|
if (tp->snd_wnd < ctf_outstanding(tp)) {
|
|
/* The peer collapsed the window */
|
|
rack_collapsed_window(rack);
|
|
} else if (rack->rc_has_collapsed)
|
|
rack_un_collapse_window(rack);
|
|
|
|
/*
|
|
* Pull snd_wl2 up to prevent seq wrap relative to th_ack.
|
|
*/
|
|
tp->snd_wl2 = th->th_ack;
|
|
tp->t_dupacks = 0;
|
|
m_freem(m);
|
|
/* ND6_HINT(tp); *//* Some progress has been made. */
|
|
|
|
/*
|
|
* If all outstanding data are acked, stop retransmit timer,
|
|
* otherwise restart timer using current (possibly backed-off)
|
|
* value. If process is waiting for space, wakeup/selwakeup/signal.
|
|
* If data are ready to send, let tcp_output decide between more
|
|
* output or persist.
|
|
*/
|
|
#ifdef TCPDEBUG
|
|
if (so->so_options & SO_DEBUG)
|
|
tcp_trace(TA_INPUT, ostate, tp,
|
|
(void *)tcp_saveipgen,
|
|
&tcp_savetcp, 0);
|
|
#endif
|
|
if (tp->snd_una == tp->snd_max) {
|
|
rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__);
|
|
if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0)
|
|
tp->t_acktime = 0;
|
|
rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
|
|
}
|
|
/* Wake up the socket if we have room to write more */
|
|
sowwakeup(so);
|
|
if (sbavail(&so->so_snd)) {
|
|
rack->r_wanted_output++;
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCP is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ret_val = 0;
|
|
int32_t todrop;
|
|
int32_t ourfinisacked = 0;
|
|
struct tcp_rack *rack;
|
|
|
|
ctf_calc_rwin(so, tp);
|
|
/*
|
|
* If the state is SYN_SENT: if seg contains an ACK, but not for our
|
|
* SYN, drop the input. if seg contains a RST, then drop the
|
|
* connection. if seg does not contain SYN, then drop it. Otherwise
|
|
* this is an acceptable SYN segment initialize tp->rcv_nxt and
|
|
* tp->irs if seg contains ack then advance tp->snd_una if seg
|
|
* contains an ECE and ECN support is enabled, the stream is ECN
|
|
* capable. if SYN has been acked change to ESTABLISHED else
|
|
* SYN_RCVD state arrange for segment to be acked (eventually)
|
|
* continue processing rest of data/controls, beginning with URG
|
|
*/
|
|
if ((thflags & TH_ACK) &&
|
|
(SEQ_LEQ(th->th_ack, tp->iss) ||
|
|
SEQ_GT(th->th_ack, tp->snd_max))) {
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) {
|
|
TCP_PROBE5(connect__refused, NULL, tp,
|
|
mtod(m, const char *), tp, th);
|
|
tp = tcp_drop(tp, ECONNREFUSED);
|
|
ctf_do_drop(m, tp);
|
|
return (1);
|
|
}
|
|
if (thflags & TH_RST) {
|
|
ctf_do_drop(m, tp);
|
|
return (1);
|
|
}
|
|
if (!(thflags & TH_SYN)) {
|
|
ctf_do_drop(m, tp);
|
|
return (1);
|
|
}
|
|
tp->irs = th->th_seq;
|
|
tcp_rcvseqinit(tp);
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (thflags & TH_ACK) {
|
|
int tfo_partial = 0;
|
|
|
|
TCPSTAT_INC(tcps_connects);
|
|
soisconnected(so);
|
|
#ifdef MAC
|
|
mac_socketpeer_set_from_mbuf(m, so);
|
|
#endif
|
|
/* Do window scaling on this connection? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE | TF_REQ_SCALE)) {
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
}
|
|
tp->rcv_adv += min(tp->rcv_wnd,
|
|
TCP_MAXWIN << tp->rcv_scale);
|
|
/*
|
|
* If not all the data that was sent in the TFO SYN
|
|
* has been acked, resend the remainder right away.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
(tp->snd_una != tp->snd_max)) {
|
|
tp->snd_nxt = th->th_ack;
|
|
tfo_partial = 1;
|
|
}
|
|
/*
|
|
* If there's data, delay ACK; if there's also a FIN ACKNOW
|
|
* will be turned on later.
|
|
*/
|
|
if (DELAY_ACK(tp, tlen) && tlen != 0 && (tfo_partial == 0)) {
|
|
rack_timer_cancel(tp, rack,
|
|
rack->r_ctl.rc_rcvtime, __LINE__);
|
|
tp->t_flags |= TF_DELACK;
|
|
} else {
|
|
rack->r_wanted_output++;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
}
|
|
|
|
if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
|
|
V_tcp_do_ecn) {
|
|
tp->t_flags |= TF_ECN_PERMIT;
|
|
TCPSTAT_INC(tcps_ecn_shs);
|
|
}
|
|
if (SEQ_GT(th->th_ack, tp->snd_una)) {
|
|
/*
|
|
* We advance snd_una for the
|
|
* fast open case. If th_ack is
|
|
* acknowledging data beyond
|
|
* snd_una we can't just call
|
|
* ack-processing since the
|
|
* data stream in our send-map
|
|
* will start at snd_una + 1 (one
|
|
* beyond the SYN). If its just
|
|
* equal we don't need to do that
|
|
* and there is no send_map.
|
|
*/
|
|
tp->snd_una++;
|
|
}
|
|
/*
|
|
* Received <SYN,ACK> in SYN_SENT[*] state. Transitions:
|
|
* SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1
|
|
*/
|
|
tp->t_starttime = ticks;
|
|
if (tp->t_flags & TF_NEEDFIN) {
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_1);
|
|
tp->t_flags &= ~TF_NEEDFIN;
|
|
thflags &= ~TH_SYN;
|
|
} else {
|
|
tcp_state_change(tp, TCPS_ESTABLISHED);
|
|
TCP_PROBE5(connect__established, NULL, tp,
|
|
mtod(m, const char *), tp, th);
|
|
cc_conn_init(tp);
|
|
}
|
|
} else {
|
|
/*
|
|
* Received initial SYN in SYN-SENT[*] state => simultaneous
|
|
* open. If segment contains CC option and there is a
|
|
* cached CC, apply TAO test. If it succeeds, connection is *
|
|
* half-synchronized. Otherwise, do 3-way handshake:
|
|
* SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If
|
|
* there was no CC option, clear cached CC value.
|
|
*/
|
|
tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
|
|
tcp_state_change(tp, TCPS_SYN_RECEIVED);
|
|
}
|
|
INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
/*
|
|
* Advance th->th_seq to correspond to first data byte. If data,
|
|
* trim to stay within window, dropping FIN if necessary.
|
|
*/
|
|
th->th_seq++;
|
|
if (tlen > tp->rcv_wnd) {
|
|
todrop = tlen - tp->rcv_wnd;
|
|
m_adj(m, -todrop);
|
|
tlen = tp->rcv_wnd;
|
|
thflags &= ~TH_FIN;
|
|
TCPSTAT_INC(tcps_rcvpackafterwin);
|
|
TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
|
|
}
|
|
tp->snd_wl1 = th->th_seq - 1;
|
|
tp->rcv_up = th->th_seq;
|
|
/*
|
|
* Client side of transaction: already sent SYN and data. If the
|
|
* remote host used T/TCP to validate the SYN, our data will be
|
|
* ACK'd; if so, enter normal data segment processing in the middle
|
|
* of step 5, ack processing. Otherwise, goto step 6.
|
|
*/
|
|
if (thflags & TH_ACK) {
|
|
/* For syn-sent we need to possibly update the rtt */
|
|
if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
|
|
uint32_t t;
|
|
|
|
t = tcp_ts_getticks() - to->to_tsecr;
|
|
if (!tp->t_rttlow || tp->t_rttlow > t)
|
|
tp->t_rttlow = t;
|
|
tcp_rack_xmit_timer(rack, t + 1);
|
|
tcp_rack_xmit_timer_commit(rack, tp);
|
|
}
|
|
if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val))
|
|
return (ret_val);
|
|
/* We may have changed to FIN_WAIT_1 above */
|
|
if (tp->t_state == TCPS_FIN_WAIT_1) {
|
|
/*
|
|
* In FIN_WAIT_1 STATE in addition to the processing
|
|
* for the ESTABLISHED state if our FIN is now
|
|
* acknowledged then enter FIN_WAIT_2.
|
|
*/
|
|
if (ourfinisacked) {
|
|
/*
|
|
* If we can't receive any more data, then
|
|
* closing user can proceed. Starting the
|
|
* timer is contrary to the specification,
|
|
* but if we don't get a FIN we'll hang
|
|
* forever.
|
|
*
|
|
* XXXjl: we should release the tp also, and
|
|
* use a compressed state.
|
|
*/
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
soisdisconnected(so);
|
|
tcp_timer_activate(tp, TT_2MSL,
|
|
(tcp_fast_finwait2_recycle ?
|
|
tcp_finwait2_timeout :
|
|
TP_MAXIDLE(tp)));
|
|
}
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_2);
|
|
}
|
|
}
|
|
}
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCP is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
struct tcp_rack *rack;
|
|
int32_t ret_val = 0;
|
|
int32_t ourfinisacked = 0;
|
|
|
|
ctf_calc_rwin(so, tp);
|
|
if ((thflags & TH_ACK) &&
|
|
(SEQ_LEQ(th->th_ack, tp->snd_una) ||
|
|
SEQ_GT(th->th_ack, tp->snd_max))) {
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (IS_FASTOPEN(tp->t_flags)) {
|
|
/*
|
|
* When a TFO connection is in SYN_RECEIVED, the
|
|
* only valid packets are the initial SYN, a
|
|
* retransmit/copy of the initial SYN (possibly with
|
|
* a subset of the original data), a valid ACK, a
|
|
* FIN, or a RST.
|
|
*/
|
|
if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) {
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
} else if (thflags & TH_SYN) {
|
|
/* non-initial SYN is ignored */
|
|
if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) ||
|
|
(rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) ||
|
|
(rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
} else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* In the SYN-RECEIVED state, validate that the packet belongs to
|
|
* this connection before trimming the data to fit the receive
|
|
* window. Check the sequence number versus IRS since we know the
|
|
* sequence numbers haven't wrapped. This is a partial fix for the
|
|
* "LAND" DoS attack.
|
|
*/
|
|
if (SEQ_LT(th->th_seq, tp->irs)) {
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_ts_getticks();
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
tp->snd_wnd = tiwin;
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (IS_FASTOPEN(tp->t_flags)) {
|
|
cc_conn_init(tp);
|
|
}
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
TCPSTAT_INC(tcps_connects);
|
|
soisconnected(so);
|
|
/* Do window scaling? */
|
|
if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
|
|
(TF_RCVD_SCALE | TF_REQ_SCALE)) {
|
|
tp->rcv_scale = tp->request_r_scale;
|
|
}
|
|
/*
|
|
* Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* ->
|
|
* FIN-WAIT-1
|
|
*/
|
|
tp->t_starttime = ticks;
|
|
if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
|
|
tcp_fastopen_decrement_counter(tp->t_tfo_pending);
|
|
tp->t_tfo_pending = NULL;
|
|
|
|
/*
|
|
* Account for the ACK of our SYN prior to
|
|
* regular ACK processing below.
|
|
*/
|
|
tp->snd_una++;
|
|
}
|
|
if (tp->t_flags & TF_NEEDFIN) {
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_1);
|
|
tp->t_flags &= ~TF_NEEDFIN;
|
|
} else {
|
|
tcp_state_change(tp, TCPS_ESTABLISHED);
|
|
TCP_PROBE5(accept__established, NULL, tp,
|
|
mtod(m, const char *), tp, th);
|
|
/*
|
|
* TFO connections call cc_conn_init() during SYN
|
|
* processing. Calling it again here for such connections
|
|
* is not harmless as it would undo the snd_cwnd reduction
|
|
* that occurs when a TFO SYN|ACK is retransmitted.
|
|
*/
|
|
if (!IS_FASTOPEN(tp->t_flags))
|
|
cc_conn_init(tp);
|
|
}
|
|
/*
|
|
* If segment contains data or ACK, will call tcp_reass() later; if
|
|
* not, do so now to pass queued data to user.
|
|
*/
|
|
if (tlen == 0 && (thflags & TH_FIN) == 0)
|
|
(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
|
|
(struct mbuf *)0);
|
|
tp->snd_wl1 = th->th_seq - 1;
|
|
/* For syn-recv we need to possibly update the rtt */
|
|
if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) {
|
|
uint32_t t;
|
|
|
|
t = tcp_ts_getticks() - to->to_tsecr;
|
|
if (!tp->t_rttlow || tp->t_rttlow > t)
|
|
tp->t_rttlow = t;
|
|
tcp_rack_xmit_timer(rack, t + 1);
|
|
tcp_rack_xmit_timer_commit(rack, tp);
|
|
}
|
|
if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (tp->t_state == TCPS_FIN_WAIT_1) {
|
|
/* We could have went to FIN_WAIT_1 (or EST) above */
|
|
/*
|
|
* In FIN_WAIT_1 STATE in addition to the processing for the
|
|
* ESTABLISHED state if our FIN is now acknowledged then
|
|
* enter FIN_WAIT_2.
|
|
*/
|
|
if (ourfinisacked) {
|
|
/*
|
|
* If we can't receive any more data, then closing
|
|
* user can proceed. Starting the timer is contrary
|
|
* to the specification, but if we don't get a FIN
|
|
* we'll hang forever.
|
|
*
|
|
* XXXjl: we should release the tp also, and use a
|
|
* compressed state.
|
|
*/
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
soisdisconnected(so);
|
|
tcp_timer_activate(tp, TT_2MSL,
|
|
(tcp_fast_finwait2_recycle ?
|
|
tcp_finwait2_timeout :
|
|
TP_MAXIDLE(tp)));
|
|
}
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_2);
|
|
}
|
|
}
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCP is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ret_val = 0;
|
|
|
|
/*
|
|
* Header prediction: check for the two common cases of a
|
|
* uni-directional data xfer. If the packet has no control flags,
|
|
* is in-sequence, the window didn't change and we're not
|
|
* retransmitting, it's a candidate. If the length is zero and the
|
|
* ack moved forward, we're the sender side of the xfer. Just free
|
|
* the data acked & wake any higher level process that was blocked
|
|
* waiting for space. If the length is non-zero and the ack didn't
|
|
* move, we're the receiver side. If we're getting packets in-order
|
|
* (the reassembly queue is empty), add the data toc The socket
|
|
* buffer and note that we need a delayed ack. Make sure that the
|
|
* hidden state-flags are also off. Since we check for
|
|
* TCPS_ESTABLISHED first, it can only be TH_NEEDSYN.
|
|
*/
|
|
if (__predict_true(((to->to_flags & TOF_SACK) == 0)) &&
|
|
__predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK)) == TH_ACK) &&
|
|
__predict_true(SEGQ_EMPTY(tp)) &&
|
|
__predict_true(th->th_seq == tp->rcv_nxt)) {
|
|
struct tcp_rack *rack;
|
|
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (tlen == 0) {
|
|
if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen,
|
|
tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) {
|
|
return (0);
|
|
}
|
|
} else {
|
|
if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen,
|
|
tiwin, nxt_pkt)) {
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
ctf_calc_rwin(so, tp);
|
|
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_ts_getticks();
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (rack_progress_timeout_check(tp)) {
|
|
tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
/* State changes only happen in rack_process_data() */
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCP is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ret_val = 0;
|
|
|
|
ctf_calc_rwin(so, tp);
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_ts_getticks();
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (rack_progress_timeout_check(tp)) {
|
|
tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
static int
|
|
rack_check_data_after_close(struct mbuf *m,
|
|
struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so)
|
|
{
|
|
struct tcp_rack *rack;
|
|
|
|
INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (rack->rc_allow_data_af_clo == 0) {
|
|
close_now:
|
|
tp = tcp_close(tp);
|
|
TCPSTAT_INC(tcps_rcvafterclose);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen));
|
|
return (1);
|
|
}
|
|
if (sbavail(&so->so_snd) == 0)
|
|
goto close_now;
|
|
/* Ok we allow data that is ignored and a followup reset */
|
|
tp->rcv_nxt = th->th_seq + *tlen;
|
|
tp->t_flags2 |= TF2_DROP_AF_DATA;
|
|
rack->r_wanted_output = 1;
|
|
*tlen = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCP is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ret_val = 0;
|
|
int32_t ourfinisacked = 0;
|
|
|
|
ctf_calc_rwin(so, tp);
|
|
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If new data are received on a connection after the user processes
|
|
* are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) && tlen) {
|
|
if (rack_check_data_after_close(m, tp, &tlen, th, so))
|
|
return (1);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_ts_getticks();
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (ourfinisacked) {
|
|
/*
|
|
* If we can't receive any more data, then closing user can
|
|
* proceed. Starting the timer is contrary to the
|
|
* specification, but if we don't get a FIN we'll hang
|
|
* forever.
|
|
*
|
|
* XXXjl: we should release the tp also, and use a
|
|
* compressed state.
|
|
*/
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
soisdisconnected(so);
|
|
tcp_timer_activate(tp, TT_2MSL,
|
|
(tcp_fast_finwait2_recycle ?
|
|
tcp_finwait2_timeout :
|
|
TP_MAXIDLE(tp)));
|
|
}
|
|
tcp_state_change(tp, TCPS_FIN_WAIT_2);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (rack_progress_timeout_check(tp)) {
|
|
tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCP is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ret_val = 0;
|
|
int32_t ourfinisacked = 0;
|
|
|
|
ctf_calc_rwin(so, tp);
|
|
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If new data are received on a connection after the user processes
|
|
* are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) && tlen) {
|
|
if (rack_check_data_after_close(m, tp, &tlen, th, so))
|
|
return (1);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_ts_getticks();
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (ourfinisacked) {
|
|
INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
|
|
tcp_twstart(tp);
|
|
m_freem(m);
|
|
return (1);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (rack_progress_timeout_check(tp)) {
|
|
tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCP is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ret_val = 0;
|
|
int32_t ourfinisacked = 0;
|
|
|
|
ctf_calc_rwin(so, tp);
|
|
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If new data are received on a connection after the user processes
|
|
* are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) && tlen) {
|
|
if (rack_check_data_after_close(m, tp, &tlen, th, so))
|
|
return (1);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_ts_getticks();
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* case TCPS_LAST_ACK: Ack processing.
|
|
*/
|
|
if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (ourfinisacked) {
|
|
INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
|
|
tp = tcp_close(tp);
|
|
ctf_do_drop(m, tp);
|
|
return (1);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (rack_progress_timeout_check(tp)) {
|
|
tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
|
|
/*
|
|
* Return value of 1, the TCB is unlocked and most
|
|
* likely gone, return value of 0, the TCP is still
|
|
* locked.
|
|
*/
|
|
static int
|
|
rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen,
|
|
uint32_t tiwin, int32_t thflags, int32_t nxt_pkt)
|
|
{
|
|
int32_t ret_val = 0;
|
|
int32_t ourfinisacked = 0;
|
|
|
|
ctf_calc_rwin(so, tp);
|
|
|
|
/* Reset receive buffer auto scaling when not in bulk receive mode. */
|
|
if ((thflags & TH_RST) ||
|
|
(tp->t_fin_is_rst && (thflags & TH_FIN)))
|
|
return (ctf_process_rst(m, th, so, tp));
|
|
/*
|
|
* RFC5961 Section 4.2 Send challenge ACK for any SYN in
|
|
* synchronized state.
|
|
*/
|
|
if (thflags & TH_SYN) {
|
|
ctf_challenge_ack(m, th, tp, &ret_val);
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment and
|
|
* it's less than ts_recent, drop it.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent &&
|
|
TSTMP_LT(to->to_tsval, tp->ts_recent)) {
|
|
if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val))
|
|
return (ret_val);
|
|
}
|
|
if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
/*
|
|
* If new data are received on a connection after the user processes
|
|
* are gone, then RST the other end.
|
|
*/
|
|
if ((so->so_state & SS_NOFDREF) &&
|
|
tlen) {
|
|
if (rack_check_data_after_close(m, tp, &tlen, th, so))
|
|
return (1);
|
|
}
|
|
/*
|
|
* If last ACK falls within this segment's sequence numbers, record
|
|
* its timestamp. NOTE: 1) That the test incorporates suggestions
|
|
* from the latest proposal of the tcplw@cray.com list (Braden
|
|
* 1993/04/26). 2) That updating only on newer timestamps interferes
|
|
* with our earlier PAWS tests, so this check should be solely
|
|
* predicated on the sequence space of this segment. 3) That we
|
|
* modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ
|
|
* + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ +
|
|
* SEG.Len, This modified check allows us to overcome RFC1323's
|
|
* limitations as described in Stevens TCP/IP Illustrated Vol. 2
|
|
* p.869. In such cases, we can still calculate the RTT correctly
|
|
* when RCV.NXT == Last.ACK.Sent.
|
|
*/
|
|
if ((to->to_flags & TOF_TS) != 0 &&
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
|
|
SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
|
|
((thflags & (TH_SYN | TH_FIN)) != 0))) {
|
|
tp->ts_recent_age = tcp_ts_getticks();
|
|
tp->ts_recent = to->to_tsval;
|
|
}
|
|
/*
|
|
* If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag
|
|
* is on (half-synchronized state), then queue data for later
|
|
* processing; else drop segment and return.
|
|
*/
|
|
if ((thflags & TH_ACK) == 0) {
|
|
if (tp->t_flags & TF_NEEDSYN) {
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
} else if (tp->t_flags & TF_ACKNOW) {
|
|
ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val);
|
|
((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output++;
|
|
return (ret_val);
|
|
} else {
|
|
ctf_do_drop(m, NULL);
|
|
return (0);
|
|
}
|
|
}
|
|
/*
|
|
* Ack processing.
|
|
*/
|
|
if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) {
|
|
return (ret_val);
|
|
}
|
|
if (sbavail(&so->so_snd)) {
|
|
if (rack_progress_timeout_check(tp)) {
|
|
tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return (1);
|
|
}
|
|
}
|
|
return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen,
|
|
tiwin, thflags, nxt_pkt));
|
|
}
|
|
|
|
|
|
static void inline
|
|
rack_clear_rate_sample(struct tcp_rack *rack)
|
|
{
|
|
rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY;
|
|
rack->r_ctl.rack_rs.rs_rtt_cnt = 0;
|
|
rack->r_ctl.rack_rs.rs_rtt_tot = 0;
|
|
}
|
|
|
|
static void
|
|
rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack)
|
|
{
|
|
uint32_t tls_seg = 0;
|
|
|
|
#ifdef KERN_TLS
|
|
if (rack->rc_inp->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
|
|
tls_seg = ctf_get_opt_tls_size(rack->rc_inp->inp_socket, rack->rc_tp->snd_wnd);
|
|
rack->r_ctl.rc_pace_min_segs = tls_seg;
|
|
} else
|
|
#endif
|
|
rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp);
|
|
rack->r_ctl.rc_pace_max_segs = ctf_fixed_maxseg(tp) * rack->rc_pace_max_segs;
|
|
if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES)
|
|
rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES;
|
|
#ifdef KERN_TLS
|
|
if (tls_seg != 0) {
|
|
if (rack_hw_tls_max_seg > 1) {
|
|
rack->r_ctl.rc_pace_max_segs /= tls_seg;
|
|
if (rack_hw_tls_max_seg < rack->r_ctl.rc_pace_max_segs)
|
|
rack->r_ctl.rc_pace_max_segs = rack_hw_tls_max_seg;
|
|
} else {
|
|
rack->r_ctl.rc_pace_max_segs = 1;
|
|
}
|
|
if (rack->r_ctl.rc_pace_max_segs == 0)
|
|
rack->r_ctl.rc_pace_max_segs = 1;
|
|
rack->r_ctl.rc_pace_max_segs *= tls_seg;
|
|
}
|
|
#endif
|
|
rack_log_type_hrdwtso(tp, rack, tls_seg, rack->rc_inp->inp_socket->so_snd.sb_flags, 0, 2);
|
|
}
|
|
|
|
static int
|
|
rack_init(struct tcpcb *tp)
|
|
{
|
|
struct tcp_rack *rack = NULL;
|
|
struct rack_sendmap *insret;
|
|
|
|
tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT);
|
|
if (tp->t_fb_ptr == NULL) {
|
|
/*
|
|
* We need to allocate memory but cant. The INP and INP_INFO
|
|
* locks and they are recusive (happens during setup. So a
|
|
* scheme to drop the locks fails :(
|
|
*
|
|
*/
|
|
return (ENOMEM);
|
|
}
|
|
memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack));
|
|
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
RB_INIT(&rack->r_ctl.rc_mtree);
|
|
TAILQ_INIT(&rack->r_ctl.rc_free);
|
|
TAILQ_INIT(&rack->r_ctl.rc_tmap);
|
|
rack->rc_tp = tp;
|
|
if (tp->t_inpcb) {
|
|
rack->rc_inp = tp->t_inpcb;
|
|
}
|
|
tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ;
|
|
/* Probably not needed but lets be sure */
|
|
rack_clear_rate_sample(rack);
|
|
rack->r_cpu = 0;
|
|
rack->r_ctl.rc_reorder_fade = rack_reorder_fade;
|
|
rack->rc_allow_data_af_clo = rack_ignore_data_after_close;
|
|
rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh;
|
|
rack->rc_pace_reduce = rack_slot_reduction;
|
|
if (use_rack_cheat)
|
|
rack->use_rack_cheat = 1;
|
|
if (V_tcp_delack_enabled)
|
|
tp->t_delayed_ack = 1;
|
|
else
|
|
tp->t_delayed_ack = 0;
|
|
rack->rc_pace_max_segs = rack_hptsi_segments;
|
|
rack->r_ctl.rc_reorder_shift = rack_reorder_thresh;
|
|
rack->r_ctl.rc_pkt_delay = rack_pkt_delay;
|
|
rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce;
|
|
rack->r_enforce_min_pace = rack_min_pace_time;
|
|
rack->r_ctl.rc_prop_rate = rack_proportional_rate;
|
|
rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp;
|
|
rack->r_ctl.rc_early_recovery = rack_early_recovery;
|
|
rack->rc_always_pace = rack_pace_every_seg;
|
|
rack_set_pace_segments(tp, rack);
|
|
rack->r_ctl.rc_high_rwnd = tp->snd_wnd;
|
|
rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method;
|
|
rack->rack_tlp_threshold_use = rack_tlp_threshold_use;
|
|
rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr;
|
|
rack->r_ctl.rc_min_to = rack_min_to;
|
|
rack->rack_per_of_gp = rack_per_of_gp;
|
|
microuptime(&rack->r_ctl.rc_last_ack);
|
|
rack->r_ctl.rc_last_time_decay = rack->r_ctl.rc_last_ack;
|
|
rack->r_ctl.rc_tlp_rxt_last_time = tcp_ts_getticks();
|
|
/* Do we force on detection? */
|
|
if (tcp_force_detection)
|
|
rack->do_detection = 1;
|
|
else
|
|
rack->do_detection = 0;
|
|
if (tp->snd_una != tp->snd_max) {
|
|
/* Create a send map for the current outstanding data */
|
|
struct rack_sendmap *rsm;
|
|
|
|
rsm = rack_alloc(rack);
|
|
if (rsm == NULL) {
|
|
uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
|
|
tp->t_fb_ptr = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
rsm->r_flags = RACK_OVERMAX;
|
|
rsm->r_tim_lastsent[0] = rack->r_ctl.rc_tlp_rxt_last_time;
|
|
rsm->r_rtr_cnt = 1;
|
|
rsm->r_rtr_bytes = 0;
|
|
rsm->r_start = tp->snd_una;
|
|
rsm->r_end = tp->snd_max;
|
|
rsm->r_dupack = 0;
|
|
insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
#ifdef INVARIANTS
|
|
if (insret != NULL) {
|
|
panic("Insert in rb tree fails ret:%p rack:%p rsm:%p",
|
|
insret, rack, rsm);
|
|
}
|
|
#endif
|
|
TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext);
|
|
rsm->r_in_tmap = 1;
|
|
}
|
|
rack_stop_all_timers(tp);
|
|
rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
rack_handoff_ok(struct tcpcb *tp)
|
|
{
|
|
if ((tp->t_state == TCPS_CLOSED) ||
|
|
(tp->t_state == TCPS_LISTEN)) {
|
|
/* Sure no problem though it may not stick */
|
|
return (0);
|
|
}
|
|
if ((tp->t_state == TCPS_SYN_SENT) ||
|
|
(tp->t_state == TCPS_SYN_RECEIVED)) {
|
|
/*
|
|
* We really don't know you have to get to ESTAB or beyond
|
|
* to tell.
|
|
*/
|
|
return (EAGAIN);
|
|
}
|
|
if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){
|
|
return (0);
|
|
}
|
|
/*
|
|
* If we reach here we don't do SACK on this connection so we can
|
|
* never do rack.
|
|
*/
|
|
return (EINVAL);
|
|
}
|
|
|
|
static void
|
|
rack_fini(struct tcpcb *tp, int32_t tcb_is_purged)
|
|
{
|
|
if (tp->t_fb_ptr) {
|
|
struct tcp_rack *rack;
|
|
struct rack_sendmap *rsm, *nrsm, *rm;
|
|
if (tp->t_inpcb) {
|
|
tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ;
|
|
tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY;
|
|
}
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
#ifdef TCP_BLACKBOX
|
|
tcp_log_flowend(tp);
|
|
#endif
|
|
RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) {
|
|
rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm);
|
|
#ifdef INVARIANTS
|
|
if (rm != rsm) {
|
|
panic("At fini, rack:%p rsm:%p rm:%p",
|
|
rack, rsm, rm);
|
|
}
|
|
#endif
|
|
uma_zfree(rack_zone, rsm);
|
|
}
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
|
|
while (rsm) {
|
|
TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext);
|
|
uma_zfree(rack_zone, rsm);
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_free);
|
|
}
|
|
rack->rc_free_cnt = 0;
|
|
uma_zfree(rack_pcb_zone, tp->t_fb_ptr);
|
|
tp->t_fb_ptr = NULL;
|
|
}
|
|
/* Make sure snd_nxt is correctly set */
|
|
tp->snd_nxt = tp->snd_max;
|
|
}
|
|
|
|
|
|
static void
|
|
rack_set_state(struct tcpcb *tp, struct tcp_rack *rack)
|
|
{
|
|
switch (tp->t_state) {
|
|
case TCPS_SYN_SENT:
|
|
rack->r_state = TCPS_SYN_SENT;
|
|
rack->r_substate = rack_do_syn_sent;
|
|
break;
|
|
case TCPS_SYN_RECEIVED:
|
|
rack->r_state = TCPS_SYN_RECEIVED;
|
|
rack->r_substate = rack_do_syn_recv;
|
|
break;
|
|
case TCPS_ESTABLISHED:
|
|
rack_set_pace_segments(tp, rack);
|
|
rack->r_state = TCPS_ESTABLISHED;
|
|
rack->r_substate = rack_do_established;
|
|
break;
|
|
case TCPS_CLOSE_WAIT:
|
|
rack->r_state = TCPS_CLOSE_WAIT;
|
|
rack->r_substate = rack_do_close_wait;
|
|
break;
|
|
case TCPS_FIN_WAIT_1:
|
|
rack->r_state = TCPS_FIN_WAIT_1;
|
|
rack->r_substate = rack_do_fin_wait_1;
|
|
break;
|
|
case TCPS_CLOSING:
|
|
rack->r_state = TCPS_CLOSING;
|
|
rack->r_substate = rack_do_closing;
|
|
break;
|
|
case TCPS_LAST_ACK:
|
|
rack->r_state = TCPS_LAST_ACK;
|
|
rack->r_substate = rack_do_lastack;
|
|
break;
|
|
case TCPS_FIN_WAIT_2:
|
|
rack->r_state = TCPS_FIN_WAIT_2;
|
|
rack->r_substate = rack_do_fin_wait_2;
|
|
break;
|
|
case TCPS_LISTEN:
|
|
case TCPS_CLOSED:
|
|
case TCPS_TIME_WAIT:
|
|
default:
|
|
break;
|
|
};
|
|
}
|
|
|
|
|
|
static void
|
|
rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb)
|
|
{
|
|
/*
|
|
* We received an ack, and then did not
|
|
* call send or were bounced out due to the
|
|
* hpts was running. Now a timer is up as well, is
|
|
* it the right timer?
|
|
*/
|
|
struct rack_sendmap *rsm;
|
|
int tmr_up;
|
|
|
|
tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK;
|
|
if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT))
|
|
return;
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
|
|
if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) &&
|
|
(tmr_up == PACE_TMR_RXT)) {
|
|
/* Should be an RXT */
|
|
return;
|
|
}
|
|
if (rsm == NULL) {
|
|
/* Nothing outstanding? */
|
|
if (tp->t_flags & TF_DELACK) {
|
|
if (tmr_up == PACE_TMR_DELACK)
|
|
/* We are supposed to have delayed ack up and we do */
|
|
return;
|
|
} else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) {
|
|
/*
|
|
* if we hit enobufs then we would expect the possiblity
|
|
* of nothing outstanding and the RXT up (and the hptsi timer).
|
|
*/
|
|
return;
|
|
} else if (((tcp_always_keepalive ||
|
|
rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
|
|
(tp->t_state <= TCPS_CLOSING)) &&
|
|
(tmr_up == PACE_TMR_KEEP) &&
|
|
(tp->snd_max == tp->snd_una)) {
|
|
/* We should have keep alive up and we do */
|
|
return;
|
|
}
|
|
}
|
|
if (SEQ_GT(tp->snd_max, tp->snd_una) &&
|
|
((tmr_up == PACE_TMR_TLP) ||
|
|
(tmr_up == PACE_TMR_RACK) ||
|
|
(tmr_up == PACE_TMR_RXT))) {
|
|
/*
|
|
* Either a Rack, TLP or RXT is fine if we
|
|
* have outstanding data.
|
|
*/
|
|
return;
|
|
} else if (tmr_up == PACE_TMR_DELACK) {
|
|
/*
|
|
* If the delayed ack was going to go off
|
|
* before the rtx/tlp/rack timer were going to
|
|
* expire, then that would be the timer in control.
|
|
* Note we don't check the time here trusting the
|
|
* code is correct.
|
|
*/
|
|
return;
|
|
}
|
|
/*
|
|
* Ok the timer originally started is not what we want now.
|
|
* We will force the hpts to be stopped if any, and restart
|
|
* with the slot set to what was in the saved slot.
|
|
*/
|
|
rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__);
|
|
rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
|
|
}
|
|
|
|
static int
|
|
rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos,
|
|
int32_t nxt_pkt, struct timeval *tv)
|
|
{
|
|
int32_t thflags, retval, did_out = 0;
|
|
int32_t way_out = 0;
|
|
uint32_t cts;
|
|
uint32_t tiwin;
|
|
struct tcpopt to;
|
|
struct tcp_rack *rack;
|
|
struct rack_sendmap *rsm;
|
|
int32_t prev_state = 0;
|
|
|
|
if (m->m_flags & M_TSTMP_LRO) {
|
|
tv->tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
|
|
tv->tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
|
|
}
|
|
cts = tcp_tv_to_mssectick(tv);
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
|
|
kern_prefetch(rack, &prev_state);
|
|
prev_state = 0;
|
|
thflags = th->th_flags;
|
|
/*
|
|
* If this is either a state-changing packet or current state isn't
|
|
* established, we require a read lock on tcbinfo. Otherwise, we
|
|
* allow the tcbinfo to be in either locked or unlocked, as the
|
|
* caller may have unnecessarily acquired a lock due to a race.
|
|
*/
|
|
if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
|
|
tp->t_state != TCPS_ESTABLISHED) {
|
|
INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
|
|
}
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
|
|
__func__));
|
|
KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
|
|
__func__));
|
|
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
log.u_bbr.pkts_out = rack->rc_tp->t_maxseg;
|
|
TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
|
|
tlen, &log, true, &tv);
|
|
}
|
|
if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
|
|
way_out = 4;
|
|
retval = 0;
|
|
goto done_with_input;
|
|
}
|
|
/*
|
|
* If a segment with the ACK-bit set arrives in the SYN-SENT state
|
|
* check SEQ.ACK first as described on page 66 of RFC 793, section 3.9.
|
|
*/
|
|
if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
|
|
(SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
|
|
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
|
|
return(1);
|
|
}
|
|
/*
|
|
* Segment received on connection. Reset idle time and keep-alive
|
|
* timer. XXX: This should be done after segment validation to
|
|
* ignore broken/spoofed segs.
|
|
*/
|
|
if (tp->t_idle_reduce &&
|
|
(tp->snd_max == tp->snd_una) &&
|
|
((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) {
|
|
counter_u64_add(rack_input_idle_reduces, 1);
|
|
rack_cc_after_idle(tp);
|
|
}
|
|
tp->t_rcvtime = ticks;
|
|
|
|
/*
|
|
* Unscale the window into a 32-bit value. For the SYN_SENT state
|
|
* the scale is zero.
|
|
*/
|
|
tiwin = th->th_win << tp->snd_scale;
|
|
#ifdef NETFLIX_STATS
|
|
stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
|
|
#endif
|
|
if (tiwin > rack->r_ctl.rc_high_rwnd)
|
|
rack->r_ctl.rc_high_rwnd = tiwin;
|
|
/*
|
|
* TCP ECN processing. XXXJTL: If we ever use ECN, we need to move
|
|
* this to occur after we've validated the segment.
|
|
*/
|
|
if (tp->t_flags & TF_ECN_PERMIT) {
|
|
if (thflags & TH_CWR)
|
|
tp->t_flags &= ~TF_ECN_SND_ECE;
|
|
switch (iptos & IPTOS_ECN_MASK) {
|
|
case IPTOS_ECN_CE:
|
|
tp->t_flags |= TF_ECN_SND_ECE;
|
|
TCPSTAT_INC(tcps_ecn_ce);
|
|
break;
|
|
case IPTOS_ECN_ECT0:
|
|
TCPSTAT_INC(tcps_ecn_ect0);
|
|
break;
|
|
case IPTOS_ECN_ECT1:
|
|
TCPSTAT_INC(tcps_ecn_ect1);
|
|
break;
|
|
}
|
|
/* Congestion experienced. */
|
|
if (thflags & TH_ECE) {
|
|
rack_cong_signal(tp, th, CC_ECN);
|
|
}
|
|
}
|
|
/*
|
|
* Parse options on any incoming segment.
|
|
*/
|
|
tcp_dooptions(&to, (u_char *)(th + 1),
|
|
(th->th_off << 2) - sizeof(struct tcphdr),
|
|
(thflags & TH_SYN) ? TO_SYN : 0);
|
|
|
|
/*
|
|
* If echoed timestamp is later than the current time, fall back to
|
|
* non RFC1323 RTT calculation. Normalize timestamp if syncookies
|
|
* were used when this connection was established.
|
|
*/
|
|
if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
|
|
to.to_tsecr -= tp->ts_offset;
|
|
if (TSTMP_GT(to.to_tsecr, cts))
|
|
to.to_tsecr = 0;
|
|
}
|
|
/*
|
|
* If its the first time in we need to take care of options and
|
|
* verify we can do SACK for rack!
|
|
*/
|
|
if (rack->r_state == 0) {
|
|
/* Should be init'd by rack_init() */
|
|
KASSERT(rack->rc_inp != NULL,
|
|
("%s: rack->rc_inp unexpectedly NULL", __func__));
|
|
if (rack->rc_inp == NULL) {
|
|
rack->rc_inp = tp->t_inpcb;
|
|
}
|
|
|
|
/*
|
|
* Process options only when we get SYN/ACK back. The SYN
|
|
* case for incoming connections is handled in tcp_syncache.
|
|
* According to RFC1323 the window field in a SYN (i.e., a
|
|
* <SYN> or <SYN,ACK>) segment itself is never scaled. XXX
|
|
* this is traditional behavior, may need to be cleaned up.
|
|
*/
|
|
rack->r_cpu = inp_to_cpuid(tp->t_inpcb);
|
|
if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
|
|
if ((to.to_flags & TOF_SCALE) &&
|
|
(tp->t_flags & TF_REQ_SCALE)) {
|
|
tp->t_flags |= TF_RCVD_SCALE;
|
|
tp->snd_scale = to.to_wscale;
|
|
}
|
|
/*
|
|
* Initial send window. It will be updated with the
|
|
* next incoming segment to the scaled value.
|
|
*/
|
|
tp->snd_wnd = th->th_win;
|
|
if (to.to_flags & TOF_TS) {
|
|
tp->t_flags |= TF_RCVD_TSTMP;
|
|
tp->ts_recent = to.to_tsval;
|
|
tp->ts_recent_age = cts;
|
|
}
|
|
if (to.to_flags & TOF_MSS)
|
|
tcp_mss(tp, to.to_mss);
|
|
if ((tp->t_flags & TF_SACK_PERMIT) &&
|
|
(to.to_flags & TOF_SACKPERM) == 0)
|
|
tp->t_flags &= ~TF_SACK_PERMIT;
|
|
if (IS_FASTOPEN(tp->t_flags)) {
|
|
if (to.to_flags & TOF_FASTOPEN) {
|
|
uint16_t mss;
|
|
|
|
if (to.to_flags & TOF_MSS)
|
|
mss = to.to_mss;
|
|
else
|
|
if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
|
|
mss = TCP6_MSS;
|
|
else
|
|
mss = TCP_MSS;
|
|
tcp_fastopen_update_cache(tp, mss,
|
|
to.to_tfo_len, to.to_tfo_cookie);
|
|
} else
|
|
tcp_fastopen_disable_path(tp);
|
|
}
|
|
}
|
|
/*
|
|
* At this point we are at the initial call. Here we decide
|
|
* if we are doing RACK or not. We do this by seeing if
|
|
* TF_SACK_PERMIT is set, if not rack is *not* possible and
|
|
* we switch to the default code.
|
|
*/
|
|
if ((tp->t_flags & TF_SACK_PERMIT) == 0) {
|
|
tcp_switch_back_to_default(tp);
|
|
(*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen,
|
|
tlen, iptos);
|
|
return (1);
|
|
}
|
|
/* Set the flag */
|
|
rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
|
|
tcp_set_hpts(tp->t_inpcb);
|
|
sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack);
|
|
}
|
|
/*
|
|
* This is the one exception case where we set the rack state
|
|
* always. All other times (timers etc) we must have a rack-state
|
|
* set (so we assure we have done the checks above for SACK).
|
|
*/
|
|
memcpy(&rack->r_ctl.rc_last_ack, tv, sizeof(struct timeval));
|
|
rack->r_ctl.rc_rcvtime = cts;
|
|
if (rack->r_state != tp->t_state)
|
|
rack_set_state(tp, rack);
|
|
if (SEQ_GT(th->th_ack, tp->snd_una) &&
|
|
(rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL)
|
|
kern_prefetch(rsm, &prev_state);
|
|
prev_state = rack->r_state;
|
|
rack->r_ctl.rc_tlp_send_cnt = 0;
|
|
rack_clear_rate_sample(rack);
|
|
retval = (*rack->r_substate) (m, th, so,
|
|
tp, &to, drop_hdrlen,
|
|
tlen, tiwin, thflags, nxt_pkt);
|
|
#ifdef INVARIANTS
|
|
if ((retval == 0) &&
|
|
(tp->t_inpcb == NULL)) {
|
|
panic("retval:%d tp:%p t_inpcb:NULL state:%d",
|
|
retval, tp, prev_state);
|
|
}
|
|
#endif
|
|
if (retval == 0) {
|
|
/*
|
|
* If retval is 1 the tcb is unlocked and most likely the tp
|
|
* is gone.
|
|
*/
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
if (rack->set_pacing_done_a_iw == 0) {
|
|
/* How much has been acked? */
|
|
if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) {
|
|
/* We have enough to set in the pacing segment size */
|
|
rack->set_pacing_done_a_iw = 1;
|
|
rack_set_pace_segments(tp, rack);
|
|
}
|
|
}
|
|
tcp_rack_xmit_timer_commit(rack, tp);
|
|
if ((nxt_pkt == 0) || (IN_RECOVERY(tp->t_flags))) {
|
|
if (rack->r_wanted_output != 0) {
|
|
did_out = 1;
|
|
(void)tp->t_fb->tfb_tcp_output(tp);
|
|
}
|
|
rack_start_hpts_timer(rack, tp, cts, 0, 0, 0);
|
|
}
|
|
if ((nxt_pkt == 0) &&
|
|
((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) &&
|
|
(SEQ_GT(tp->snd_max, tp->snd_una) ||
|
|
(tp->t_flags & TF_DELACK) ||
|
|
((tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) &&
|
|
(tp->t_state <= TCPS_CLOSING)))) {
|
|
/* We could not send (probably in the hpts but stopped the timer earlier)? */
|
|
if ((tp->snd_max == tp->snd_una) &&
|
|
((tp->t_flags & TF_DELACK) == 0) &&
|
|
(rack->rc_inp->inp_in_hpts) &&
|
|
(rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) {
|
|
/* keep alive not needed if we are hptsi output yet */
|
|
;
|
|
} else {
|
|
if (rack->rc_inp->inp_in_hpts) {
|
|
tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT);
|
|
counter_u64_add(rack_per_timer_hole, 1);
|
|
}
|
|
rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0);
|
|
}
|
|
way_out = 1;
|
|
} else if (nxt_pkt == 0) {
|
|
/* Do we have the correct timer running? */
|
|
rack_timer_audit(tp, rack, &so->so_snd);
|
|
way_out = 2;
|
|
}
|
|
done_with_input:
|
|
rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out);
|
|
if (did_out)
|
|
rack->r_wanted_output = 0;
|
|
#ifdef INVARIANTS
|
|
if (tp->t_inpcb == NULL) {
|
|
panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d",
|
|
did_out,
|
|
retval, tp, prev_state);
|
|
}
|
|
#endif
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
void
|
|
rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
|
|
struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos)
|
|
{
|
|
struct timeval tv;
|
|
|
|
/* First lets see if we have old packets */
|
|
if (tp->t_in_pkt) {
|
|
if (ctf_do_queued_segments(so, tp, 1)) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
}
|
|
if (m->m_flags & M_TSTMP_LRO) {
|
|
tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
|
|
tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
|
|
} else {
|
|
/* Should not be should we kassert instead? */
|
|
tcp_get_usecs(&tv);
|
|
}
|
|
if(rack_do_segment_nounlock(m, th, so, tp,
|
|
drop_hdrlen, tlen, iptos, 0, &tv) == 0)
|
|
INP_WUNLOCK(tp->t_inpcb);
|
|
}
|
|
|
|
struct rack_sendmap *
|
|
tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused)
|
|
{
|
|
struct rack_sendmap *rsm = NULL;
|
|
int32_t idx;
|
|
uint32_t srtt = 0, thresh = 0, ts_low = 0;
|
|
|
|
/* Return the next guy to be re-transmitted */
|
|
if (RB_EMPTY(&rack->r_ctl.rc_mtree)) {
|
|
return (NULL);
|
|
}
|
|
if (tp->t_flags & TF_SENTFIN) {
|
|
/* retran the end FIN? */
|
|
return (NULL);
|
|
}
|
|
/* ok lets look at this one */
|
|
rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap);
|
|
if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) {
|
|
goto check_it;
|
|
}
|
|
rsm = rack_find_lowest_rsm(rack);
|
|
if (rsm == NULL) {
|
|
return (NULL);
|
|
}
|
|
check_it:
|
|
if (rsm->r_flags & RACK_ACKED) {
|
|
return (NULL);
|
|
}
|
|
if ((rsm->r_flags & RACK_SACK_PASSED) == 0) {
|
|
/* Its not yet ready */
|
|
return (NULL);
|
|
}
|
|
srtt = rack_grab_rtt(tp, rack);
|
|
idx = rsm->r_rtr_cnt - 1;
|
|
ts_low = rsm->r_tim_lastsent[idx];
|
|
thresh = rack_calc_thresh_rack(rack, srtt, tsused);
|
|
if ((tsused == ts_low) ||
|
|
(TSTMP_LT(tsused, ts_low))) {
|
|
/* No time since sending */
|
|
return (NULL);
|
|
}
|
|
if ((tsused - ts_low) < thresh) {
|
|
/* It has not been long enough yet */
|
|
return (NULL);
|
|
}
|
|
if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) ||
|
|
((rsm->r_flags & RACK_SACK_PASSED) &&
|
|
(rack->sack_attack_disable == 0))) {
|
|
/*
|
|
* We have passed the dup-ack threshold <or>
|
|
* a SACK has indicated this is missing.
|
|
* Note that if you are a declared attacker
|
|
* it is only the dup-ack threshold that
|
|
* will cause retransmits.
|
|
*/
|
|
/* log retransmit reason */
|
|
rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1);
|
|
return (rsm);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static int32_t
|
|
rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len)
|
|
{
|
|
int32_t slot = 0;
|
|
|
|
if ((rack->rack_per_of_gp == 0) ||
|
|
(rack->rc_always_pace == 0)) {
|
|
/*
|
|
* We use the most optimistic possible cwnd/srtt for
|
|
* sending calculations. This will make our
|
|
* calculation anticipate getting more through
|
|
* quicker then possible. But thats ok we don't want
|
|
* the peer to have a gap in data sending.
|
|
*/
|
|
uint32_t srtt, cwnd, tr_perms = 0;
|
|
|
|
old_method:
|
|
if (rack->r_ctl.rc_rack_min_rtt)
|
|
srtt = rack->r_ctl.rc_rack_min_rtt;
|
|
else
|
|
srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT));
|
|
if (rack->r_ctl.rc_rack_largest_cwnd)
|
|
cwnd = rack->r_ctl.rc_rack_largest_cwnd;
|
|
else
|
|
cwnd = tp->snd_cwnd;
|
|
tr_perms = cwnd / srtt;
|
|
if (tr_perms == 0) {
|
|
tr_perms = ctf_fixed_maxseg(tp);
|
|
}
|
|
/*
|
|
* Calculate how long this will take to drain, if
|
|
* the calculation comes out to zero, thats ok we
|
|
* will use send_a_lot to possibly spin around for
|
|
* more increasing tot_len_this_send to the point
|
|
* that its going to require a pace, or we hit the
|
|
* cwnd. Which in that case we are just waiting for
|
|
* a ACK.
|
|
*/
|
|
slot = len / tr_perms;
|
|
/* Now do we reduce the time so we don't run dry? */
|
|
if (slot && rack->rc_pace_reduce) {
|
|
int32_t reduce;
|
|
|
|
reduce = (slot / rack->rc_pace_reduce);
|
|
if (reduce < slot) {
|
|
slot -= reduce;
|
|
} else
|
|
slot = 0;
|
|
}
|
|
} else {
|
|
int cnt;
|
|
uint64_t bw_est, bw_raise, res, lentim;
|
|
|
|
bw_est = 0;
|
|
for (cnt=0; cnt<RACK_GP_HIST; cnt++) {
|
|
if ((rack->r_ctl.rc_gp_hist_filled == 0) &&
|
|
(rack->r_ctl.rc_gp_history[cnt] == 0))
|
|
break;
|
|
bw_est += rack->r_ctl.rc_gp_history[cnt];
|
|
}
|
|
if (bw_est == 0) {
|
|
/*
|
|
* No way yet to make a b/w estimate
|
|
* (no goodput est yet).
|
|
*/
|
|
goto old_method;
|
|
}
|
|
/* Covert to bytes per second */
|
|
bw_est *= MSEC_IN_SECOND;
|
|
/*
|
|
* Now ratchet it up by our percentage. Note
|
|
* that the minimum you can do is 1 which would
|
|
* get you 101% of the average last N goodput estimates.
|
|
* The max you can do is 256 which would yeild you
|
|
* 356% of the last N goodput estimates.
|
|
*/
|
|
bw_raise = bw_est * (uint64_t)rack->rack_per_of_gp;
|
|
bw_est += bw_raise;
|
|
/* average by the number we added */
|
|
bw_est /= cnt;
|
|
/* Now calculate a rate based on this b/w */
|
|
lentim = (uint64_t) len * (uint64_t)MSEC_IN_SECOND;
|
|
res = lentim / bw_est;
|
|
slot = (uint32_t)res;
|
|
}
|
|
if (rack->r_enforce_min_pace &&
|
|
(slot == 0)) {
|
|
/* We are enforcing a minimum pace time of 1ms */
|
|
slot = rack->r_enforce_min_pace;
|
|
}
|
|
if (slot)
|
|
counter_u64_add(rack_calc_nonzero, 1);
|
|
else
|
|
counter_u64_add(rack_calc_zero, 1);
|
|
return (slot);
|
|
}
|
|
|
|
static int
|
|
rack_output(struct tcpcb *tp)
|
|
{
|
|
struct socket *so;
|
|
uint32_t recwin, sendwin;
|
|
uint32_t sb_offset;
|
|
int32_t len, flags, error = 0;
|
|
struct mbuf *m;
|
|
struct mbuf *mb;
|
|
uint32_t if_hw_tsomaxsegcount = 0;
|
|
uint32_t if_hw_tsomaxsegsize;
|
|
int32_t maxseg;
|
|
long tot_len_this_send = 0;
|
|
struct ip *ip = NULL;
|
|
#ifdef TCPDEBUG
|
|
struct ipovly *ipov = NULL;
|
|
#endif
|
|
struct udphdr *udp = NULL;
|
|
struct tcp_rack *rack;
|
|
struct tcphdr *th;
|
|
uint8_t pass = 0;
|
|
uint8_t wanted_cookie = 0;
|
|
u_char opt[TCP_MAXOLEN];
|
|
unsigned ipoptlen, optlen, hdrlen, ulen=0;
|
|
uint32_t rack_seq;
|
|
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
unsigned ipsec_optlen = 0;
|
|
|
|
#endif
|
|
int32_t idle, sendalot;
|
|
int32_t sub_from_prr = 0;
|
|
volatile int32_t sack_rxmit;
|
|
struct rack_sendmap *rsm = NULL;
|
|
int32_t tso, mtu;
|
|
struct tcpopt to;
|
|
int32_t slot = 0;
|
|
int32_t sup_rack = 0;
|
|
uint32_t cts;
|
|
uint8_t hpts_calling, new_data_tlp = 0, doing_tlp = 0;
|
|
int32_t do_a_prefetch;
|
|
int32_t prefetch_rsm = 0;
|
|
int force_tso = 0;
|
|
int32_t orig_len;
|
|
int32_t prefetch_so_done = 0;
|
|
struct tcp_log_buffer *lgb = NULL;
|
|
struct inpcb *inp;
|
|
struct sockbuf *sb;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6 = NULL;
|
|
int32_t isipv6;
|
|
#endif
|
|
uint8_t filled_all = 0;
|
|
bool hw_tls = false;
|
|
|
|
/* setup and take the cache hits here */
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
inp = rack->rc_inp;
|
|
so = inp->inp_socket;
|
|
sb = &so->so_snd;
|
|
kern_prefetch(sb, &do_a_prefetch);
|
|
do_a_prefetch = 1;
|
|
|
|
#ifdef KERN_TLS
|
|
hw_tls = (so->so_snd.sb_flags & SB_TLS_IFNET) != 0;
|
|
#endif
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
#ifdef TCP_OFFLOAD
|
|
if (tp->t_flags & TF_TOE)
|
|
return (tcp_offload_output(tp));
|
|
#endif
|
|
maxseg = ctf_fixed_maxseg(tp);
|
|
/*
|
|
* For TFO connections in SYN_RECEIVED, only allow the initial
|
|
* SYN|ACK and those sent by the retransmit timer.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
(tp->t_state == TCPS_SYN_RECEIVED) &&
|
|
SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN|ACK sent */
|
|
(rack->r_ctl.rc_resend == NULL)) /* not a retransmit */
|
|
return (0);
|
|
#ifdef INET6
|
|
if (rack->r_state) {
|
|
/* Use the cache line loaded if possible */
|
|
isipv6 = rack->r_is_v6;
|
|
} else {
|
|
isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
|
|
}
|
|
#endif
|
|
cts = tcp_ts_getticks();
|
|
if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) &&
|
|
inp->inp_in_hpts) {
|
|
/*
|
|
* We are on the hpts for some timer but not hptsi output.
|
|
* Remove from the hpts unconditionally.
|
|
*/
|
|
rack_timer_cancel(tp, rack, cts, __LINE__);
|
|
}
|
|
/* Mark that we have called rack_output(). */
|
|
if ((rack->r_timer_override) ||
|
|
(tp->t_flags & TF_FORCEDATA) ||
|
|
(tp->t_state < TCPS_ESTABLISHED)) {
|
|
if (tp->t_inpcb->inp_in_hpts)
|
|
tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT);
|
|
} else if (tp->t_inpcb->inp_in_hpts) {
|
|
/*
|
|
* On the hpts you can't pass even if ACKNOW is on, we will
|
|
* when the hpts fires.
|
|
*/
|
|
counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1);
|
|
return (0);
|
|
}
|
|
hpts_calling = inp->inp_hpts_calls;
|
|
inp->inp_hpts_calls = 0;
|
|
if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) {
|
|
if (rack_process_timers(tp, rack, cts, hpts_calling)) {
|
|
counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1);
|
|
return (0);
|
|
}
|
|
}
|
|
rack->r_wanted_output = 0;
|
|
rack->r_timer_override = 0;
|
|
/*
|
|
* For TFO connections in SYN_SENT or SYN_RECEIVED,
|
|
* only allow the initial SYN or SYN|ACK and those sent
|
|
* by the retransmit timer.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
((tp->t_state == TCPS_SYN_RECEIVED) ||
|
|
(tp->t_state == TCPS_SYN_SENT)) &&
|
|
SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */
|
|
(tp->t_rxtshift == 0)) /* not a retransmit */
|
|
return (0);
|
|
/*
|
|
* Determine length of data that should be transmitted, and flags
|
|
* that will be used. If there is some data or critical controls
|
|
* (SYN, RST) to send, then transmit; otherwise, investigate
|
|
* further.
|
|
*/
|
|
idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una);
|
|
if (tp->t_idle_reduce) {
|
|
if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
|
|
rack_cc_after_idle(tp);
|
|
}
|
|
tp->t_flags &= ~TF_LASTIDLE;
|
|
if (idle) {
|
|
if (tp->t_flags & TF_MORETOCOME) {
|
|
tp->t_flags |= TF_LASTIDLE;
|
|
idle = 0;
|
|
}
|
|
}
|
|
again:
|
|
/*
|
|
* If we've recently taken a timeout, snd_max will be greater than
|
|
* snd_nxt. There may be SACK information that allows us to avoid
|
|
* resending already delivered data. Adjust snd_nxt accordingly.
|
|
*/
|
|
sendalot = 0;
|
|
cts = tcp_ts_getticks();
|
|
tso = 0;
|
|
mtu = 0;
|
|
sb_offset = tp->snd_max - tp->snd_una;
|
|
sendwin = min(tp->snd_wnd, tp->snd_cwnd);
|
|
|
|
flags = tcp_outflags[tp->t_state];
|
|
while (rack->rc_free_cnt < rack_free_cache) {
|
|
rsm = rack_alloc(rack);
|
|
if (rsm == NULL) {
|
|
if (inp->inp_hpts_calls)
|
|
/* Retry in a ms */
|
|
slot = 1;
|
|
goto just_return_nolock;
|
|
}
|
|
TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext);
|
|
rack->rc_free_cnt++;
|
|
rsm = NULL;
|
|
}
|
|
if (inp->inp_hpts_calls)
|
|
inp->inp_hpts_calls = 0;
|
|
sack_rxmit = 0;
|
|
len = 0;
|
|
rsm = NULL;
|
|
if (flags & TH_RST) {
|
|
SOCKBUF_LOCK(sb);
|
|
goto send;
|
|
}
|
|
if (rack->r_ctl.rc_tlpsend) {
|
|
/* Tail loss probe */
|
|
long cwin;
|
|
long tlen;
|
|
|
|
doing_tlp = 1;
|
|
/*
|
|
* Check if we can do a TLP with a RACK'd packet
|
|
* this can happen if we are not doing the rack
|
|
* cheat and we skipped to a TLP and it
|
|
* went off.
|
|
*/
|
|
rsm = tcp_rack_output(tp, rack, cts);
|
|
if (rsm == NULL)
|
|
rsm = rack->r_ctl.rc_tlpsend;
|
|
rack->r_ctl.rc_tlpsend = NULL;
|
|
sack_rxmit = 1;
|
|
tlen = rsm->r_end - rsm->r_start;
|
|
if (tlen > ctf_fixed_maxseg(tp))
|
|
tlen = ctf_fixed_maxseg(tp);
|
|
KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
|
|
("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
|
|
__func__, __LINE__,
|
|
rsm->r_start, tp->snd_una, tp, rack, rsm));
|
|
sb_offset = rsm->r_start - tp->snd_una;
|
|
cwin = min(tp->snd_wnd, tlen);
|
|
len = cwin;
|
|
} else if (rack->r_ctl.rc_resend) {
|
|
/* Retransmit timer */
|
|
rsm = rack->r_ctl.rc_resend;
|
|
rack->r_ctl.rc_resend = NULL;
|
|
len = rsm->r_end - rsm->r_start;
|
|
sack_rxmit = 1;
|
|
sendalot = 0;
|
|
KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
|
|
("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
|
|
__func__, __LINE__,
|
|
rsm->r_start, tp->snd_una, tp, rack, rsm));
|
|
sb_offset = rsm->r_start - tp->snd_una;
|
|
if (len >= ctf_fixed_maxseg(tp)) {
|
|
len = ctf_fixed_maxseg(tp);
|
|
}
|
|
} else if ((rack->rc_in_persist == 0) &&
|
|
((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) {
|
|
int maxseg;
|
|
|
|
maxseg = ctf_fixed_maxseg(tp);
|
|
if ((!IN_RECOVERY(tp->t_flags)) &&
|
|
((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) {
|
|
/* Enter recovery if not induced by a time-out */
|
|
rack->r_ctl.rc_rsm_start = rsm->r_start;
|
|
rack->r_ctl.rc_cwnd_at = tp->snd_cwnd;
|
|
rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh;
|
|
rack_cong_signal(tp, NULL, CC_NDUPACK);
|
|
/*
|
|
* When we enter recovery we need to assure we send
|
|
* one packet.
|
|
*/
|
|
rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp);
|
|
rack_log_to_prr(rack, 13);
|
|
}
|
|
#ifdef INVARIANTS
|
|
if (SEQ_LT(rsm->r_start, tp->snd_una)) {
|
|
panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n",
|
|
tp, rack, rsm, rsm->r_start, tp->snd_una);
|
|
}
|
|
#endif
|
|
len = rsm->r_end - rsm->r_start;
|
|
KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start),
|
|
("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p",
|
|
__func__, __LINE__,
|
|
rsm->r_start, tp->snd_una, tp, rack, rsm));
|
|
sb_offset = rsm->r_start - tp->snd_una;
|
|
/* Can we send it within the PRR boundary? */
|
|
if ((rack->use_rack_cheat == 0) && (len > rack->r_ctl.rc_prr_sndcnt)) {
|
|
/* It does not fit */
|
|
if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) > len) &&
|
|
(rack->r_ctl.rc_prr_sndcnt < maxseg)) {
|
|
/*
|
|
* prr is less than a segment, we
|
|
* have more acks due in besides
|
|
* what we need to resend. Lets not send
|
|
* to avoid sending small pieces of
|
|
* what we need to retransmit.
|
|
*/
|
|
len = 0;
|
|
goto just_return_nolock;
|
|
}
|
|
len = rack->r_ctl.rc_prr_sndcnt;
|
|
}
|
|
sendalot = 0;
|
|
if (len >= maxseg) {
|
|
len = maxseg;
|
|
}
|
|
if (len > 0) {
|
|
sub_from_prr = 1;
|
|
sack_rxmit = 1;
|
|
TCPSTAT_INC(tcps_sack_rexmits);
|
|
TCPSTAT_ADD(tcps_sack_rexmit_bytes,
|
|
min(len, ctf_fixed_maxseg(tp)));
|
|
counter_u64_add(rack_rtm_prr_retran, 1);
|
|
}
|
|
}
|
|
/*
|
|
* Enforce a connection sendmap count limit if set
|
|
* as long as we are not retransmiting.
|
|
*/
|
|
if ((rsm == NULL) &&
|
|
(rack->do_detection == 0) &&
|
|
(rack_tcp_map_entries_limit > 0) &&
|
|
(rack->r_ctl.rc_num_maps_alloced >= rack_tcp_map_entries_limit)) {
|
|
counter_u64_add(rack_to_alloc_limited, 1);
|
|
if (!rack->alloc_limit_reported) {
|
|
rack->alloc_limit_reported = 1;
|
|
counter_u64_add(rack_alloc_limited_conns, 1);
|
|
}
|
|
goto just_return_nolock;
|
|
}
|
|
if (rsm && (rsm->r_flags & RACK_HAS_FIN)) {
|
|
/* we are retransmitting the fin */
|
|
len--;
|
|
if (len) {
|
|
/*
|
|
* When retransmitting data do *not* include the
|
|
* FIN. This could happen from a TLP probe.
|
|
*/
|
|
flags &= ~TH_FIN;
|
|
}
|
|
}
|
|
#ifdef INVARIANTS
|
|
/* For debugging */
|
|
rack->r_ctl.rc_rsm_at_retran = rsm;
|
|
#endif
|
|
/*
|
|
* Get standard flags, and add SYN or FIN if requested by 'hidden'
|
|
* state flags.
|
|
*/
|
|
if (tp->t_flags & TF_NEEDFIN)
|
|
flags |= TH_FIN;
|
|
if (tp->t_flags & TF_NEEDSYN)
|
|
flags |= TH_SYN;
|
|
if ((sack_rxmit == 0) && (prefetch_rsm == 0)) {
|
|
void *end_rsm;
|
|
end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext);
|
|
if (end_rsm)
|
|
kern_prefetch(end_rsm, &prefetch_rsm);
|
|
prefetch_rsm = 1;
|
|
}
|
|
SOCKBUF_LOCK(sb);
|
|
/*
|
|
* If in persist timeout with window of 0, send 1 byte. Otherwise,
|
|
* if window is small but nonzero and time TF_SENTFIN expired, we
|
|
* will send what we can and go to transmit state.
|
|
*/
|
|
if (tp->t_flags & TF_FORCEDATA) {
|
|
if (sendwin == 0) {
|
|
/*
|
|
* If we still have some data to send, then clear
|
|
* the FIN bit. Usually this would happen below
|
|
* when it realizes that we aren't sending all the
|
|
* data. However, if we have exactly 1 byte of
|
|
* unsent data, then it won't clear the FIN bit
|
|
* below, and if we are in persist state, we wind up
|
|
* sending the packet without recording that we sent
|
|
* the FIN bit.
|
|
*
|
|
* We can't just blindly clear the FIN bit, because
|
|
* if we don't have any more data to send then the
|
|
* probe will be the FIN itself.
|
|
*/
|
|
if (sb_offset < sbused(sb))
|
|
flags &= ~TH_FIN;
|
|
sendwin = 1;
|
|
} else {
|
|
if ((rack->rc_in_persist != 0) &&
|
|
(tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2),
|
|
rack->r_ctl.rc_pace_min_segs)))
|
|
rack_exit_persist(tp, rack);
|
|
/*
|
|
* If we are dropping persist mode then we need to
|
|
* correct snd_nxt/snd_max and off.
|
|
*/
|
|
tp->snd_nxt = tp->snd_max;
|
|
sb_offset = tp->snd_nxt - tp->snd_una;
|
|
}
|
|
}
|
|
/*
|
|
* If snd_nxt == snd_max and we have transmitted a FIN, the
|
|
* sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a
|
|
* negative length. This can also occur when TCP opens up its
|
|
* congestion window while receiving additional duplicate acks after
|
|
* fast-retransmit because TCP will reset snd_nxt to snd_max after
|
|
* the fast-retransmit.
|
|
*
|
|
* In the normal retransmit-FIN-only case, however, snd_nxt will be
|
|
* set to snd_una, the sb_offset will be 0, and the length may wind
|
|
* up 0.
|
|
*
|
|
* If sack_rxmit is true we are retransmitting from the scoreboard
|
|
* in which case len is already set.
|
|
*/
|
|
if (sack_rxmit == 0) {
|
|
uint32_t avail;
|
|
|
|
avail = sbavail(sb);
|
|
if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail)
|
|
sb_offset = tp->snd_nxt - tp->snd_una;
|
|
else
|
|
sb_offset = 0;
|
|
if (IN_RECOVERY(tp->t_flags) == 0) {
|
|
if (rack->r_ctl.rc_tlp_new_data) {
|
|
/* TLP is forcing out new data */
|
|
if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) {
|
|
rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset);
|
|
}
|
|
if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd)
|
|
len = tp->snd_wnd;
|
|
else
|
|
len = rack->r_ctl.rc_tlp_new_data;
|
|
rack->r_ctl.rc_tlp_new_data = 0;
|
|
new_data_tlp = doing_tlp = 1;
|
|
} else {
|
|
if (sendwin > avail) {
|
|
/* use the available */
|
|
if (avail > sb_offset) {
|
|
len = (int32_t)(avail - sb_offset);
|
|
} else {
|
|
len = 0;
|
|
}
|
|
} else {
|
|
if (sendwin > sb_offset) {
|
|
len = (int32_t)(sendwin - sb_offset);
|
|
} else {
|
|
len = 0;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
uint32_t outstanding;
|
|
|
|
/*
|
|
* We are inside of a SACK recovery episode and are
|
|
* sending new data, having retransmitted all the
|
|
* data possible so far in the scoreboard.
|
|
*/
|
|
outstanding = tp->snd_max - tp->snd_una;
|
|
if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) {
|
|
if (tp->snd_wnd > outstanding) {
|
|
len = tp->snd_wnd - outstanding;
|
|
/* Check to see if we have the data */
|
|
if (((sb_offset + len) > avail) &&
|
|
(avail > sb_offset))
|
|
len = avail - sb_offset;
|
|
else
|
|
len = 0;
|
|
} else
|
|
len = 0;
|
|
} else if (avail > sb_offset)
|
|
len = avail - sb_offset;
|
|
else
|
|
len = 0;
|
|
if (len > 0) {
|
|
if (len > rack->r_ctl.rc_prr_sndcnt)
|
|
len = rack->r_ctl.rc_prr_sndcnt;
|
|
if (len > 0) {
|
|
sub_from_prr = 1;
|
|
counter_u64_add(rack_rtm_prr_newdata, 1);
|
|
}
|
|
}
|
|
if (len > ctf_fixed_maxseg(tp)) {
|
|
/*
|
|
* We should never send more than a MSS when
|
|
* retransmitting or sending new data in prr
|
|
* mode unless the override flag is on. Most
|
|
* likely the PRR algorithm is not going to
|
|
* let us send a lot as well :-)
|
|
*/
|
|
if (rack->r_ctl.rc_prr_sendalot == 0)
|
|
len = ctf_fixed_maxseg(tp);
|
|
} else if (len < ctf_fixed_maxseg(tp)) {
|
|
/*
|
|
* Do we send any? The idea here is if the
|
|
* send empty's the socket buffer we want to
|
|
* do it. However if not then lets just wait
|
|
* for our prr_sndcnt to get bigger.
|
|
*/
|
|
long leftinsb;
|
|
|
|
leftinsb = sbavail(sb) - sb_offset;
|
|
if (leftinsb > len) {
|
|
/* This send does not empty the sb */
|
|
len = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (prefetch_so_done == 0) {
|
|
kern_prefetch(so, &prefetch_so_done);
|
|
prefetch_so_done = 1;
|
|
}
|
|
/*
|
|
* Lop off SYN bit if it has already been sent. However, if this is
|
|
* SYN-SENT state and if segment contains data and if we don't know
|
|
* that foreign host supports TAO, suppress sending segment.
|
|
*/
|
|
if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) &&
|
|
((sack_rxmit == 0) && (tp->t_rxtshift == 0))) {
|
|
if (tp->t_state != TCPS_SYN_RECEIVED)
|
|
flags &= ~TH_SYN;
|
|
/*
|
|
* When sending additional segments following a TFO SYN|ACK,
|
|
* do not include the SYN bit.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
(tp->t_state == TCPS_SYN_RECEIVED))
|
|
flags &= ~TH_SYN;
|
|
sb_offset--, len++;
|
|
}
|
|
/*
|
|
* Be careful not to send data and/or FIN on SYN segments. This
|
|
* measure is needed to prevent interoperability problems with not
|
|
* fully conformant TCP implementations.
|
|
*/
|
|
if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) {
|
|
len = 0;
|
|
flags &= ~TH_FIN;
|
|
}
|
|
/*
|
|
* On TFO sockets, ensure no data is sent in the following cases:
|
|
*
|
|
* - When retransmitting SYN|ACK on a passively-created socket
|
|
*
|
|
* - When retransmitting SYN on an actively created socket
|
|
*
|
|
* - When sending a zero-length cookie (cookie request) on an
|
|
* actively created socket
|
|
*
|
|
* - When the socket is in the CLOSED state (RST is being sent)
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
(((flags & TH_SYN) && (tp->t_rxtshift > 0)) ||
|
|
((tp->t_state == TCPS_SYN_SENT) &&
|
|
(tp->t_tfo_client_cookie_len == 0)) ||
|
|
(flags & TH_RST))) {
|
|
sack_rxmit = 0;
|
|
len = 0;
|
|
}
|
|
/* Without fast-open there should never be data sent on a SYN */
|
|
if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags)))
|
|
len = 0;
|
|
orig_len = len;
|
|
if (len <= 0) {
|
|
/*
|
|
* If FIN has been sent but not acked, but we haven't been
|
|
* called to retransmit, len will be < 0. Otherwise, window
|
|
* shrank after we sent into it. If window shrank to 0,
|
|
* cancel pending retransmit, pull snd_nxt back to (closed)
|
|
* window, and set the persist timer if it isn't already
|
|
* going. If the window didn't close completely, just wait
|
|
* for an ACK.
|
|
*
|
|
* We also do a general check here to ensure that we will
|
|
* set the persist timer when we have data to send, but a
|
|
* 0-byte window. This makes sure the persist timer is set
|
|
* even if the packet hits one of the "goto send" lines
|
|
* below.
|
|
*/
|
|
len = 0;
|
|
if ((tp->snd_wnd == 0) &&
|
|
(TCPS_HAVEESTABLISHED(tp->t_state)) &&
|
|
(tp->snd_una == tp->snd_max) &&
|
|
(sb_offset < (int)sbavail(sb))) {
|
|
tp->snd_nxt = tp->snd_una;
|
|
rack_enter_persist(tp, rack, cts);
|
|
}
|
|
} else if ((rsm == NULL) &&
|
|
((doing_tlp == 0) || (new_data_tlp == 1)) &&
|
|
(len < rack->r_ctl.rc_pace_max_segs)) {
|
|
/*
|
|
* We are not sending a full segment for
|
|
* some reason. Should we not send anything (think
|
|
* sws or persists)?
|
|
*/
|
|
if ((tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
|
|
(TCPS_HAVEESTABLISHED(tp->t_state)) &&
|
|
(len < (int)(sbavail(sb) - sb_offset))) {
|
|
/*
|
|
* Here the rwnd is less than
|
|
* the pacing size, this is not a retransmit,
|
|
* we are established and
|
|
* the send is not the last in the socket buffer
|
|
* we send nothing, and may enter persists.
|
|
*/
|
|
len = 0;
|
|
if (tp->snd_max == tp->snd_una) {
|
|
/*
|
|
* Nothing out we can
|
|
* go into persists.
|
|
*/
|
|
rack_enter_persist(tp, rack, cts);
|
|
tp->snd_nxt = tp->snd_una;
|
|
}
|
|
} else if ((tp->snd_cwnd >= max(rack->r_ctl.rc_pace_min_segs, (maxseg * 4))) &&
|
|
(ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
|
|
(len < (int)(sbavail(sb) - sb_offset)) &&
|
|
(len < rack->r_ctl.rc_pace_min_segs)) {
|
|
/*
|
|
* Here we are not retransmitting, and
|
|
* the cwnd is not so small that we could
|
|
* not send at least a min size (rxt timer
|
|
* not having gone off), We have 2 segments or
|
|
* more already in flight, its not the tail end
|
|
* of the socket buffer and the cwnd is blocking
|
|
* us from sending out a minimum pacing segment size.
|
|
* Lets not send anything.
|
|
*/
|
|
len = 0;
|
|
} else if (((tp->snd_wnd - ctf_outstanding(tp)) <
|
|
min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) &&
|
|
(ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * maxseg)) &&
|
|
(len < (int)(sbavail(sb) - sb_offset)) &&
|
|
(TCPS_HAVEESTABLISHED(tp->t_state))) {
|
|
/*
|
|
* Here we have a send window but we have
|
|
* filled it up and we can't send another pacing segment.
|
|
* We also have in flight more than 2 segments
|
|
* and we are not completing the sb i.e. we allow
|
|
* the last bytes of the sb to go out even if
|
|
* its not a full pacing segment.
|
|
*/
|
|
len = 0;
|
|
}
|
|
}
|
|
/* len will be >= 0 after this point. */
|
|
KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
|
|
tcp_sndbuf_autoscale(tp, so, sendwin);
|
|
/*
|
|
* Decide if we can use TCP Segmentation Offloading (if supported by
|
|
* hardware).
|
|
*
|
|
* TSO may only be used if we are in a pure bulk sending state. The
|
|
* presence of TCP-MD5, SACK retransmits, SACK advertizements and IP
|
|
* options prevent using TSO. With TSO the TCP header is the same
|
|
* (except for the sequence number) for all generated packets. This
|
|
* makes it impossible to transmit any options which vary per
|
|
* generated segment or packet.
|
|
*
|
|
* IPv4 handling has a clear separation of ip options and ip header
|
|
* flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does
|
|
* the right thing below to provide length of just ip options and thus
|
|
* checking for ipoptlen is enough to decide if ip options are present.
|
|
*/
|
|
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
ipoptlen = ip6_optlen(tp->t_inpcb);
|
|
else
|
|
#endif
|
|
if (tp->t_inpcb->inp_options)
|
|
ipoptlen = tp->t_inpcb->inp_options->m_len -
|
|
offsetof(struct ipoption, ipopt_list);
|
|
else
|
|
ipoptlen = 0;
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
/*
|
|
* Pre-calculate here as we save another lookup into the darknesses
|
|
* of IPsec that way and can actually decide if TSO is ok.
|
|
*/
|
|
#ifdef INET6
|
|
if (isipv6 && IPSEC_ENABLED(ipv6))
|
|
ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb);
|
|
#ifdef INET
|
|
else
|
|
#endif
|
|
#endif /* INET6 */
|
|
#ifdef INET
|
|
if (IPSEC_ENABLED(ipv4))
|
|
ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb);
|
|
#endif /* INET */
|
|
#endif
|
|
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
ipoptlen += ipsec_optlen;
|
|
#endif
|
|
if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > ctf_fixed_maxseg(tp) &&
|
|
(tp->t_port == 0) &&
|
|
((tp->t_flags & TF_SIGNATURE) == 0) &&
|
|
tp->rcv_numsacks == 0 && sack_rxmit == 0 &&
|
|
ipoptlen == 0)
|
|
tso = 1;
|
|
{
|
|
uint32_t outstanding;
|
|
|
|
outstanding = tp->snd_max - tp->snd_una;
|
|
if (tp->t_flags & TF_SENTFIN) {
|
|
/*
|
|
* If we sent a fin, snd_max is 1 higher than
|
|
* snd_una
|
|
*/
|
|
outstanding--;
|
|
}
|
|
if (sack_rxmit) {
|
|
if ((rsm->r_flags & RACK_HAS_FIN) == 0)
|
|
flags &= ~TH_FIN;
|
|
} else {
|
|
if (SEQ_LT(tp->snd_nxt + len, tp->snd_una +
|
|
sbused(sb)))
|
|
flags &= ~TH_FIN;
|
|
}
|
|
}
|
|
recwin = sbspace(&so->so_rcv);
|
|
|
|
/*
|
|
* Sender silly window avoidance. We transmit under the following
|
|
* conditions when len is non-zero:
|
|
*
|
|
* - We have a full segment (or more with TSO) - This is the last
|
|
* buffer in a write()/send() and we are either idle or running
|
|
* NODELAY - we've timed out (e.g. persist timer) - we have more
|
|
* then 1/2 the maximum send window's worth of data (receiver may be
|
|
* limited the window size) - we need to retransmit
|
|
*/
|
|
if (len) {
|
|
if (len >= ctf_fixed_maxseg(tp)) {
|
|
pass = 1;
|
|
goto send;
|
|
}
|
|
/*
|
|
* NOTE! on localhost connections an 'ack' from the remote
|
|
* end may occur synchronously with the output and cause us
|
|
* to flush a buffer queued with moretocome. XXX
|
|
*
|
|
*/
|
|
if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */
|
|
(idle || (tp->t_flags & TF_NODELAY)) &&
|
|
((uint32_t)len + (uint32_t)sb_offset >= sbavail(&so->so_snd)) &&
|
|
(tp->t_flags & TF_NOPUSH) == 0) {
|
|
pass = 2;
|
|
goto send;
|
|
}
|
|
if (tp->t_flags & TF_FORCEDATA) { /* typ. timeout case */
|
|
pass = 3;
|
|
goto send;
|
|
}
|
|
if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */
|
|
goto send;
|
|
}
|
|
if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) {
|
|
pass = 4;
|
|
goto send;
|
|
}
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */
|
|
pass = 5;
|
|
goto send;
|
|
}
|
|
if (sack_rxmit) {
|
|
pass = 6;
|
|
goto send;
|
|
}
|
|
}
|
|
/*
|
|
* Sending of standalone window updates.
|
|
*
|
|
* Window updates are important when we close our window due to a
|
|
* full socket buffer and are opening it again after the application
|
|
* reads data from it. Once the window has opened again and the
|
|
* remote end starts to send again the ACK clock takes over and
|
|
* provides the most current window information.
|
|
*
|
|
* We must avoid the silly window syndrome whereas every read from
|
|
* the receive buffer, no matter how small, causes a window update
|
|
* to be sent. We also should avoid sending a flurry of window
|
|
* updates when the socket buffer had queued a lot of data and the
|
|
* application is doing small reads.
|
|
*
|
|
* Prevent a flurry of pointless window updates by only sending an
|
|
* update when we can increase the advertized window by more than
|
|
* 1/4th of the socket buffer capacity. When the buffer is getting
|
|
* full or is very small be more aggressive and send an update
|
|
* whenever we can increase by two mss sized segments. In all other
|
|
* situations the ACK's to new incoming data will carry further
|
|
* window increases.
|
|
*
|
|
* Don't send an independent window update if a delayed ACK is
|
|
* pending (it will get piggy-backed on it) or the remote side
|
|
* already has done a half-close and won't send more data. Skip
|
|
* this if the connection is in T/TCP half-open state.
|
|
*/
|
|
if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) &&
|
|
!(tp->t_flags & TF_DELACK) &&
|
|
!TCPS_HAVERCVDFIN(tp->t_state)) {
|
|
/*
|
|
* "adv" is the amount we could increase the window, taking
|
|
* into account that we are limited by TCP_MAXWIN <<
|
|
* tp->rcv_scale.
|
|
*/
|
|
int32_t adv;
|
|
int oldwin;
|
|
|
|
adv = min(recwin, (long)TCP_MAXWIN << tp->rcv_scale);
|
|
if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) {
|
|
oldwin = (tp->rcv_adv - tp->rcv_nxt);
|
|
adv -= oldwin;
|
|
} else
|
|
oldwin = 0;
|
|
|
|
/*
|
|
* If the new window size ends up being the same as the old
|
|
* size when it is scaled, then don't force a window update.
|
|
*/
|
|
if (oldwin >> tp->rcv_scale == (adv + oldwin) >> tp->rcv_scale)
|
|
goto dontupdate;
|
|
|
|
if (adv >= (int32_t)(2 * ctf_fixed_maxseg(tp)) &&
|
|
(adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) ||
|
|
recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) ||
|
|
so->so_rcv.sb_hiwat <= 8 * ctf_fixed_maxseg(tp))) {
|
|
pass = 7;
|
|
goto send;
|
|
}
|
|
if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat)
|
|
goto send;
|
|
}
|
|
dontupdate:
|
|
|
|
/*
|
|
* Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW
|
|
* is also a catch-all for the retransmit timer timeout case.
|
|
*/
|
|
if (tp->t_flags & TF_ACKNOW) {
|
|
pass = 8;
|
|
goto send;
|
|
}
|
|
if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) {
|
|
pass = 9;
|
|
goto send;
|
|
}
|
|
if (SEQ_GT(tp->snd_up, tp->snd_una)) {
|
|
pass = 10;
|
|
goto send;
|
|
}
|
|
/*
|
|
* If our state indicates that FIN should be sent and we have not
|
|
* yet done so, then we need to send.
|
|
*/
|
|
if ((flags & TH_FIN) &&
|
|
(tp->snd_nxt == tp->snd_una)) {
|
|
pass = 11;
|
|
goto send;
|
|
}
|
|
/*
|
|
* No reason to send a segment, just return.
|
|
*/
|
|
just_return:
|
|
SOCKBUF_UNLOCK(sb);
|
|
just_return_nolock:
|
|
if (tot_len_this_send == 0)
|
|
counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1);
|
|
if (slot) {
|
|
/* set the rack tcb into the slot N */
|
|
counter_u64_add(rack_paced_segments, 1);
|
|
} else if (tot_len_this_send) {
|
|
counter_u64_add(rack_unpaced_segments, 1);
|
|
}
|
|
/* Check if we need to go into persists or not */
|
|
if ((rack->rc_in_persist == 0) &&
|
|
(tp->snd_max == tp->snd_una) &&
|
|
TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
sbavail(&tp->t_inpcb->inp_socket->so_snd) &&
|
|
(sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd) &&
|
|
(tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs))) {
|
|
/* Yes lets make sure to move to persist before timer-start */
|
|
rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime);
|
|
}
|
|
rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack);
|
|
rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling);
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
return (0);
|
|
|
|
send:
|
|
if ((flags & TH_FIN) &&
|
|
sbavail(&tp->t_inpcb->inp_socket->so_snd)) {
|
|
/*
|
|
* We do not transmit a FIN
|
|
* with data outstanding. We
|
|
* need to make it so all data
|
|
* is acked first.
|
|
*/
|
|
flags &= ~TH_FIN;
|
|
}
|
|
if (doing_tlp == 0) {
|
|
/*
|
|
* Data not a TLP, and its not the rxt firing. If it is the
|
|
* rxt firing, we want to leave the tlp_in_progress flag on
|
|
* so we don't send another TLP. It has to be a rack timer
|
|
* or normal send (response to acked data) to clear the tlp
|
|
* in progress flag.
|
|
*/
|
|
rack->rc_tlp_in_progress = 0;
|
|
}
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
if (len > 0) {
|
|
if (len >= ctf_fixed_maxseg(tp))
|
|
tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT;
|
|
else
|
|
tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT;
|
|
}
|
|
/*
|
|
* Before ESTABLISHED, force sending of initial options unless TCP
|
|
* set not to do any options. NOTE: we assume that the IP/TCP header
|
|
* plus TCP options always fit in a single mbuf, leaving room for a
|
|
* maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr)
|
|
* + optlen <= MCLBYTES
|
|
*/
|
|
optlen = 0;
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
|
|
else
|
|
#endif
|
|
hdrlen = sizeof(struct tcpiphdr);
|
|
|
|
/*
|
|
* Compute options for segment. We only have to care about SYN and
|
|
* established connection segments. Options for SYN-ACK segments
|
|
* are handled in TCP syncache.
|
|
*/
|
|
to.to_flags = 0;
|
|
if ((tp->t_flags & TF_NOOPT) == 0) {
|
|
/* Maximum segment size. */
|
|
if (flags & TH_SYN) {
|
|
tp->snd_nxt = tp->iss;
|
|
to.to_mss = tcp_mssopt(&inp->inp_inc);
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port)
|
|
to.to_mss -= V_tcp_udp_tunneling_overhead;
|
|
#endif
|
|
to.to_flags |= TOF_MSS;
|
|
|
|
/*
|
|
* On SYN or SYN|ACK transmits on TFO connections,
|
|
* only include the TFO option if it is not a
|
|
* retransmit, as the presence of the TFO option may
|
|
* have caused the original SYN or SYN|ACK to have
|
|
* been dropped by a middlebox.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) &&
|
|
(tp->t_rxtshift == 0)) {
|
|
if (tp->t_state == TCPS_SYN_RECEIVED) {
|
|
to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
|
|
to.to_tfo_cookie =
|
|
(u_int8_t *)&tp->t_tfo_cookie.server;
|
|
to.to_flags |= TOF_FASTOPEN;
|
|
wanted_cookie = 1;
|
|
} else if (tp->t_state == TCPS_SYN_SENT) {
|
|
to.to_tfo_len =
|
|
tp->t_tfo_client_cookie_len;
|
|
to.to_tfo_cookie =
|
|
tp->t_tfo_cookie.client;
|
|
to.to_flags |= TOF_FASTOPEN;
|
|
wanted_cookie = 1;
|
|
/*
|
|
* If we wind up having more data to
|
|
* send with the SYN than can fit in
|
|
* one segment, don't send any more
|
|
* until the SYN|ACK comes back from
|
|
* the other end.
|
|
*/
|
|
sendalot = 0;
|
|
}
|
|
}
|
|
}
|
|
/* Window scaling. */
|
|
if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) {
|
|
to.to_wscale = tp->request_r_scale;
|
|
to.to_flags |= TOF_SCALE;
|
|
}
|
|
/* Timestamps. */
|
|
if ((tp->t_flags & TF_RCVD_TSTMP) ||
|
|
((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) {
|
|
to.to_tsval = cts + tp->ts_offset;
|
|
to.to_tsecr = tp->ts_recent;
|
|
to.to_flags |= TOF_TS;
|
|
}
|
|
/* Set receive buffer autosizing timestamp. */
|
|
if (tp->rfbuf_ts == 0 &&
|
|
(so->so_rcv.sb_flags & SB_AUTOSIZE))
|
|
tp->rfbuf_ts = tcp_ts_getticks();
|
|
/* Selective ACK's. */
|
|
if (flags & TH_SYN)
|
|
to.to_flags |= TOF_SACKPERM;
|
|
else if (TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
tp->rcv_numsacks > 0) {
|
|
to.to_flags |= TOF_SACK;
|
|
to.to_nsacks = tp->rcv_numsacks;
|
|
to.to_sacks = (u_char *)tp->sackblks;
|
|
}
|
|
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
|
|
/* TCP-MD5 (RFC2385). */
|
|
if (tp->t_flags & TF_SIGNATURE)
|
|
to.to_flags |= TOF_SIGNATURE;
|
|
#endif /* TCP_SIGNATURE */
|
|
|
|
/* Processing the options. */
|
|
hdrlen += optlen = tcp_addoptions(&to, opt);
|
|
/*
|
|
* If we wanted a TFO option to be added, but it was unable
|
|
* to fit, ensure no data is sent.
|
|
*/
|
|
if (IS_FASTOPEN(tp->t_flags) && wanted_cookie &&
|
|
!(to.to_flags & TOF_FASTOPEN))
|
|
len = 0;
|
|
}
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port) {
|
|
if (V_tcp_udp_tunneling_port == 0) {
|
|
/* The port was removed?? */
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (EHOSTUNREACH);
|
|
}
|
|
hdrlen += sizeof(struct udphdr);
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
ipoptlen = ip6_optlen(tp->t_inpcb);
|
|
else
|
|
#endif
|
|
if (tp->t_inpcb->inp_options)
|
|
ipoptlen = tp->t_inpcb->inp_options->m_len -
|
|
offsetof(struct ipoption, ipopt_list);
|
|
else
|
|
ipoptlen = 0;
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
ipoptlen += ipsec_optlen;
|
|
#endif
|
|
|
|
#ifdef KERN_TLS
|
|
/* force TSO for so TLS offload can get mss */
|
|
if (sb->sb_flags & SB_TLS_IFNET) {
|
|
force_tso = 1;
|
|
}
|
|
#endif
|
|
/*
|
|
* Adjust data length if insertion of options will bump the packet
|
|
* length beyond the t_maxseg length. Clear the FIN bit because we
|
|
* cut off the tail of the segment.
|
|
*/
|
|
if (len + optlen + ipoptlen > tp->t_maxseg) {
|
|
if (tso) {
|
|
uint32_t if_hw_tsomax;
|
|
uint32_t moff;
|
|
int32_t max_len;
|
|
|
|
/* extract TSO information */
|
|
if_hw_tsomax = tp->t_tsomax;
|
|
if_hw_tsomaxsegcount = tp->t_tsomaxsegcount;
|
|
if_hw_tsomaxsegsize = tp->t_tsomaxsegsize;
|
|
KASSERT(ipoptlen == 0,
|
|
("%s: TSO can't do IP options", __func__));
|
|
|
|
/*
|
|
* Check if we should limit by maximum payload
|
|
* length:
|
|
*/
|
|
if (if_hw_tsomax != 0) {
|
|
/* compute maximum TSO length */
|
|
max_len = (if_hw_tsomax - hdrlen -
|
|
max_linkhdr);
|
|
if (max_len <= 0) {
|
|
len = 0;
|
|
} else if (len > max_len) {
|
|
sendalot = 1;
|
|
len = max_len;
|
|
}
|
|
}
|
|
/*
|
|
* Prevent the last segment from being fractional
|
|
* unless the send sockbuf can be emptied:
|
|
*/
|
|
max_len = (tp->t_maxseg - optlen);
|
|
if (((sb_offset + len) < sbavail(sb)) &&
|
|
(hw_tls == 0)) {
|
|
moff = len % (u_int)max_len;
|
|
if (moff != 0) {
|
|
len -= moff;
|
|
sendalot = 1;
|
|
}
|
|
}
|
|
/*
|
|
* In case there are too many small fragments don't
|
|
* use TSO:
|
|
*/
|
|
if (len <= maxseg) {
|
|
len = max_len;
|
|
sendalot = 1;
|
|
tso = 0;
|
|
}
|
|
/*
|
|
* Send the FIN in a separate segment after the bulk
|
|
* sending is done. We don't trust the TSO
|
|
* implementations to clear the FIN flag on all but
|
|
* the last segment.
|
|
*/
|
|
if (tp->t_flags & TF_NEEDFIN)
|
|
sendalot = 1;
|
|
|
|
} else {
|
|
if (optlen + ipoptlen >= tp->t_maxseg) {
|
|
/*
|
|
* Since we don't have enough space to put
|
|
* the IP header chain and the TCP header in
|
|
* one packet as required by RFC 7112, don't
|
|
* send it. Also ensure that at least one
|
|
* byte of the payload can be put into the
|
|
* TCP segment.
|
|
*/
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
error = EMSGSIZE;
|
|
sack_rxmit = 0;
|
|
goto out;
|
|
}
|
|
len = tp->t_maxseg - optlen - ipoptlen;
|
|
sendalot = 1;
|
|
}
|
|
} else
|
|
tso = 0;
|
|
KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET,
|
|
("%s: len > IP_MAXPACKET", __func__));
|
|
#ifdef DIAGNOSTIC
|
|
#ifdef INET6
|
|
if (max_linkhdr + hdrlen > MCLBYTES)
|
|
#else
|
|
if (max_linkhdr + hdrlen > MHLEN)
|
|
#endif
|
|
panic("tcphdr too big");
|
|
#endif
|
|
|
|
/*
|
|
* This KASSERT is here to catch edge cases at a well defined place.
|
|
* Before, those had triggered (random) panic conditions further
|
|
* down.
|
|
*/
|
|
KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__));
|
|
if ((len == 0) &&
|
|
(flags & TH_FIN) &&
|
|
(sbused(sb))) {
|
|
/*
|
|
* We have outstanding data, don't send a fin by itself!.
|
|
*/
|
|
goto just_return;
|
|
}
|
|
/*
|
|
* Grab a header mbuf, attaching a copy of data to be transmitted,
|
|
* and initialize the header from the template for sends on this
|
|
* connection.
|
|
*/
|
|
if (len) {
|
|
uint32_t max_val;
|
|
uint32_t moff;
|
|
|
|
if (rack->rc_pace_max_segs)
|
|
max_val = rack->rc_pace_max_segs * ctf_fixed_maxseg(tp);
|
|
else
|
|
max_val = len;
|
|
if (rack->r_ctl.rc_pace_max_segs < max_val)
|
|
max_val = rack->r_ctl.rc_pace_max_segs;
|
|
/*
|
|
* We allow a limit on sending with hptsi.
|
|
*/
|
|
if (len > max_val) {
|
|
len = max_val;
|
|
}
|
|
#ifdef INET6
|
|
if (MHLEN < hdrlen + max_linkhdr)
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
else
|
|
#endif
|
|
m = m_gethdr(M_NOWAIT, MT_DATA);
|
|
|
|
if (m == NULL) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
error = ENOBUFS;
|
|
sack_rxmit = 0;
|
|
goto out;
|
|
}
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = hdrlen;
|
|
|
|
/*
|
|
* Start the m_copy functions from the closest mbuf to the
|
|
* sb_offset in the socket buffer chain.
|
|
*/
|
|
mb = sbsndptr_noadv(sb, sb_offset, &moff);
|
|
if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) {
|
|
m_copydata(mb, moff, (int)len,
|
|
mtod(m, caddr_t)+hdrlen);
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_max))
|
|
sbsndptr_adv(sb, mb, len);
|
|
m->m_len += len;
|
|
} else {
|
|
struct sockbuf *msb;
|
|
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_max))
|
|
msb = NULL;
|
|
else
|
|
msb = sb;
|
|
m->m_next = tcp_m_copym(
|
|
#ifdef NETFLIX_COPY_ARGS
|
|
tp,
|
|
#endif
|
|
mb, moff, &len,
|
|
if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb,
|
|
((rsm == NULL) ? hw_tls : 0)
|
|
#ifdef NETFLIX_COPY_ARGS
|
|
, &filled_all
|
|
#endif
|
|
);
|
|
if (len <= (tp->t_maxseg - optlen)) {
|
|
/*
|
|
* Must have ran out of mbufs for the copy
|
|
* shorten it to no longer need tso. Lets
|
|
* not put on sendalot since we are low on
|
|
* mbufs.
|
|
*/
|
|
tso = 0;
|
|
}
|
|
if (m->m_next == NULL) {
|
|
SOCKBUF_UNLOCK(sb);
|
|
(void)m_free(m);
|
|
error = ENOBUFS;
|
|
sack_rxmit = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
if ((tp->t_flags & TF_FORCEDATA) && len == 1) {
|
|
TCPSTAT_INC(tcps_sndprobe);
|
|
#ifdef NETFLIX_STATS
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_max))
|
|
stats_voi_update_abs_u32(tp->t_stats,
|
|
VOI_TCP_RETXPB, len);
|
|
else
|
|
stats_voi_update_abs_u64(tp->t_stats,
|
|
VOI_TCP_TXPB, len);
|
|
#endif
|
|
} else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) {
|
|
if (rsm && (rsm->r_flags & RACK_TLP)) {
|
|
/*
|
|
* TLP should not count in retran count, but
|
|
* in its own bin
|
|
*/
|
|
counter_u64_add(rack_tlp_retran, 1);
|
|
counter_u64_add(rack_tlp_retran_bytes, len);
|
|
} else {
|
|
tp->t_sndrexmitpack++;
|
|
TCPSTAT_INC(tcps_sndrexmitpack);
|
|
TCPSTAT_ADD(tcps_sndrexmitbyte, len);
|
|
}
|
|
#ifdef NETFLIX_STATS
|
|
stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB,
|
|
len);
|
|
#endif
|
|
} else {
|
|
TCPSTAT_INC(tcps_sndpack);
|
|
TCPSTAT_ADD(tcps_sndbyte, len);
|
|
#ifdef NETFLIX_STATS
|
|
stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB,
|
|
len);
|
|
#endif
|
|
}
|
|
/*
|
|
* If we're sending everything we've got, set PUSH. (This
|
|
* will keep happy those implementations which only give
|
|
* data to the user when a buffer fills or a PUSH comes in.)
|
|
*/
|
|
if (sb_offset + len == sbused(sb) &&
|
|
sbused(sb) &&
|
|
!(flags & TH_SYN))
|
|
flags |= TH_PUSH;
|
|
|
|
/*
|
|
* Are we doing pacing, if so we must calculate the slot. We
|
|
* only do hptsi in ESTABLISHED and with no RESET being
|
|
* sent where we have data to send.
|
|
*/
|
|
if (((tp->t_state == TCPS_ESTABLISHED) ||
|
|
(tp->t_state == TCPS_CLOSE_WAIT) ||
|
|
((tp->t_state == TCPS_FIN_WAIT_1) &&
|
|
((tp->t_flags & TF_SENTFIN) == 0) &&
|
|
((flags & TH_FIN) == 0))) &&
|
|
((flags & TH_RST) == 0)) {
|
|
/* Get our pacing rate */
|
|
tot_len_this_send += len;
|
|
slot = rack_get_pacing_delay(rack, tp, tot_len_this_send);
|
|
}
|
|
SOCKBUF_UNLOCK(sb);
|
|
} else {
|
|
SOCKBUF_UNLOCK(sb);
|
|
if (tp->t_flags & TF_ACKNOW)
|
|
TCPSTAT_INC(tcps_sndacks);
|
|
else if (flags & (TH_SYN | TH_FIN | TH_RST))
|
|
TCPSTAT_INC(tcps_sndctrl);
|
|
else if (SEQ_GT(tp->snd_up, tp->snd_una))
|
|
TCPSTAT_INC(tcps_sndurg);
|
|
else
|
|
TCPSTAT_INC(tcps_sndwinup);
|
|
|
|
m = m_gethdr(M_NOWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
sack_rxmit = 0;
|
|
goto out;
|
|
}
|
|
#ifdef INET6
|
|
if (isipv6 && (MHLEN < hdrlen + max_linkhdr) &&
|
|
MHLEN >= hdrlen) {
|
|
M_ALIGN(m, hdrlen);
|
|
} else
|
|
#endif
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = hdrlen;
|
|
}
|
|
SOCKBUF_UNLOCK_ASSERT(sb);
|
|
m->m_pkthdr.rcvif = (struct ifnet *)0;
|
|
#ifdef MAC
|
|
mac_inpcb_create_mbuf(inp, m);
|
|
#endif
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port) {
|
|
udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr));
|
|
udp->uh_sport = htons(V_tcp_udp_tunneling_port);
|
|
udp->uh_dport = tp->t_port;
|
|
ulen = hdrlen + len - sizeof(struct ip6_hdr);
|
|
udp->uh_ulen = htons(ulen);
|
|
th = (struct tcphdr *)(udp + 1);
|
|
} else
|
|
#endif
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
tcpip_fillheaders(inp,
|
|
#ifdef NETFLIX_TCPOUDP
|
|
tp->t_port,
|
|
#endif
|
|
ip6, th);
|
|
} else
|
|
#endif /* INET6 */
|
|
{
|
|
ip = mtod(m, struct ip *);
|
|
#ifdef TCPDEBUG
|
|
ipov = (struct ipovly *)ip;
|
|
#endif
|
|
#ifdef NETFLIX_TCPOUDP
|
|
if (tp->t_port) {
|
|
udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip));
|
|
udp->uh_sport = htons(V_tcp_udp_tunneling_port);
|
|
udp->uh_dport = tp->t_port;
|
|
ulen = hdrlen + len - sizeof(struct ip);
|
|
udp->uh_ulen = htons(ulen);
|
|
th = (struct tcphdr *)(udp + 1);
|
|
} else
|
|
#endif
|
|
th = (struct tcphdr *)(ip + 1);
|
|
tcpip_fillheaders(inp,
|
|
#ifdef NETFLIX_TCPOUDP
|
|
tp->t_port,
|
|
#endif
|
|
ip, th);
|
|
}
|
|
/*
|
|
* Fill in fields, remembering maximum advertised window for use in
|
|
* delaying messages about window sizes. If resending a FIN, be sure
|
|
* not to use a new sequence number.
|
|
*/
|
|
if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
|
|
tp->snd_nxt == tp->snd_max)
|
|
tp->snd_nxt--;
|
|
/*
|
|
* If we are starting a connection, send ECN setup SYN packet. If we
|
|
* are on a retransmit, we may resend those bits a number of times
|
|
* as per RFC 3168.
|
|
*/
|
|
if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) {
|
|
if (tp->t_rxtshift >= 1) {
|
|
if (tp->t_rxtshift <= V_tcp_ecn_maxretries)
|
|
flags |= TH_ECE | TH_CWR;
|
|
} else
|
|
flags |= TH_ECE | TH_CWR;
|
|
}
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
|
(tp->t_flags & TF_ECN_PERMIT)) {
|
|
/*
|
|
* If the peer has ECN, mark data packets with ECN capable
|
|
* transmission (ECT). Ignore pure ack packets,
|
|
* retransmissions and window probes.
|
|
*/
|
|
if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) &&
|
|
!((tp->t_flags & TF_FORCEDATA) && len == 1)) {
|
|
#ifdef INET6
|
|
if (isipv6)
|
|
ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
|
|
else
|
|
#endif
|
|
ip->ip_tos |= IPTOS_ECN_ECT0;
|
|
TCPSTAT_INC(tcps_ecn_ect0);
|
|
}
|
|
/*
|
|
* Reply with proper ECN notifications.
|
|
*/
|
|
if (tp->t_flags & TF_ECN_SND_CWR) {
|
|
flags |= TH_CWR;
|
|
tp->t_flags &= ~TF_ECN_SND_CWR;
|
|
}
|
|
if (tp->t_flags & TF_ECN_SND_ECE)
|
|
flags |= TH_ECE;
|
|
}
|
|
/*
|
|
* If we are doing retransmissions, then snd_nxt will not reflect
|
|
* the first unsent octet. For ACK only packets, we do not want the
|
|
* sequence number of the retransmitted packet, we want the sequence
|
|
* number of the next unsent octet. So, if there is no data (and no
|
|
* SYN or FIN), use snd_max instead of snd_nxt when filling in
|
|
* ti_seq. But if we are in persist state, snd_max might reflect
|
|
* one byte beyond the right edge of the window, so use snd_nxt in
|
|
* that case, since we know we aren't doing a retransmission.
|
|
* (retransmit and persist are mutually exclusive...)
|
|
*/
|
|
if (sack_rxmit == 0) {
|
|
if (len || (flags & (TH_SYN | TH_FIN)) ||
|
|
rack->rc_in_persist) {
|
|
th->th_seq = htonl(tp->snd_nxt);
|
|
rack_seq = tp->snd_nxt;
|
|
} else if (flags & TH_RST) {
|
|
/*
|
|
* For a Reset send the last cum ack in sequence
|
|
* (this like any other choice may still generate a
|
|
* challenge ack, if a ack-update packet is in
|
|
* flight).
|
|
*/
|
|
th->th_seq = htonl(tp->snd_una);
|
|
rack_seq = tp->snd_una;
|
|
} else {
|
|
th->th_seq = htonl(tp->snd_max);
|
|
rack_seq = tp->snd_max;
|
|
}
|
|
} else {
|
|
th->th_seq = htonl(rsm->r_start);
|
|
rack_seq = rsm->r_start;
|
|
}
|
|
th->th_ack = htonl(tp->rcv_nxt);
|
|
if (optlen) {
|
|
bcopy(opt, th + 1, optlen);
|
|
th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
|
|
}
|
|
th->th_flags = flags;
|
|
/*
|
|
* Calculate receive window. Don't shrink window, but avoid silly
|
|
* window syndrome.
|
|
* If a RST segment is sent, advertise a window of zero.
|
|
*/
|
|
if (flags & TH_RST) {
|
|
recwin = 0;
|
|
} else {
|
|
if (recwin < (long)(so->so_rcv.sb_hiwat / 4) &&
|
|
recwin < (long)ctf_fixed_maxseg(tp))
|
|
recwin = 0;
|
|
if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) &&
|
|
recwin < (long)(tp->rcv_adv - tp->rcv_nxt))
|
|
recwin = (long)(tp->rcv_adv - tp->rcv_nxt);
|
|
if (recwin > (long)TCP_MAXWIN << tp->rcv_scale)
|
|
recwin = (long)TCP_MAXWIN << tp->rcv_scale;
|
|
}
|
|
|
|
/*
|
|
* According to RFC1323 the window field in a SYN (i.e., a <SYN> or
|
|
* <SYN,ACK>) segment itself is never scaled. The <SYN,ACK> case is
|
|
* handled in syncache.
|
|
*/
|
|
if (flags & TH_SYN)
|
|
th->th_win = htons((u_short)
|
|
(min(sbspace(&so->so_rcv), TCP_MAXWIN)));
|
|
else
|
|
th->th_win = htons((u_short)(recwin >> tp->rcv_scale));
|
|
/*
|
|
* Adjust the RXWIN0SENT flag - indicate that we have advertised a 0
|
|
* window. This may cause the remote transmitter to stall. This
|
|
* flag tells soreceive() to disable delayed acknowledgements when
|
|
* draining the buffer. This can occur if the receiver is
|
|
* attempting to read more data than can be buffered prior to
|
|
* transmitting on the connection.
|
|
*/
|
|
if (th->th_win == 0) {
|
|
tp->t_sndzerowin++;
|
|
tp->t_flags |= TF_RXWIN0SENT;
|
|
} else
|
|
tp->t_flags &= ~TF_RXWIN0SENT;
|
|
if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
|
|
th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt));
|
|
th->th_flags |= TH_URG;
|
|
} else
|
|
/*
|
|
* If no urgent pointer to send, then we pull the urgent
|
|
* pointer to the left edge of the send window so that it
|
|
* doesn't drift into the send window on sequence number
|
|
* wraparound.
|
|
*/
|
|
tp->snd_up = tp->snd_una; /* drag it along */
|
|
|
|
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
|
|
if (to.to_flags & TOF_SIGNATURE) {
|
|
/*
|
|
* Calculate MD5 signature and put it into the place
|
|
* determined before.
|
|
* NOTE: since TCP options buffer doesn't point into
|
|
* mbuf's data, calculate offset and use it.
|
|
*/
|
|
if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th,
|
|
(u_char *)(th + 1) + (to.to_signature - opt)) != 0) {
|
|
/*
|
|
* Do not send segment if the calculation of MD5
|
|
* digest has failed.
|
|
*/
|
|
goto out;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Put TCP length in extended header, and then checksum extended
|
|
* header and data.
|
|
*/
|
|
m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
/*
|
|
* ip6_plen is not need to be filled now, and will be filled
|
|
* in ip6_output.
|
|
*/
|
|
if (tp->t_port) {
|
|
m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
|
|
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
|
|
udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0);
|
|
th->th_sum = htons(0);
|
|
UDPSTAT_INC(udps_opackets);
|
|
} else {
|
|
m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
|
|
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
|
|
th->th_sum = in6_cksum_pseudo(ip6,
|
|
sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP,
|
|
0);
|
|
}
|
|
}
|
|
#endif
|
|
#if defined(INET6) && defined(INET)
|
|
else
|
|
#endif
|
|
#ifdef INET
|
|
{
|
|
if (tp->t_port) {
|
|
m->m_pkthdr.csum_flags = CSUM_UDP;
|
|
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
|
|
udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
|
|
th->th_sum = htons(0);
|
|
UDPSTAT_INC(udps_opackets);
|
|
} else {
|
|
m->m_pkthdr.csum_flags = CSUM_TCP;
|
|
m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) +
|
|
IPPROTO_TCP + len + optlen));
|
|
}
|
|
/* IP version must be set here for ipv4/ipv6 checking later */
|
|
KASSERT(ip->ip_v == IPVERSION,
|
|
("%s: IP version incorrect: %d", __func__, ip->ip_v));
|
|
}
|
|
#endif
|
|
/*
|
|
* Enable TSO and specify the size of the segments. The TCP pseudo
|
|
* header checksum is always provided. XXX: Fixme: This is currently
|
|
* not the case for IPv6.
|
|
*/
|
|
if (tso || force_tso) {
|
|
KASSERT(force_tso || len > tp->t_maxseg - optlen,
|
|
("%s: len <= tso_segsz", __func__));
|
|
m->m_pkthdr.csum_flags |= CSUM_TSO;
|
|
m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen;
|
|
}
|
|
KASSERT(len + hdrlen == m_length(m, NULL),
|
|
("%s: mbuf chain different than expected: %d + %u != %u",
|
|
__func__, len, hdrlen, m_length(m, NULL)));
|
|
|
|
#ifdef TCP_HHOOK
|
|
/* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */
|
|
hhook_run_tcp_est_out(tp, th, &to, len, tso);
|
|
#endif
|
|
#ifdef TCPDEBUG
|
|
/*
|
|
* Trace.
|
|
*/
|
|
if (so->so_options & SO_DEBUG) {
|
|
u_short save = 0;
|
|
|
|
#ifdef INET6
|
|
if (!isipv6)
|
|
#endif
|
|
{
|
|
save = ipov->ih_len;
|
|
ipov->ih_len = htons(m->m_pkthdr.len /* - hdrlen +
|
|
* (th->th_off << 2) */ );
|
|
}
|
|
tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0);
|
|
#ifdef INET6
|
|
if (!isipv6)
|
|
#endif
|
|
ipov->ih_len = save;
|
|
}
|
|
#endif /* TCPDEBUG */
|
|
|
|
/* We're getting ready to send; log now. */
|
|
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
|
|
memset(&log.u_bbr, 0, sizeof(log.u_bbr));
|
|
log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts;
|
|
log.u_bbr.ininput = rack->rc_inp->inp_in_input;
|
|
log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt;
|
|
log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs;
|
|
log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs;
|
|
log.u_bbr.flex4 = orig_len;
|
|
if (filled_all)
|
|
log.u_bbr.flex5 = 0x80000000;
|
|
else
|
|
log.u_bbr.flex5 = 0;
|
|
if (rsm || sack_rxmit) {
|
|
log.u_bbr.flex8 = 1;
|
|
} else {
|
|
log.u_bbr.flex8 = 0;
|
|
}
|
|
log.u_bbr.pkts_out = tp->t_maxseg;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked);
|
|
lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK,
|
|
len, &log, false, NULL, NULL, 0, &tv);
|
|
} else
|
|
lgb = NULL;
|
|
|
|
/*
|
|
* Fill in IP length and desired time to live and send to IP level.
|
|
* There should be a better way to handle ttl and tos; we could keep
|
|
* them in the template, but need a way to checksum without them.
|
|
*/
|
|
/*
|
|
* m->m_pkthdr.len should have been set before cksum calcuration,
|
|
* because in6_cksum() need it.
|
|
*/
|
|
#ifdef INET6
|
|
if (isipv6) {
|
|
/*
|
|
* we separately set hoplimit for every segment, since the
|
|
* user might want to change the value via setsockopt. Also,
|
|
* desired default hop limit might be changed via Neighbor
|
|
* Discovery.
|
|
*/
|
|
ip6->ip6_hlim = in6_selecthlim(inp, NULL);
|
|
|
|
/*
|
|
* Set the packet size here for the benefit of DTrace
|
|
* probes. ip6_output() will set it properly; it's supposed
|
|
* to include the option header lengths as well.
|
|
*/
|
|
ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6));
|
|
|
|
if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss)
|
|
tp->t_flags2 |= TF2_PLPMTU_PMTUD;
|
|
else
|
|
tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
|
|
|
|
if (tp->t_state == TCPS_SYN_SENT)
|
|
TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th);
|
|
|
|
TCP_PROBE5(send, NULL, tp, ip6, tp, th);
|
|
/* TODO: IPv6 IP6TOS_ECT bit on */
|
|
error = ip6_output(m, tp->t_inpcb->in6p_outputopts,
|
|
&inp->inp_route6,
|
|
((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
|
|
NULL, NULL, inp);
|
|
|
|
if (error == EMSGSIZE && inp->inp_route6.ro_rt != NULL)
|
|
mtu = inp->inp_route6.ro_rt->rt_mtu;
|
|
}
|
|
#endif /* INET6 */
|
|
#if defined(INET) && defined(INET6)
|
|
else
|
|
#endif
|
|
#ifdef INET
|
|
{
|
|
ip->ip_len = htons(m->m_pkthdr.len);
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6PROTO)
|
|
ip->ip_ttl = in6_selecthlim(inp, NULL);
|
|
#endif /* INET6 */
|
|
/*
|
|
* If we do path MTU discovery, then we set DF on every
|
|
* packet. This might not be the best thing to do according
|
|
* to RFC3390 Section 2. However the tcp hostcache migitates
|
|
* the problem so it affects only the first tcp connection
|
|
* with a host.
|
|
*
|
|
* NB: Don't set DF on small MTU/MSS to have a safe
|
|
* fallback.
|
|
*/
|
|
if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) {
|
|
tp->t_flags2 |= TF2_PLPMTU_PMTUD;
|
|
if (tp->t_port == 0 || len < V_tcp_minmss) {
|
|
ip->ip_off |= htons(IP_DF);
|
|
}
|
|
} else {
|
|
tp->t_flags2 &= ~TF2_PLPMTU_PMTUD;
|
|
}
|
|
|
|
if (tp->t_state == TCPS_SYN_SENT)
|
|
TCP_PROBE5(connect__request, NULL, tp, ip, tp, th);
|
|
|
|
TCP_PROBE5(send, NULL, tp, ip, tp, th);
|
|
|
|
error = ip_output(m, tp->t_inpcb->inp_options, &inp->inp_route,
|
|
((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0), 0,
|
|
inp);
|
|
if (error == EMSGSIZE && inp->inp_route.ro_rt != NULL)
|
|
mtu = inp->inp_route.ro_rt->rt_mtu;
|
|
}
|
|
#endif /* INET */
|
|
|
|
out:
|
|
if (lgb) {
|
|
lgb->tlb_errno = error;
|
|
lgb = NULL;
|
|
}
|
|
/*
|
|
* In transmit state, time the transmission and arrange for the
|
|
* retransmit. In persist state, just set snd_max.
|
|
*/
|
|
if (error == 0) {
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state) &&
|
|
(tp->t_flags & TF_SACK_PERMIT) &&
|
|
tp->rcv_numsacks > 0)
|
|
tcp_clean_dsack_blocks(tp);
|
|
if (len == 0)
|
|
counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1);
|
|
else if (len == 1) {
|
|
counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1);
|
|
} else if (len > 1) {
|
|
int idx;
|
|
|
|
idx = (len / ctf_fixed_maxseg(tp)) + 3;
|
|
if (idx >= TCP_MSS_ACCT_ATIMER)
|
|
counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1);
|
|
else
|
|
counter_u64_add(rack_out_size[idx], 1);
|
|
}
|
|
if (hw_tls && len > 0) {
|
|
if (filled_all) {
|
|
counter_u64_add(rack_tls_filled, 1);
|
|
rack_log_type_hrdwtso(tp, rack, len, 0, orig_len, 1);
|
|
} else {
|
|
if (rsm) {
|
|
counter_u64_add(rack_tls_rxt, 1);
|
|
rack_log_type_hrdwtso(tp, rack, len, 2, orig_len, 1);
|
|
} else if (doing_tlp) {
|
|
counter_u64_add(rack_tls_tlp, 1);
|
|
rack_log_type_hrdwtso(tp, rack, len, 3, orig_len, 1);
|
|
} else if ( (ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > sbavail(sb)) {
|
|
counter_u64_add(rack_tls_app, 1);
|
|
rack_log_type_hrdwtso(tp, rack, len, 4, orig_len, 1);
|
|
} else if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) + rack->r_ctl.rc_pace_min_segs) > tp->snd_cwnd) {
|
|
counter_u64_add(rack_tls_cwnd, 1);
|
|
rack_log_type_hrdwtso(tp, rack, len, 5, orig_len, 1);
|
|
} else if ((ctf_outstanding(tp) + rack->r_ctl.rc_pace_min_segs) > tp->snd_wnd) {
|
|
counter_u64_add(rack_tls_rwnd, 1);
|
|
rack_log_type_hrdwtso(tp, rack, len, 6, orig_len, 1);
|
|
} else {
|
|
rack_log_type_hrdwtso(tp, rack, len, 7, orig_len, 1);
|
|
counter_u64_add(rack_tls_other, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (sub_from_prr && (error == 0)) {
|
|
if (rack->r_ctl.rc_prr_sndcnt >= len)
|
|
rack->r_ctl.rc_prr_sndcnt -= len;
|
|
else
|
|
rack->r_ctl.rc_prr_sndcnt = 0;
|
|
}
|
|
sub_from_prr = 0;
|
|
rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts,
|
|
pass, rsm);
|
|
if ((error == 0) &&
|
|
(len > 0) &&
|
|
(tp->snd_una == tp->snd_max))
|
|
rack->r_ctl.rc_tlp_rxt_last_time = cts;
|
|
if ((tp->t_flags & TF_FORCEDATA) == 0 ||
|
|
(rack->rc_in_persist == 0)) {
|
|
tcp_seq startseq = tp->snd_nxt;
|
|
|
|
/*
|
|
* Advance snd_nxt over sequence space of this segment.
|
|
*/
|
|
if (error)
|
|
/* We don't log or do anything with errors */
|
|
goto nomore;
|
|
|
|
if (flags & (TH_SYN | TH_FIN)) {
|
|
if (flags & TH_SYN)
|
|
tp->snd_nxt++;
|
|
if (flags & TH_FIN) {
|
|
tp->snd_nxt++;
|
|
tp->t_flags |= TF_SENTFIN;
|
|
}
|
|
}
|
|
/* In the ENOBUFS case we do *not* update snd_max */
|
|
if (sack_rxmit)
|
|
goto nomore;
|
|
|
|
tp->snd_nxt += len;
|
|
if (SEQ_GT(tp->snd_nxt, tp->snd_max)) {
|
|
if (tp->snd_una == tp->snd_max) {
|
|
/*
|
|
* Update the time we just added data since
|
|
* none was outstanding.
|
|
*/
|
|
rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
|
|
tp->t_acktime = ticks;
|
|
}
|
|
tp->snd_max = tp->snd_nxt;
|
|
/*
|
|
* Time this transmission if not a retransmission and
|
|
* not currently timing anything.
|
|
* This is only relevant in case of switching back to
|
|
* the base stack.
|
|
*/
|
|
if (tp->t_rtttime == 0) {
|
|
tp->t_rtttime = ticks;
|
|
tp->t_rtseq = startseq;
|
|
TCPSTAT_INC(tcps_segstimed);
|
|
}
|
|
#ifdef NETFLIX_STATS
|
|
if (!(tp->t_flags & TF_GPUTINPROG) && len) {
|
|
tp->t_flags |= TF_GPUTINPROG;
|
|
tp->gput_seq = startseq;
|
|
tp->gput_ack = startseq +
|
|
ulmin(sbavail(sb) - sb_offset, sendwin);
|
|
tp->gput_ts = tcp_ts_getticks();
|
|
}
|
|
#endif
|
|
}
|
|
} else {
|
|
/*
|
|
* Persist case, update snd_max but since we are in persist
|
|
* mode (no window) we do not update snd_nxt.
|
|
*/
|
|
int32_t xlen = len;
|
|
|
|
if (error)
|
|
goto nomore;
|
|
|
|
if (flags & TH_SYN)
|
|
++xlen;
|
|
if (flags & TH_FIN) {
|
|
++xlen;
|
|
tp->t_flags |= TF_SENTFIN;
|
|
}
|
|
/* In the ENOBUFS case we do *not* update snd_max */
|
|
if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) {
|
|
if (tp->snd_una == tp->snd_max) {
|
|
/*
|
|
* Update the time we just added data since
|
|
* none was outstanding.
|
|
*/
|
|
rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__);
|
|
tp->t_acktime = ticks;
|
|
}
|
|
tp->snd_max = tp->snd_nxt + len;
|
|
}
|
|
}
|
|
nomore:
|
|
if (error) {
|
|
SOCKBUF_UNLOCK_ASSERT(sb); /* Check gotos. */
|
|
/*
|
|
* Failures do not advance the seq counter above. For the
|
|
* case of ENOBUFS we will fall out and retry in 1ms with
|
|
* the hpts. Everything else will just have to retransmit
|
|
* with the timer.
|
|
*
|
|
* In any case, we do not want to loop around for another
|
|
* send without a good reason.
|
|
*/
|
|
sendalot = 0;
|
|
switch (error) {
|
|
case EPERM:
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
tp->t_softerror = error;
|
|
return (error);
|
|
case ENOBUFS:
|
|
if (slot == 0) {
|
|
/*
|
|
* Pace us right away to retry in a some
|
|
* time
|
|
*/
|
|
slot = 1 + rack->rc_enobuf;
|
|
if (rack->rc_enobuf < 255)
|
|
rack->rc_enobuf++;
|
|
if (slot > (rack->rc_rack_rtt / 2)) {
|
|
slot = rack->rc_rack_rtt / 2;
|
|
}
|
|
if (slot < 10)
|
|
slot = 10;
|
|
}
|
|
counter_u64_add(rack_saw_enobuf, 1);
|
|
error = 0;
|
|
goto enobufs;
|
|
case EMSGSIZE:
|
|
/*
|
|
* For some reason the interface we used initially
|
|
* to send segments changed to another or lowered
|
|
* its MTU. If TSO was active we either got an
|
|
* interface without TSO capabilits or TSO was
|
|
* turned off. If we obtained mtu from ip_output()
|
|
* then update it and try again.
|
|
*/
|
|
if (tso)
|
|
tp->t_flags &= ~TF_TSO;
|
|
if (mtu != 0) {
|
|
tcp_mss_update(tp, -1, mtu, NULL, NULL);
|
|
goto again;
|
|
}
|
|
slot = 10;
|
|
rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
return (error);
|
|
case ENETUNREACH:
|
|
counter_u64_add(rack_saw_enetunreach, 1);
|
|
case EHOSTDOWN:
|
|
case EHOSTUNREACH:
|
|
case ENETDOWN:
|
|
if (TCPS_HAVERCVDSYN(tp->t_state)) {
|
|
tp->t_softerror = error;
|
|
}
|
|
/* FALLTHROUGH */
|
|
default:
|
|
slot = 10;
|
|
rack_start_hpts_timer(rack, tp, cts, slot, 0, 0);
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
return (error);
|
|
}
|
|
} else {
|
|
rack->rc_enobuf = 0;
|
|
}
|
|
TCPSTAT_INC(tcps_sndtotal);
|
|
|
|
/*
|
|
* Data sent (as far as we can tell). If this advertises a larger
|
|
* window than any other segment, then remember the size of the
|
|
* advertised window. Any pending ACK has now been sent.
|
|
*/
|
|
if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv))
|
|
tp->rcv_adv = tp->rcv_nxt + recwin;
|
|
tp->last_ack_sent = tp->rcv_nxt;
|
|
tp->t_flags &= ~(TF_ACKNOW | TF_DELACK);
|
|
enobufs:
|
|
rack->r_tlp_running = 0;
|
|
if (flags & TH_RST) {
|
|
/*
|
|
* We don't send again after sending a RST.
|
|
*/
|
|
slot = 0;
|
|
sendalot = 0;
|
|
}
|
|
if (rsm && (slot == 0)) {
|
|
/*
|
|
* Dup ack retransmission possibly, so
|
|
* lets assure we have at least min rack
|
|
* time, if its a rack resend then the rack
|
|
* to will also be set to this.
|
|
*/
|
|
slot = rack->r_ctl.rc_min_to;
|
|
}
|
|
if (slot) {
|
|
/* set the rack tcb into the slot N */
|
|
counter_u64_add(rack_paced_segments, 1);
|
|
} else if (sendalot) {
|
|
if (len)
|
|
counter_u64_add(rack_unpaced_segments, 1);
|
|
sack_rxmit = 0;
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
goto again;
|
|
} else if (len) {
|
|
counter_u64_add(rack_unpaced_segments, 1);
|
|
}
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* rack_ctloutput() must drop the inpcb lock before performing copyin on
|
|
* socket option arguments. When it re-acquires the lock after the copy, it
|
|
* has to revalidate that the connection is still valid for the socket
|
|
* option.
|
|
*/
|
|
static int
|
|
rack_set_sockopt(struct socket *so, struct sockopt *sopt,
|
|
struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
|
|
{
|
|
int32_t error = 0, optval;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case TCP_RACK_PROP_RATE:
|
|
case TCP_RACK_PROP:
|
|
case TCP_RACK_TLP_REDUCE:
|
|
case TCP_RACK_EARLY_RECOV:
|
|
case TCP_RACK_PACE_ALWAYS:
|
|
case TCP_DELACK:
|
|
case TCP_RACK_PACE_REDUCE:
|
|
case TCP_RACK_PACE_MAX_SEG:
|
|
case TCP_RACK_PRR_SENDALOT:
|
|
case TCP_RACK_MIN_TO:
|
|
case TCP_RACK_EARLY_SEG:
|
|
case TCP_RACK_REORD_THRESH:
|
|
case TCP_RACK_REORD_FADE:
|
|
case TCP_RACK_TLP_THRESH:
|
|
case TCP_RACK_PKT_DELAY:
|
|
case TCP_RACK_TLP_USE:
|
|
case TCP_RACK_TLP_INC_VAR:
|
|
case TCP_RACK_IDLE_REDUCE_HIGH:
|
|
case TCP_RACK_MIN_PACE:
|
|
case TCP_RACK_GP_INCREASE:
|
|
case TCP_BBR_RACK_RTT_USE:
|
|
case TCP_BBR_USE_RACK_CHEAT:
|
|
case TCP_RACK_DO_DETECTION:
|
|
case TCP_DATA_AFTER_CLOSE:
|
|
break;
|
|
default:
|
|
return (tcp_default_ctloutput(so, sopt, inp, tp));
|
|
break;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
|
|
if (error)
|
|
return (error);
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
tp = intotcpcb(inp);
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
switch (sopt->sopt_name) {
|
|
case TCP_RACK_DO_DETECTION:
|
|
RACK_OPTS_INC(tcp_rack_no_sack);
|
|
if (optval == 0)
|
|
rack->do_detection = 0;
|
|
else
|
|
rack->do_detection = 1;
|
|
break;
|
|
case TCP_RACK_PROP_RATE:
|
|
if ((optval <= 0) || (optval >= 100)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
RACK_OPTS_INC(tcp_rack_prop_rate);
|
|
rack->r_ctl.rc_prop_rate = optval;
|
|
break;
|
|
case TCP_RACK_TLP_USE:
|
|
if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
RACK_OPTS_INC(tcp_tlp_use);
|
|
rack->rack_tlp_threshold_use = optval;
|
|
break;
|
|
case TCP_RACK_PROP:
|
|
/* RACK proportional rate reduction (bool) */
|
|
RACK_OPTS_INC(tcp_rack_prop);
|
|
rack->r_ctl.rc_prop_reduce = optval;
|
|
break;
|
|
case TCP_RACK_TLP_REDUCE:
|
|
/* RACK TLP cwnd reduction (bool) */
|
|
RACK_OPTS_INC(tcp_rack_tlp_reduce);
|
|
rack->r_ctl.rc_tlp_cwnd_reduce = optval;
|
|
break;
|
|
case TCP_RACK_EARLY_RECOV:
|
|
/* Should recovery happen early (bool) */
|
|
RACK_OPTS_INC(tcp_rack_early_recov);
|
|
rack->r_ctl.rc_early_recovery = optval;
|
|
break;
|
|
case TCP_RACK_PACE_ALWAYS:
|
|
/* Use the always pace method (bool) */
|
|
RACK_OPTS_INC(tcp_rack_pace_always);
|
|
if (optval > 0)
|
|
rack->rc_always_pace = 1;
|
|
else
|
|
rack->rc_always_pace = 0;
|
|
break;
|
|
case TCP_RACK_PACE_REDUCE:
|
|
/* RACK Hptsi reduction factor (divisor) */
|
|
RACK_OPTS_INC(tcp_rack_pace_reduce);
|
|
if (optval)
|
|
/* Must be non-zero */
|
|
rack->rc_pace_reduce = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_RACK_PACE_MAX_SEG:
|
|
/* Max segments in a pace */
|
|
RACK_OPTS_INC(tcp_rack_max_seg);
|
|
rack->rc_pace_max_segs = optval;
|
|
rack_set_pace_segments(tp, rack);
|
|
break;
|
|
case TCP_RACK_PRR_SENDALOT:
|
|
/* Allow PRR to send more than one seg */
|
|
RACK_OPTS_INC(tcp_rack_prr_sendalot);
|
|
rack->r_ctl.rc_prr_sendalot = optval;
|
|
break;
|
|
case TCP_RACK_MIN_TO:
|
|
/* Minimum time between rack t-o's in ms */
|
|
RACK_OPTS_INC(tcp_rack_min_to);
|
|
rack->r_ctl.rc_min_to = optval;
|
|
break;
|
|
case TCP_RACK_EARLY_SEG:
|
|
/* If early recovery max segments */
|
|
RACK_OPTS_INC(tcp_rack_early_seg);
|
|
rack->r_ctl.rc_early_recovery_segs = optval;
|
|
break;
|
|
case TCP_RACK_REORD_THRESH:
|
|
/* RACK reorder threshold (shift amount) */
|
|
RACK_OPTS_INC(tcp_rack_reord_thresh);
|
|
if ((optval > 0) && (optval < 31))
|
|
rack->r_ctl.rc_reorder_shift = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_RACK_REORD_FADE:
|
|
/* Does reordering fade after ms time */
|
|
RACK_OPTS_INC(tcp_rack_reord_fade);
|
|
rack->r_ctl.rc_reorder_fade = optval;
|
|
break;
|
|
case TCP_RACK_TLP_THRESH:
|
|
/* RACK TLP theshold i.e. srtt+(srtt/N) */
|
|
RACK_OPTS_INC(tcp_rack_tlp_thresh);
|
|
if (optval)
|
|
rack->r_ctl.rc_tlp_threshold = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_BBR_USE_RACK_CHEAT:
|
|
RACK_OPTS_INC(tcp_rack_cheat);
|
|
if (optval)
|
|
rack->use_rack_cheat = 1;
|
|
else
|
|
rack->use_rack_cheat = 0;
|
|
break;
|
|
case TCP_RACK_PKT_DELAY:
|
|
/* RACK added ms i.e. rack-rtt + reord + N */
|
|
RACK_OPTS_INC(tcp_rack_pkt_delay);
|
|
rack->r_ctl.rc_pkt_delay = optval;
|
|
break;
|
|
case TCP_RACK_TLP_INC_VAR:
|
|
/* Does TLP include rtt variance in t-o */
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_RACK_IDLE_REDUCE_HIGH:
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_DELACK:
|
|
if (optval == 0)
|
|
tp->t_delayed_ack = 0;
|
|
else
|
|
tp->t_delayed_ack = 1;
|
|
if (tp->t_flags & TF_DELACK) {
|
|
tp->t_flags &= ~TF_DELACK;
|
|
tp->t_flags |= TF_ACKNOW;
|
|
rack_output(tp);
|
|
}
|
|
break;
|
|
case TCP_RACK_MIN_PACE:
|
|
RACK_OPTS_INC(tcp_rack_min_pace);
|
|
if (optval > 3)
|
|
rack->r_enforce_min_pace = 3;
|
|
else
|
|
rack->r_enforce_min_pace = optval;
|
|
break;
|
|
case TCP_RACK_GP_INCREASE:
|
|
if ((optval >= 0) &&
|
|
(optval <= 256))
|
|
rack->rack_per_of_gp = optval;
|
|
else
|
|
error = EINVAL;
|
|
|
|
break;
|
|
case TCP_BBR_RACK_RTT_USE:
|
|
if ((optval != USE_RTT_HIGH) &&
|
|
(optval != USE_RTT_LOW) &&
|
|
(optval != USE_RTT_AVG))
|
|
error = EINVAL;
|
|
else
|
|
rack->r_ctl.rc_rate_sample_method = optval;
|
|
break;
|
|
case TCP_DATA_AFTER_CLOSE:
|
|
if (optval)
|
|
rack->rc_allow_data_af_clo = 1;
|
|
else
|
|
rack->rc_allow_data_af_clo = 0;
|
|
break;
|
|
default:
|
|
return (tcp_default_ctloutput(so, sopt, inp, tp));
|
|
break;
|
|
}
|
|
#ifdef NETFLIX_STATS
|
|
tcp_log_socket_option(tp, sopt->sopt_name, optval, error);
|
|
#endif
|
|
INP_WUNLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
rack_get_sockopt(struct socket *so, struct sockopt *sopt,
|
|
struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack)
|
|
{
|
|
int32_t error, optval;
|
|
|
|
/*
|
|
* Because all our options are either boolean or an int, we can just
|
|
* pull everything into optval and then unlock and copy. If we ever
|
|
* add a option that is not a int, then this will have quite an
|
|
* impact to this routine.
|
|
*/
|
|
error = 0;
|
|
switch (sopt->sopt_name) {
|
|
case TCP_RACK_DO_DETECTION:
|
|
optval = rack->do_detection;
|
|
break;
|
|
|
|
case TCP_RACK_PROP_RATE:
|
|
optval = rack->r_ctl.rc_prop_rate;
|
|
break;
|
|
case TCP_RACK_PROP:
|
|
/* RACK proportional rate reduction (bool) */
|
|
optval = rack->r_ctl.rc_prop_reduce;
|
|
break;
|
|
case TCP_RACK_TLP_REDUCE:
|
|
/* RACK TLP cwnd reduction (bool) */
|
|
optval = rack->r_ctl.rc_tlp_cwnd_reduce;
|
|
break;
|
|
case TCP_RACK_EARLY_RECOV:
|
|
/* Should recovery happen early (bool) */
|
|
optval = rack->r_ctl.rc_early_recovery;
|
|
break;
|
|
case TCP_RACK_PACE_REDUCE:
|
|
/* RACK Hptsi reduction factor (divisor) */
|
|
optval = rack->rc_pace_reduce;
|
|
break;
|
|
case TCP_RACK_PACE_MAX_SEG:
|
|
/* Max segments in a pace */
|
|
optval = rack->rc_pace_max_segs;
|
|
break;
|
|
case TCP_RACK_PACE_ALWAYS:
|
|
/* Use the always pace method */
|
|
optval = rack->rc_always_pace;
|
|
break;
|
|
case TCP_RACK_PRR_SENDALOT:
|
|
/* Allow PRR to send more than one seg */
|
|
optval = rack->r_ctl.rc_prr_sendalot;
|
|
break;
|
|
case TCP_RACK_MIN_TO:
|
|
/* Minimum time between rack t-o's in ms */
|
|
optval = rack->r_ctl.rc_min_to;
|
|
break;
|
|
case TCP_RACK_EARLY_SEG:
|
|
/* If early recovery max segments */
|
|
optval = rack->r_ctl.rc_early_recovery_segs;
|
|
break;
|
|
case TCP_RACK_REORD_THRESH:
|
|
/* RACK reorder threshold (shift amount) */
|
|
optval = rack->r_ctl.rc_reorder_shift;
|
|
break;
|
|
case TCP_RACK_REORD_FADE:
|
|
/* Does reordering fade after ms time */
|
|
optval = rack->r_ctl.rc_reorder_fade;
|
|
break;
|
|
case TCP_BBR_USE_RACK_CHEAT:
|
|
/* Do we use the rack cheat for rxt */
|
|
optval = rack->use_rack_cheat;
|
|
break;
|
|
case TCP_RACK_TLP_THRESH:
|
|
/* RACK TLP theshold i.e. srtt+(srtt/N) */
|
|
optval = rack->r_ctl.rc_tlp_threshold;
|
|
break;
|
|
case TCP_RACK_PKT_DELAY:
|
|
/* RACK added ms i.e. rack-rtt + reord + N */
|
|
optval = rack->r_ctl.rc_pkt_delay;
|
|
break;
|
|
case TCP_RACK_TLP_USE:
|
|
optval = rack->rack_tlp_threshold_use;
|
|
break;
|
|
case TCP_RACK_TLP_INC_VAR:
|
|
/* Does TLP include rtt variance in t-o */
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_RACK_IDLE_REDUCE_HIGH:
|
|
error = EINVAL;
|
|
break;
|
|
case TCP_RACK_MIN_PACE:
|
|
optval = rack->r_enforce_min_pace;
|
|
break;
|
|
case TCP_RACK_GP_INCREASE:
|
|
optval = rack->rack_per_of_gp;
|
|
break;
|
|
case TCP_BBR_RACK_RTT_USE:
|
|
optval = rack->r_ctl.rc_rate_sample_method;
|
|
break;
|
|
case TCP_DELACK:
|
|
optval = tp->t_delayed_ack;
|
|
break;
|
|
case TCP_DATA_AFTER_CLOSE:
|
|
optval = rack->rc_allow_data_af_clo;
|
|
break;
|
|
default:
|
|
return (tcp_default_ctloutput(so, sopt, inp, tp));
|
|
break;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
if (error == 0) {
|
|
error = sooptcopyout(sopt, &optval, sizeof optval);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp)
|
|
{
|
|
int32_t error = EINVAL;
|
|
struct tcp_rack *rack;
|
|
|
|
rack = (struct tcp_rack *)tp->t_fb_ptr;
|
|
if (rack == NULL) {
|
|
/* Huh? */
|
|
goto out;
|
|
}
|
|
if (sopt->sopt_dir == SOPT_SET) {
|
|
return (rack_set_sockopt(so, sopt, inp, tp, rack));
|
|
} else if (sopt->sopt_dir == SOPT_GET) {
|
|
return (rack_get_sockopt(so, sopt, inp, tp, rack));
|
|
}
|
|
out:
|
|
INP_WUNLOCK(inp);
|
|
return (error);
|
|
}
|
|
|
|
|
|
static struct tcp_function_block __tcp_rack = {
|
|
.tfb_tcp_block_name = __XSTRING(STACKNAME),
|
|
.tfb_tcp_output = rack_output,
|
|
.tfb_do_queued_segments = ctf_do_queued_segments,
|
|
.tfb_do_segment_nounlock = rack_do_segment_nounlock,
|
|
.tfb_tcp_do_segment = rack_do_segment,
|
|
.tfb_tcp_ctloutput = rack_ctloutput,
|
|
.tfb_tcp_fb_init = rack_init,
|
|
.tfb_tcp_fb_fini = rack_fini,
|
|
.tfb_tcp_timer_stop_all = rack_stopall,
|
|
.tfb_tcp_timer_activate = rack_timer_activate,
|
|
.tfb_tcp_timer_active = rack_timer_active,
|
|
.tfb_tcp_timer_stop = rack_timer_stop,
|
|
.tfb_tcp_rexmit_tmr = rack_remxt_tmr,
|
|
.tfb_tcp_handoff_ok = rack_handoff_ok
|
|
};
|
|
|
|
static const char *rack_stack_names[] = {
|
|
__XSTRING(STACKNAME),
|
|
#ifdef STACKALIAS
|
|
__XSTRING(STACKALIAS),
|
|
#endif
|
|
};
|
|
|
|
static int
|
|
rack_ctor(void *mem, int32_t size, void *arg, int32_t how)
|
|
{
|
|
memset(mem, 0, size);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
rack_dtor(void *mem, int32_t size, void *arg)
|
|
{
|
|
|
|
}
|
|
|
|
static bool rack_mod_inited = false;
|
|
|
|
static int
|
|
tcp_addrack(module_t mod, int32_t type, void *data)
|
|
{
|
|
int32_t err = 0;
|
|
int num_stacks;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map",
|
|
sizeof(struct rack_sendmap),
|
|
rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
|
|
rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb",
|
|
sizeof(struct tcp_rack),
|
|
rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
|
|
|
|
sysctl_ctx_init(&rack_sysctl_ctx);
|
|
rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet_tcp),
|
|
OID_AUTO,
|
|
#ifdef STACKALIAS
|
|
__XSTRING(STACKALIAS),
|
|
#else
|
|
__XSTRING(STACKNAME),
|
|
#endif
|
|
CTLFLAG_RW, 0,
|
|
"");
|
|
if (rack_sysctl_root == NULL) {
|
|
printf("Failed to add sysctl node\n");
|
|
err = EFAULT;
|
|
goto free_uma;
|
|
}
|
|
rack_init_sysctls();
|
|
num_stacks = nitems(rack_stack_names);
|
|
err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK,
|
|
rack_stack_names, &num_stacks);
|
|
if (err) {
|
|
printf("Failed to register %s stack name for "
|
|
"%s module\n", rack_stack_names[num_stacks],
|
|
__XSTRING(MODNAME));
|
|
sysctl_ctx_free(&rack_sysctl_ctx);
|
|
free_uma:
|
|
uma_zdestroy(rack_zone);
|
|
uma_zdestroy(rack_pcb_zone);
|
|
rack_counter_destroy();
|
|
printf("Failed to register rack module -- err:%d\n", err);
|
|
return (err);
|
|
}
|
|
tcp_lro_reg_mbufq();
|
|
rack_mod_inited = true;
|
|
break;
|
|
case MOD_QUIESCE:
|
|
err = deregister_tcp_functions(&__tcp_rack, true, false);
|
|
break;
|
|
case MOD_UNLOAD:
|
|
err = deregister_tcp_functions(&__tcp_rack, false, true);
|
|
if (err == EBUSY)
|
|
break;
|
|
if (rack_mod_inited) {
|
|
uma_zdestroy(rack_zone);
|
|
uma_zdestroy(rack_pcb_zone);
|
|
sysctl_ctx_free(&rack_sysctl_ctx);
|
|
rack_counter_destroy();
|
|
rack_mod_inited = false;
|
|
}
|
|
tcp_lro_dereg_mbufq();
|
|
err = 0;
|
|
break;
|
|
default:
|
|
return (EOPNOTSUPP);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
static moduledata_t tcp_rack = {
|
|
.name = __XSTRING(MODNAME),
|
|
.evhand = tcp_addrack,
|
|
.priv = 0
|
|
};
|
|
|
|
MODULE_VERSION(MODNAME, 1);
|
|
DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY);
|
|
MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);
|