Marcel Moolenaar 3bdfa17c6c When switching the RSE to use the kernel stack as backing store, keep
the RNAT bit index constant. The net effect of this is that there's
no discontinuity WRT NaT collections which greatly simplifies certain
operations. The cost of this is that there can be up to 504 bytes of
unused stack between the true base of the kernel stack and the start
of the RSE backing store. The cost of adjusting the backing store
pointer to keep the RNAT bit index constant, for each kernel entry,
is negligible.

The primary reasons for this change are:
1. Asynchronuous contexts in KSE processes have the disadvantage of
   having to copy the dirty registers from the kernel stack onto the
   user stack. The implementation we had so far copied the registers
   one at a time without calculating NaT collection values. A process
   that used speculation would not work. Now that the RNAT bit index
   is constant, we can block-copy the registers from the kernel stack
   to the user stack without having to worry about NaT collections.
   They will be in the right place on the user stack.
2. The ndirty field in the trapframe is now also usable in userland.
   This was previously not the case because ndirty also includes the
   space occupied by NaT collections. The value could be off by 8,
   depending on the discontinuity. Now that the RNAT bit index is
   contants, we have exactly the same number of NaT collection points
   on the kernel stack as we would have had on the user stack if we
   didn't switch backing stores.
3. Debuggers and other applications that use ptrace(2) can now copy
   the dirty registers from the kernel stack (using ptrace(2)) and
   copy them whereever they want them (onto the user stack of the
   inferior as might be the case for gdb) without having to worry
   about NaT collections in the same way the kernel doesn't have to
   worry about them.

There's a second order effect caused by the randomization of the
base of the backing store, for it depends on the number of dirty
registers the processor happened to have at the time of entry into
the kernel. The second order effect is that the RSE will have a
better cache utilization as compared to having the backing store
always aligned at page boundaries. This has not been measured and
may be in practice only minimally beneficial, if at all measurable.
2003-10-28 19:38:26 +00:00
2003-10-16 07:07:20 +00:00
2003-10-20 21:22:41 +00:00
2003-10-26 10:30:17 +00:00
2003-10-19 10:24:59 +00:00

This is the top level of the FreeBSD source directory.  This file
was last revised on:
$FreeBSD$

For copyright information, please see the file COPYRIGHT in this
directory (additional copyright information also exists for some
sources in this tree - please see the specific source directories for
more information).

The Makefile in this directory supports a number of targets for
building components (or all) of the FreeBSD source tree, the most
commonly used one being ``world'', which rebuilds and installs
everything in the FreeBSD system from the source tree except the
kernel, the kernel-modules and the contents of /etc.  The
``buildkernel'' and ``installkernel'' targets build and install
the kernel and the modules (see below).  Please see the top of
the Makefile in this directory for more information on the
standard build targets and compile-time flags.

Building a kernel is a somewhat more involved process, documentation
for which can be found at:
   http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html
And in the config(8) man page.
Note: If you want to build and install the kernel with the
``buildkernel'' and ``installkernel'' targets, you might need to build
world before.  More information is available in the handbook.

The sample kernel configuration files reside in the sys/<arch>/conf
sub-directory (assuming that you've installed the kernel sources), the
file named GENERIC being the one used to build your initial installation
kernel.  The file NOTES contains entries and documentation for all possible
devices, not just those commonly used.  It is the successor of the ancient
LINT file, but in contrast to LINT, it is not buildable as a kernel but a
pure reference and documentation file.


Source Roadmap:
---------------
bin		System/user commands.

contrib		Packages contributed by 3rd parties.

crypto		Cryptography stuff (see crypto/README).

etc		Template files for /etc.

games		Amusements.

gnu		Various commands and libraries under the GNU Public License.
		Please see gnu/COPYING* for more information.

include		System include files.

kerberos5	Kerberos5 (Heimdal) package.

lib		System libraries.

libexec		System daemons.

release		Release building Makefile & associated tools.

sbin		System commands.

secure		Cryptographic libraries and commands.

share		Shared resources.

sys		Kernel sources.

tools		Utilities for regression testing and miscellaneous tasks.

usr.bin		User commands.

usr.sbin	System administration commands.


For information on synchronizing your source tree with one or more of
the FreeBSD Project's development branches, please see:

  http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html
Description
freebsd with flexible iflib nic queues
Readme 2.6 GiB
Languages
C 60.1%
C++ 26.1%
Roff 4.9%
Shell 3%
Assembly 1.7%
Other 3.7%