4537 lines
103 KiB
C
4537 lines
103 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
*/
|
|
|
|
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
|
|
/* All Rights Reserved */
|
|
|
|
/*
|
|
* University Copyright- Copyright (c) 1982, 1986, 1988
|
|
* The Regents of the University of California
|
|
* All Rights Reserved
|
|
*
|
|
* University Acknowledgment- Portions of this document are derived from
|
|
* software developed by the University of California, Berkeley, and its
|
|
* contributors.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/t_lock.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/cred.h>
|
|
#include <sys/user.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/file.h>
|
|
#include <sys/pathname.h>
|
|
#include <sys/vfs.h>
|
|
#include <sys/vfs_opreg.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/rwstlock.h>
|
|
#include <sys/fem.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/mode.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/cmn_err.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/debug.h>
|
|
#include <c2/audit.h>
|
|
#include <sys/acl.h>
|
|
#include <sys/nbmlock.h>
|
|
#include <sys/fcntl.h>
|
|
#include <fs/fs_subr.h>
|
|
#include <sys/taskq.h>
|
|
#include <fs/fs_reparse.h>
|
|
|
|
/* Determine if this vnode is a file that is read-only */
|
|
#define ISROFILE(vp) \
|
|
((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
|
|
(vp)->v_type != VFIFO && vn_is_readonly(vp))
|
|
|
|
/* Tunable via /etc/system; used only by admin/install */
|
|
int nfs_global_client_only;
|
|
|
|
/*
|
|
* Array of vopstats_t for per-FS-type vopstats. This array has the same
|
|
* number of entries as and parallel to the vfssw table. (Arguably, it could
|
|
* be part of the vfssw table.) Once it's initialized, it's accessed using
|
|
* the same fstype index that is used to index into the vfssw table.
|
|
*/
|
|
vopstats_t **vopstats_fstype;
|
|
|
|
/* vopstats initialization template used for fast initialization via bcopy() */
|
|
static vopstats_t *vs_templatep;
|
|
|
|
/* Kmem cache handle for vsk_anchor_t allocations */
|
|
kmem_cache_t *vsk_anchor_cache;
|
|
|
|
/* file events cleanup routine */
|
|
extern void free_fopdata(vnode_t *);
|
|
|
|
/*
|
|
* Root of AVL tree for the kstats associated with vopstats. Lock protects
|
|
* updates to vsktat_tree.
|
|
*/
|
|
avl_tree_t vskstat_tree;
|
|
kmutex_t vskstat_tree_lock;
|
|
|
|
/* Global variable which enables/disables the vopstats collection */
|
|
int vopstats_enabled = 1;
|
|
|
|
/*
|
|
* forward declarations for internal vnode specific data (vsd)
|
|
*/
|
|
static void *vsd_realloc(void *, size_t, size_t);
|
|
|
|
/*
|
|
* forward declarations for reparse point functions
|
|
*/
|
|
static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr);
|
|
|
|
/*
|
|
* VSD -- VNODE SPECIFIC DATA
|
|
* The v_data pointer is typically used by a file system to store a
|
|
* pointer to the file system's private node (e.g. ufs inode, nfs rnode).
|
|
* However, there are times when additional project private data needs
|
|
* to be stored separately from the data (node) pointed to by v_data.
|
|
* This additional data could be stored by the file system itself or
|
|
* by a completely different kernel entity. VSD provides a way for
|
|
* callers to obtain a key and store a pointer to private data associated
|
|
* with a vnode.
|
|
*
|
|
* Callers are responsible for protecting the vsd by holding v_vsd_lock
|
|
* for calls to vsd_set() and vsd_get().
|
|
*/
|
|
|
|
/*
|
|
* vsd_lock protects:
|
|
* vsd_nkeys - creation and deletion of vsd keys
|
|
* vsd_list - insertion and deletion of vsd_node in the vsd_list
|
|
* vsd_destructor - adding and removing destructors to the list
|
|
*/
|
|
static kmutex_t vsd_lock;
|
|
static uint_t vsd_nkeys; /* size of destructor array */
|
|
/* list of vsd_node's */
|
|
static list_t *vsd_list = NULL;
|
|
/* per-key destructor funcs */
|
|
static void (**vsd_destructor)(void *);
|
|
|
|
/*
|
|
* The following is the common set of actions needed to update the
|
|
* vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and
|
|
* VOPSTATS_UPDATE_IO() do almost the same thing, except for the
|
|
* recording of the bytes transferred. Since the code is similar
|
|
* but small, it is nearly a duplicate. Consequently any changes
|
|
* to one may need to be reflected in the other.
|
|
* Rundown of the variables:
|
|
* vp - Pointer to the vnode
|
|
* counter - Partial name structure member to update in vopstats for counts
|
|
* bytecounter - Partial name structure member to update in vopstats for bytes
|
|
* bytesval - Value to update in vopstats for bytes
|
|
* fstype - Index into vsanchor_fstype[], same as index into vfssw[]
|
|
* vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i])
|
|
*/
|
|
|
|
#define VOPSTATS_UPDATE(vp, counter) { \
|
|
vfs_t *vfsp = (vp)->v_vfsp; \
|
|
if (vfsp && vfsp->vfs_implp && \
|
|
(vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
|
|
vopstats_t *vsp = &vfsp->vfs_vopstats; \
|
|
uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
|
|
extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
|
|
size_t, uint64_t *); \
|
|
__dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \
|
|
(*stataddr)++; \
|
|
if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
|
|
vsp->n##counter.value.ui64++; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \
|
|
vfs_t *vfsp = (vp)->v_vfsp; \
|
|
if (vfsp && vfsp->vfs_implp && \
|
|
(vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
|
|
vopstats_t *vsp = &vfsp->vfs_vopstats; \
|
|
uint64_t *stataddr = &(vsp->n##counter.value.ui64); \
|
|
extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \
|
|
size_t, uint64_t *); \
|
|
__dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \
|
|
(*stataddr)++; \
|
|
vsp->bytecounter.value.ui64 += bytesval; \
|
|
if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \
|
|
vsp->n##counter.value.ui64++; \
|
|
vsp->bytecounter.value.ui64 += bytesval; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* If the filesystem does not support XIDs map credential
|
|
* If the vfsp is NULL, perhaps we should also map?
|
|
*/
|
|
#define VOPXID_MAP_CR(vp, cr) { \
|
|
vfs_t *vfsp = (vp)->v_vfsp; \
|
|
if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \
|
|
cr = crgetmapped(cr); \
|
|
}
|
|
|
|
/*
|
|
* Convert stat(2) formats to vnode types and vice versa. (Knows about
|
|
* numerical order of S_IFMT and vnode types.)
|
|
*/
|
|
enum vtype iftovt_tab[] = {
|
|
VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
|
|
VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
|
|
};
|
|
|
|
ushort_t vttoif_tab[] = {
|
|
0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
|
|
S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
|
|
};
|
|
|
|
/*
|
|
* The system vnode cache.
|
|
*/
|
|
|
|
kmem_cache_t *vn_cache;
|
|
|
|
|
|
/*
|
|
* Vnode operations vector.
|
|
*/
|
|
|
|
static const fs_operation_trans_def_t vn_ops_table[] = {
|
|
VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_READ, offsetof(struct vnodeops, vop_read),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
|
|
fs_setfl, fs_nosys,
|
|
|
|
VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
|
|
fs_rwlock, fs_rwlock,
|
|
|
|
VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
|
|
(fs_generic_func_p) fs_rwunlock,
|
|
(fs_generic_func_p) fs_rwunlock, /* no errors allowed */
|
|
|
|
VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
|
|
fs_cmp, fs_cmp, /* no errors allowed */
|
|
|
|
VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
|
|
fs_frlock, fs_nosys,
|
|
|
|
VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
|
|
(fs_generic_func_p) fs_nosys_map,
|
|
(fs_generic_func_p) fs_nosys_map,
|
|
|
|
VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
|
|
(fs_generic_func_p) fs_nosys_addmap,
|
|
(fs_generic_func_p) fs_nosys_addmap,
|
|
|
|
VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
|
|
(fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
|
|
|
|
VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
|
|
fs_pathconf, fs_nosys,
|
|
|
|
VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
|
|
(fs_generic_func_p) fs_dispose,
|
|
(fs_generic_func_p) fs_nodispose,
|
|
|
|
VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
|
|
fs_fab_acl, fs_nosys,
|
|
|
|
VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
|
|
fs_shrlock, fs_nosys,
|
|
|
|
VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
|
|
(fs_generic_func_p) fs_vnevent_nosupport,
|
|
(fs_generic_func_p) fs_vnevent_nosupport,
|
|
|
|
VOPNAME_REQZCBUF, offsetof(struct vnodeops, vop_reqzcbuf),
|
|
fs_nosys, fs_nosys,
|
|
|
|
VOPNAME_RETZCBUF, offsetof(struct vnodeops, vop_retzcbuf),
|
|
fs_nosys, fs_nosys,
|
|
|
|
NULL, 0, NULL, NULL
|
|
};
|
|
|
|
/* Extensible attribute (xva) routines. */
|
|
|
|
/*
|
|
* Zero out the structure, set the size of the requested/returned bitmaps,
|
|
* set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer
|
|
* to the returned attributes array.
|
|
*/
|
|
void
|
|
xva_init(xvattr_t *xvap)
|
|
{
|
|
bzero(xvap, sizeof (xvattr_t));
|
|
xvap->xva_mapsize = XVA_MAPSIZE;
|
|
xvap->xva_magic = XVA_MAGIC;
|
|
xvap->xva_vattr.va_mask = AT_XVATTR;
|
|
xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0];
|
|
}
|
|
|
|
/*
|
|
* If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t
|
|
* structure. Otherwise, returns NULL.
|
|
*/
|
|
xoptattr_t *
|
|
xva_getxoptattr(xvattr_t *xvap)
|
|
{
|
|
xoptattr_t *xoap = NULL;
|
|
if (xvap->xva_vattr.va_mask & AT_XVATTR)
|
|
xoap = &xvap->xva_xoptattrs;
|
|
return (xoap);
|
|
}
|
|
|
|
/*
|
|
* Used by the AVL routines to compare two vsk_anchor_t structures in the tree.
|
|
* We use the f_fsid reported by VFS_STATVFS() since we use that for the
|
|
* kstat name.
|
|
*/
|
|
static int
|
|
vska_compar(const void *n1, const void *n2)
|
|
{
|
|
int ret;
|
|
ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid;
|
|
ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid;
|
|
|
|
if (p1 < p2) {
|
|
ret = -1;
|
|
} else if (p1 > p2) {
|
|
ret = 1;
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Used to create a single template which will be bcopy()ed to a newly
|
|
* allocated vsanchor_combo_t structure in new_vsanchor(), below.
|
|
*/
|
|
static vopstats_t *
|
|
create_vopstats_template()
|
|
{
|
|
vopstats_t *vsp;
|
|
|
|
vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP);
|
|
bzero(vsp, sizeof (*vsp)); /* Start fresh */
|
|
|
|
/* VOP_OPEN */
|
|
kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64);
|
|
/* VOP_CLOSE */
|
|
kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64);
|
|
/* VOP_READ I/O */
|
|
kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64);
|
|
kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64);
|
|
/* VOP_WRITE I/O */
|
|
kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64);
|
|
kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64);
|
|
/* VOP_IOCTL */
|
|
kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64);
|
|
/* VOP_SETFL */
|
|
kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64);
|
|
/* VOP_GETATTR */
|
|
kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64);
|
|
/* VOP_SETATTR */
|
|
kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64);
|
|
/* VOP_ACCESS */
|
|
kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64);
|
|
/* VOP_LOOKUP */
|
|
kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64);
|
|
/* VOP_CREATE */
|
|
kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64);
|
|
/* VOP_REMOVE */
|
|
kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64);
|
|
/* VOP_LINK */
|
|
kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64);
|
|
/* VOP_RENAME */
|
|
kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64);
|
|
/* VOP_MKDIR */
|
|
kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64);
|
|
/* VOP_RMDIR */
|
|
kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64);
|
|
/* VOP_READDIR I/O */
|
|
kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64);
|
|
kstat_named_init(&vsp->readdir_bytes, "readdir_bytes",
|
|
KSTAT_DATA_UINT64);
|
|
/* VOP_SYMLINK */
|
|
kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64);
|
|
/* VOP_READLINK */
|
|
kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64);
|
|
/* VOP_FSYNC */
|
|
kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64);
|
|
/* VOP_INACTIVE */
|
|
kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64);
|
|
/* VOP_FID */
|
|
kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64);
|
|
/* VOP_RWLOCK */
|
|
kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64);
|
|
/* VOP_RWUNLOCK */
|
|
kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64);
|
|
/* VOP_SEEK */
|
|
kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64);
|
|
/* VOP_CMP */
|
|
kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64);
|
|
/* VOP_FRLOCK */
|
|
kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64);
|
|
/* VOP_SPACE */
|
|
kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64);
|
|
/* VOP_REALVP */
|
|
kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64);
|
|
/* VOP_GETPAGE */
|
|
kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64);
|
|
/* VOP_PUTPAGE */
|
|
kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64);
|
|
/* VOP_MAP */
|
|
kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64);
|
|
/* VOP_ADDMAP */
|
|
kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64);
|
|
/* VOP_DELMAP */
|
|
kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64);
|
|
/* VOP_POLL */
|
|
kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64);
|
|
/* VOP_DUMP */
|
|
kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64);
|
|
/* VOP_PATHCONF */
|
|
kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64);
|
|
/* VOP_PAGEIO */
|
|
kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64);
|
|
/* VOP_DUMPCTL */
|
|
kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64);
|
|
/* VOP_DISPOSE */
|
|
kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64);
|
|
/* VOP_SETSECATTR */
|
|
kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64);
|
|
/* VOP_GETSECATTR */
|
|
kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64);
|
|
/* VOP_SHRLOCK */
|
|
kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64);
|
|
/* VOP_VNEVENT */
|
|
kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64);
|
|
/* VOP_REQZCBUF */
|
|
kstat_named_init(&vsp->nreqzcbuf, "nreqzcbuf", KSTAT_DATA_UINT64);
|
|
/* VOP_RETZCBUF */
|
|
kstat_named_init(&vsp->nretzcbuf, "nretzcbuf", KSTAT_DATA_UINT64);
|
|
|
|
return (vsp);
|
|
}
|
|
|
|
/*
|
|
* Creates a kstat structure associated with a vopstats structure.
|
|
*/
|
|
kstat_t *
|
|
new_vskstat(char *ksname, vopstats_t *vsp)
|
|
{
|
|
kstat_t *ksp;
|
|
|
|
if (!vopstats_enabled) {
|
|
return (NULL);
|
|
}
|
|
|
|
ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED,
|
|
sizeof (vopstats_t)/sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE);
|
|
if (ksp) {
|
|
ksp->ks_data = vsp;
|
|
kstat_install(ksp);
|
|
}
|
|
|
|
return (ksp);
|
|
}
|
|
|
|
/*
|
|
* Called from vfsinit() to initialize the support mechanisms for vopstats
|
|
*/
|
|
void
|
|
vopstats_startup()
|
|
{
|
|
if (!vopstats_enabled)
|
|
return;
|
|
|
|
/*
|
|
* Creates the AVL tree which holds per-vfs vopstat anchors. This
|
|
* is necessary since we need to check if a kstat exists before we
|
|
* attempt to create it. Also, initialize its lock.
|
|
*/
|
|
avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t),
|
|
offsetof(vsk_anchor_t, vsk_node));
|
|
mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache",
|
|
sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL,
|
|
NULL, NULL, 0);
|
|
|
|
/*
|
|
* Set up the array of pointers for the vopstats-by-FS-type.
|
|
* The entries will be allocated/initialized as each file system
|
|
* goes through modload/mod_installfs.
|
|
*/
|
|
vopstats_fstype = (vopstats_t **)kmem_zalloc(
|
|
(sizeof (vopstats_t *) * nfstype), KM_SLEEP);
|
|
|
|
/* Set up the global vopstats initialization template */
|
|
vs_templatep = create_vopstats_template();
|
|
}
|
|
|
|
/*
|
|
* We need to have the all of the counters zeroed.
|
|
* The initialization of the vopstats_t includes on the order of
|
|
* 50 calls to kstat_named_init(). Rather that do that on every call,
|
|
* we do it once in a template (vs_templatep) then bcopy it over.
|
|
*/
|
|
void
|
|
initialize_vopstats(vopstats_t *vsp)
|
|
{
|
|
if (vsp == NULL)
|
|
return;
|
|
|
|
bcopy(vs_templatep, vsp, sizeof (vopstats_t));
|
|
}
|
|
|
|
/*
|
|
* If possible, determine which vopstats by fstype to use and
|
|
* return a pointer to the caller.
|
|
*/
|
|
vopstats_t *
|
|
get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp)
|
|
{
|
|
int fstype = 0; /* Index into vfssw[] */
|
|
vopstats_t *vsp = NULL;
|
|
|
|
if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
|
|
!vopstats_enabled)
|
|
return (NULL);
|
|
/*
|
|
* Set up the fstype. We go to so much trouble because all versions
|
|
* of NFS use the same fstype in their vfs even though they have
|
|
* distinct entries in the vfssw[] table.
|
|
* NOTE: A special vfs (e.g., EIO_vfs) may not have an entry.
|
|
*/
|
|
if (vswp) {
|
|
fstype = vswp - vfssw; /* Gets us the index */
|
|
} else {
|
|
fstype = vfsp->vfs_fstype;
|
|
}
|
|
|
|
/*
|
|
* Point to the per-fstype vopstats. The only valid values are
|
|
* non-zero positive values less than the number of vfssw[] table
|
|
* entries.
|
|
*/
|
|
if (fstype > 0 && fstype < nfstype) {
|
|
vsp = vopstats_fstype[fstype];
|
|
}
|
|
|
|
return (vsp);
|
|
}
|
|
|
|
/*
|
|
* Generate a kstat name, create the kstat structure, and allocate a
|
|
* vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t
|
|
* to the caller. This must only be called from a mount.
|
|
*/
|
|
vsk_anchor_t *
|
|
get_vskstat_anchor(vfs_t *vfsp)
|
|
{
|
|
char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */
|
|
statvfs64_t statvfsbuf; /* Needed to find f_fsid */
|
|
vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */
|
|
kstat_t *ksp; /* Ptr to new kstat */
|
|
avl_index_t where; /* Location in the AVL tree */
|
|
|
|
if (vfsp == NULL || vfsp->vfs_implp == NULL ||
|
|
(vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
|
|
return (NULL);
|
|
|
|
/* Need to get the fsid to build a kstat name */
|
|
if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) {
|
|
/* Create a name for our kstats based on fsid */
|
|
(void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx",
|
|
VOPSTATS_STR, statvfsbuf.f_fsid);
|
|
|
|
/* Allocate and initialize the vsk_anchor_t */
|
|
vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP);
|
|
bzero(vskp, sizeof (*vskp));
|
|
vskp->vsk_fsid = statvfsbuf.f_fsid;
|
|
|
|
mutex_enter(&vskstat_tree_lock);
|
|
if (avl_find(&vskstat_tree, vskp, &where) == NULL) {
|
|
avl_insert(&vskstat_tree, vskp, where);
|
|
mutex_exit(&vskstat_tree_lock);
|
|
|
|
/*
|
|
* Now that we've got the anchor in the AVL
|
|
* tree, we can create the kstat.
|
|
*/
|
|
ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats);
|
|
if (ksp) {
|
|
vskp->vsk_ksp = ksp;
|
|
}
|
|
} else {
|
|
/* Oops, found one! Release memory and lock. */
|
|
mutex_exit(&vskstat_tree_lock);
|
|
kmem_cache_free(vsk_anchor_cache, vskp);
|
|
vskp = NULL;
|
|
}
|
|
}
|
|
return (vskp);
|
|
}
|
|
|
|
/*
|
|
* We're in the process of tearing down the vfs and need to cleanup
|
|
* the data structures associated with the vopstats. Must only be called
|
|
* from dounmount().
|
|
*/
|
|
void
|
|
teardown_vopstats(vfs_t *vfsp)
|
|
{
|
|
vsk_anchor_t *vskap;
|
|
avl_index_t where;
|
|
|
|
if (vfsp == NULL || vfsp->vfs_implp == NULL ||
|
|
(vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled)
|
|
return;
|
|
|
|
/* This is a safe check since VFS_STATS must be set (see above) */
|
|
if ((vskap = vfsp->vfs_vskap) == NULL)
|
|
return;
|
|
|
|
/* Whack the pointer right away */
|
|
vfsp->vfs_vskap = NULL;
|
|
|
|
/* Lock the tree, remove the node, and delete the kstat */
|
|
mutex_enter(&vskstat_tree_lock);
|
|
if (avl_find(&vskstat_tree, vskap, &where)) {
|
|
avl_remove(&vskstat_tree, vskap);
|
|
}
|
|
|
|
if (vskap->vsk_ksp) {
|
|
kstat_delete(vskap->vsk_ksp);
|
|
}
|
|
mutex_exit(&vskstat_tree_lock);
|
|
|
|
kmem_cache_free(vsk_anchor_cache, vskap);
|
|
}
|
|
|
|
/*
|
|
* Read or write a vnode. Called from kernel code.
|
|
*/
|
|
int
|
|
vn_rdwr(
|
|
enum uio_rw rw,
|
|
struct vnode *vp,
|
|
caddr_t base,
|
|
ssize_t len,
|
|
offset_t offset,
|
|
enum uio_seg seg,
|
|
int ioflag,
|
|
rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */
|
|
cred_t *cr,
|
|
ssize_t *residp)
|
|
{
|
|
struct uio uio;
|
|
struct iovec iov;
|
|
int error;
|
|
int in_crit = 0;
|
|
|
|
if (rw == UIO_WRITE && ISROFILE(vp))
|
|
return (EROFS);
|
|
|
|
if (len < 0)
|
|
return (EIO);
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
iov.iov_base = base;
|
|
iov.iov_len = len;
|
|
uio.uio_iov = &iov;
|
|
uio.uio_iovcnt = 1;
|
|
uio.uio_loffset = offset;
|
|
uio.uio_segflg = (short)seg;
|
|
uio.uio_resid = len;
|
|
uio.uio_llimit = ulimit;
|
|
|
|
/*
|
|
* We have to enter the critical region before calling VOP_RWLOCK
|
|
* to avoid a deadlock with ufs.
|
|
*/
|
|
if (nbl_need_check(vp)) {
|
|
int svmand;
|
|
|
|
nbl_start_crit(vp, RW_READER);
|
|
in_crit = 1;
|
|
error = nbl_svmand(vp, cr, &svmand);
|
|
if (error != 0)
|
|
goto done;
|
|
if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
|
|
uio.uio_offset, uio.uio_resid, svmand, NULL)) {
|
|
error = EACCES;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
(void) VOP_RWLOCK(vp,
|
|
rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
|
|
if (rw == UIO_WRITE) {
|
|
uio.uio_fmode = FWRITE;
|
|
uio.uio_extflg = UIO_COPY_DEFAULT;
|
|
error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
|
|
} else {
|
|
uio.uio_fmode = FREAD;
|
|
uio.uio_extflg = UIO_COPY_CACHED;
|
|
error = VOP_READ(vp, &uio, ioflag, cr, NULL);
|
|
}
|
|
VOP_RWUNLOCK(vp,
|
|
rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
|
|
if (residp)
|
|
*residp = uio.uio_resid;
|
|
else if (uio.uio_resid)
|
|
error = EIO;
|
|
|
|
done:
|
|
if (in_crit)
|
|
nbl_end_crit(vp);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Release a vnode. Call VOP_INACTIVE on last reference or
|
|
* decrement reference count.
|
|
*
|
|
* To avoid race conditions, the v_count is left at 1 for
|
|
* the call to VOP_INACTIVE. This prevents another thread
|
|
* from reclaiming and releasing the vnode *before* the
|
|
* VOP_INACTIVE routine has a chance to destroy the vnode.
|
|
* We can't have more than 1 thread calling VOP_INACTIVE
|
|
* on a vnode.
|
|
*/
|
|
void
|
|
vn_rele(vnode_t *vp)
|
|
{
|
|
VERIFY(vp->v_count > 0);
|
|
mutex_enter(&vp->v_lock);
|
|
if (vp->v_count == 1) {
|
|
mutex_exit(&vp->v_lock);
|
|
VOP_INACTIVE(vp, CRED(), NULL);
|
|
return;
|
|
}
|
|
vp->v_count--;
|
|
mutex_exit(&vp->v_lock);
|
|
}
|
|
|
|
/*
|
|
* Release a vnode referenced by the DNLC. Multiple DNLC references are treated
|
|
* as a single reference, so v_count is not decremented until the last DNLC hold
|
|
* is released. This makes it possible to distinguish vnodes that are referenced
|
|
* only by the DNLC.
|
|
*/
|
|
void
|
|
vn_rele_dnlc(vnode_t *vp)
|
|
{
|
|
VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0));
|
|
mutex_enter(&vp->v_lock);
|
|
if (--vp->v_count_dnlc == 0) {
|
|
if (vp->v_count == 1) {
|
|
mutex_exit(&vp->v_lock);
|
|
VOP_INACTIVE(vp, CRED(), NULL);
|
|
return;
|
|
}
|
|
vp->v_count--;
|
|
}
|
|
mutex_exit(&vp->v_lock);
|
|
}
|
|
|
|
/*
|
|
* Like vn_rele() except that it clears v_stream under v_lock.
|
|
* This is used by sockfs when it dismantels the association between
|
|
* the sockfs node and the vnode in the underlaying file system.
|
|
* v_lock has to be held to prevent a thread coming through the lookupname
|
|
* path from accessing a stream head that is going away.
|
|
*/
|
|
void
|
|
vn_rele_stream(vnode_t *vp)
|
|
{
|
|
VERIFY(vp->v_count > 0);
|
|
mutex_enter(&vp->v_lock);
|
|
vp->v_stream = NULL;
|
|
if (vp->v_count == 1) {
|
|
mutex_exit(&vp->v_lock);
|
|
VOP_INACTIVE(vp, CRED(), NULL);
|
|
return;
|
|
}
|
|
vp->v_count--;
|
|
mutex_exit(&vp->v_lock);
|
|
}
|
|
|
|
static void
|
|
vn_rele_inactive(vnode_t *vp)
|
|
{
|
|
VOP_INACTIVE(vp, CRED(), NULL);
|
|
}
|
|
|
|
/*
|
|
* Like vn_rele() except if we are going to call VOP_INACTIVE() then do it
|
|
* asynchronously using a taskq. This can avoid deadlocks caused by re-entering
|
|
* the file system as a result of releasing the vnode. Note, file systems
|
|
* already have to handle the race where the vnode is incremented before the
|
|
* inactive routine is called and does its locking.
|
|
*
|
|
* Warning: Excessive use of this routine can lead to performance problems.
|
|
* This is because taskqs throttle back allocation if too many are created.
|
|
*/
|
|
void
|
|
vn_rele_async(vnode_t *vp, taskq_t *taskq)
|
|
{
|
|
VERIFY(vp->v_count > 0);
|
|
mutex_enter(&vp->v_lock);
|
|
if (vp->v_count == 1) {
|
|
mutex_exit(&vp->v_lock);
|
|
VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive,
|
|
vp, TQ_SLEEP) != NULL);
|
|
return;
|
|
}
|
|
vp->v_count--;
|
|
mutex_exit(&vp->v_lock);
|
|
}
|
|
|
|
int
|
|
vn_open(
|
|
char *pnamep,
|
|
enum uio_seg seg,
|
|
int filemode,
|
|
int createmode,
|
|
struct vnode **vpp,
|
|
enum create crwhy,
|
|
mode_t umask)
|
|
{
|
|
return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy,
|
|
umask, NULL, -1));
|
|
}
|
|
|
|
|
|
/*
|
|
* Open/create a vnode.
|
|
* This may be callable by the kernel, the only known use
|
|
* of user context being that the current user credentials
|
|
* are used for permissions. crwhy is defined iff filemode & FCREAT.
|
|
*/
|
|
int
|
|
vn_openat(
|
|
char *pnamep,
|
|
enum uio_seg seg,
|
|
int filemode,
|
|
int createmode,
|
|
struct vnode **vpp,
|
|
enum create crwhy,
|
|
mode_t umask,
|
|
struct vnode *startvp,
|
|
int fd)
|
|
{
|
|
struct vnode *vp;
|
|
int mode;
|
|
int accessflags;
|
|
int error;
|
|
int in_crit = 0;
|
|
int open_done = 0;
|
|
int shrlock_done = 0;
|
|
struct vattr vattr;
|
|
enum symfollow follow;
|
|
int estale_retry = 0;
|
|
struct shrlock shr;
|
|
struct shr_locowner shr_own;
|
|
|
|
mode = 0;
|
|
accessflags = 0;
|
|
if (filemode & FREAD)
|
|
mode |= VREAD;
|
|
if (filemode & (FWRITE|FTRUNC))
|
|
mode |= VWRITE;
|
|
if (filemode & (FSEARCH|FEXEC|FXATTRDIROPEN))
|
|
mode |= VEXEC;
|
|
|
|
/* symlink interpretation */
|
|
if (filemode & FNOFOLLOW)
|
|
follow = NO_FOLLOW;
|
|
else
|
|
follow = FOLLOW;
|
|
|
|
if (filemode & FAPPEND)
|
|
accessflags |= V_APPEND;
|
|
|
|
top:
|
|
if (filemode & FCREAT) {
|
|
enum vcexcl excl;
|
|
|
|
/*
|
|
* Wish to create a file.
|
|
*/
|
|
vattr.va_type = VREG;
|
|
vattr.va_mode = createmode;
|
|
vattr.va_mask = AT_TYPE|AT_MODE;
|
|
if (filemode & FTRUNC) {
|
|
vattr.va_size = 0;
|
|
vattr.va_mask |= AT_SIZE;
|
|
}
|
|
if (filemode & FEXCL)
|
|
excl = EXCL;
|
|
else
|
|
excl = NONEXCL;
|
|
|
|
if (error =
|
|
vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
|
|
(filemode & ~(FTRUNC|FEXCL)), umask, startvp))
|
|
return (error);
|
|
} else {
|
|
/*
|
|
* Wish to open a file. Just look it up.
|
|
*/
|
|
if (error = lookupnameat(pnamep, seg, follow,
|
|
NULLVPP, &vp, startvp)) {
|
|
if ((error == ESTALE) &&
|
|
fs_need_estale_retry(estale_retry++))
|
|
goto top;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get the attributes to check whether file is large.
|
|
* We do this only if the FOFFMAX flag is not set and
|
|
* only for regular files.
|
|
*/
|
|
|
|
if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
|
|
vattr.va_mask = AT_SIZE;
|
|
if ((error = VOP_GETATTR(vp, &vattr, 0,
|
|
CRED(), NULL))) {
|
|
goto out;
|
|
}
|
|
if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
|
|
/*
|
|
* Large File API - regular open fails
|
|
* if FOFFMAX flag is set in file mode
|
|
*/
|
|
error = EOVERFLOW;
|
|
goto out;
|
|
}
|
|
}
|
|
/*
|
|
* Can't write directories, active texts, or
|
|
* read-only filesystems. Can't truncate files
|
|
* on which mandatory locking is in effect.
|
|
*/
|
|
if (filemode & (FWRITE|FTRUNC)) {
|
|
/*
|
|
* Allow writable directory if VDIROPEN flag is set.
|
|
*/
|
|
if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
|
|
error = EISDIR;
|
|
goto out;
|
|
}
|
|
if (ISROFILE(vp)) {
|
|
error = EROFS;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Can't truncate files on which
|
|
* sysv mandatory locking is in effect.
|
|
*/
|
|
if (filemode & FTRUNC) {
|
|
vnode_t *rvp;
|
|
|
|
if (VOP_REALVP(vp, &rvp, NULL) != 0)
|
|
rvp = vp;
|
|
if (rvp->v_filocks != NULL) {
|
|
vattr.va_mask = AT_MODE;
|
|
if ((error = VOP_GETATTR(vp,
|
|
&vattr, 0, CRED(), NULL)) == 0 &&
|
|
MANDLOCK(vp, vattr.va_mode))
|
|
error = EAGAIN;
|
|
}
|
|
}
|
|
if (error)
|
|
goto out;
|
|
}
|
|
/*
|
|
* Check permissions.
|
|
*/
|
|
if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL))
|
|
goto out;
|
|
/*
|
|
* Require FSEARCH to return a directory.
|
|
* Require FEXEC to return a regular file.
|
|
*/
|
|
if ((filemode & FSEARCH) && vp->v_type != VDIR) {
|
|
error = ENOTDIR;
|
|
goto out;
|
|
}
|
|
if ((filemode & FEXEC) && vp->v_type != VREG) {
|
|
error = ENOEXEC; /* XXX: error code? */
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do remaining checks for FNOFOLLOW and FNOLINKS.
|
|
*/
|
|
if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
|
|
error = ELOOP;
|
|
goto out;
|
|
}
|
|
if (filemode & FNOLINKS) {
|
|
vattr.va_mask = AT_NLINK;
|
|
if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) {
|
|
goto out;
|
|
}
|
|
if (vattr.va_nlink != 1) {
|
|
error = EMLINK;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Opening a socket corresponding to the AF_UNIX pathname
|
|
* in the filesystem name space is not supported.
|
|
* However, VSOCK nodes in namefs are supported in order
|
|
* to make fattach work for sockets.
|
|
*
|
|
* XXX This uses VOP_REALVP to distinguish between
|
|
* an unopened namefs node (where VOP_REALVP returns a
|
|
* different VSOCK vnode) and a VSOCK created by vn_create
|
|
* in some file system (where VOP_REALVP would never return
|
|
* a different vnode).
|
|
*/
|
|
if (vp->v_type == VSOCK) {
|
|
struct vnode *nvp;
|
|
|
|
error = VOP_REALVP(vp, &nvp, NULL);
|
|
if (error != 0 || nvp == NULL || nvp == vp ||
|
|
nvp->v_type != VSOCK) {
|
|
error = EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if ((vp->v_type == VREG) && nbl_need_check(vp)) {
|
|
/* get share reservation */
|
|
shr.s_access = 0;
|
|
if (filemode & FWRITE)
|
|
shr.s_access |= F_WRACC;
|
|
if (filemode & FREAD)
|
|
shr.s_access |= F_RDACC;
|
|
shr.s_deny = 0;
|
|
shr.s_sysid = 0;
|
|
shr.s_pid = ttoproc(curthread)->p_pid;
|
|
shr_own.sl_pid = shr.s_pid;
|
|
shr_own.sl_id = fd;
|
|
shr.s_own_len = sizeof (shr_own);
|
|
shr.s_owner = (caddr_t)&shr_own;
|
|
error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(),
|
|
NULL);
|
|
if (error)
|
|
goto out;
|
|
shrlock_done = 1;
|
|
|
|
/* nbmand conflict check if truncating file */
|
|
if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
|
|
nbl_start_crit(vp, RW_READER);
|
|
in_crit = 1;
|
|
|
|
vattr.va_mask = AT_SIZE;
|
|
if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
|
|
goto out;
|
|
if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0,
|
|
NULL)) {
|
|
error = EACCES;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do opening protocol.
|
|
*/
|
|
error = VOP_OPEN(&vp, filemode, CRED(), NULL);
|
|
if (error)
|
|
goto out;
|
|
open_done = 1;
|
|
|
|
/*
|
|
* Truncate if required.
|
|
*/
|
|
if ((filemode & FTRUNC) && !(filemode & FCREAT)) {
|
|
vattr.va_size = 0;
|
|
vattr.va_mask = AT_SIZE;
|
|
if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
|
|
goto out;
|
|
}
|
|
out:
|
|
ASSERT(vp->v_count > 0);
|
|
|
|
if (in_crit) {
|
|
nbl_end_crit(vp);
|
|
in_crit = 0;
|
|
}
|
|
if (error) {
|
|
if (open_done) {
|
|
(void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(),
|
|
NULL);
|
|
open_done = 0;
|
|
shrlock_done = 0;
|
|
}
|
|
if (shrlock_done) {
|
|
(void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(),
|
|
NULL);
|
|
shrlock_done = 0;
|
|
}
|
|
|
|
/*
|
|
* The following clause was added to handle a problem
|
|
* with NFS consistency. It is possible that a lookup
|
|
* of the file to be opened succeeded, but the file
|
|
* itself doesn't actually exist on the server. This
|
|
* is chiefly due to the DNLC containing an entry for
|
|
* the file which has been removed on the server. In
|
|
* this case, we just start over. If there was some
|
|
* other cause for the ESTALE error, then the lookup
|
|
* of the file will fail and the error will be returned
|
|
* above instead of looping around from here.
|
|
*/
|
|
VN_RELE(vp);
|
|
if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
|
|
goto top;
|
|
} else
|
|
*vpp = vp;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* The following two accessor functions are for the NFSv4 server. Since there
|
|
* is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the
|
|
* vnode open counts correct when a client "upgrades" an open or does an
|
|
* open_downgrade. In NFS, an upgrade or downgrade can not only change the
|
|
* open mode (add or subtract read or write), but also change the share/deny
|
|
* modes. However, share reservations are not integrated with OPEN, yet, so
|
|
* we need to handle each separately. These functions are cleaner than having
|
|
* the NFS server manipulate the counts directly, however, nobody else should
|
|
* use these functions.
|
|
*/
|
|
void
|
|
vn_open_upgrade(
|
|
vnode_t *vp,
|
|
int filemode)
|
|
{
|
|
ASSERT(vp->v_type == VREG);
|
|
|
|
if (filemode & FREAD)
|
|
atomic_add_32(&(vp->v_rdcnt), 1);
|
|
if (filemode & FWRITE)
|
|
atomic_add_32(&(vp->v_wrcnt), 1);
|
|
|
|
}
|
|
|
|
void
|
|
vn_open_downgrade(
|
|
vnode_t *vp,
|
|
int filemode)
|
|
{
|
|
ASSERT(vp->v_type == VREG);
|
|
|
|
if (filemode & FREAD) {
|
|
ASSERT(vp->v_rdcnt > 0);
|
|
atomic_add_32(&(vp->v_rdcnt), -1);
|
|
}
|
|
if (filemode & FWRITE) {
|
|
ASSERT(vp->v_wrcnt > 0);
|
|
atomic_add_32(&(vp->v_wrcnt), -1);
|
|
}
|
|
|
|
}
|
|
|
|
int
|
|
vn_create(
|
|
char *pnamep,
|
|
enum uio_seg seg,
|
|
struct vattr *vap,
|
|
enum vcexcl excl,
|
|
int mode,
|
|
struct vnode **vpp,
|
|
enum create why,
|
|
int flag,
|
|
mode_t umask)
|
|
{
|
|
return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag,
|
|
umask, NULL));
|
|
}
|
|
|
|
/*
|
|
* Create a vnode (makenode).
|
|
*/
|
|
int
|
|
vn_createat(
|
|
char *pnamep,
|
|
enum uio_seg seg,
|
|
struct vattr *vap,
|
|
enum vcexcl excl,
|
|
int mode,
|
|
struct vnode **vpp,
|
|
enum create why,
|
|
int flag,
|
|
mode_t umask,
|
|
struct vnode *startvp)
|
|
{
|
|
struct vnode *dvp; /* ptr to parent dir vnode */
|
|
struct vnode *vp = NULL;
|
|
struct pathname pn;
|
|
int error;
|
|
int in_crit = 0;
|
|
struct vattr vattr;
|
|
enum symfollow follow;
|
|
int estale_retry = 0;
|
|
uint32_t auditing = AU_AUDITING();
|
|
|
|
ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
|
|
|
|
/* symlink interpretation */
|
|
if ((flag & FNOFOLLOW) || excl == EXCL)
|
|
follow = NO_FOLLOW;
|
|
else
|
|
follow = FOLLOW;
|
|
flag &= ~(FNOFOLLOW|FNOLINKS);
|
|
|
|
top:
|
|
/*
|
|
* Lookup directory.
|
|
* If new object is a file, call lower level to create it.
|
|
* Note that it is up to the lower level to enforce exclusive
|
|
* creation, if the file is already there.
|
|
* This allows the lower level to do whatever
|
|
* locking or protocol that is needed to prevent races.
|
|
* If the new object is directory call lower level to make
|
|
* the new directory, with "." and "..".
|
|
*/
|
|
if (error = pn_get(pnamep, seg, &pn))
|
|
return (error);
|
|
if (auditing)
|
|
audit_vncreate_start();
|
|
dvp = NULL;
|
|
*vpp = NULL;
|
|
/*
|
|
* lookup will find the parent directory for the vnode.
|
|
* When it is done the pn holds the name of the entry
|
|
* in the directory.
|
|
* If this is a non-exclusive create we also find the node itself.
|
|
*/
|
|
error = lookuppnat(&pn, NULL, follow, &dvp,
|
|
(excl == EXCL) ? NULLVPP : vpp, startvp);
|
|
if (error) {
|
|
pn_free(&pn);
|
|
if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
|
|
goto top;
|
|
if (why == CRMKDIR && error == EINVAL)
|
|
error = EEXIST; /* SVID */
|
|
return (error);
|
|
}
|
|
|
|
if (why != CRMKNOD)
|
|
vap->va_mode &= ~VSVTX;
|
|
|
|
/*
|
|
* If default ACLs are defined for the directory don't apply the
|
|
* umask if umask is passed.
|
|
*/
|
|
|
|
if (umask) {
|
|
|
|
vsecattr_t vsec;
|
|
|
|
vsec.vsa_aclcnt = 0;
|
|
vsec.vsa_aclentp = NULL;
|
|
vsec.vsa_dfaclcnt = 0;
|
|
vsec.vsa_dfaclentp = NULL;
|
|
vsec.vsa_mask = VSA_DFACLCNT;
|
|
error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL);
|
|
/*
|
|
* If error is ENOSYS then treat it as no error
|
|
* Don't want to force all file systems to support
|
|
* aclent_t style of ACL's.
|
|
*/
|
|
if (error == ENOSYS)
|
|
error = 0;
|
|
if (error) {
|
|
if (*vpp != NULL)
|
|
VN_RELE(*vpp);
|
|
goto out;
|
|
} else {
|
|
/*
|
|
* Apply the umask if no default ACLs.
|
|
*/
|
|
if (vsec.vsa_dfaclcnt == 0)
|
|
vap->va_mode &= ~umask;
|
|
|
|
/*
|
|
* VOP_GETSECATTR() may have allocated memory for
|
|
* ACLs we didn't request, so double-check and
|
|
* free it if necessary.
|
|
*/
|
|
if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
|
|
kmem_free((caddr_t)vsec.vsa_aclentp,
|
|
vsec.vsa_aclcnt * sizeof (aclent_t));
|
|
if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
|
|
kmem_free((caddr_t)vsec.vsa_dfaclentp,
|
|
vsec.vsa_dfaclcnt * sizeof (aclent_t));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In general we want to generate EROFS if the file system is
|
|
* readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1
|
|
* documents the open system call, and it says that O_CREAT has no
|
|
* effect if the file already exists. Bug 1119649 states
|
|
* that open(path, O_CREAT, ...) fails when attempting to open an
|
|
* existing file on a read only file system. Thus, the first part
|
|
* of the following if statement has 3 checks:
|
|
* if the file exists &&
|
|
* it is being open with write access &&
|
|
* the file system is read only
|
|
* then generate EROFS
|
|
*/
|
|
if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
|
|
(*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
|
|
if (*vpp)
|
|
VN_RELE(*vpp);
|
|
error = EROFS;
|
|
} else if (excl == NONEXCL && *vpp != NULL) {
|
|
vnode_t *rvp;
|
|
|
|
/*
|
|
* File already exists. If a mandatory lock has been
|
|
* applied, return error.
|
|
*/
|
|
vp = *vpp;
|
|
if (VOP_REALVP(vp, &rvp, NULL) != 0)
|
|
rvp = vp;
|
|
if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
|
|
nbl_start_crit(vp, RW_READER);
|
|
in_crit = 1;
|
|
}
|
|
if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
|
|
vattr.va_mask = AT_MODE|AT_SIZE;
|
|
if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) {
|
|
goto out;
|
|
}
|
|
if (MANDLOCK(vp, vattr.va_mode)) {
|
|
error = EAGAIN;
|
|
goto out;
|
|
}
|
|
/*
|
|
* File cannot be truncated if non-blocking mandatory
|
|
* locks are currently on the file.
|
|
*/
|
|
if ((vap->va_mask & AT_SIZE) && in_crit) {
|
|
u_offset_t offset;
|
|
ssize_t length;
|
|
|
|
offset = vap->va_size > vattr.va_size ?
|
|
vattr.va_size : vap->va_size;
|
|
length = vap->va_size > vattr.va_size ?
|
|
vap->va_size - vattr.va_size :
|
|
vattr.va_size - vap->va_size;
|
|
if (nbl_conflict(vp, NBL_WRITE, offset,
|
|
length, 0, NULL)) {
|
|
error = EACCES;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the file is the root of a VFS, we've crossed a
|
|
* mount point and the "containing" directory that we
|
|
* acquired above (dvp) is irrelevant because it's in
|
|
* a different file system. We apply VOP_CREATE to the
|
|
* target itself instead of to the containing directory
|
|
* and supply a null path name to indicate (conventionally)
|
|
* the node itself as the "component" of interest.
|
|
*
|
|
* The intercession of the file system is necessary to
|
|
* ensure that the appropriate permission checks are
|
|
* done.
|
|
*/
|
|
if (vp->v_flag & VROOT) {
|
|
ASSERT(why != CRMKDIR);
|
|
error = VOP_CREATE(vp, "", vap, excl, mode, vpp,
|
|
CRED(), flag, NULL, NULL);
|
|
/*
|
|
* If the create succeeded, it will have created
|
|
* a new reference to the vnode. Give up the
|
|
* original reference. The assertion should not
|
|
* get triggered because NBMAND locks only apply to
|
|
* VREG files. And if in_crit is non-zero for some
|
|
* reason, detect that here, rather than when we
|
|
* deference a null vp.
|
|
*/
|
|
ASSERT(in_crit == 0);
|
|
VN_RELE(vp);
|
|
vp = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Large File API - non-large open (FOFFMAX flag not set)
|
|
* of regular file fails if the file size exceeds MAXOFF32_T.
|
|
*/
|
|
if (why != CRMKDIR &&
|
|
!(flag & FOFFMAX) &&
|
|
(vp->v_type == VREG)) {
|
|
vattr.va_mask = AT_SIZE;
|
|
if ((error = VOP_GETATTR(vp, &vattr, 0,
|
|
CRED(), NULL))) {
|
|
goto out;
|
|
}
|
|
if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
|
|
error = EOVERFLOW;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (error == 0) {
|
|
/*
|
|
* Call mkdir() if specified, otherwise create().
|
|
*/
|
|
int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */
|
|
|
|
if (why == CRMKDIR)
|
|
/*
|
|
* N.B., if vn_createat() ever requests
|
|
* case-insensitive behavior then it will need
|
|
* to be passed to VOP_MKDIR(). VOP_CREATE()
|
|
* will already get it via "flag"
|
|
*/
|
|
error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(),
|
|
NULL, 0, NULL);
|
|
else if (!must_be_dir)
|
|
error = VOP_CREATE(dvp, pn.pn_path, vap,
|
|
excl, mode, vpp, CRED(), flag, NULL, NULL);
|
|
else
|
|
error = ENOTDIR;
|
|
}
|
|
|
|
out:
|
|
|
|
if (auditing)
|
|
audit_vncreate_finish(*vpp, error);
|
|
if (in_crit) {
|
|
nbl_end_crit(vp);
|
|
in_crit = 0;
|
|
}
|
|
if (vp != NULL) {
|
|
VN_RELE(vp);
|
|
vp = NULL;
|
|
}
|
|
pn_free(&pn);
|
|
VN_RELE(dvp);
|
|
/*
|
|
* The following clause was added to handle a problem
|
|
* with NFS consistency. It is possible that a lookup
|
|
* of the file to be created succeeded, but the file
|
|
* itself doesn't actually exist on the server. This
|
|
* is chiefly due to the DNLC containing an entry for
|
|
* the file which has been removed on the server. In
|
|
* this case, we just start over. If there was some
|
|
* other cause for the ESTALE error, then the lookup
|
|
* of the file will fail and the error will be returned
|
|
* above instead of looping around from here.
|
|
*/
|
|
if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
|
|
goto top;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vn_link(char *from, char *to, enum uio_seg seg)
|
|
{
|
|
return (vn_linkat(NULL, from, NO_FOLLOW, NULL, to, seg));
|
|
}
|
|
|
|
int
|
|
vn_linkat(vnode_t *fstartvp, char *from, enum symfollow follow,
|
|
vnode_t *tstartvp, char *to, enum uio_seg seg)
|
|
{
|
|
struct vnode *fvp; /* from vnode ptr */
|
|
struct vnode *tdvp; /* to directory vnode ptr */
|
|
struct pathname pn;
|
|
int error;
|
|
struct vattr vattr;
|
|
dev_t fsid;
|
|
int estale_retry = 0;
|
|
uint32_t auditing = AU_AUDITING();
|
|
|
|
top:
|
|
fvp = tdvp = NULL;
|
|
if (error = pn_get(to, seg, &pn))
|
|
return (error);
|
|
if (auditing && fstartvp != NULL)
|
|
audit_setfsat_path(1);
|
|
if (error = lookupnameat(from, seg, follow, NULLVPP, &fvp, fstartvp))
|
|
goto out;
|
|
if (auditing && tstartvp != NULL)
|
|
audit_setfsat_path(3);
|
|
if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP, tstartvp))
|
|
goto out;
|
|
/*
|
|
* Make sure both source vnode and target directory vnode are
|
|
* in the same vfs and that it is writeable.
|
|
*/
|
|
vattr.va_mask = AT_FSID;
|
|
if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL))
|
|
goto out;
|
|
fsid = vattr.va_fsid;
|
|
vattr.va_mask = AT_FSID;
|
|
if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL))
|
|
goto out;
|
|
if (fsid != vattr.va_fsid) {
|
|
error = EXDEV;
|
|
goto out;
|
|
}
|
|
if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
|
|
error = EROFS;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Do the link.
|
|
*/
|
|
(void) pn_fixslash(&pn);
|
|
error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0);
|
|
out:
|
|
pn_free(&pn);
|
|
if (fvp)
|
|
VN_RELE(fvp);
|
|
if (tdvp)
|
|
VN_RELE(tdvp);
|
|
if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
|
|
goto top;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vn_rename(char *from, char *to, enum uio_seg seg)
|
|
{
|
|
return (vn_renameat(NULL, from, NULL, to, seg));
|
|
}
|
|
|
|
int
|
|
vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
|
|
char *tname, enum uio_seg seg)
|
|
{
|
|
int error;
|
|
struct vattr vattr;
|
|
struct pathname fpn; /* from pathname */
|
|
struct pathname tpn; /* to pathname */
|
|
dev_t fsid;
|
|
int in_crit_src, in_crit_targ;
|
|
vnode_t *fromvp, *fvp;
|
|
vnode_t *tovp, *targvp;
|
|
int estale_retry = 0;
|
|
uint32_t auditing = AU_AUDITING();
|
|
|
|
top:
|
|
fvp = fromvp = tovp = targvp = NULL;
|
|
in_crit_src = in_crit_targ = 0;
|
|
/*
|
|
* Get to and from pathnames.
|
|
*/
|
|
if (error = pn_get(fname, seg, &fpn))
|
|
return (error);
|
|
if (error = pn_get(tname, seg, &tpn)) {
|
|
pn_free(&fpn);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* First we need to resolve the correct directories
|
|
* The passed in directories may only be a starting point,
|
|
* but we need the real directories the file(s) live in.
|
|
* For example the fname may be something like usr/lib/sparc
|
|
* and we were passed in the / directory, but we need to
|
|
* use the lib directory for the rename.
|
|
*/
|
|
|
|
if (auditing && fdvp != NULL)
|
|
audit_setfsat_path(1);
|
|
/*
|
|
* Lookup to and from directories.
|
|
*/
|
|
if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Make sure there is an entry.
|
|
*/
|
|
if (fvp == NULL) {
|
|
error = ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
if (auditing && tdvp != NULL)
|
|
audit_setfsat_path(3);
|
|
if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) {
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Make sure both the from vnode directory and the to directory
|
|
* are in the same vfs and the to directory is writable.
|
|
* We check fsid's, not vfs pointers, so loopback fs works.
|
|
*/
|
|
if (fromvp != tovp) {
|
|
vattr.va_mask = AT_FSID;
|
|
if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL))
|
|
goto out;
|
|
fsid = vattr.va_fsid;
|
|
vattr.va_mask = AT_FSID;
|
|
if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL))
|
|
goto out;
|
|
if (fsid != vattr.va_fsid) {
|
|
error = EXDEV;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
|
|
error = EROFS;
|
|
goto out;
|
|
}
|
|
|
|
if (targvp && (fvp != targvp)) {
|
|
nbl_start_crit(targvp, RW_READER);
|
|
in_crit_targ = 1;
|
|
if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) {
|
|
error = EACCES;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (nbl_need_check(fvp)) {
|
|
nbl_start_crit(fvp, RW_READER);
|
|
in_crit_src = 1;
|
|
if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) {
|
|
error = EACCES;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do the rename.
|
|
*/
|
|
(void) pn_fixslash(&tpn);
|
|
error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(),
|
|
NULL, 0);
|
|
|
|
out:
|
|
pn_free(&fpn);
|
|
pn_free(&tpn);
|
|
if (in_crit_src)
|
|
nbl_end_crit(fvp);
|
|
if (in_crit_targ)
|
|
nbl_end_crit(targvp);
|
|
if (fromvp)
|
|
VN_RELE(fromvp);
|
|
if (tovp)
|
|
VN_RELE(tovp);
|
|
if (targvp)
|
|
VN_RELE(targvp);
|
|
if (fvp)
|
|
VN_RELE(fvp);
|
|
if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
|
|
goto top;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Remove a file or directory.
|
|
*/
|
|
int
|
|
vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
|
|
{
|
|
return (vn_removeat(NULL, fnamep, seg, dirflag));
|
|
}
|
|
|
|
int
|
|
vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
|
|
{
|
|
struct vnode *vp; /* entry vnode */
|
|
struct vnode *dvp; /* ptr to parent dir vnode */
|
|
struct vnode *coveredvp;
|
|
struct pathname pn; /* name of entry */
|
|
enum vtype vtype;
|
|
int error;
|
|
struct vfs *vfsp;
|
|
struct vfs *dvfsp; /* ptr to parent dir vfs */
|
|
int in_crit = 0;
|
|
int estale_retry = 0;
|
|
|
|
top:
|
|
if (error = pn_get(fnamep, seg, &pn))
|
|
return (error);
|
|
dvp = vp = NULL;
|
|
if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
|
|
pn_free(&pn);
|
|
if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
|
|
goto top;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Make sure there is an entry.
|
|
*/
|
|
if (vp == NULL) {
|
|
error = ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
vfsp = vp->v_vfsp;
|
|
dvfsp = dvp->v_vfsp;
|
|
|
|
/*
|
|
* If the named file is the root of a mounted filesystem, fail,
|
|
* unless it's marked unlinkable. In that case, unmount the
|
|
* filesystem and proceed to unlink the covered vnode. (If the
|
|
* covered vnode is a directory, use rmdir instead of unlink,
|
|
* to avoid file system corruption.)
|
|
*/
|
|
if (vp->v_flag & VROOT) {
|
|
if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) {
|
|
error = EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Namefs specific code starts here.
|
|
*/
|
|
|
|
if (dirflag == RMDIRECTORY) {
|
|
/*
|
|
* User called rmdir(2) on a file that has
|
|
* been namefs mounted on top of. Since
|
|
* namefs doesn't allow directories to
|
|
* be mounted on other files we know
|
|
* vp is not of type VDIR so fail to operation.
|
|
*/
|
|
error = ENOTDIR;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If VROOT is still set after grabbing vp->v_lock,
|
|
* noone has finished nm_unmount so far and coveredvp
|
|
* is valid.
|
|
* If we manage to grab vn_vfswlock(coveredvp) before releasing
|
|
* vp->v_lock, any race window is eliminated.
|
|
*/
|
|
|
|
mutex_enter(&vp->v_lock);
|
|
if ((vp->v_flag & VROOT) == 0) {
|
|
/* Someone beat us to the unmount */
|
|
mutex_exit(&vp->v_lock);
|
|
error = EBUSY;
|
|
goto out;
|
|
}
|
|
vfsp = vp->v_vfsp;
|
|
coveredvp = vfsp->vfs_vnodecovered;
|
|
ASSERT(coveredvp);
|
|
/*
|
|
* Note: Implementation of vn_vfswlock shows that ordering of
|
|
* v_lock / vn_vfswlock is not an issue here.
|
|
*/
|
|
error = vn_vfswlock(coveredvp);
|
|
mutex_exit(&vp->v_lock);
|
|
|
|
if (error)
|
|
goto out;
|
|
|
|
VN_HOLD(coveredvp);
|
|
VN_RELE(vp);
|
|
error = dounmount(vfsp, 0, CRED());
|
|
|
|
/*
|
|
* Unmounted the namefs file system; now get
|
|
* the object it was mounted over.
|
|
*/
|
|
vp = coveredvp;
|
|
/*
|
|
* If namefs was mounted over a directory, then
|
|
* we want to use rmdir() instead of unlink().
|
|
*/
|
|
if (vp->v_type == VDIR)
|
|
dirflag = RMDIRECTORY;
|
|
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Make sure filesystem is writeable.
|
|
* We check the parent directory's vfs in case this is an lofs vnode.
|
|
*/
|
|
if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
|
|
error = EROFS;
|
|
goto out;
|
|
}
|
|
|
|
vtype = vp->v_type;
|
|
|
|
/*
|
|
* If there is the possibility of an nbmand share reservation, make
|
|
* sure it's okay to remove the file. Keep a reference to the
|
|
* vnode, so that we can exit the nbl critical region after
|
|
* calling VOP_REMOVE.
|
|
* If there is no possibility of an nbmand share reservation,
|
|
* release the vnode reference now. Filesystems like NFS may
|
|
* behave differently if there is an extra reference, so get rid of
|
|
* this one. Fortunately, we can't have nbmand mounts on NFS
|
|
* filesystems.
|
|
*/
|
|
if (nbl_need_check(vp)) {
|
|
nbl_start_crit(vp, RW_READER);
|
|
in_crit = 1;
|
|
if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) {
|
|
error = EACCES;
|
|
goto out;
|
|
}
|
|
} else {
|
|
VN_RELE(vp);
|
|
vp = NULL;
|
|
}
|
|
|
|
if (dirflag == RMDIRECTORY) {
|
|
/*
|
|
* Caller is using rmdir(2), which can only be applied to
|
|
* directories.
|
|
*/
|
|
if (vtype != VDIR) {
|
|
error = ENOTDIR;
|
|
} else {
|
|
vnode_t *cwd;
|
|
proc_t *pp = curproc;
|
|
|
|
mutex_enter(&pp->p_lock);
|
|
cwd = PTOU(pp)->u_cdir;
|
|
VN_HOLD(cwd);
|
|
mutex_exit(&pp->p_lock);
|
|
error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(),
|
|
NULL, 0);
|
|
VN_RELE(cwd);
|
|
}
|
|
} else {
|
|
/*
|
|
* Unlink(2) can be applied to anything.
|
|
*/
|
|
error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0);
|
|
}
|
|
|
|
out:
|
|
pn_free(&pn);
|
|
if (in_crit) {
|
|
nbl_end_crit(vp);
|
|
in_crit = 0;
|
|
}
|
|
if (vp != NULL)
|
|
VN_RELE(vp);
|
|
if (dvp != NULL)
|
|
VN_RELE(dvp);
|
|
if ((error == ESTALE) && fs_need_estale_retry(estale_retry++))
|
|
goto top;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Utility function to compare equality of vnodes.
|
|
* Compare the underlying real vnodes, if there are underlying vnodes.
|
|
* This is a more thorough comparison than the VN_CMP() macro provides.
|
|
*/
|
|
int
|
|
vn_compare(vnode_t *vp1, vnode_t *vp2)
|
|
{
|
|
vnode_t *realvp;
|
|
|
|
if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0)
|
|
vp1 = realvp;
|
|
if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0)
|
|
vp2 = realvp;
|
|
return (VN_CMP(vp1, vp2));
|
|
}
|
|
|
|
/*
|
|
* The number of locks to hash into. This value must be a power
|
|
* of 2 minus 1 and should probably also be prime.
|
|
*/
|
|
#define NUM_BUCKETS 1023
|
|
|
|
struct vn_vfslocks_bucket {
|
|
kmutex_t vb_lock;
|
|
vn_vfslocks_entry_t *vb_list;
|
|
char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
|
|
};
|
|
|
|
/*
|
|
* Total number of buckets will be NUM_BUCKETS + 1 .
|
|
*/
|
|
|
|
#pragma align 64(vn_vfslocks_buckets)
|
|
static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1];
|
|
|
|
#define VN_VFSLOCKS_SHIFT 9
|
|
|
|
#define VN_VFSLOCKS_HASH(vfsvpptr) \
|
|
((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
|
|
|
|
/*
|
|
* vn_vfslocks_getlock() uses an HASH scheme to generate
|
|
* rwstlock using vfs/vnode pointer passed to it.
|
|
*
|
|
* vn_vfslocks_rele() releases a reference in the
|
|
* HASH table which allows the entry allocated by
|
|
* vn_vfslocks_getlock() to be freed at a later
|
|
* stage when the refcount drops to zero.
|
|
*/
|
|
|
|
vn_vfslocks_entry_t *
|
|
vn_vfslocks_getlock(void *vfsvpptr)
|
|
{
|
|
struct vn_vfslocks_bucket *bp;
|
|
vn_vfslocks_entry_t *vep;
|
|
vn_vfslocks_entry_t *tvep;
|
|
|
|
ASSERT(vfsvpptr != NULL);
|
|
bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
|
|
|
|
mutex_enter(&bp->vb_lock);
|
|
for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
|
|
if (vep->ve_vpvfs == vfsvpptr) {
|
|
vep->ve_refcnt++;
|
|
mutex_exit(&bp->vb_lock);
|
|
return (vep);
|
|
}
|
|
}
|
|
mutex_exit(&bp->vb_lock);
|
|
vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
|
|
rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
|
|
vep->ve_vpvfs = (char *)vfsvpptr;
|
|
vep->ve_refcnt = 1;
|
|
mutex_enter(&bp->vb_lock);
|
|
for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
|
|
if (tvep->ve_vpvfs == vfsvpptr) {
|
|
tvep->ve_refcnt++;
|
|
mutex_exit(&bp->vb_lock);
|
|
|
|
/*
|
|
* There is already an entry in the hash
|
|
* destroy what we just allocated.
|
|
*/
|
|
rwst_destroy(&vep->ve_lock);
|
|
kmem_free(vep, sizeof (*vep));
|
|
return (tvep);
|
|
}
|
|
}
|
|
vep->ve_next = bp->vb_list;
|
|
bp->vb_list = vep;
|
|
mutex_exit(&bp->vb_lock);
|
|
return (vep);
|
|
}
|
|
|
|
void
|
|
vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
|
|
{
|
|
struct vn_vfslocks_bucket *bp;
|
|
vn_vfslocks_entry_t *vep;
|
|
vn_vfslocks_entry_t *pvep;
|
|
|
|
ASSERT(vepent != NULL);
|
|
ASSERT(vepent->ve_vpvfs != NULL);
|
|
|
|
bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
|
|
|
|
mutex_enter(&bp->vb_lock);
|
|
vepent->ve_refcnt--;
|
|
|
|
if ((int32_t)vepent->ve_refcnt < 0)
|
|
cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
|
|
|
|
if (vepent->ve_refcnt == 0) {
|
|
for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
|
|
if (vep->ve_vpvfs == vepent->ve_vpvfs) {
|
|
if (bp->vb_list == vep)
|
|
bp->vb_list = vep->ve_next;
|
|
else {
|
|
/* LINTED */
|
|
pvep->ve_next = vep->ve_next;
|
|
}
|
|
mutex_exit(&bp->vb_lock);
|
|
rwst_destroy(&vep->ve_lock);
|
|
kmem_free(vep, sizeof (*vep));
|
|
return;
|
|
}
|
|
pvep = vep;
|
|
}
|
|
cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
|
|
}
|
|
mutex_exit(&bp->vb_lock);
|
|
}
|
|
|
|
/*
|
|
* vn_vfswlock_wait is used to implement a lock which is logically a writers
|
|
* lock protecting the v_vfsmountedhere field.
|
|
* vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
|
|
* except that it blocks to acquire the lock VVFSLOCK.
|
|
*
|
|
* traverse() and routines re-implementing part of traverse (e.g. autofs)
|
|
* need to hold this lock. mount(), vn_rename(), vn_remove() and so on
|
|
* need the non-blocking version of the writers lock i.e. vn_vfswlock
|
|
*/
|
|
int
|
|
vn_vfswlock_wait(vnode_t *vp)
|
|
{
|
|
int retval;
|
|
vn_vfslocks_entry_t *vpvfsentry;
|
|
ASSERT(vp != NULL);
|
|
|
|
vpvfsentry = vn_vfslocks_getlock(vp);
|
|
retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
|
|
|
|
if (retval == EINTR) {
|
|
vn_vfslocks_rele(vpvfsentry);
|
|
return (EINTR);
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
vn_vfsrlock_wait(vnode_t *vp)
|
|
{
|
|
int retval;
|
|
vn_vfslocks_entry_t *vpvfsentry;
|
|
ASSERT(vp != NULL);
|
|
|
|
vpvfsentry = vn_vfslocks_getlock(vp);
|
|
retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
|
|
|
|
if (retval == EINTR) {
|
|
vn_vfslocks_rele(vpvfsentry);
|
|
return (EINTR);
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
|
|
/*
|
|
* vn_vfswlock is used to implement a lock which is logically a writers lock
|
|
* protecting the v_vfsmountedhere field.
|
|
*/
|
|
int
|
|
vn_vfswlock(vnode_t *vp)
|
|
{
|
|
vn_vfslocks_entry_t *vpvfsentry;
|
|
|
|
/*
|
|
* If vp is NULL then somebody is trying to lock the covered vnode
|
|
* of /. (vfs_vnodecovered is NULL for /). This situation will
|
|
* only happen when unmounting /. Since that operation will fail
|
|
* anyway, return EBUSY here instead of in VFS_UNMOUNT.
|
|
*/
|
|
if (vp == NULL)
|
|
return (EBUSY);
|
|
|
|
vpvfsentry = vn_vfslocks_getlock(vp);
|
|
|
|
if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
|
|
return (0);
|
|
|
|
vn_vfslocks_rele(vpvfsentry);
|
|
return (EBUSY);
|
|
}
|
|
|
|
int
|
|
vn_vfsrlock(vnode_t *vp)
|
|
{
|
|
vn_vfslocks_entry_t *vpvfsentry;
|
|
|
|
/*
|
|
* If vp is NULL then somebody is trying to lock the covered vnode
|
|
* of /. (vfs_vnodecovered is NULL for /). This situation will
|
|
* only happen when unmounting /. Since that operation will fail
|
|
* anyway, return EBUSY here instead of in VFS_UNMOUNT.
|
|
*/
|
|
if (vp == NULL)
|
|
return (EBUSY);
|
|
|
|
vpvfsentry = vn_vfslocks_getlock(vp);
|
|
|
|
if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
|
|
return (0);
|
|
|
|
vn_vfslocks_rele(vpvfsentry);
|
|
return (EBUSY);
|
|
}
|
|
|
|
void
|
|
vn_vfsunlock(vnode_t *vp)
|
|
{
|
|
vn_vfslocks_entry_t *vpvfsentry;
|
|
|
|
/*
|
|
* ve_refcnt needs to be decremented twice.
|
|
* 1. To release refernce after a call to vn_vfslocks_getlock()
|
|
* 2. To release the reference from the locking routines like
|
|
* vn_vfsrlock/vn_vfswlock etc,.
|
|
*/
|
|
vpvfsentry = vn_vfslocks_getlock(vp);
|
|
vn_vfslocks_rele(vpvfsentry);
|
|
|
|
rwst_exit(&vpvfsentry->ve_lock);
|
|
vn_vfslocks_rele(vpvfsentry);
|
|
}
|
|
|
|
int
|
|
vn_vfswlock_held(vnode_t *vp)
|
|
{
|
|
int held;
|
|
vn_vfslocks_entry_t *vpvfsentry;
|
|
|
|
ASSERT(vp != NULL);
|
|
|
|
vpvfsentry = vn_vfslocks_getlock(vp);
|
|
held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
|
|
|
|
vn_vfslocks_rele(vpvfsentry);
|
|
return (held);
|
|
}
|
|
|
|
|
|
int
|
|
vn_make_ops(
|
|
const char *name, /* Name of file system */
|
|
const fs_operation_def_t *templ, /* Operation specification */
|
|
vnodeops_t **actual) /* Return the vnodeops */
|
|
{
|
|
int unused_ops;
|
|
int error;
|
|
|
|
*actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
|
|
|
|
(*actual)->vnop_name = name;
|
|
|
|
error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
|
|
if (error) {
|
|
kmem_free(*actual, sizeof (vnodeops_t));
|
|
}
|
|
|
|
#if DEBUG
|
|
if (unused_ops != 0)
|
|
cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
|
|
"but not used", name, unused_ops);
|
|
#endif
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Free the vnodeops created as a result of vn_make_ops()
|
|
*/
|
|
void
|
|
vn_freevnodeops(vnodeops_t *vnops)
|
|
{
|
|
kmem_free(vnops, sizeof (vnodeops_t));
|
|
}
|
|
|
|
/*
|
|
* Vnode cache.
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
vp = buf;
|
|
|
|
mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
|
|
rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
|
|
vp->v_femhead = NULL; /* Must be done before vn_reinit() */
|
|
vp->v_path = NULL;
|
|
vp->v_mpssdata = NULL;
|
|
vp->v_vsd = NULL;
|
|
vp->v_fopdata = NULL;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
vn_cache_destructor(void *buf, void *cdrarg)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
vp = buf;
|
|
|
|
rw_destroy(&vp->v_nbllock);
|
|
cv_destroy(&vp->v_cv);
|
|
mutex_destroy(&vp->v_vsd_lock);
|
|
mutex_destroy(&vp->v_lock);
|
|
}
|
|
|
|
void
|
|
vn_create_cache(void)
|
|
{
|
|
/* LINTED */
|
|
ASSERT((1 << VNODE_ALIGN_LOG2) ==
|
|
P2ROUNDUP(sizeof (struct vnode), VNODE_ALIGN));
|
|
vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode),
|
|
VNODE_ALIGN, vn_cache_constructor, vn_cache_destructor, NULL, NULL,
|
|
NULL, 0);
|
|
}
|
|
|
|
void
|
|
vn_destroy_cache(void)
|
|
{
|
|
kmem_cache_destroy(vn_cache);
|
|
}
|
|
|
|
/*
|
|
* Used by file systems when fs-specific nodes (e.g., ufs inodes) are
|
|
* cached by the file system and vnodes remain associated.
|
|
*/
|
|
void
|
|
vn_recycle(vnode_t *vp)
|
|
{
|
|
ASSERT(vp->v_pages == NULL);
|
|
|
|
/*
|
|
* XXX - This really belongs in vn_reinit(), but we have some issues
|
|
* with the counts. Best to have it here for clean initialization.
|
|
*/
|
|
vp->v_rdcnt = 0;
|
|
vp->v_wrcnt = 0;
|
|
vp->v_mmap_read = 0;
|
|
vp->v_mmap_write = 0;
|
|
|
|
/*
|
|
* If FEM was in use, make sure everything gets cleaned up
|
|
* NOTE: vp->v_femhead is initialized to NULL in the vnode
|
|
* constructor.
|
|
*/
|
|
if (vp->v_femhead) {
|
|
/* XXX - There should be a free_femhead() that does all this */
|
|
ASSERT(vp->v_femhead->femh_list == NULL);
|
|
mutex_destroy(&vp->v_femhead->femh_lock);
|
|
kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
|
|
vp->v_femhead = NULL;
|
|
}
|
|
if (vp->v_path) {
|
|
kmem_free(vp->v_path, strlen(vp->v_path) + 1);
|
|
vp->v_path = NULL;
|
|
}
|
|
|
|
if (vp->v_fopdata != NULL) {
|
|
free_fopdata(vp);
|
|
}
|
|
vp->v_mpssdata = NULL;
|
|
vsd_free(vp);
|
|
}
|
|
|
|
/*
|
|
* Used to reset the vnode fields including those that are directly accessible
|
|
* as well as those which require an accessor function.
|
|
*
|
|
* Does not initialize:
|
|
* synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv
|
|
* v_data (since FS-nodes and vnodes point to each other and should
|
|
* be updated simultaneously)
|
|
* v_op (in case someone needs to make a VOP call on this object)
|
|
*/
|
|
void
|
|
vn_reinit(vnode_t *vp)
|
|
{
|
|
vp->v_count = 1;
|
|
vp->v_count_dnlc = 0;
|
|
vp->v_vfsp = NULL;
|
|
vp->v_stream = NULL;
|
|
vp->v_vfsmountedhere = NULL;
|
|
vp->v_flag = 0;
|
|
vp->v_type = VNON;
|
|
vp->v_rdev = NODEV;
|
|
|
|
vp->v_filocks = NULL;
|
|
vp->v_shrlocks = NULL;
|
|
vp->v_pages = NULL;
|
|
|
|
vp->v_locality = NULL;
|
|
vp->v_xattrdir = NULL;
|
|
|
|
/* Handles v_femhead, v_path, and the r/w/map counts */
|
|
vn_recycle(vp);
|
|
}
|
|
|
|
vnode_t *
|
|
vn_alloc(int kmflag)
|
|
{
|
|
vnode_t *vp;
|
|
|
|
vp = kmem_cache_alloc(vn_cache, kmflag);
|
|
|
|
if (vp != NULL) {
|
|
vp->v_femhead = NULL; /* Must be done before vn_reinit() */
|
|
vp->v_fopdata = NULL;
|
|
vn_reinit(vp);
|
|
}
|
|
|
|
return (vp);
|
|
}
|
|
|
|
void
|
|
vn_free(vnode_t *vp)
|
|
{
|
|
ASSERT(vp->v_shrlocks == NULL);
|
|
ASSERT(vp->v_filocks == NULL);
|
|
|
|
/*
|
|
* Some file systems call vn_free() with v_count of zero,
|
|
* some with v_count of 1. In any case, the value should
|
|
* never be anything else.
|
|
*/
|
|
ASSERT((vp->v_count == 0) || (vp->v_count == 1));
|
|
ASSERT(vp->v_count_dnlc == 0);
|
|
if (vp->v_path != NULL) {
|
|
kmem_free(vp->v_path, strlen(vp->v_path) + 1);
|
|
vp->v_path = NULL;
|
|
}
|
|
|
|
/* If FEM was in use, make sure everything gets cleaned up */
|
|
if (vp->v_femhead) {
|
|
/* XXX - There should be a free_femhead() that does all this */
|
|
ASSERT(vp->v_femhead->femh_list == NULL);
|
|
mutex_destroy(&vp->v_femhead->femh_lock);
|
|
kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
|
|
vp->v_femhead = NULL;
|
|
}
|
|
|
|
if (vp->v_fopdata != NULL) {
|
|
free_fopdata(vp);
|
|
}
|
|
vp->v_mpssdata = NULL;
|
|
vsd_free(vp);
|
|
kmem_cache_free(vn_cache, vp);
|
|
}
|
|
|
|
/*
|
|
* vnode status changes, should define better states than 1, 0.
|
|
*/
|
|
void
|
|
vn_reclaim(vnode_t *vp)
|
|
{
|
|
vfs_t *vfsp = vp->v_vfsp;
|
|
|
|
if (vfsp == NULL ||
|
|
vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
|
|
}
|
|
|
|
void
|
|
vn_idle(vnode_t *vp)
|
|
{
|
|
vfs_t *vfsp = vp->v_vfsp;
|
|
|
|
if (vfsp == NULL ||
|
|
vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
|
|
}
|
|
void
|
|
vn_exists(vnode_t *vp)
|
|
{
|
|
vfs_t *vfsp = vp->v_vfsp;
|
|
|
|
if (vfsp == NULL ||
|
|
vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
|
|
}
|
|
|
|
void
|
|
vn_invalid(vnode_t *vp)
|
|
{
|
|
vfs_t *vfsp = vp->v_vfsp;
|
|
|
|
if (vfsp == NULL ||
|
|
vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
|
|
}
|
|
|
|
/* Vnode event notification */
|
|
|
|
int
|
|
vnevent_support(vnode_t *vp, caller_context_t *ct)
|
|
{
|
|
if (vp == NULL)
|
|
return (EINVAL);
|
|
|
|
return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct));
|
|
}
|
|
|
|
void
|
|
vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
|
|
{
|
|
if (vp == NULL || vp->v_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct);
|
|
}
|
|
|
|
void
|
|
vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name,
|
|
caller_context_t *ct)
|
|
{
|
|
if (vp == NULL || vp->v_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct);
|
|
}
|
|
|
|
void
|
|
vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct)
|
|
{
|
|
if (vp == NULL || vp->v_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct);
|
|
}
|
|
|
|
void
|
|
vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
|
|
{
|
|
if (vp == NULL || vp->v_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct);
|
|
}
|
|
|
|
void
|
|
vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct)
|
|
{
|
|
if (vp == NULL || vp->v_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct);
|
|
}
|
|
|
|
void
|
|
vnevent_create(vnode_t *vp, caller_context_t *ct)
|
|
{
|
|
if (vp == NULL || vp->v_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct);
|
|
}
|
|
|
|
void
|
|
vnevent_link(vnode_t *vp, caller_context_t *ct)
|
|
{
|
|
if (vp == NULL || vp->v_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct);
|
|
}
|
|
|
|
void
|
|
vnevent_mountedover(vnode_t *vp, caller_context_t *ct)
|
|
{
|
|
if (vp == NULL || vp->v_femhead == NULL) {
|
|
return;
|
|
}
|
|
(void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct);
|
|
}
|
|
|
|
/*
|
|
* Vnode accessors.
|
|
*/
|
|
|
|
int
|
|
vn_is_readonly(vnode_t *vp)
|
|
{
|
|
return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
|
|
}
|
|
|
|
int
|
|
vn_has_flocks(vnode_t *vp)
|
|
{
|
|
return (vp->v_filocks != NULL);
|
|
}
|
|
|
|
int
|
|
vn_has_mandatory_locks(vnode_t *vp, int mode)
|
|
{
|
|
return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
|
|
}
|
|
|
|
int
|
|
vn_has_cached_data(vnode_t *vp)
|
|
{
|
|
return (vp->v_pages != NULL);
|
|
}
|
|
|
|
/*
|
|
* Return 0 if the vnode in question shouldn't be permitted into a zone via
|
|
* zone_enter(2).
|
|
*/
|
|
int
|
|
vn_can_change_zones(vnode_t *vp)
|
|
{
|
|
struct vfssw *vswp;
|
|
int allow = 1;
|
|
vnode_t *rvp;
|
|
|
|
if (nfs_global_client_only != 0)
|
|
return (1);
|
|
|
|
/*
|
|
* We always want to look at the underlying vnode if there is one.
|
|
*/
|
|
if (VOP_REALVP(vp, &rvp, NULL) != 0)
|
|
rvp = vp;
|
|
/*
|
|
* Some pseudo filesystems (including doorfs) don't actually register
|
|
* their vfsops_t, so the following may return NULL; we happily let
|
|
* such vnodes switch zones.
|
|
*/
|
|
vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
|
|
if (vswp != NULL) {
|
|
if (vswp->vsw_flag & VSW_NOTZONESAFE)
|
|
allow = 0;
|
|
vfs_unrefvfssw(vswp);
|
|
}
|
|
return (allow);
|
|
}
|
|
|
|
/*
|
|
* Return nonzero if the vnode is a mount point, zero if not.
|
|
*/
|
|
int
|
|
vn_ismntpt(vnode_t *vp)
|
|
{
|
|
return (vp->v_vfsmountedhere != NULL);
|
|
}
|
|
|
|
/* Retrieve the vfs (if any) mounted on this vnode */
|
|
vfs_t *
|
|
vn_mountedvfs(vnode_t *vp)
|
|
{
|
|
return (vp->v_vfsmountedhere);
|
|
}
|
|
|
|
/*
|
|
* Return nonzero if the vnode is referenced by the dnlc, zero if not.
|
|
*/
|
|
int
|
|
vn_in_dnlc(vnode_t *vp)
|
|
{
|
|
return (vp->v_count_dnlc > 0);
|
|
}
|
|
|
|
/*
|
|
* vn_has_other_opens() checks whether a particular file is opened by more than
|
|
* just the caller and whether the open is for read and/or write.
|
|
* This routine is for calling after the caller has already called VOP_OPEN()
|
|
* and the caller wishes to know if they are the only one with it open for
|
|
* the mode(s) specified.
|
|
*
|
|
* Vnode counts are only kept on regular files (v_type=VREG).
|
|
*/
|
|
int
|
|
vn_has_other_opens(
|
|
vnode_t *vp,
|
|
v_mode_t mode)
|
|
{
|
|
|
|
ASSERT(vp != NULL);
|
|
|
|
switch (mode) {
|
|
case V_WRITE:
|
|
if (vp->v_wrcnt > 1)
|
|
return (V_TRUE);
|
|
break;
|
|
case V_RDORWR:
|
|
if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1))
|
|
return (V_TRUE);
|
|
break;
|
|
case V_RDANDWR:
|
|
if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1))
|
|
return (V_TRUE);
|
|
break;
|
|
case V_READ:
|
|
if (vp->v_rdcnt > 1)
|
|
return (V_TRUE);
|
|
break;
|
|
}
|
|
|
|
return (V_FALSE);
|
|
}
|
|
|
|
/*
|
|
* vn_is_opened() checks whether a particular file is opened and
|
|
* whether the open is for read and/or write.
|
|
*
|
|
* Vnode counts are only kept on regular files (v_type=VREG).
|
|
*/
|
|
int
|
|
vn_is_opened(
|
|
vnode_t *vp,
|
|
v_mode_t mode)
|
|
{
|
|
|
|
ASSERT(vp != NULL);
|
|
|
|
switch (mode) {
|
|
case V_WRITE:
|
|
if (vp->v_wrcnt)
|
|
return (V_TRUE);
|
|
break;
|
|
case V_RDANDWR:
|
|
if (vp->v_rdcnt && vp->v_wrcnt)
|
|
return (V_TRUE);
|
|
break;
|
|
case V_RDORWR:
|
|
if (vp->v_rdcnt || vp->v_wrcnt)
|
|
return (V_TRUE);
|
|
break;
|
|
case V_READ:
|
|
if (vp->v_rdcnt)
|
|
return (V_TRUE);
|
|
break;
|
|
}
|
|
|
|
return (V_FALSE);
|
|
}
|
|
|
|
/*
|
|
* vn_is_mapped() checks whether a particular file is mapped and whether
|
|
* the file is mapped read and/or write.
|
|
*/
|
|
int
|
|
vn_is_mapped(
|
|
vnode_t *vp,
|
|
v_mode_t mode)
|
|
{
|
|
|
|
ASSERT(vp != NULL);
|
|
|
|
#if !defined(_LP64)
|
|
switch (mode) {
|
|
/*
|
|
* The atomic_add_64_nv functions force atomicity in the
|
|
* case of 32 bit architectures. Otherwise the 64 bit values
|
|
* require two fetches. The value of the fields may be
|
|
* (potentially) changed between the first fetch and the
|
|
* second
|
|
*/
|
|
case V_WRITE:
|
|
if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
|
|
return (V_TRUE);
|
|
break;
|
|
case V_RDANDWR:
|
|
if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
|
|
(atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
|
|
return (V_TRUE);
|
|
break;
|
|
case V_RDORWR:
|
|
if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
|
|
(atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
|
|
return (V_TRUE);
|
|
break;
|
|
case V_READ:
|
|
if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
|
|
return (V_TRUE);
|
|
break;
|
|
}
|
|
#else
|
|
switch (mode) {
|
|
case V_WRITE:
|
|
if (vp->v_mmap_write)
|
|
return (V_TRUE);
|
|
break;
|
|
case V_RDANDWR:
|
|
if (vp->v_mmap_read && vp->v_mmap_write)
|
|
return (V_TRUE);
|
|
break;
|
|
case V_RDORWR:
|
|
if (vp->v_mmap_read || vp->v_mmap_write)
|
|
return (V_TRUE);
|
|
break;
|
|
case V_READ:
|
|
if (vp->v_mmap_read)
|
|
return (V_TRUE);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
return (V_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Set the operations vector for a vnode.
|
|
*
|
|
* FEM ensures that the v_femhead pointer is filled in before the
|
|
* v_op pointer is changed. This means that if the v_femhead pointer
|
|
* is NULL, and the v_op field hasn't changed since before which checked
|
|
* the v_femhead pointer; then our update is ok - we are not racing with
|
|
* FEM.
|
|
*/
|
|
void
|
|
vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
|
|
{
|
|
vnodeops_t *op;
|
|
|
|
ASSERT(vp != NULL);
|
|
ASSERT(vnodeops != NULL);
|
|
|
|
op = vp->v_op;
|
|
membar_consumer();
|
|
/*
|
|
* If vp->v_femhead == NULL, then we'll call casptr() to do the
|
|
* compare-and-swap on vp->v_op. If either fails, then FEM is
|
|
* in effect on the vnode and we need to have FEM deal with it.
|
|
*/
|
|
if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) {
|
|
fem_setvnops(vp, vnodeops);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Retrieve the operations vector for a vnode
|
|
* As with vn_setops(above); make sure we aren't racing with FEM.
|
|
* FEM sets the v_op to a special, internal, vnodeops that wouldn't
|
|
* make sense to the callers of this routine.
|
|
*/
|
|
vnodeops_t *
|
|
vn_getops(vnode_t *vp)
|
|
{
|
|
vnodeops_t *op;
|
|
|
|
ASSERT(vp != NULL);
|
|
|
|
op = vp->v_op;
|
|
membar_consumer();
|
|
if (vp->v_femhead == NULL && op == vp->v_op) {
|
|
return (op);
|
|
} else {
|
|
return (fem_getvnops(vp));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero (1) if the vnodeops matches that of the vnode.
|
|
* Returns zero (0) if not.
|
|
*/
|
|
int
|
|
vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
|
|
{
|
|
return (vn_getops(vp) == vnodeops);
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero (1) if the specified operation matches the
|
|
* corresponding operation for that the vnode.
|
|
* Returns zero (0) if not.
|
|
*/
|
|
|
|
#define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
|
|
|
|
int
|
|
vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
|
|
{
|
|
const fs_operation_trans_def_t *otdp;
|
|
fs_generic_func_p *loc = NULL;
|
|
vnodeops_t *vop = vn_getops(vp);
|
|
|
|
ASSERT(vopname != NULL);
|
|
|
|
for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
|
|
if (MATCHNAME(otdp->name, vopname)) {
|
|
loc = (fs_generic_func_p *)
|
|
((char *)(vop) + otdp->offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ((loc != NULL) && (*loc == funcp));
|
|
}
|
|
|
|
/*
|
|
* fs_new_caller_id() needs to return a unique ID on a given local system.
|
|
* The IDs do not need to survive across reboots. These are primarily
|
|
* used so that (FEM) monitors can detect particular callers (such as
|
|
* the NFS server) to a given vnode/vfs operation.
|
|
*/
|
|
u_longlong_t
|
|
fs_new_caller_id()
|
|
{
|
|
static uint64_t next_caller_id = 0LL; /* First call returns 1 */
|
|
|
|
return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1));
|
|
}
|
|
|
|
/*
|
|
* Given a starting vnode and a path, updates the path in the target vnode in
|
|
* a safe manner. If the vnode already has path information embedded, then the
|
|
* cached path is left untouched.
|
|
*/
|
|
|
|
size_t max_vnode_path = 4 * MAXPATHLEN;
|
|
|
|
void
|
|
vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp,
|
|
const char *path, size_t plen)
|
|
{
|
|
char *rpath;
|
|
vnode_t *base;
|
|
size_t rpathlen, rpathalloc;
|
|
int doslash = 1;
|
|
|
|
if (*path == '/') {
|
|
base = rootvp;
|
|
path++;
|
|
plen--;
|
|
} else {
|
|
base = startvp;
|
|
}
|
|
|
|
/*
|
|
* We cannot grab base->v_lock while we hold vp->v_lock because of
|
|
* the potential for deadlock.
|
|
*/
|
|
mutex_enter(&base->v_lock);
|
|
if (base->v_path == NULL) {
|
|
mutex_exit(&base->v_lock);
|
|
return;
|
|
}
|
|
|
|
rpathlen = strlen(base->v_path);
|
|
rpathalloc = rpathlen + plen + 1;
|
|
/* Avoid adding a slash if there's already one there */
|
|
if (base->v_path[rpathlen-1] == '/')
|
|
doslash = 0;
|
|
else
|
|
rpathalloc++;
|
|
|
|
/*
|
|
* We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held,
|
|
* so we must do this dance. If, by chance, something changes the path,
|
|
* just give up since there is no real harm.
|
|
*/
|
|
mutex_exit(&base->v_lock);
|
|
|
|
/* Paths should stay within reason */
|
|
if (rpathalloc > max_vnode_path)
|
|
return;
|
|
|
|
rpath = kmem_alloc(rpathalloc, KM_SLEEP);
|
|
|
|
mutex_enter(&base->v_lock);
|
|
if (base->v_path == NULL || strlen(base->v_path) != rpathlen) {
|
|
mutex_exit(&base->v_lock);
|
|
kmem_free(rpath, rpathalloc);
|
|
return;
|
|
}
|
|
bcopy(base->v_path, rpath, rpathlen);
|
|
mutex_exit(&base->v_lock);
|
|
|
|
if (doslash)
|
|
rpath[rpathlen++] = '/';
|
|
bcopy(path, rpath + rpathlen, plen);
|
|
rpath[rpathlen + plen] = '\0';
|
|
|
|
mutex_enter(&vp->v_lock);
|
|
if (vp->v_path != NULL) {
|
|
mutex_exit(&vp->v_lock);
|
|
kmem_free(rpath, rpathalloc);
|
|
} else {
|
|
vp->v_path = rpath;
|
|
mutex_exit(&vp->v_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sets the path to the vnode to be the given string, regardless of current
|
|
* context. The string must be a complete path from rootdir. This is only used
|
|
* by fsop_root() for setting the path based on the mountpoint.
|
|
*/
|
|
void
|
|
vn_setpath_str(struct vnode *vp, const char *str, size_t len)
|
|
{
|
|
char *buf = kmem_alloc(len + 1, KM_SLEEP);
|
|
|
|
mutex_enter(&vp->v_lock);
|
|
if (vp->v_path != NULL) {
|
|
mutex_exit(&vp->v_lock);
|
|
kmem_free(buf, len + 1);
|
|
return;
|
|
}
|
|
|
|
vp->v_path = buf;
|
|
bcopy(str, vp->v_path, len);
|
|
vp->v_path[len] = '\0';
|
|
|
|
mutex_exit(&vp->v_lock);
|
|
}
|
|
|
|
/*
|
|
* Called from within filesystem's vop_rename() to handle renames once the
|
|
* target vnode is available.
|
|
*/
|
|
void
|
|
vn_renamepath(vnode_t *dvp, vnode_t *vp, const char *nm, size_t len)
|
|
{
|
|
char *tmp;
|
|
|
|
mutex_enter(&vp->v_lock);
|
|
tmp = vp->v_path;
|
|
vp->v_path = NULL;
|
|
mutex_exit(&vp->v_lock);
|
|
vn_setpath(rootdir, dvp, vp, nm, len);
|
|
if (tmp != NULL)
|
|
kmem_free(tmp, strlen(tmp) + 1);
|
|
}
|
|
|
|
/*
|
|
* Similar to vn_setpath_str(), this function sets the path of the destination
|
|
* vnode to the be the same as the source vnode.
|
|
*/
|
|
void
|
|
vn_copypath(struct vnode *src, struct vnode *dst)
|
|
{
|
|
char *buf;
|
|
int alloc;
|
|
|
|
mutex_enter(&src->v_lock);
|
|
if (src->v_path == NULL) {
|
|
mutex_exit(&src->v_lock);
|
|
return;
|
|
}
|
|
alloc = strlen(src->v_path) + 1;
|
|
|
|
/* avoid kmem_alloc() with lock held */
|
|
mutex_exit(&src->v_lock);
|
|
buf = kmem_alloc(alloc, KM_SLEEP);
|
|
mutex_enter(&src->v_lock);
|
|
if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) {
|
|
mutex_exit(&src->v_lock);
|
|
kmem_free(buf, alloc);
|
|
return;
|
|
}
|
|
bcopy(src->v_path, buf, alloc);
|
|
mutex_exit(&src->v_lock);
|
|
|
|
mutex_enter(&dst->v_lock);
|
|
if (dst->v_path != NULL) {
|
|
mutex_exit(&dst->v_lock);
|
|
kmem_free(buf, alloc);
|
|
return;
|
|
}
|
|
dst->v_path = buf;
|
|
mutex_exit(&dst->v_lock);
|
|
}
|
|
|
|
/*
|
|
* XXX Private interface for segvn routines that handle vnode
|
|
* large page segments.
|
|
*
|
|
* return 1 if vp's file system VOP_PAGEIO() implementation
|
|
* can be safely used instead of VOP_GETPAGE() for handling
|
|
* pagefaults against regular non swap files. VOP_PAGEIO()
|
|
* interface is considered safe here if its implementation
|
|
* is very close to VOP_GETPAGE() implementation.
|
|
* e.g. It zero's out the part of the page beyond EOF. Doesn't
|
|
* panic if there're file holes but instead returns an error.
|
|
* Doesn't assume file won't be changed by user writes, etc.
|
|
*
|
|
* return 0 otherwise.
|
|
*
|
|
* For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
|
|
*/
|
|
int
|
|
vn_vmpss_usepageio(vnode_t *vp)
|
|
{
|
|
vfs_t *vfsp = vp->v_vfsp;
|
|
char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
|
|
char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
|
|
char **fsok = pageio_ok_fss;
|
|
|
|
if (fsname == NULL) {
|
|
return (0);
|
|
}
|
|
|
|
for (; *fsok; fsok++) {
|
|
if (strcmp(*fsok, fsname) == 0) {
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* VOP_XXX() macros call the corresponding fop_xxx() function */
|
|
|
|
int
|
|
fop_open(
|
|
vnode_t **vpp,
|
|
int mode,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int ret;
|
|
vnode_t *vp = *vpp;
|
|
|
|
VN_HOLD(vp);
|
|
/*
|
|
* Adding to the vnode counts before calling open
|
|
* avoids the need for a mutex. It circumvents a race
|
|
* condition where a query made on the vnode counts results in a
|
|
* false negative. The inquirer goes away believing the file is
|
|
* not open when there is an open on the file already under way.
|
|
*
|
|
* The counts are meant to prevent NFS from granting a delegation
|
|
* when it would be dangerous to do so.
|
|
*
|
|
* The vnode counts are only kept on regular files
|
|
*/
|
|
if ((*vpp)->v_type == VREG) {
|
|
if (mode & FREAD)
|
|
atomic_add_32(&((*vpp)->v_rdcnt), 1);
|
|
if (mode & FWRITE)
|
|
atomic_add_32(&((*vpp)->v_wrcnt), 1);
|
|
}
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct);
|
|
|
|
if (ret) {
|
|
/*
|
|
* Use the saved vp just in case the vnode ptr got trashed
|
|
* by the error.
|
|
*/
|
|
VOPSTATS_UPDATE(vp, open);
|
|
if ((vp->v_type == VREG) && (mode & FREAD))
|
|
atomic_add_32(&(vp->v_rdcnt), -1);
|
|
if ((vp->v_type == VREG) && (mode & FWRITE))
|
|
atomic_add_32(&(vp->v_wrcnt), -1);
|
|
} else {
|
|
/*
|
|
* Some filesystems will return a different vnode,
|
|
* but the same path was still used to open it.
|
|
* So if we do change the vnode and need to
|
|
* copy over the path, do so here, rather than special
|
|
* casing each filesystem. Adjust the vnode counts to
|
|
* reflect the vnode switch.
|
|
*/
|
|
VOPSTATS_UPDATE(*vpp, open);
|
|
if (*vpp != vp && *vpp != NULL) {
|
|
vn_copypath(vp, *vpp);
|
|
if (((*vpp)->v_type == VREG) && (mode & FREAD))
|
|
atomic_add_32(&((*vpp)->v_rdcnt), 1);
|
|
if ((vp->v_type == VREG) && (mode & FREAD))
|
|
atomic_add_32(&(vp->v_rdcnt), -1);
|
|
if (((*vpp)->v_type == VREG) && (mode & FWRITE))
|
|
atomic_add_32(&((*vpp)->v_wrcnt), 1);
|
|
if ((vp->v_type == VREG) && (mode & FWRITE))
|
|
atomic_add_32(&(vp->v_wrcnt), -1);
|
|
}
|
|
}
|
|
VN_RELE(vp);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
fop_close(
|
|
vnode_t *vp,
|
|
int flag,
|
|
int count,
|
|
offset_t offset,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct);
|
|
VOPSTATS_UPDATE(vp, close);
|
|
/*
|
|
* Check passed in count to handle possible dups. Vnode counts are only
|
|
* kept on regular files
|
|
*/
|
|
if ((vp->v_type == VREG) && (count == 1)) {
|
|
if (flag & FREAD) {
|
|
ASSERT(vp->v_rdcnt > 0);
|
|
atomic_add_32(&(vp->v_rdcnt), -1);
|
|
}
|
|
if (flag & FWRITE) {
|
|
ASSERT(vp->v_wrcnt > 0);
|
|
atomic_add_32(&(vp->v_wrcnt), -1);
|
|
}
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_read(
|
|
vnode_t *vp,
|
|
uio_t *uiop,
|
|
int ioflag,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
ssize_t resid_start = uiop->uio_resid;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
|
|
VOPSTATS_UPDATE_IO(vp, read,
|
|
read_bytes, (resid_start - uiop->uio_resid));
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_write(
|
|
vnode_t *vp,
|
|
uio_t *uiop,
|
|
int ioflag,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
ssize_t resid_start = uiop->uio_resid;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
|
|
VOPSTATS_UPDATE_IO(vp, write,
|
|
write_bytes, (resid_start - uiop->uio_resid));
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_ioctl(
|
|
vnode_t *vp,
|
|
int cmd,
|
|
intptr_t arg,
|
|
int flag,
|
|
cred_t *cr,
|
|
int *rvalp,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct);
|
|
VOPSTATS_UPDATE(vp, ioctl);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_setfl(
|
|
vnode_t *vp,
|
|
int oflags,
|
|
int nflags,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct);
|
|
VOPSTATS_UPDATE(vp, setfl);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_getattr(
|
|
vnode_t *vp,
|
|
vattr_t *vap,
|
|
int flags,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
/*
|
|
* If this file system doesn't understand the xvattr extensions
|
|
* then turn off the xvattr bit.
|
|
*/
|
|
if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
|
|
vap->va_mask &= ~AT_XVATTR;
|
|
}
|
|
|
|
/*
|
|
* We're only allowed to skip the ACL check iff we used a 32 bit
|
|
* ACE mask with VOP_ACCESS() to determine permissions.
|
|
*/
|
|
if ((flags & ATTR_NOACLCHECK) &&
|
|
vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
|
|
return (EINVAL);
|
|
}
|
|
err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct);
|
|
VOPSTATS_UPDATE(vp, getattr);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_setattr(
|
|
vnode_t *vp,
|
|
vattr_t *vap,
|
|
int flags,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
/*
|
|
* If this file system doesn't understand the xvattr extensions
|
|
* then turn off the xvattr bit.
|
|
*/
|
|
if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) {
|
|
vap->va_mask &= ~AT_XVATTR;
|
|
}
|
|
|
|
/*
|
|
* We're only allowed to skip the ACL check iff we used a 32 bit
|
|
* ACE mask with VOP_ACCESS() to determine permissions.
|
|
*/
|
|
if ((flags & ATTR_NOACLCHECK) &&
|
|
vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
|
|
return (EINVAL);
|
|
}
|
|
err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
|
|
VOPSTATS_UPDATE(vp, setattr);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_access(
|
|
vnode_t *vp,
|
|
int mode,
|
|
int flags,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
if ((flags & V_ACE_MASK) &&
|
|
vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
|
|
return (EINVAL);
|
|
}
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct);
|
|
VOPSTATS_UPDATE(vp, access);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_lookup(
|
|
vnode_t *dvp,
|
|
char *nm,
|
|
vnode_t **vpp,
|
|
pathname_t *pnp,
|
|
int flags,
|
|
vnode_t *rdir,
|
|
cred_t *cr,
|
|
caller_context_t *ct,
|
|
int *deflags, /* Returned per-dirent flags */
|
|
pathname_t *ppnp) /* Returned case-preserved name in directory */
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* If this file system doesn't support case-insensitive access
|
|
* and said access is requested, fail quickly. It is required
|
|
* that if the vfs supports case-insensitive lookup, it also
|
|
* supports extended dirent flags.
|
|
*/
|
|
if (flags & FIGNORECASE &&
|
|
(vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
|
|
vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
|
|
return (EINVAL);
|
|
|
|
VOPXID_MAP_CR(dvp, cr);
|
|
|
|
if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) {
|
|
ret = xattr_dir_lookup(dvp, vpp, flags, cr);
|
|
} else {
|
|
ret = (*(dvp)->v_op->vop_lookup)
|
|
(dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp);
|
|
}
|
|
if (ret == 0 && *vpp) {
|
|
VOPSTATS_UPDATE(*vpp, lookup);
|
|
if ((*vpp)->v_path == NULL) {
|
|
vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm));
|
|
}
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
fop_create(
|
|
vnode_t *dvp,
|
|
char *name,
|
|
vattr_t *vap,
|
|
vcexcl_t excl,
|
|
int mode,
|
|
vnode_t **vpp,
|
|
cred_t *cr,
|
|
int flags,
|
|
caller_context_t *ct,
|
|
vsecattr_t *vsecp) /* ACL to set during create */
|
|
{
|
|
int ret;
|
|
|
|
if (vsecp != NULL &&
|
|
vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
|
|
return (EINVAL);
|
|
}
|
|
/*
|
|
* If this file system doesn't support case-insensitive access
|
|
* and said access is requested, fail quickly.
|
|
*/
|
|
if (flags & FIGNORECASE &&
|
|
(vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
|
|
vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
|
|
return (EINVAL);
|
|
|
|
VOPXID_MAP_CR(dvp, cr);
|
|
|
|
ret = (*(dvp)->v_op->vop_create)
|
|
(dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp);
|
|
if (ret == 0 && *vpp) {
|
|
VOPSTATS_UPDATE(*vpp, create);
|
|
if ((*vpp)->v_path == NULL) {
|
|
vn_setpath(rootdir, dvp, *vpp, name, strlen(name));
|
|
}
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
fop_remove(
|
|
vnode_t *dvp,
|
|
char *nm,
|
|
cred_t *cr,
|
|
caller_context_t *ct,
|
|
int flags)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* If this file system doesn't support case-insensitive access
|
|
* and said access is requested, fail quickly.
|
|
*/
|
|
if (flags & FIGNORECASE &&
|
|
(vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
|
|
vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
|
|
return (EINVAL);
|
|
|
|
VOPXID_MAP_CR(dvp, cr);
|
|
|
|
err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags);
|
|
VOPSTATS_UPDATE(dvp, remove);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_link(
|
|
vnode_t *tdvp,
|
|
vnode_t *svp,
|
|
char *tnm,
|
|
cred_t *cr,
|
|
caller_context_t *ct,
|
|
int flags)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* If the target file system doesn't support case-insensitive access
|
|
* and said access is requested, fail quickly.
|
|
*/
|
|
if (flags & FIGNORECASE &&
|
|
(vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
|
|
vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
|
|
return (EINVAL);
|
|
|
|
VOPXID_MAP_CR(tdvp, cr);
|
|
|
|
err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags);
|
|
VOPSTATS_UPDATE(tdvp, link);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_rename(
|
|
vnode_t *sdvp,
|
|
char *snm,
|
|
vnode_t *tdvp,
|
|
char *tnm,
|
|
cred_t *cr,
|
|
caller_context_t *ct,
|
|
int flags)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* If the file system involved does not support
|
|
* case-insensitive access and said access is requested, fail
|
|
* quickly.
|
|
*/
|
|
if (flags & FIGNORECASE &&
|
|
((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
|
|
vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)))
|
|
return (EINVAL);
|
|
|
|
VOPXID_MAP_CR(tdvp, cr);
|
|
|
|
err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags);
|
|
VOPSTATS_UPDATE(sdvp, rename);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_mkdir(
|
|
vnode_t *dvp,
|
|
char *dirname,
|
|
vattr_t *vap,
|
|
vnode_t **vpp,
|
|
cred_t *cr,
|
|
caller_context_t *ct,
|
|
int flags,
|
|
vsecattr_t *vsecp) /* ACL to set during create */
|
|
{
|
|
int ret;
|
|
|
|
if (vsecp != NULL &&
|
|
vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) {
|
|
return (EINVAL);
|
|
}
|
|
/*
|
|
* If this file system doesn't support case-insensitive access
|
|
* and said access is requested, fail quickly.
|
|
*/
|
|
if (flags & FIGNORECASE &&
|
|
(vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
|
|
vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
|
|
return (EINVAL);
|
|
|
|
VOPXID_MAP_CR(dvp, cr);
|
|
|
|
ret = (*(dvp)->v_op->vop_mkdir)
|
|
(dvp, dirname, vap, vpp, cr, ct, flags, vsecp);
|
|
if (ret == 0 && *vpp) {
|
|
VOPSTATS_UPDATE(*vpp, mkdir);
|
|
if ((*vpp)->v_path == NULL) {
|
|
vn_setpath(rootdir, dvp, *vpp, dirname,
|
|
strlen(dirname));
|
|
}
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
fop_rmdir(
|
|
vnode_t *dvp,
|
|
char *nm,
|
|
vnode_t *cdir,
|
|
cred_t *cr,
|
|
caller_context_t *ct,
|
|
int flags)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* If this file system doesn't support case-insensitive access
|
|
* and said access is requested, fail quickly.
|
|
*/
|
|
if (flags & FIGNORECASE &&
|
|
(vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
|
|
vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
|
|
return (EINVAL);
|
|
|
|
VOPXID_MAP_CR(dvp, cr);
|
|
|
|
err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags);
|
|
VOPSTATS_UPDATE(dvp, rmdir);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_readdir(
|
|
vnode_t *vp,
|
|
uio_t *uiop,
|
|
cred_t *cr,
|
|
int *eofp,
|
|
caller_context_t *ct,
|
|
int flags)
|
|
{
|
|
int err;
|
|
ssize_t resid_start = uiop->uio_resid;
|
|
|
|
/*
|
|
* If this file system doesn't support retrieving directory
|
|
* entry flags and said access is requested, fail quickly.
|
|
*/
|
|
if (flags & V_RDDIR_ENTFLAGS &&
|
|
vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0)
|
|
return (EINVAL);
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags);
|
|
VOPSTATS_UPDATE_IO(vp, readdir,
|
|
readdir_bytes, (resid_start - uiop->uio_resid));
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_symlink(
|
|
vnode_t *dvp,
|
|
char *linkname,
|
|
vattr_t *vap,
|
|
char *target,
|
|
cred_t *cr,
|
|
caller_context_t *ct,
|
|
int flags)
|
|
{
|
|
int err;
|
|
xvattr_t xvattr;
|
|
|
|
/*
|
|
* If this file system doesn't support case-insensitive access
|
|
* and said access is requested, fail quickly.
|
|
*/
|
|
if (flags & FIGNORECASE &&
|
|
(vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 &&
|
|
vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))
|
|
return (EINVAL);
|
|
|
|
VOPXID_MAP_CR(dvp, cr);
|
|
|
|
/* check for reparse point */
|
|
if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) &&
|
|
(strncmp(target, FS_REPARSE_TAG_STR,
|
|
strlen(FS_REPARSE_TAG_STR)) == 0)) {
|
|
if (!fs_reparse_mark(target, vap, &xvattr))
|
|
vap = (vattr_t *)&xvattr;
|
|
}
|
|
|
|
err = (*(dvp)->v_op->vop_symlink)
|
|
(dvp, linkname, vap, target, cr, ct, flags);
|
|
VOPSTATS_UPDATE(dvp, symlink);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_readlink(
|
|
vnode_t *vp,
|
|
uio_t *uiop,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct);
|
|
VOPSTATS_UPDATE(vp, readlink);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_fsync(
|
|
vnode_t *vp,
|
|
int syncflag,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct);
|
|
VOPSTATS_UPDATE(vp, fsync);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
fop_inactive(
|
|
vnode_t *vp,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
/* Need to update stats before vop call since we may lose the vnode */
|
|
VOPSTATS_UPDATE(vp, inactive);
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
(*(vp)->v_op->vop_inactive)(vp, cr, ct);
|
|
}
|
|
|
|
int
|
|
fop_fid(
|
|
vnode_t *vp,
|
|
fid_t *fidp,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
err = (*(vp)->v_op->vop_fid)(vp, fidp, ct);
|
|
VOPSTATS_UPDATE(vp, fid);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_rwlock(
|
|
vnode_t *vp,
|
|
int write_lock,
|
|
caller_context_t *ct)
|
|
{
|
|
int ret;
|
|
|
|
ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
|
|
VOPSTATS_UPDATE(vp, rwlock);
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
fop_rwunlock(
|
|
vnode_t *vp,
|
|
int write_lock,
|
|
caller_context_t *ct)
|
|
{
|
|
(*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
|
|
VOPSTATS_UPDATE(vp, rwunlock);
|
|
}
|
|
|
|
int
|
|
fop_seek(
|
|
vnode_t *vp,
|
|
offset_t ooff,
|
|
offset_t *noffp,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct);
|
|
VOPSTATS_UPDATE(vp, seek);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_cmp(
|
|
vnode_t *vp1,
|
|
vnode_t *vp2,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct);
|
|
VOPSTATS_UPDATE(vp1, cmp);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_frlock(
|
|
vnode_t *vp,
|
|
int cmd,
|
|
flock64_t *bfp,
|
|
int flag,
|
|
offset_t offset,
|
|
struct flk_callback *flk_cbp,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_frlock)
|
|
(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct);
|
|
VOPSTATS_UPDATE(vp, frlock);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_space(
|
|
vnode_t *vp,
|
|
int cmd,
|
|
flock64_t *bfp,
|
|
int flag,
|
|
offset_t offset,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
|
|
VOPSTATS_UPDATE(vp, space);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_realvp(
|
|
vnode_t *vp,
|
|
vnode_t **vpp,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct);
|
|
VOPSTATS_UPDATE(vp, realvp);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_getpage(
|
|
vnode_t *vp,
|
|
offset_t off,
|
|
size_t len,
|
|
uint_t *protp,
|
|
page_t **plarr,
|
|
size_t plsz,
|
|
struct seg *seg,
|
|
caddr_t addr,
|
|
enum seg_rw rw,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_getpage)
|
|
(vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct);
|
|
VOPSTATS_UPDATE(vp, getpage);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_putpage(
|
|
vnode_t *vp,
|
|
offset_t off,
|
|
size_t len,
|
|
int flags,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct);
|
|
VOPSTATS_UPDATE(vp, putpage);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_map(
|
|
vnode_t *vp,
|
|
offset_t off,
|
|
struct as *as,
|
|
caddr_t *addrp,
|
|
size_t len,
|
|
uchar_t prot,
|
|
uchar_t maxprot,
|
|
uint_t flags,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_map)
|
|
(vp, off, as, addrp, len, prot, maxprot, flags, cr, ct);
|
|
VOPSTATS_UPDATE(vp, map);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_addmap(
|
|
vnode_t *vp,
|
|
offset_t off,
|
|
struct as *as,
|
|
caddr_t addr,
|
|
size_t len,
|
|
uchar_t prot,
|
|
uchar_t maxprot,
|
|
uint_t flags,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int error;
|
|
u_longlong_t delta;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
error = (*(vp)->v_op->vop_addmap)
|
|
(vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
|
|
|
|
if ((!error) && (vp->v_type == VREG)) {
|
|
delta = (u_longlong_t)btopr(len);
|
|
/*
|
|
* If file is declared MAP_PRIVATE, it can't be written back
|
|
* even if open for write. Handle as read.
|
|
*/
|
|
if (flags & MAP_PRIVATE) {
|
|
atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
|
|
(int64_t)delta);
|
|
} else {
|
|
/*
|
|
* atomic_add_64 forces the fetch of a 64 bit value to
|
|
* be atomic on 32 bit machines
|
|
*/
|
|
if (maxprot & PROT_WRITE)
|
|
atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
|
|
(int64_t)delta);
|
|
if (maxprot & PROT_READ)
|
|
atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
|
|
(int64_t)delta);
|
|
if (maxprot & PROT_EXEC)
|
|
atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
|
|
(int64_t)delta);
|
|
}
|
|
}
|
|
VOPSTATS_UPDATE(vp, addmap);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
fop_delmap(
|
|
vnode_t *vp,
|
|
offset_t off,
|
|
struct as *as,
|
|
caddr_t addr,
|
|
size_t len,
|
|
uint_t prot,
|
|
uint_t maxprot,
|
|
uint_t flags,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int error;
|
|
u_longlong_t delta;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
error = (*(vp)->v_op->vop_delmap)
|
|
(vp, off, as, addr, len, prot, maxprot, flags, cr, ct);
|
|
|
|
/*
|
|
* NFS calls into delmap twice, the first time
|
|
* it simply establishes a callback mechanism and returns EAGAIN
|
|
* while the real work is being done upon the second invocation.
|
|
* We have to detect this here and only decrement the counts upon
|
|
* the second delmap request.
|
|
*/
|
|
if ((error != EAGAIN) && (vp->v_type == VREG)) {
|
|
|
|
delta = (u_longlong_t)btopr(len);
|
|
|
|
if (flags & MAP_PRIVATE) {
|
|
atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
|
|
(int64_t)(-delta));
|
|
} else {
|
|
/*
|
|
* atomic_add_64 forces the fetch of a 64 bit value
|
|
* to be atomic on 32 bit machines
|
|
*/
|
|
if (maxprot & PROT_WRITE)
|
|
atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
|
|
(int64_t)(-delta));
|
|
if (maxprot & PROT_READ)
|
|
atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
|
|
(int64_t)(-delta));
|
|
if (maxprot & PROT_EXEC)
|
|
atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
|
|
(int64_t)(-delta));
|
|
}
|
|
}
|
|
VOPSTATS_UPDATE(vp, delmap);
|
|
return (error);
|
|
}
|
|
|
|
|
|
int
|
|
fop_poll(
|
|
vnode_t *vp,
|
|
short events,
|
|
int anyyet,
|
|
short *reventsp,
|
|
struct pollhead **phpp,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct);
|
|
VOPSTATS_UPDATE(vp, poll);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_dump(
|
|
vnode_t *vp,
|
|
caddr_t addr,
|
|
offset_t lbdn,
|
|
offset_t dblks,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
/* ensure lbdn and dblks can be passed safely to bdev_dump */
|
|
if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks))
|
|
return (EIO);
|
|
|
|
err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct);
|
|
VOPSTATS_UPDATE(vp, dump);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_pathconf(
|
|
vnode_t *vp,
|
|
int cmd,
|
|
ulong_t *valp,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct);
|
|
VOPSTATS_UPDATE(vp, pathconf);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_pageio(
|
|
vnode_t *vp,
|
|
struct page *pp,
|
|
u_offset_t io_off,
|
|
size_t io_len,
|
|
int flags,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct);
|
|
VOPSTATS_UPDATE(vp, pageio);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_dumpctl(
|
|
vnode_t *vp,
|
|
int action,
|
|
offset_t *blkp,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct);
|
|
VOPSTATS_UPDATE(vp, dumpctl);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
fop_dispose(
|
|
vnode_t *vp,
|
|
page_t *pp,
|
|
int flag,
|
|
int dn,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
/* Must do stats first since it's possible to lose the vnode */
|
|
VOPSTATS_UPDATE(vp, dispose);
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
(*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct);
|
|
}
|
|
|
|
int
|
|
fop_setsecattr(
|
|
vnode_t *vp,
|
|
vsecattr_t *vsap,
|
|
int flag,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
/*
|
|
* We're only allowed to skip the ACL check iff we used a 32 bit
|
|
* ACE mask with VOP_ACCESS() to determine permissions.
|
|
*/
|
|
if ((flag & ATTR_NOACLCHECK) &&
|
|
vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
|
|
return (EINVAL);
|
|
}
|
|
err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct);
|
|
VOPSTATS_UPDATE(vp, setsecattr);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_getsecattr(
|
|
vnode_t *vp,
|
|
vsecattr_t *vsap,
|
|
int flag,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* We're only allowed to skip the ACL check iff we used a 32 bit
|
|
* ACE mask with VOP_ACCESS() to determine permissions.
|
|
*/
|
|
if ((flag & ATTR_NOACLCHECK) &&
|
|
vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) {
|
|
return (EINVAL);
|
|
}
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct);
|
|
VOPSTATS_UPDATE(vp, getsecattr);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_shrlock(
|
|
vnode_t *vp,
|
|
int cmd,
|
|
struct shrlock *shr,
|
|
int flag,
|
|
cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
VOPXID_MAP_CR(vp, cr);
|
|
|
|
err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct);
|
|
VOPSTATS_UPDATE(vp, shrlock);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct);
|
|
VOPSTATS_UPDATE(vp, vnevent);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *uiop, cred_t *cr,
|
|
caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
|
|
return (ENOTSUP);
|
|
err = (*(vp)->v_op->vop_reqzcbuf)(vp, ioflag, uiop, cr, ct);
|
|
VOPSTATS_UPDATE(vp, reqzcbuf);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fop_retzcbuf(vnode_t *vp, xuio_t *uiop, cred_t *cr, caller_context_t *ct)
|
|
{
|
|
int err;
|
|
|
|
if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0)
|
|
return (ENOTSUP);
|
|
err = (*(vp)->v_op->vop_retzcbuf)(vp, uiop, cr, ct);
|
|
VOPSTATS_UPDATE(vp, retzcbuf);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Default destructor
|
|
* Needed because NULL destructor means that the key is unused
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
vsd_defaultdestructor(void *value)
|
|
{}
|
|
|
|
/*
|
|
* Create a key (index into per vnode array)
|
|
* Locks out vsd_create, vsd_destroy, and vsd_free
|
|
* May allocate memory with lock held
|
|
*/
|
|
void
|
|
vsd_create(uint_t *keyp, void (*destructor)(void *))
|
|
{
|
|
int i;
|
|
uint_t nkeys;
|
|
|
|
/*
|
|
* if key is allocated, do nothing
|
|
*/
|
|
mutex_enter(&vsd_lock);
|
|
if (*keyp) {
|
|
mutex_exit(&vsd_lock);
|
|
return;
|
|
}
|
|
/*
|
|
* find an unused key
|
|
*/
|
|
if (destructor == NULL)
|
|
destructor = vsd_defaultdestructor;
|
|
|
|
for (i = 0; i < vsd_nkeys; ++i)
|
|
if (vsd_destructor[i] == NULL)
|
|
break;
|
|
|
|
/*
|
|
* if no unused keys, increase the size of the destructor array
|
|
*/
|
|
if (i == vsd_nkeys) {
|
|
if ((nkeys = (vsd_nkeys << 1)) == 0)
|
|
nkeys = 1;
|
|
vsd_destructor =
|
|
(void (**)(void *))vsd_realloc((void *)vsd_destructor,
|
|
(size_t)(vsd_nkeys * sizeof (void (*)(void *))),
|
|
(size_t)(nkeys * sizeof (void (*)(void *))));
|
|
vsd_nkeys = nkeys;
|
|
}
|
|
|
|
/*
|
|
* allocate the next available unused key
|
|
*/
|
|
vsd_destructor[i] = destructor;
|
|
*keyp = i + 1;
|
|
|
|
/* create vsd_list, if it doesn't exist */
|
|
if (vsd_list == NULL) {
|
|
vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
|
|
list_create(vsd_list, sizeof (struct vsd_node),
|
|
offsetof(struct vsd_node, vs_nodes));
|
|
}
|
|
|
|
mutex_exit(&vsd_lock);
|
|
}
|
|
|
|
/*
|
|
* Destroy a key
|
|
*
|
|
* Assumes that the caller is preventing vsd_set and vsd_get
|
|
* Locks out vsd_create, vsd_destroy, and vsd_free
|
|
* May free memory with lock held
|
|
*/
|
|
void
|
|
vsd_destroy(uint_t *keyp)
|
|
{
|
|
uint_t key;
|
|
struct vsd_node *vsd;
|
|
|
|
/*
|
|
* protect the key namespace and our destructor lists
|
|
*/
|
|
mutex_enter(&vsd_lock);
|
|
key = *keyp;
|
|
*keyp = 0;
|
|
|
|
ASSERT(key <= vsd_nkeys);
|
|
|
|
/*
|
|
* if the key is valid
|
|
*/
|
|
if (key != 0) {
|
|
uint_t k = key - 1;
|
|
/*
|
|
* for every vnode with VSD, call key's destructor
|
|
*/
|
|
for (vsd = list_head(vsd_list); vsd != NULL;
|
|
vsd = list_next(vsd_list, vsd)) {
|
|
/*
|
|
* no VSD for key in this vnode
|
|
*/
|
|
if (key > vsd->vs_nkeys)
|
|
continue;
|
|
/*
|
|
* call destructor for key
|
|
*/
|
|
if (vsd->vs_value[k] && vsd_destructor[k])
|
|
(*vsd_destructor[k])(vsd->vs_value[k]);
|
|
/*
|
|
* reset value for key
|
|
*/
|
|
vsd->vs_value[k] = NULL;
|
|
}
|
|
/*
|
|
* actually free the key (NULL destructor == unused)
|
|
*/
|
|
vsd_destructor[k] = NULL;
|
|
}
|
|
|
|
mutex_exit(&vsd_lock);
|
|
}
|
|
|
|
/*
|
|
* Quickly return the per vnode value that was stored with the specified key
|
|
* Assumes the caller is protecting key from vsd_create and vsd_destroy
|
|
* Assumes the caller is holding v_vsd_lock to protect the vsd.
|
|
*/
|
|
void *
|
|
vsd_get(vnode_t *vp, uint_t key)
|
|
{
|
|
struct vsd_node *vsd;
|
|
|
|
ASSERT(vp != NULL);
|
|
ASSERT(mutex_owned(&vp->v_vsd_lock));
|
|
|
|
vsd = vp->v_vsd;
|
|
|
|
if (key && vsd != NULL && key <= vsd->vs_nkeys)
|
|
return (vsd->vs_value[key - 1]);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Set a per vnode value indexed with the specified key
|
|
* Assumes the caller is holding v_vsd_lock to protect the vsd.
|
|
*/
|
|
int
|
|
vsd_set(vnode_t *vp, uint_t key, void *value)
|
|
{
|
|
struct vsd_node *vsd;
|
|
|
|
ASSERT(vp != NULL);
|
|
ASSERT(mutex_owned(&vp->v_vsd_lock));
|
|
|
|
if (key == 0)
|
|
return (EINVAL);
|
|
|
|
vsd = vp->v_vsd;
|
|
if (vsd == NULL)
|
|
vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP);
|
|
|
|
/*
|
|
* If the vsd was just allocated, vs_nkeys will be 0, so the following
|
|
* code won't happen and we will continue down and allocate space for
|
|
* the vs_value array.
|
|
* If the caller is replacing one value with another, then it is up
|
|
* to the caller to free/rele/destroy the previous value (if needed).
|
|
*/
|
|
if (key <= vsd->vs_nkeys) {
|
|
vsd->vs_value[key - 1] = value;
|
|
return (0);
|
|
}
|
|
|
|
ASSERT(key <= vsd_nkeys);
|
|
|
|
if (vsd->vs_nkeys == 0) {
|
|
mutex_enter(&vsd_lock); /* lock out vsd_destroy() */
|
|
/*
|
|
* Link onto list of all VSD nodes.
|
|
*/
|
|
list_insert_head(vsd_list, vsd);
|
|
mutex_exit(&vsd_lock);
|
|
}
|
|
|
|
/*
|
|
* Allocate vnode local storage and set the value for key
|
|
*/
|
|
vsd->vs_value = vsd_realloc(vsd->vs_value,
|
|
vsd->vs_nkeys * sizeof (void *),
|
|
key * sizeof (void *));
|
|
vsd->vs_nkeys = key;
|
|
vsd->vs_value[key - 1] = value;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Called from vn_free() to run the destructor function for each vsd
|
|
* Locks out vsd_create and vsd_destroy
|
|
* Assumes that the destructor *DOES NOT* use vsd
|
|
*/
|
|
void
|
|
vsd_free(vnode_t *vp)
|
|
{
|
|
int i;
|
|
struct vsd_node *vsd = vp->v_vsd;
|
|
|
|
if (vsd == NULL)
|
|
return;
|
|
|
|
if (vsd->vs_nkeys == 0) {
|
|
kmem_free(vsd, sizeof (*vsd));
|
|
vp->v_vsd = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* lock out vsd_create and vsd_destroy, call
|
|
* the destructor, and mark the value as destroyed.
|
|
*/
|
|
mutex_enter(&vsd_lock);
|
|
|
|
for (i = 0; i < vsd->vs_nkeys; i++) {
|
|
if (vsd->vs_value[i] && vsd_destructor[i])
|
|
(*vsd_destructor[i])(vsd->vs_value[i]);
|
|
vsd->vs_value[i] = NULL;
|
|
}
|
|
|
|
/*
|
|
* remove from linked list of VSD nodes
|
|
*/
|
|
list_remove(vsd_list, vsd);
|
|
|
|
mutex_exit(&vsd_lock);
|
|
|
|
/*
|
|
* free up the VSD
|
|
*/
|
|
kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *));
|
|
kmem_free(vsd, sizeof (struct vsd_node));
|
|
vp->v_vsd = NULL;
|
|
}
|
|
|
|
/*
|
|
* realloc
|
|
*/
|
|
static void *
|
|
vsd_realloc(void *old, size_t osize, size_t nsize)
|
|
{
|
|
void *new;
|
|
|
|
new = kmem_zalloc(nsize, KM_SLEEP);
|
|
if (old) {
|
|
bcopy(old, new, osize);
|
|
kmem_free(old, osize);
|
|
}
|
|
return (new);
|
|
}
|
|
|
|
/*
|
|
* Setup the extensible system attribute for creating a reparse point.
|
|
* The symlink data 'target' is validated for proper format of a reparse
|
|
* string and a check also made to make sure the symlink data does not
|
|
* point to an existing file.
|
|
*
|
|
* return 0 if ok else -1.
|
|
*/
|
|
static int
|
|
fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr)
|
|
{
|
|
xoptattr_t *xoap;
|
|
|
|
if ((!target) || (!vap) || (!xvattr))
|
|
return (-1);
|
|
|
|
/* validate reparse string */
|
|
if (reparse_validate((const char *)target))
|
|
return (-1);
|
|
|
|
xva_init(xvattr);
|
|
xvattr->xva_vattr = *vap;
|
|
xvattr->xva_vattr.va_mask |= AT_XVATTR;
|
|
xoap = xva_getxoptattr(xvattr);
|
|
ASSERT(xoap);
|
|
XVA_SET_REQ(xvattr, XAT_REPARSE);
|
|
xoap->xoa_reparse = 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Function to check whether a symlink is a reparse point.
|
|
* Return B_TRUE if it is a reparse point, else return B_FALSE
|
|
*/
|
|
boolean_t
|
|
vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct)
|
|
{
|
|
xvattr_t xvattr;
|
|
xoptattr_t *xoap;
|
|
|
|
if ((vp->v_type != VLNK) ||
|
|
!(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR)))
|
|
return (B_FALSE);
|
|
|
|
xva_init(&xvattr);
|
|
xoap = xva_getxoptattr(&xvattr);
|
|
ASSERT(xoap);
|
|
XVA_SET_REQ(&xvattr, XAT_REPARSE);
|
|
|
|
if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct))
|
|
return (B_FALSE);
|
|
|
|
if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) ||
|
|
(!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE))))
|
|
return (B_FALSE);
|
|
|
|
return (xoap->xoa_reparse ? B_TRUE : B_FALSE);
|
|
}
|