60f1e27625
- move cxgb_tx_common in to cxgb_multiq.c and rename to cxgb_tx - move cxgb_tx_common dependencies - further simplify cxgb_dequeue_packet for the non-multiqueue case - only launch one service thread per port in the non-multiq case - remove dead cleaning code from cxgb_sge.c - simplify PIO case substantially in by returning directly from mbuf collapse and just using m_copydata - remove gratuitous m_gethdr in the rx path - clarify freeing of mbufs in collapse
3391 lines
90 KiB
C
3391 lines
90 KiB
C
/**************************************************************************
|
|
|
|
Copyright (c) 2007, Chelsio Inc.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Neither the name of the Chelsio Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
***************************************************************************/
|
|
#define DEBUG_BUFRING
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus_dma.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <sys/proc.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#ifdef CONFIG_DEFINED
|
|
#include <cxgb_include.h>
|
|
#include <sys/mvec.h>
|
|
#else
|
|
#include <dev/cxgb/cxgb_include.h>
|
|
#include <dev/cxgb/sys/mvec.h>
|
|
#endif
|
|
|
|
int txq_fills = 0;
|
|
static int bogus_imm = 0;
|
|
static int recycle_enable = 0;
|
|
extern int cxgb_txq_buf_ring_size;
|
|
int cxgb_cached_allocations;
|
|
int cxgb_cached;
|
|
int cxgb_ext_freed;
|
|
extern int cxgb_use_16k_clusters;
|
|
|
|
|
|
#define USE_GTS 0
|
|
|
|
#define SGE_RX_SM_BUF_SIZE 1536
|
|
#define SGE_RX_DROP_THRES 16
|
|
#define SGE_RX_COPY_THRES 128
|
|
|
|
/*
|
|
* Period of the Tx buffer reclaim timer. This timer does not need to run
|
|
* frequently as Tx buffers are usually reclaimed by new Tx packets.
|
|
*/
|
|
#define TX_RECLAIM_PERIOD (hz >> 1)
|
|
|
|
|
|
/*
|
|
* Values for sge_txq.flags
|
|
*/
|
|
enum {
|
|
TXQ_RUNNING = 1 << 0, /* fetch engine is running */
|
|
TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
|
|
};
|
|
|
|
struct tx_desc {
|
|
uint64_t flit[TX_DESC_FLITS];
|
|
} __packed;
|
|
|
|
struct rx_desc {
|
|
uint32_t addr_lo;
|
|
uint32_t len_gen;
|
|
uint32_t gen2;
|
|
uint32_t addr_hi;
|
|
} __packed;;
|
|
|
|
struct rsp_desc { /* response queue descriptor */
|
|
struct rss_header rss_hdr;
|
|
uint32_t flags;
|
|
uint32_t len_cq;
|
|
uint8_t imm_data[47];
|
|
uint8_t intr_gen;
|
|
} __packed;
|
|
|
|
#define RX_SW_DESC_MAP_CREATED (1 << 0)
|
|
#define TX_SW_DESC_MAP_CREATED (1 << 1)
|
|
#define RX_SW_DESC_INUSE (1 << 3)
|
|
#define TX_SW_DESC_MAPPED (1 << 4)
|
|
|
|
#define RSPQ_NSOP_NEOP G_RSPD_SOP_EOP(0)
|
|
#define RSPQ_EOP G_RSPD_SOP_EOP(F_RSPD_EOP)
|
|
#define RSPQ_SOP G_RSPD_SOP_EOP(F_RSPD_SOP)
|
|
#define RSPQ_SOP_EOP G_RSPD_SOP_EOP(F_RSPD_SOP|F_RSPD_EOP)
|
|
|
|
struct tx_sw_desc { /* SW state per Tx descriptor */
|
|
struct mbuf_iovec mi;
|
|
bus_dmamap_t map;
|
|
int flags;
|
|
};
|
|
|
|
struct rx_sw_desc { /* SW state per Rx descriptor */
|
|
caddr_t rxsd_cl;
|
|
caddr_t data;
|
|
bus_dmamap_t map;
|
|
int flags;
|
|
};
|
|
|
|
struct txq_state {
|
|
unsigned int compl;
|
|
unsigned int gen;
|
|
unsigned int pidx;
|
|
};
|
|
|
|
struct refill_fl_cb_arg {
|
|
int error;
|
|
bus_dma_segment_t seg;
|
|
int nseg;
|
|
};
|
|
|
|
/*
|
|
* Maps a number of flits to the number of Tx descriptors that can hold them.
|
|
* The formula is
|
|
*
|
|
* desc = 1 + (flits - 2) / (WR_FLITS - 1).
|
|
*
|
|
* HW allows up to 4 descriptors to be combined into a WR.
|
|
*/
|
|
static uint8_t flit_desc_map[] = {
|
|
0,
|
|
#if SGE_NUM_GENBITS == 1
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
|
|
#elif SGE_NUM_GENBITS == 2
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
#else
|
|
# error "SGE_NUM_GENBITS must be 1 or 2"
|
|
#endif
|
|
};
|
|
|
|
|
|
static int lro_default = 0;
|
|
int cxgb_debug = 0;
|
|
|
|
static void sge_timer_cb(void *arg);
|
|
static void sge_timer_reclaim(void *arg, int ncount);
|
|
static void sge_txq_reclaim_handler(void *arg, int ncount);
|
|
|
|
/**
|
|
* reclaim_completed_tx - reclaims completed Tx descriptors
|
|
* @adapter: the adapter
|
|
* @q: the Tx queue to reclaim completed descriptors from
|
|
*
|
|
* Reclaims Tx descriptors that the SGE has indicated it has processed,
|
|
* and frees the associated buffers if possible. Called with the Tx
|
|
* queue's lock held.
|
|
*/
|
|
static __inline int
|
|
reclaim_completed_tx_(struct sge_txq *q, int reclaim_min)
|
|
{
|
|
int reclaim = desc_reclaimable(q);
|
|
|
|
if (reclaim < reclaim_min)
|
|
return (0);
|
|
|
|
mtx_assert(&q->lock, MA_OWNED);
|
|
if (reclaim > 0) {
|
|
t3_free_tx_desc(q, reclaim);
|
|
q->cleaned += reclaim;
|
|
q->in_use -= reclaim;
|
|
}
|
|
return (reclaim);
|
|
}
|
|
|
|
/**
|
|
* should_restart_tx - are there enough resources to restart a Tx queue?
|
|
* @q: the Tx queue
|
|
*
|
|
* Checks if there are enough descriptors to restart a suspended Tx queue.
|
|
*/
|
|
static __inline int
|
|
should_restart_tx(const struct sge_txq *q)
|
|
{
|
|
unsigned int r = q->processed - q->cleaned;
|
|
|
|
return q->in_use - r < (q->size >> 1);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_init - initialize SGE
|
|
* @adap: the adapter
|
|
* @p: the SGE parameters
|
|
*
|
|
* Performs SGE initialization needed every time after a chip reset.
|
|
* We do not initialize any of the queue sets here, instead the driver
|
|
* top-level must request those individually. We also do not enable DMA
|
|
* here, that should be done after the queues have been set up.
|
|
*/
|
|
void
|
|
t3_sge_init(adapter_t *adap, struct sge_params *p)
|
|
{
|
|
u_int ctrl, ups;
|
|
|
|
ups = 0; /* = ffs(pci_resource_len(adap->pdev, 2) >> 12); */
|
|
|
|
ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
|
|
F_CQCRDTCTRL |
|
|
V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
|
|
V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
|
|
#if SGE_NUM_GENBITS == 1
|
|
ctrl |= F_EGRGENCTRL;
|
|
#endif
|
|
if (adap->params.rev > 0) {
|
|
if (!(adap->flags & (USING_MSIX | USING_MSI)))
|
|
ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
|
|
ctrl |= F_CQCRDTCTRL | F_AVOIDCQOVFL;
|
|
}
|
|
t3_write_reg(adap, A_SG_CONTROL, ctrl);
|
|
t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
|
|
V_LORCQDRBTHRSH(512));
|
|
t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
|
|
t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
|
|
V_TIMEOUT(200 * core_ticks_per_usec(adap)));
|
|
t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 1000);
|
|
t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
|
|
t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
|
|
t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
|
|
t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
|
|
t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
|
|
}
|
|
|
|
|
|
/**
|
|
* sgl_len - calculates the size of an SGL of the given capacity
|
|
* @n: the number of SGL entries
|
|
*
|
|
* Calculates the number of flits needed for a scatter/gather list that
|
|
* can hold the given number of entries.
|
|
*/
|
|
static __inline unsigned int
|
|
sgl_len(unsigned int n)
|
|
{
|
|
return ((3 * n) / 2 + (n & 1));
|
|
}
|
|
|
|
/**
|
|
* get_imm_packet - return the next ingress packet buffer from a response
|
|
* @resp: the response descriptor containing the packet data
|
|
*
|
|
* Return a packet containing the immediate data of the given response.
|
|
*/
|
|
#ifdef DISABLE_MBUF_IOVEC
|
|
static __inline int
|
|
get_imm_packet(adapter_t *sc, const struct rsp_desc *resp, struct t3_mbuf_hdr *mh)
|
|
{
|
|
struct mbuf *m = mh->m_head;
|
|
|
|
memcpy(mtod(m, uint8_t *), resp->imm_data, IMMED_PKT_SIZE);
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
return (0);
|
|
}
|
|
|
|
#else
|
|
static int
|
|
get_imm_packet(adapter_t *sc, const struct rsp_desc *resp, struct mbuf *m, void *cl, uint32_t flags)
|
|
{
|
|
|
|
m->m_len = m->m_pkthdr.len = IMMED_PKT_SIZE;
|
|
memcpy(mtod(m, uint8_t *), resp->imm_data, IMMED_PKT_SIZE);
|
|
return (0);
|
|
|
|
}
|
|
#endif
|
|
|
|
static __inline u_int
|
|
flits_to_desc(u_int n)
|
|
{
|
|
return (flit_desc_map[n]);
|
|
}
|
|
|
|
void
|
|
t3_sge_err_intr_handler(adapter_t *adapter)
|
|
{
|
|
unsigned int v, status;
|
|
|
|
|
|
status = t3_read_reg(adapter, A_SG_INT_CAUSE);
|
|
|
|
if (status & F_RSPQCREDITOVERFOW)
|
|
CH_ALERT(adapter, "SGE response queue credit overflow\n");
|
|
|
|
if (status & F_RSPQDISABLED) {
|
|
v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
|
|
|
|
CH_ALERT(adapter,
|
|
"packet delivered to disabled response queue (0x%x)\n",
|
|
(v >> S_RSPQ0DISABLED) & 0xff);
|
|
}
|
|
|
|
t3_write_reg(adapter, A_SG_INT_CAUSE, status);
|
|
if (status & (F_RSPQCREDITOVERFOW | F_RSPQDISABLED))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
void
|
|
t3_sge_prep(adapter_t *adap, struct sge_params *p)
|
|
{
|
|
int i;
|
|
|
|
/* XXX Does ETHER_ALIGN need to be accounted for here? */
|
|
p->max_pkt_size = adap->sge.qs[0].fl[1].buf_size - sizeof(struct cpl_rx_data);
|
|
|
|
for (i = 0; i < SGE_QSETS; ++i) {
|
|
struct qset_params *q = p->qset + i;
|
|
|
|
q->polling = adap->params.rev > 0;
|
|
|
|
if (adap->params.nports > 2) {
|
|
q->coalesce_nsecs = 50000;
|
|
} else {
|
|
#ifdef INVARIANTS
|
|
q->coalesce_nsecs = 10000;
|
|
#else
|
|
q->coalesce_nsecs = 5000;
|
|
#endif
|
|
}
|
|
q->rspq_size = RSPQ_Q_SIZE;
|
|
q->fl_size = FL_Q_SIZE;
|
|
q->jumbo_size = JUMBO_Q_SIZE;
|
|
q->txq_size[TXQ_ETH] = TX_ETH_Q_SIZE;
|
|
q->txq_size[TXQ_OFLD] = 1024;
|
|
q->txq_size[TXQ_CTRL] = 256;
|
|
q->cong_thres = 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
t3_sge_alloc(adapter_t *sc)
|
|
{
|
|
|
|
/* The parent tag. */
|
|
if (bus_dma_tag_create( NULL, /* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
|
|
BUS_SPACE_UNRESTRICTED, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lock, lockarg */
|
|
&sc->parent_dmat)) {
|
|
device_printf(sc->dev, "Cannot allocate parent DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* DMA tag for normal sized RX frames
|
|
*/
|
|
if (bus_dma_tag_create(sc->parent_dmat, MCLBYTES, 0, BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
|
|
MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rx_dmat)) {
|
|
device_printf(sc->dev, "Cannot allocate RX DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* DMA tag for jumbo sized RX frames.
|
|
*/
|
|
if (bus_dma_tag_create(sc->parent_dmat, MJUM16BYTES, 0, BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, MJUM16BYTES, 1, MJUM16BYTES,
|
|
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rx_jumbo_dmat)) {
|
|
device_printf(sc->dev, "Cannot allocate RX jumbo DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* DMA tag for TX frames.
|
|
*/
|
|
if (bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, TX_MAX_SIZE, TX_MAX_SEGS,
|
|
TX_MAX_SIZE, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, &sc->tx_dmat)) {
|
|
device_printf(sc->dev, "Cannot allocate TX DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
t3_sge_free(struct adapter * sc)
|
|
{
|
|
|
|
if (sc->tx_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->tx_dmat);
|
|
|
|
if (sc->rx_jumbo_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->rx_jumbo_dmat);
|
|
|
|
if (sc->rx_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->rx_dmat);
|
|
|
|
if (sc->parent_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->parent_dmat);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
|
|
{
|
|
|
|
qs->rspq.holdoff_tmr = max(p->coalesce_nsecs/100, 1U);
|
|
qs->rspq.polling = 0 /* p->polling */;
|
|
}
|
|
|
|
#if !defined(__i386__) && !defined(__amd64__)
|
|
static void
|
|
refill_fl_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct refill_fl_cb_arg *cb_arg = arg;
|
|
|
|
cb_arg->error = error;
|
|
cb_arg->seg = segs[0];
|
|
cb_arg->nseg = nseg;
|
|
|
|
}
|
|
#endif
|
|
/**
|
|
* refill_fl - refill an SGE free-buffer list
|
|
* @sc: the controller softc
|
|
* @q: the free-list to refill
|
|
* @n: the number of new buffers to allocate
|
|
*
|
|
* (Re)populate an SGE free-buffer list with up to @n new packet buffers.
|
|
* The caller must assure that @n does not exceed the queue's capacity.
|
|
*/
|
|
static void
|
|
refill_fl(adapter_t *sc, struct sge_fl *q, int n)
|
|
{
|
|
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
|
|
struct rx_desc *d = &q->desc[q->pidx];
|
|
struct refill_fl_cb_arg cb_arg;
|
|
caddr_t cl;
|
|
int err;
|
|
int header_size = sizeof(struct m_hdr) + sizeof(struct pkthdr) + sizeof(struct m_ext_) + sizeof(uint32_t);
|
|
|
|
cb_arg.error = 0;
|
|
while (n--) {
|
|
/*
|
|
* We only allocate a cluster, mbuf allocation happens after rx
|
|
*/
|
|
if ((cl = cxgb_cache_get(q->zone)) == NULL) {
|
|
log(LOG_WARNING, "Failed to allocate cluster\n");
|
|
goto done;
|
|
}
|
|
|
|
if ((sd->flags & RX_SW_DESC_MAP_CREATED) == 0) {
|
|
if ((err = bus_dmamap_create(q->entry_tag, 0, &sd->map))) {
|
|
log(LOG_WARNING, "bus_dmamap_create failed %d\n", err);
|
|
uma_zfree(q->zone, cl);
|
|
goto done;
|
|
}
|
|
sd->flags |= RX_SW_DESC_MAP_CREATED;
|
|
}
|
|
#if !defined(__i386__) && !defined(__amd64__)
|
|
err = bus_dmamap_load(q->entry_tag, sd->map,
|
|
cl + header_size, q->buf_size,
|
|
refill_fl_cb, &cb_arg, 0);
|
|
|
|
if (err != 0 || cb_arg.error) {
|
|
log(LOG_WARNING, "failure in refill_fl %d\n", cb_arg.error);
|
|
/*
|
|
* XXX free cluster
|
|
*/
|
|
return;
|
|
}
|
|
#else
|
|
cb_arg.seg.ds_addr = pmap_kextract((vm_offset_t)(cl + header_size));
|
|
#endif
|
|
sd->flags |= RX_SW_DESC_INUSE;
|
|
sd->rxsd_cl = cl;
|
|
sd->data = cl + header_size;
|
|
d->addr_lo = htobe32(cb_arg.seg.ds_addr & 0xffffffff);
|
|
d->addr_hi = htobe32(((uint64_t)cb_arg.seg.ds_addr >>32) & 0xffffffff);
|
|
d->len_gen = htobe32(V_FLD_GEN1(q->gen));
|
|
d->gen2 = htobe32(V_FLD_GEN2(q->gen));
|
|
|
|
d++;
|
|
sd++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
q->pidx = 0;
|
|
q->gen ^= 1;
|
|
sd = q->sdesc;
|
|
d = q->desc;
|
|
}
|
|
q->credits++;
|
|
}
|
|
|
|
done:
|
|
t3_write_reg(sc, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
|
|
|
|
/**
|
|
* free_rx_bufs - free the Rx buffers on an SGE free list
|
|
* @sc: the controle softc
|
|
* @q: the SGE free list to clean up
|
|
*
|
|
* Release the buffers on an SGE free-buffer Rx queue. HW fetching from
|
|
* this queue should be stopped before calling this function.
|
|
*/
|
|
static void
|
|
free_rx_bufs(adapter_t *sc, struct sge_fl *q)
|
|
{
|
|
u_int cidx = q->cidx;
|
|
|
|
while (q->credits--) {
|
|
struct rx_sw_desc *d = &q->sdesc[cidx];
|
|
|
|
if (d->flags & RX_SW_DESC_INUSE) {
|
|
bus_dmamap_unload(q->entry_tag, d->map);
|
|
bus_dmamap_destroy(q->entry_tag, d->map);
|
|
uma_zfree(q->zone, d->rxsd_cl);
|
|
}
|
|
d->rxsd_cl = NULL;
|
|
if (++cidx == q->size)
|
|
cidx = 0;
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
__refill_fl(adapter_t *adap, struct sge_fl *fl)
|
|
{
|
|
refill_fl(adap, fl, min(16U, fl->size - fl->credits));
|
|
}
|
|
|
|
static __inline void
|
|
__refill_fl_lt(adapter_t *adap, struct sge_fl *fl, int max)
|
|
{
|
|
if ((fl->size - fl->credits) < max)
|
|
refill_fl(adap, fl, min(max, fl->size - fl->credits));
|
|
}
|
|
|
|
void
|
|
refill_fl_service(adapter_t *adap, struct sge_fl *fl)
|
|
{
|
|
__refill_fl_lt(adap, fl, 512);
|
|
}
|
|
|
|
/**
|
|
* recycle_rx_buf - recycle a receive buffer
|
|
* @adapter: the adapter
|
|
* @q: the SGE free list
|
|
* @idx: index of buffer to recycle
|
|
*
|
|
* Recycles the specified buffer on the given free list by adding it at
|
|
* the next available slot on the list.
|
|
*/
|
|
static void
|
|
recycle_rx_buf(adapter_t *adap, struct sge_fl *q, unsigned int idx)
|
|
{
|
|
struct rx_desc *from = &q->desc[idx];
|
|
struct rx_desc *to = &q->desc[q->pidx];
|
|
|
|
q->sdesc[q->pidx] = q->sdesc[idx];
|
|
to->addr_lo = from->addr_lo; // already big endian
|
|
to->addr_hi = from->addr_hi; // likewise
|
|
wmb();
|
|
to->len_gen = htobe32(V_FLD_GEN1(q->gen));
|
|
to->gen2 = htobe32(V_FLD_GEN2(q->gen));
|
|
q->credits++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
q->pidx = 0;
|
|
q->gen ^= 1;
|
|
}
|
|
t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
|
|
static void
|
|
alloc_ring_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
uint32_t *addr;
|
|
|
|
addr = arg;
|
|
*addr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
alloc_ring(adapter_t *sc, size_t nelem, size_t elem_size, size_t sw_size,
|
|
bus_addr_t *phys, void *desc, void *sdesc, bus_dma_tag_t *tag,
|
|
bus_dmamap_t *map, bus_dma_tag_t parent_entry_tag, bus_dma_tag_t *entry_tag)
|
|
{
|
|
size_t len = nelem * elem_size;
|
|
void *s = NULL;
|
|
void *p = NULL;
|
|
int err;
|
|
|
|
if ((err = bus_dma_tag_create(sc->parent_dmat, PAGE_SIZE, 0,
|
|
BUS_SPACE_MAXADDR_32BIT,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, len, 1,
|
|
len, 0, NULL, NULL, tag)) != 0) {
|
|
device_printf(sc->dev, "Cannot allocate descriptor tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
if ((err = bus_dmamem_alloc(*tag, (void **)&p, BUS_DMA_NOWAIT,
|
|
map)) != 0) {
|
|
device_printf(sc->dev, "Cannot allocate descriptor memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
bus_dmamap_load(*tag, *map, p, len, alloc_ring_cb, phys, 0);
|
|
bzero(p, len);
|
|
*(void **)desc = p;
|
|
|
|
if (sw_size) {
|
|
len = nelem * sw_size;
|
|
s = malloc(len, M_DEVBUF, M_WAITOK|M_ZERO);
|
|
*(void **)sdesc = s;
|
|
}
|
|
if (parent_entry_tag == NULL)
|
|
return (0);
|
|
|
|
if ((err = bus_dma_tag_create(parent_entry_tag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
|
|
NULL, NULL, TX_MAX_SIZE, TX_MAX_SEGS,
|
|
TX_MAX_SIZE, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, entry_tag)) != 0) {
|
|
device_printf(sc->dev, "Cannot allocate descriptor entry tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sge_slow_intr_handler(void *arg, int ncount)
|
|
{
|
|
adapter_t *sc = arg;
|
|
|
|
t3_slow_intr_handler(sc);
|
|
}
|
|
|
|
/**
|
|
* sge_timer_cb - perform periodic maintenance of an SGE qset
|
|
* @data: the SGE queue set to maintain
|
|
*
|
|
* Runs periodically from a timer to perform maintenance of an SGE queue
|
|
* set. It performs two tasks:
|
|
*
|
|
* a) Cleans up any completed Tx descriptors that may still be pending.
|
|
* Normal descriptor cleanup happens when new packets are added to a Tx
|
|
* queue so this timer is relatively infrequent and does any cleanup only
|
|
* if the Tx queue has not seen any new packets in a while. We make a
|
|
* best effort attempt to reclaim descriptors, in that we don't wait
|
|
* around if we cannot get a queue's lock (which most likely is because
|
|
* someone else is queueing new packets and so will also handle the clean
|
|
* up). Since control queues use immediate data exclusively we don't
|
|
* bother cleaning them up here.
|
|
*
|
|
* b) Replenishes Rx queues that have run out due to memory shortage.
|
|
* Normally new Rx buffers are added when existing ones are consumed but
|
|
* when out of memory a queue can become empty. We try to add only a few
|
|
* buffers here, the queue will be replenished fully as these new buffers
|
|
* are used up if memory shortage has subsided.
|
|
*
|
|
* c) Return coalesced response queue credits in case a response queue is
|
|
* starved.
|
|
*
|
|
* d) Ring doorbells for T304 tunnel queues since we have seen doorbell
|
|
* fifo overflows and the FW doesn't implement any recovery scheme yet.
|
|
*/
|
|
static void
|
|
sge_timer_cb(void *arg)
|
|
{
|
|
adapter_t *sc = arg;
|
|
#ifndef IFNET_MULTIQUEUE
|
|
struct port_info *pi;
|
|
struct sge_qset *qs;
|
|
struct sge_txq *txq;
|
|
int i, j;
|
|
int reclaim_ofl, refill_rx;
|
|
|
|
for (i = 0; i < sc->params.nports; i++)
|
|
for (j = 0; j < sc->port[i].nqsets; j++) {
|
|
qs = &sc->sge.qs[i + j];
|
|
txq = &qs->txq[0];
|
|
reclaim_ofl = txq[TXQ_OFLD].processed - txq[TXQ_OFLD].cleaned;
|
|
refill_rx = ((qs->fl[0].credits < qs->fl[0].size) ||
|
|
(qs->fl[1].credits < qs->fl[1].size));
|
|
if (reclaim_ofl || refill_rx) {
|
|
pi = &sc->port[i];
|
|
taskqueue_enqueue(pi->tq, &pi->timer_reclaim_task);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
if (sc->params.nports > 2) {
|
|
int i;
|
|
|
|
for_each_port(sc, i) {
|
|
struct port_info *pi = &sc->port[i];
|
|
|
|
t3_write_reg(sc, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX |
|
|
(FW_TUNNEL_SGEEC_START + pi->first_qset));
|
|
}
|
|
}
|
|
if (sc->open_device_map != 0)
|
|
callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
|
|
}
|
|
|
|
/*
|
|
* This is meant to be a catch-all function to keep sge state private
|
|
* to sge.c
|
|
*
|
|
*/
|
|
int
|
|
t3_sge_init_adapter(adapter_t *sc)
|
|
{
|
|
callout_init(&sc->sge_timer_ch, CALLOUT_MPSAFE);
|
|
callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
|
|
TASK_INIT(&sc->slow_intr_task, 0, sge_slow_intr_handler, sc);
|
|
mi_init();
|
|
cxgb_cache_init();
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
t3_sge_reset_adapter(adapter_t *sc)
|
|
{
|
|
callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
t3_sge_init_port(struct port_info *pi)
|
|
{
|
|
TASK_INIT(&pi->timer_reclaim_task, 0, sge_timer_reclaim, pi);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
t3_sge_deinit_sw(adapter_t *sc)
|
|
{
|
|
int i;
|
|
|
|
callout_drain(&sc->sge_timer_ch);
|
|
if (sc->tq)
|
|
taskqueue_drain(sc->tq, &sc->slow_intr_task);
|
|
for (i = 0; i < sc->params.nports; i++)
|
|
if (sc->port[i].tq != NULL)
|
|
taskqueue_drain(sc->port[i].tq, &sc->port[i].timer_reclaim_task);
|
|
|
|
mi_deinit();
|
|
}
|
|
|
|
/**
|
|
* refill_rspq - replenish an SGE response queue
|
|
* @adapter: the adapter
|
|
* @q: the response queue to replenish
|
|
* @credits: how many new responses to make available
|
|
*
|
|
* Replenishes a response queue by making the supplied number of responses
|
|
* available to HW.
|
|
*/
|
|
static __inline void
|
|
refill_rspq(adapter_t *sc, const struct sge_rspq *q, u_int credits)
|
|
{
|
|
|
|
/* mbufs are allocated on demand when a rspq entry is processed. */
|
|
t3_write_reg(sc, A_SG_RSPQ_CREDIT_RETURN,
|
|
V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
|
|
}
|
|
|
|
static __inline void
|
|
sge_txq_reclaim_(struct sge_txq *txq, int force)
|
|
{
|
|
|
|
if (desc_reclaimable(txq) < 16)
|
|
return;
|
|
if (mtx_trylock(&txq->lock) == 0)
|
|
return;
|
|
reclaim_completed_tx_(txq, 16);
|
|
mtx_unlock(&txq->lock);
|
|
|
|
}
|
|
|
|
static void
|
|
sge_txq_reclaim_handler(void *arg, int ncount)
|
|
{
|
|
struct sge_txq *q = arg;
|
|
|
|
sge_txq_reclaim_(q, TRUE);
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
sge_timer_reclaim(void *arg, int ncount)
|
|
{
|
|
struct port_info *pi = arg;
|
|
int i, nqsets = pi->nqsets;
|
|
adapter_t *sc = pi->adapter;
|
|
struct sge_qset *qs;
|
|
struct sge_txq *txq;
|
|
struct mtx *lock;
|
|
|
|
#ifdef IFNET_MULTIQUEUE
|
|
panic("%s should not be called with multiqueue support\n", __FUNCTION__);
|
|
#endif
|
|
for (i = 0; i < nqsets; i++) {
|
|
qs = &sc->sge.qs[i];
|
|
|
|
txq = &qs->txq[TXQ_OFLD];
|
|
sge_txq_reclaim_(txq, FALSE);
|
|
|
|
lock = (sc->flags & USING_MSIX) ? &qs->rspq.lock :
|
|
&sc->sge.qs[0].rspq.lock;
|
|
|
|
if (mtx_trylock(lock)) {
|
|
/* XXX currently assume that we are *NOT* polling */
|
|
uint32_t status = t3_read_reg(sc, A_SG_RSPQ_FL_STATUS);
|
|
|
|
if (qs->fl[0].credits < qs->fl[0].size - 16)
|
|
__refill_fl(sc, &qs->fl[0]);
|
|
if (qs->fl[1].credits < qs->fl[1].size - 16)
|
|
__refill_fl(sc, &qs->fl[1]);
|
|
|
|
if (status & (1 << qs->rspq.cntxt_id)) {
|
|
if (qs->rspq.credits) {
|
|
refill_rspq(sc, &qs->rspq, 1);
|
|
qs->rspq.credits--;
|
|
t3_write_reg(sc, A_SG_RSPQ_FL_STATUS,
|
|
1 << qs->rspq.cntxt_id);
|
|
}
|
|
}
|
|
mtx_unlock(lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* init_qset_cntxt - initialize an SGE queue set context info
|
|
* @qs: the queue set
|
|
* @id: the queue set id
|
|
*
|
|
* Initializes the TIDs and context ids for the queues of a queue set.
|
|
*/
|
|
static void
|
|
init_qset_cntxt(struct sge_qset *qs, u_int id)
|
|
{
|
|
|
|
qs->rspq.cntxt_id = id;
|
|
qs->fl[0].cntxt_id = 2 * id;
|
|
qs->fl[1].cntxt_id = 2 * id + 1;
|
|
qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
|
|
qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
|
|
qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
|
|
qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
|
|
qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
|
|
|
|
mbufq_init(&qs->txq[TXQ_ETH].sendq);
|
|
mbufq_init(&qs->txq[TXQ_OFLD].sendq);
|
|
mbufq_init(&qs->txq[TXQ_CTRL].sendq);
|
|
}
|
|
|
|
|
|
static void
|
|
txq_prod(struct sge_txq *txq, unsigned int ndesc, struct txq_state *txqs)
|
|
{
|
|
txq->in_use += ndesc;
|
|
/*
|
|
* XXX we don't handle stopping of queue
|
|
* presumably start handles this when we bump against the end
|
|
*/
|
|
txqs->gen = txq->gen;
|
|
txq->unacked += ndesc;
|
|
txqs->compl = (txq->unacked & 8) << (S_WR_COMPL - 3);
|
|
txq->unacked &= 7;
|
|
txqs->pidx = txq->pidx;
|
|
txq->pidx += ndesc;
|
|
|
|
if (txq->pidx >= txq->size) {
|
|
txq->pidx -= txq->size;
|
|
txq->gen ^= 1;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* calc_tx_descs - calculate the number of Tx descriptors for a packet
|
|
* @m: the packet mbufs
|
|
* @nsegs: the number of segments
|
|
*
|
|
* Returns the number of Tx descriptors needed for the given Ethernet
|
|
* packet. Ethernet packets require addition of WR and CPL headers.
|
|
*/
|
|
static __inline unsigned int
|
|
calc_tx_descs(const struct mbuf *m, int nsegs)
|
|
{
|
|
unsigned int flits;
|
|
|
|
if (m->m_pkthdr.len <= WR_LEN - sizeof(struct cpl_tx_pkt))
|
|
return 1;
|
|
|
|
flits = sgl_len(nsegs) + 2;
|
|
#ifdef TSO_SUPPORTED
|
|
if (m->m_pkthdr.csum_flags & CSUM_TSO)
|
|
flits++;
|
|
#endif
|
|
return flits_to_desc(flits);
|
|
}
|
|
|
|
static unsigned int
|
|
busdma_map_mbufs(struct mbuf **m, struct sge_txq *txq,
|
|
struct tx_sw_desc *txsd, bus_dma_segment_t *segs, int *nsegs)
|
|
{
|
|
struct mbuf *m0;
|
|
int err, pktlen, pass = 0;
|
|
|
|
retry:
|
|
err = 0;
|
|
m0 = *m;
|
|
pktlen = m0->m_pkthdr.len;
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
if (busdma_map_sg_collapse(m, segs, nsegs) == 0) {
|
|
goto done;
|
|
} else
|
|
#endif
|
|
err = bus_dmamap_load_mbuf_sg(txq->entry_tag, txsd->map, m0, segs, nsegs, 0);
|
|
|
|
if (err == 0) {
|
|
goto done;
|
|
}
|
|
if (err == EFBIG && pass == 0) {
|
|
pass = 1;
|
|
/* Too many segments, try to defrag */
|
|
m0 = m_defrag(m0, M_DONTWAIT);
|
|
if (m0 == NULL) {
|
|
m_freem(*m);
|
|
*m = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m = m0;
|
|
goto retry;
|
|
} else if (err == ENOMEM) {
|
|
return (err);
|
|
} if (err) {
|
|
if (cxgb_debug)
|
|
printf("map failure err=%d pktlen=%d\n", err, pktlen);
|
|
m_freem(m0);
|
|
*m = NULL;
|
|
return (err);
|
|
}
|
|
done:
|
|
#if !defined(__i386__) && !defined(__amd64__)
|
|
bus_dmamap_sync(txq->entry_tag, txsd->map, BUS_DMASYNC_PREWRITE);
|
|
#endif
|
|
txsd->flags |= TX_SW_DESC_MAPPED;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* make_sgl - populate a scatter/gather list for a packet
|
|
* @sgp: the SGL to populate
|
|
* @segs: the packet dma segments
|
|
* @nsegs: the number of segments
|
|
*
|
|
* Generates a scatter/gather list for the buffers that make up a packet
|
|
* and returns the SGL size in 8-byte words. The caller must size the SGL
|
|
* appropriately.
|
|
*/
|
|
static __inline void
|
|
make_sgl(struct sg_ent *sgp, bus_dma_segment_t *segs, int nsegs)
|
|
{
|
|
int i, idx;
|
|
|
|
for (idx = 0, i = 0; i < nsegs; i++) {
|
|
/*
|
|
* firmware doesn't like empty segments
|
|
*/
|
|
if (segs[i].ds_len == 0)
|
|
continue;
|
|
if (i && idx == 0)
|
|
++sgp;
|
|
|
|
sgp->len[idx] = htobe32(segs[i].ds_len);
|
|
sgp->addr[idx] = htobe64(segs[i].ds_addr);
|
|
idx ^= 1;
|
|
}
|
|
|
|
if (idx) {
|
|
sgp->len[idx] = 0;
|
|
sgp->addr[idx] = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* check_ring_tx_db - check and potentially ring a Tx queue's doorbell
|
|
* @adap: the adapter
|
|
* @q: the Tx queue
|
|
*
|
|
* Ring the doorbel if a Tx queue is asleep. There is a natural race,
|
|
* where the HW is going to sleep just after we checked, however,
|
|
* then the interrupt handler will detect the outstanding TX packet
|
|
* and ring the doorbell for us.
|
|
*
|
|
* When GTS is disabled we unconditionally ring the doorbell.
|
|
*/
|
|
static __inline void
|
|
check_ring_tx_db(adapter_t *adap, struct sge_txq *q)
|
|
{
|
|
#if USE_GTS
|
|
clear_bit(TXQ_LAST_PKT_DB, &q->flags);
|
|
if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
|
|
set_bit(TXQ_LAST_PKT_DB, &q->flags);
|
|
#ifdef T3_TRACE
|
|
T3_TRACE1(adap->tb[q->cntxt_id & 7], "doorbell Tx, cntxt %d",
|
|
q->cntxt_id);
|
|
#endif
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
#else
|
|
wmb(); /* write descriptors before telling HW */
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
#endif
|
|
}
|
|
|
|
static __inline void
|
|
wr_gen2(struct tx_desc *d, unsigned int gen)
|
|
{
|
|
#if SGE_NUM_GENBITS == 2
|
|
d->flit[TX_DESC_FLITS - 1] = htobe64(gen);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* write_wr_hdr_sgl - write a WR header and, optionally, SGL
|
|
* @ndesc: number of Tx descriptors spanned by the SGL
|
|
* @txd: first Tx descriptor to be written
|
|
* @txqs: txq state (generation and producer index)
|
|
* @txq: the SGE Tx queue
|
|
* @sgl: the SGL
|
|
* @flits: number of flits to the start of the SGL in the first descriptor
|
|
* @sgl_flits: the SGL size in flits
|
|
* @wr_hi: top 32 bits of WR header based on WR type (big endian)
|
|
* @wr_lo: low 32 bits of WR header based on WR type (big endian)
|
|
*
|
|
* Write a work request header and an associated SGL. If the SGL is
|
|
* small enough to fit into one Tx descriptor it has already been written
|
|
* and we just need to write the WR header. Otherwise we distribute the
|
|
* SGL across the number of descriptors it spans.
|
|
*/
|
|
static void
|
|
write_wr_hdr_sgl(unsigned int ndesc, struct tx_desc *txd, struct txq_state *txqs,
|
|
const struct sge_txq *txq, const struct sg_ent *sgl, unsigned int flits,
|
|
unsigned int sgl_flits, unsigned int wr_hi, unsigned int wr_lo)
|
|
{
|
|
|
|
struct work_request_hdr *wrp = (struct work_request_hdr *)txd;
|
|
struct tx_sw_desc *txsd = &txq->sdesc[txqs->pidx];
|
|
|
|
if (__predict_true(ndesc == 1)) {
|
|
wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
|
|
V_WR_SGLSFLT(flits)) | wr_hi;
|
|
wmb();
|
|
wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
|
|
V_WR_GEN(txqs->gen)) | wr_lo;
|
|
/* XXX gen? */
|
|
wr_gen2(txd, txqs->gen);
|
|
|
|
} else {
|
|
unsigned int ogen = txqs->gen;
|
|
const uint64_t *fp = (const uint64_t *)sgl;
|
|
struct work_request_hdr *wp = wrp;
|
|
|
|
wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
|
|
V_WR_SGLSFLT(flits)) | wr_hi;
|
|
|
|
while (sgl_flits) {
|
|
unsigned int avail = WR_FLITS - flits;
|
|
|
|
if (avail > sgl_flits)
|
|
avail = sgl_flits;
|
|
memcpy(&txd->flit[flits], fp, avail * sizeof(*fp));
|
|
sgl_flits -= avail;
|
|
ndesc--;
|
|
if (!sgl_flits)
|
|
break;
|
|
|
|
fp += avail;
|
|
txd++;
|
|
txsd++;
|
|
if (++txqs->pidx == txq->size) {
|
|
txqs->pidx = 0;
|
|
txqs->gen ^= 1;
|
|
txd = txq->desc;
|
|
txsd = txq->sdesc;
|
|
}
|
|
|
|
/*
|
|
* when the head of the mbuf chain
|
|
* is freed all clusters will be freed
|
|
* with it
|
|
*/
|
|
KASSERT(txsd->mi.mi_base == NULL, ("overwrting valid entry mi_base==%p", txsd->mi.mi_base));
|
|
wrp = (struct work_request_hdr *)txd;
|
|
wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
|
|
V_WR_SGLSFLT(1)) | wr_hi;
|
|
wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
|
|
sgl_flits + 1)) |
|
|
V_WR_GEN(txqs->gen)) | wr_lo;
|
|
wr_gen2(txd, txqs->gen);
|
|
flits = 1;
|
|
}
|
|
wrp->wr_hi |= htonl(F_WR_EOP);
|
|
wmb();
|
|
wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
|
|
wr_gen2((struct tx_desc *)wp, ogen);
|
|
}
|
|
}
|
|
|
|
/* sizeof(*eh) + sizeof(*vhdr) + sizeof(*ip) + sizeof(*tcp) */
|
|
#define TCPPKTHDRSIZE (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 20 + 20)
|
|
|
|
#ifdef VLAN_SUPPORTED
|
|
#define GET_VTAG(cntrl, m) \
|
|
do { \
|
|
if ((m)->m_flags & M_VLANTAG) \
|
|
cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN((m)->m_pkthdr.ether_vtag); \
|
|
} while (0)
|
|
|
|
#define GET_VTAG_MI(cntrl, mi) \
|
|
do { \
|
|
if ((mi)->mi_flags & M_VLANTAG) \
|
|
cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN((mi)->mi_ether_vtag); \
|
|
} while (0)
|
|
#else
|
|
#define GET_VTAG(cntrl, m)
|
|
#define GET_VTAG_MI(cntrl, m)
|
|
#endif
|
|
|
|
int
|
|
t3_encap(struct sge_qset *qs, struct mbuf **m, int count)
|
|
{
|
|
adapter_t *sc;
|
|
struct mbuf *m0;
|
|
struct sge_txq *txq;
|
|
struct txq_state txqs;
|
|
struct port_info *pi;
|
|
unsigned int ndesc, flits, cntrl, mlen;
|
|
int err, nsegs, tso_info = 0;
|
|
|
|
struct work_request_hdr *wrp;
|
|
struct tx_sw_desc *txsd;
|
|
struct sg_ent *sgp, *sgl;
|
|
bus_dma_segment_t *segs;
|
|
uint32_t wr_hi, wr_lo, sgl_flits;
|
|
|
|
struct tx_desc *txd;
|
|
struct mbuf_vec *mv;
|
|
struct mbuf_iovec *mi;
|
|
|
|
DPRINTF("t3_encap cpu=%d ", curcpu);
|
|
|
|
mi = NULL;
|
|
pi = qs->port;
|
|
sc = pi->adapter;
|
|
txq = &qs->txq[TXQ_ETH];
|
|
txsd = &txq->sdesc[txq->pidx];
|
|
txd = &txq->desc[txq->pidx];
|
|
sgl = txq->txq_sgl;
|
|
segs = txq->txq_segs;
|
|
m0 = *m;
|
|
|
|
DPRINTF("t3_encap port_id=%d qsidx=%d ", pi->port_id, pi->first_qset);
|
|
DPRINTF("mlen=%d txpkt_intf=%d tx_chan=%d\n", m[0]->m_pkthdr.len, pi->txpkt_intf, pi->tx_chan);
|
|
if (cxgb_debug)
|
|
printf("mi_base=%p cidx=%d pidx=%d\n\n", txsd->mi.mi_base, txq->cidx, txq->pidx);
|
|
|
|
mtx_assert(&txq->lock, MA_OWNED);
|
|
cntrl = V_TXPKT_INTF(pi->txpkt_intf);
|
|
/*
|
|
* XXX need to add VLAN support for 6.x
|
|
*/
|
|
#ifdef VLAN_SUPPORTED
|
|
if (m0->m_pkthdr.csum_flags & (CSUM_TSO))
|
|
tso_info = V_LSO_MSS(m0->m_pkthdr.tso_segsz);
|
|
#endif
|
|
KASSERT(txsd->mi.mi_base == NULL, ("overwrting valid entry mi_base==%p",
|
|
txsd->mi.mi_base));
|
|
|
|
if (count > 1) {
|
|
panic("count > 1 not support in CVS\n");
|
|
if ((err = busdma_map_sg_vec(m, &m0, segs, count)))
|
|
return (err);
|
|
nsegs = count;
|
|
} else if ((err = busdma_map_sg_collapse(&m0, segs, &nsegs))) {
|
|
if (cxgb_debug)
|
|
printf("failed ... err=%d\n", err);
|
|
return (err);
|
|
}
|
|
KASSERT(m0->m_pkthdr.len, ("empty packet nsegs=%d count=%d", nsegs, count));
|
|
|
|
if (m0->m_pkthdr.len > PIO_LEN) {
|
|
mi_collapse_mbuf(&txsd->mi, m0);
|
|
mi = &txsd->mi;
|
|
}
|
|
if (count > 1) {
|
|
struct cpl_tx_pkt_batch *cpl_batch = (struct cpl_tx_pkt_batch *)txd;
|
|
int i, fidx;
|
|
struct mbuf_iovec *batchmi;
|
|
|
|
mv = mtomv(m0);
|
|
batchmi = mv->mv_vec;
|
|
|
|
wrp = (struct work_request_hdr *)txd;
|
|
|
|
flits = count*2 + 1;
|
|
txq_prod(txq, 1, &txqs);
|
|
|
|
for (fidx = 1, i = 0; i < count; i++, batchmi++, fidx += 2) {
|
|
struct cpl_tx_pkt_batch_entry *cbe = &cpl_batch->pkt_entry[i];
|
|
|
|
cntrl = V_TXPKT_INTF(pi->txpkt_intf);
|
|
GET_VTAG_MI(cntrl, batchmi);
|
|
cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
|
|
cbe->cntrl = htonl(cntrl);
|
|
cbe->len = htonl(batchmi->mi_len | 0x80000000);
|
|
cbe->addr = htobe64(segs[i].ds_addr);
|
|
txd->flit[fidx] |= htobe64(1 << 24);
|
|
}
|
|
|
|
wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
|
|
V_WR_SGLSFLT(flits)) | htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | txqs.compl);
|
|
wmb();
|
|
wrp->wr_lo = htonl(V_WR_LEN(flits) |
|
|
V_WR_GEN(txqs.gen)) | htonl(V_WR_TID(txq->token));
|
|
/* XXX gen? */
|
|
wr_gen2(txd, txqs.gen);
|
|
check_ring_tx_db(sc, txq);
|
|
|
|
return (0);
|
|
} else if (tso_info) {
|
|
int undersized, eth_type;
|
|
struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)txd;
|
|
struct ip *ip;
|
|
struct tcphdr *tcp;
|
|
char *pkthdr, tmp[TCPPKTHDRSIZE];
|
|
struct mbuf_vec *mv;
|
|
struct mbuf_iovec *tmpmi;
|
|
|
|
mv = mtomv(m0);
|
|
tmpmi = mv->mv_vec;
|
|
|
|
txd->flit[2] = 0;
|
|
GET_VTAG_MI(cntrl, mi);
|
|
cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
|
|
hdr->cntrl = htonl(cntrl);
|
|
mlen = m0->m_pkthdr.len;
|
|
hdr->len = htonl(mlen | 0x80000000);
|
|
|
|
DPRINTF("tso buf len=%d\n", mlen);
|
|
undersized = (((tmpmi->mi_len < TCPPKTHDRSIZE) &&
|
|
(m0->m_flags & M_VLANTAG)) ||
|
|
(tmpmi->mi_len < TCPPKTHDRSIZE - ETHER_VLAN_ENCAP_LEN));
|
|
if (__predict_false(undersized)) {
|
|
pkthdr = tmp;
|
|
dump_mi(mi);
|
|
panic("discontig packet - fixxorz");
|
|
} else
|
|
pkthdr = m0->m_data;
|
|
|
|
if (__predict_false(m0->m_flags & M_VLANTAG)) {
|
|
eth_type = CPL_ETH_II_VLAN;
|
|
ip = (struct ip *)(pkthdr + ETHER_HDR_LEN +
|
|
ETHER_VLAN_ENCAP_LEN);
|
|
} else {
|
|
eth_type = CPL_ETH_II;
|
|
ip = (struct ip *)(pkthdr + ETHER_HDR_LEN);
|
|
}
|
|
tcp = (struct tcphdr *)((uint8_t *)ip +
|
|
sizeof(*ip));
|
|
|
|
tso_info |= V_LSO_ETH_TYPE(eth_type) |
|
|
V_LSO_IPHDR_WORDS(ip->ip_hl) |
|
|
V_LSO_TCPHDR_WORDS(tcp->th_off);
|
|
hdr->lso_info = htonl(tso_info);
|
|
flits = 3;
|
|
} else {
|
|
struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)txd;
|
|
|
|
GET_VTAG(cntrl, m0);
|
|
cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
|
|
cpl->cntrl = htonl(cntrl);
|
|
mlen = m0->m_pkthdr.len;
|
|
cpl->len = htonl(mlen | 0x80000000);
|
|
|
|
if (mlen <= PIO_LEN) {
|
|
txq_prod(txq, 1, &txqs);
|
|
m_copydata(m0, 0, mlen, (caddr_t)&txd->flit[2]);
|
|
m_freem(m0);
|
|
m0 = NULL;
|
|
flits = (mlen + 7) / 8 + 2;
|
|
cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(mlen & 7) |
|
|
V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) |
|
|
F_WR_SOP | F_WR_EOP | txqs.compl);
|
|
wmb();
|
|
cpl->wr.wr_lo = htonl(V_WR_LEN(flits) |
|
|
V_WR_GEN(txqs.gen) | V_WR_TID(txq->token));
|
|
|
|
wr_gen2(txd, txqs.gen);
|
|
check_ring_tx_db(sc, txq);
|
|
DPRINTF("pio buf\n");
|
|
return (0);
|
|
}
|
|
DPRINTF("regular buf\n");
|
|
flits = 2;
|
|
}
|
|
wrp = (struct work_request_hdr *)txd;
|
|
|
|
#ifdef nomore
|
|
/*
|
|
* XXX need to move into one of the helper routines above
|
|
*
|
|
*/
|
|
if ((err = busdma_map_mbufs(m, txq, txsd, segs, &nsegs)) != 0)
|
|
return (err);
|
|
m0 = *m;
|
|
#endif
|
|
ndesc = calc_tx_descs(m0, nsegs);
|
|
|
|
sgp = (ndesc == 1) ? (struct sg_ent *)&txd->flit[flits] : sgl;
|
|
make_sgl(sgp, segs, nsegs);
|
|
|
|
sgl_flits = sgl_len(nsegs);
|
|
|
|
DPRINTF("make_sgl success nsegs==%d ndesc==%d\n", nsegs, ndesc);
|
|
txq_prod(txq, ndesc, &txqs);
|
|
wr_hi = htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | txqs.compl);
|
|
wr_lo = htonl(V_WR_TID(txq->token));
|
|
write_wr_hdr_sgl(ndesc, txd, &txqs, txq, sgl, flits, sgl_flits, wr_hi, wr_lo);
|
|
check_ring_tx_db(pi->adapter, txq);
|
|
|
|
if ((m0->m_type == MT_DATA) && ((m0->m_flags & (M_EXT|M_NOFREE)) == M_EXT)) {
|
|
m0->m_flags &= ~M_EXT ;
|
|
m_free(m0);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/**
|
|
* write_imm - write a packet into a Tx descriptor as immediate data
|
|
* @d: the Tx descriptor to write
|
|
* @m: the packet
|
|
* @len: the length of packet data to write as immediate data
|
|
* @gen: the generation bit value to write
|
|
*
|
|
* Writes a packet as immediate data into a Tx descriptor. The packet
|
|
* contains a work request at its beginning. We must write the packet
|
|
* carefully so the SGE doesn't read accidentally before it's written in
|
|
* its entirety.
|
|
*/
|
|
static __inline void
|
|
write_imm(struct tx_desc *d, struct mbuf *m,
|
|
unsigned int len, unsigned int gen)
|
|
{
|
|
struct work_request_hdr *from = mtod(m, struct work_request_hdr *);
|
|
struct work_request_hdr *to = (struct work_request_hdr *)d;
|
|
|
|
if (len > WR_LEN)
|
|
panic("len too big %d\n", len);
|
|
if (len < sizeof(*from))
|
|
panic("len too small %d", len);
|
|
|
|
memcpy(&to[1], &from[1], len - sizeof(*from));
|
|
to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
|
|
V_WR_BCNTLFLT(len & 7));
|
|
wmb();
|
|
to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
|
|
V_WR_LEN((len + 7) / 8));
|
|
wr_gen2(d, gen);
|
|
|
|
/*
|
|
* This check is a hack we should really fix the logic so
|
|
* that this can't happen
|
|
*/
|
|
if (m->m_type != MT_DONTFREE)
|
|
m_freem(m);
|
|
|
|
}
|
|
|
|
/**
|
|
* check_desc_avail - check descriptor availability on a send queue
|
|
* @adap: the adapter
|
|
* @q: the TX queue
|
|
* @m: the packet needing the descriptors
|
|
* @ndesc: the number of Tx descriptors needed
|
|
* @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
|
|
*
|
|
* Checks if the requested number of Tx descriptors is available on an
|
|
* SGE send queue. If the queue is already suspended or not enough
|
|
* descriptors are available the packet is queued for later transmission.
|
|
* Must be called with the Tx queue locked.
|
|
*
|
|
* Returns 0 if enough descriptors are available, 1 if there aren't
|
|
* enough descriptors and the packet has been queued, and 2 if the caller
|
|
* needs to retry because there weren't enough descriptors at the
|
|
* beginning of the call but some freed up in the mean time.
|
|
*/
|
|
static __inline int
|
|
check_desc_avail(adapter_t *adap, struct sge_txq *q,
|
|
struct mbuf *m, unsigned int ndesc,
|
|
unsigned int qid)
|
|
{
|
|
/*
|
|
* XXX We currently only use this for checking the control queue
|
|
* the control queue is only used for binding qsets which happens
|
|
* at init time so we are guaranteed enough descriptors
|
|
*/
|
|
if (__predict_false(!mbufq_empty(&q->sendq))) {
|
|
addq_exit: mbufq_tail(&q->sendq, m);
|
|
return 1;
|
|
}
|
|
if (__predict_false(q->size - q->in_use < ndesc)) {
|
|
|
|
struct sge_qset *qs = txq_to_qset(q, qid);
|
|
|
|
printf("stopping q\n");
|
|
|
|
setbit(&qs->txq_stopped, qid);
|
|
smp_mb();
|
|
|
|
if (should_restart_tx(q) &&
|
|
test_and_clear_bit(qid, &qs->txq_stopped))
|
|
return 2;
|
|
|
|
q->stops++;
|
|
goto addq_exit;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
|
|
* @q: the SGE control Tx queue
|
|
*
|
|
* This is a variant of reclaim_completed_tx() that is used for Tx queues
|
|
* that send only immediate data (presently just the control queues) and
|
|
* thus do not have any mbufs
|
|
*/
|
|
static __inline void
|
|
reclaim_completed_tx_imm(struct sge_txq *q)
|
|
{
|
|
unsigned int reclaim = q->processed - q->cleaned;
|
|
|
|
mtx_assert(&q->lock, MA_OWNED);
|
|
|
|
q->in_use -= reclaim;
|
|
q->cleaned += reclaim;
|
|
}
|
|
|
|
static __inline int
|
|
immediate(const struct mbuf *m)
|
|
{
|
|
return m->m_len <= WR_LEN && m->m_pkthdr.len <= WR_LEN ;
|
|
}
|
|
|
|
/**
|
|
* ctrl_xmit - send a packet through an SGE control Tx queue
|
|
* @adap: the adapter
|
|
* @q: the control queue
|
|
* @m: the packet
|
|
*
|
|
* Send a packet through an SGE control Tx queue. Packets sent through
|
|
* a control queue must fit entirely as immediate data in a single Tx
|
|
* descriptor and have no page fragments.
|
|
*/
|
|
static int
|
|
ctrl_xmit(adapter_t *adap, struct sge_txq *q, struct mbuf *m)
|
|
{
|
|
int ret;
|
|
struct work_request_hdr *wrp = mtod(m, struct work_request_hdr *);
|
|
|
|
if (__predict_false(!immediate(m))) {
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
|
|
wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
|
|
wrp->wr_lo = htonl(V_WR_TID(q->token));
|
|
|
|
mtx_lock(&q->lock);
|
|
again: reclaim_completed_tx_imm(q);
|
|
|
|
ret = check_desc_avail(adap, q, m, 1, TXQ_CTRL);
|
|
if (__predict_false(ret)) {
|
|
if (ret == 1) {
|
|
mtx_unlock(&q->lock);
|
|
log(LOG_ERR, "no desc available\n");
|
|
|
|
return (ENOSPC);
|
|
}
|
|
goto again;
|
|
}
|
|
write_imm(&q->desc[q->pidx], m, m->m_len, q->gen);
|
|
|
|
q->in_use++;
|
|
if (++q->pidx >= q->size) {
|
|
q->pidx = 0;
|
|
q->gen ^= 1;
|
|
}
|
|
mtx_unlock(&q->lock);
|
|
wmb();
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
return (0);
|
|
}
|
|
|
|
|
|
/**
|
|
* restart_ctrlq - restart a suspended control queue
|
|
* @qs: the queue set cotaining the control queue
|
|
*
|
|
* Resumes transmission on a suspended Tx control queue.
|
|
*/
|
|
static void
|
|
restart_ctrlq(void *data, int npending)
|
|
{
|
|
struct mbuf *m;
|
|
struct sge_qset *qs = (struct sge_qset *)data;
|
|
struct sge_txq *q = &qs->txq[TXQ_CTRL];
|
|
adapter_t *adap = qs->port->adapter;
|
|
|
|
log(LOG_WARNING, "Restart_ctrlq in_use=%d\n", q->in_use);
|
|
|
|
mtx_lock(&q->lock);
|
|
again: reclaim_completed_tx_imm(q);
|
|
|
|
while (q->in_use < q->size &&
|
|
(m = mbufq_dequeue(&q->sendq)) != NULL) {
|
|
|
|
write_imm(&q->desc[q->pidx], m, m->m_len, q->gen);
|
|
|
|
if (++q->pidx >= q->size) {
|
|
q->pidx = 0;
|
|
q->gen ^= 1;
|
|
}
|
|
q->in_use++;
|
|
}
|
|
if (!mbufq_empty(&q->sendq)) {
|
|
setbit(&qs->txq_stopped, TXQ_CTRL);
|
|
smp_mb();
|
|
|
|
if (should_restart_tx(q) &&
|
|
test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
|
|
goto again;
|
|
q->stops++;
|
|
}
|
|
mtx_unlock(&q->lock);
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
|
|
|
|
/*
|
|
* Send a management message through control queue 0
|
|
*/
|
|
int
|
|
t3_mgmt_tx(struct adapter *adap, struct mbuf *m)
|
|
{
|
|
return ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], m);
|
|
}
|
|
|
|
|
|
/**
|
|
* free_qset - free the resources of an SGE queue set
|
|
* @sc: the controller owning the queue set
|
|
* @q: the queue set
|
|
*
|
|
* Release the HW and SW resources associated with an SGE queue set, such
|
|
* as HW contexts, packet buffers, and descriptor rings. Traffic to the
|
|
* queue set must be quiesced prior to calling this.
|
|
*/
|
|
void
|
|
t3_free_qset(adapter_t *sc, struct sge_qset *q)
|
|
{
|
|
int i;
|
|
|
|
t3_free_tx_desc_all(&q->txq[TXQ_ETH]);
|
|
|
|
for (i = 0; i < SGE_TXQ_PER_SET; i++)
|
|
if (q->txq[i].txq_mr.br_ring != NULL) {
|
|
free(q->txq[i].txq_mr.br_ring, M_DEVBUF);
|
|
mtx_destroy(&q->txq[i].txq_mr.br_lock);
|
|
}
|
|
for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
|
|
if (q->fl[i].desc) {
|
|
mtx_lock(&sc->sge.reg_lock);
|
|
t3_sge_disable_fl(sc, q->fl[i].cntxt_id);
|
|
mtx_unlock(&sc->sge.reg_lock);
|
|
bus_dmamap_unload(q->fl[i].desc_tag, q->fl[i].desc_map);
|
|
bus_dmamem_free(q->fl[i].desc_tag, q->fl[i].desc,
|
|
q->fl[i].desc_map);
|
|
bus_dma_tag_destroy(q->fl[i].desc_tag);
|
|
bus_dma_tag_destroy(q->fl[i].entry_tag);
|
|
}
|
|
if (q->fl[i].sdesc) {
|
|
free_rx_bufs(sc, &q->fl[i]);
|
|
free(q->fl[i].sdesc, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SGE_TXQ_PER_SET; i++) {
|
|
if (q->txq[i].desc) {
|
|
mtx_lock(&sc->sge.reg_lock);
|
|
t3_sge_enable_ecntxt(sc, q->txq[i].cntxt_id, 0);
|
|
mtx_unlock(&sc->sge.reg_lock);
|
|
bus_dmamap_unload(q->txq[i].desc_tag,
|
|
q->txq[i].desc_map);
|
|
bus_dmamem_free(q->txq[i].desc_tag, q->txq[i].desc,
|
|
q->txq[i].desc_map);
|
|
bus_dma_tag_destroy(q->txq[i].desc_tag);
|
|
bus_dma_tag_destroy(q->txq[i].entry_tag);
|
|
MTX_DESTROY(&q->txq[i].lock);
|
|
}
|
|
if (q->txq[i].sdesc) {
|
|
free(q->txq[i].sdesc, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
if (q->rspq.desc) {
|
|
mtx_lock(&sc->sge.reg_lock);
|
|
t3_sge_disable_rspcntxt(sc, q->rspq.cntxt_id);
|
|
mtx_unlock(&sc->sge.reg_lock);
|
|
|
|
bus_dmamap_unload(q->rspq.desc_tag, q->rspq.desc_map);
|
|
bus_dmamem_free(q->rspq.desc_tag, q->rspq.desc,
|
|
q->rspq.desc_map);
|
|
bus_dma_tag_destroy(q->rspq.desc_tag);
|
|
MTX_DESTROY(&q->rspq.lock);
|
|
}
|
|
|
|
bzero(q, sizeof(*q));
|
|
}
|
|
|
|
/**
|
|
* t3_free_sge_resources - free SGE resources
|
|
* @sc: the adapter softc
|
|
*
|
|
* Frees resources used by the SGE queue sets.
|
|
*/
|
|
void
|
|
t3_free_sge_resources(adapter_t *sc)
|
|
{
|
|
int i, nqsets;
|
|
|
|
#ifdef IFNET_MULTIQUEUE
|
|
panic("%s should not be called when IFNET_MULTIQUEUE is defined", __FUNCTION__);
|
|
#endif
|
|
for (nqsets = i = 0; i < (sc)->params.nports; i++)
|
|
nqsets += sc->port[i].nqsets;
|
|
|
|
for (i = 0; i < nqsets; ++i)
|
|
t3_free_qset(sc, &sc->sge.qs[i]);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_start - enable SGE
|
|
* @sc: the controller softc
|
|
*
|
|
* Enables the SGE for DMAs. This is the last step in starting packet
|
|
* transfers.
|
|
*/
|
|
void
|
|
t3_sge_start(adapter_t *sc)
|
|
{
|
|
t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_stop - disable SGE operation
|
|
* @sc: the adapter
|
|
*
|
|
* Disables the DMA engine. This can be called in emeregencies (e.g.,
|
|
* from error interrupts) or from normal process context. In the latter
|
|
* case it also disables any pending queue restart tasklets. Note that
|
|
* if it is called in interrupt context it cannot disable the restart
|
|
* tasklets as it cannot wait, however the tasklets will have no effect
|
|
* since the doorbells are disabled and the driver will call this again
|
|
* later from process context, at which time the tasklets will be stopped
|
|
* if they are still running.
|
|
*/
|
|
void
|
|
t3_sge_stop(adapter_t *sc)
|
|
{
|
|
int i, nqsets;
|
|
|
|
t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, 0);
|
|
|
|
if (sc->tq == NULL)
|
|
return;
|
|
|
|
for (nqsets = i = 0; i < (sc)->params.nports; i++)
|
|
nqsets += sc->port[i].nqsets;
|
|
#ifdef notyet
|
|
/*
|
|
*
|
|
* XXX
|
|
*/
|
|
for (i = 0; i < nqsets; ++i) {
|
|
struct sge_qset *qs = &sc->sge.qs[i];
|
|
|
|
taskqueue_drain(sc->tq, &qs->txq[TXQ_OFLD].qresume_task);
|
|
taskqueue_drain(sc->tq, &qs->txq[TXQ_CTRL].qresume_task);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* t3_free_tx_desc - reclaims Tx descriptors and their buffers
|
|
* @adapter: the adapter
|
|
* @q: the Tx queue to reclaim descriptors from
|
|
* @reclaimable: the number of descriptors to reclaim
|
|
* @m_vec_size: maximum number of buffers to reclaim
|
|
* @desc_reclaimed: returns the number of descriptors reclaimed
|
|
*
|
|
* Reclaims Tx descriptors from an SGE Tx queue and frees the associated
|
|
* Tx buffers. Called with the Tx queue lock held.
|
|
*
|
|
* Returns number of buffers of reclaimed
|
|
*/
|
|
void
|
|
t3_free_tx_desc(struct sge_txq *q, int reclaimable)
|
|
{
|
|
struct tx_sw_desc *txsd;
|
|
unsigned int cidx;
|
|
|
|
#ifdef T3_TRACE
|
|
T3_TRACE2(sc->tb[q->cntxt_id & 7],
|
|
"reclaiming %u Tx descriptors at cidx %u", reclaimable, cidx);
|
|
#endif
|
|
cidx = q->cidx;
|
|
txsd = &q->sdesc[cidx];
|
|
DPRINTF("reclaiming %d WR\n", reclaimable);
|
|
while (reclaimable--) {
|
|
DPRINTF("cidx=%d d=%p\n", cidx, txsd);
|
|
if (txsd->mi.mi_base != NULL) {
|
|
if (txsd->flags & TX_SW_DESC_MAPPED) {
|
|
bus_dmamap_unload(q->entry_tag, txsd->map);
|
|
txsd->flags &= ~TX_SW_DESC_MAPPED;
|
|
}
|
|
m_freem_iovec(&txsd->mi);
|
|
buf_ring_scan(&q->txq_mr, txsd->mi.mi_base, __FILE__, __LINE__);
|
|
txsd->mi.mi_base = NULL;
|
|
|
|
#if defined(DIAGNOSTIC) && 0
|
|
if (m_get_priority(txsd->m[0]) != cidx)
|
|
printf("pri=%d cidx=%d\n",
|
|
(int)m_get_priority(txsd->m[0]), cidx);
|
|
#endif
|
|
|
|
} else
|
|
q->txq_skipped++;
|
|
|
|
++txsd;
|
|
if (++cidx == q->size) {
|
|
cidx = 0;
|
|
txsd = q->sdesc;
|
|
}
|
|
}
|
|
q->cidx = cidx;
|
|
|
|
}
|
|
|
|
void
|
|
t3_free_tx_desc_all(struct sge_txq *q)
|
|
{
|
|
int i;
|
|
struct tx_sw_desc *txsd;
|
|
|
|
for (i = 0; i < q->size; i++) {
|
|
txsd = &q->sdesc[i];
|
|
if (txsd->mi.mi_base != NULL) {
|
|
if (txsd->flags & TX_SW_DESC_MAPPED) {
|
|
bus_dmamap_unload(q->entry_tag, txsd->map);
|
|
txsd->flags &= ~TX_SW_DESC_MAPPED;
|
|
}
|
|
m_freem_iovec(&txsd->mi);
|
|
bzero(&txsd->mi, sizeof(txsd->mi));
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* is_new_response - check if a response is newly written
|
|
* @r: the response descriptor
|
|
* @q: the response queue
|
|
*
|
|
* Returns true if a response descriptor contains a yet unprocessed
|
|
* response.
|
|
*/
|
|
static __inline int
|
|
is_new_response(const struct rsp_desc *r,
|
|
const struct sge_rspq *q)
|
|
{
|
|
return (r->intr_gen & F_RSPD_GEN2) == q->gen;
|
|
}
|
|
|
|
#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
|
|
#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
|
|
V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
|
|
V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
|
|
V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
|
|
|
|
/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
|
|
#define NOMEM_INTR_DELAY 2500
|
|
|
|
/**
|
|
* write_ofld_wr - write an offload work request
|
|
* @adap: the adapter
|
|
* @m: the packet to send
|
|
* @q: the Tx queue
|
|
* @pidx: index of the first Tx descriptor to write
|
|
* @gen: the generation value to use
|
|
* @ndesc: number of descriptors the packet will occupy
|
|
*
|
|
* Write an offload work request to send the supplied packet. The packet
|
|
* data already carry the work request with most fields populated.
|
|
*/
|
|
static void
|
|
write_ofld_wr(adapter_t *adap, struct mbuf *m,
|
|
struct sge_txq *q, unsigned int pidx,
|
|
unsigned int gen, unsigned int ndesc,
|
|
bus_dma_segment_t *segs, unsigned int nsegs)
|
|
{
|
|
unsigned int sgl_flits, flits;
|
|
struct work_request_hdr *from;
|
|
struct sg_ent *sgp, sgl[TX_MAX_SEGS / 2 + 1];
|
|
struct tx_desc *d = &q->desc[pidx];
|
|
struct txq_state txqs;
|
|
|
|
if (immediate(m) && segs == NULL) {
|
|
write_imm(d, m, m->m_len, gen);
|
|
return;
|
|
}
|
|
|
|
/* Only TX_DATA builds SGLs */
|
|
from = mtod(m, struct work_request_hdr *);
|
|
memcpy(&d->flit[1], &from[1], m->m_len - sizeof(*from));
|
|
|
|
flits = m->m_len / 8;
|
|
sgp = (ndesc == 1) ? (struct sg_ent *)&d->flit[flits] : sgl;
|
|
|
|
make_sgl(sgp, segs, nsegs);
|
|
sgl_flits = sgl_len(nsegs);
|
|
|
|
txqs.gen = gen;
|
|
txqs.pidx = pidx;
|
|
txqs.compl = 0;
|
|
|
|
write_wr_hdr_sgl(ndesc, d, &txqs, q, sgl, flits, sgl_flits,
|
|
from->wr_hi, from->wr_lo);
|
|
}
|
|
|
|
/**
|
|
* calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
|
|
* @m: the packet
|
|
*
|
|
* Returns the number of Tx descriptors needed for the given offload
|
|
* packet. These packets are already fully constructed.
|
|
*/
|
|
static __inline unsigned int
|
|
calc_tx_descs_ofld(struct mbuf *m, unsigned int nsegs)
|
|
{
|
|
unsigned int flits, cnt = 0;
|
|
|
|
|
|
if (m->m_len <= WR_LEN)
|
|
return 1; /* packet fits as immediate data */
|
|
|
|
if (m->m_flags & M_IOVEC)
|
|
cnt = mtomv(m)->mv_count;
|
|
|
|
/* headers */
|
|
flits = ((uint8_t *)m->m_pkthdr.header - mtod(m, uint8_t *)) / 8;
|
|
|
|
return flits_to_desc(flits + sgl_len(cnt));
|
|
}
|
|
|
|
/**
|
|
* ofld_xmit - send a packet through an offload queue
|
|
* @adap: the adapter
|
|
* @q: the Tx offload queue
|
|
* @m: the packet
|
|
*
|
|
* Send an offload packet through an SGE offload queue.
|
|
*/
|
|
static int
|
|
ofld_xmit(adapter_t *adap, struct sge_txq *q, struct mbuf *m)
|
|
{
|
|
int ret, nsegs;
|
|
unsigned int ndesc;
|
|
unsigned int pidx, gen;
|
|
bus_dma_segment_t segs[TX_MAX_SEGS], *vsegs;
|
|
struct tx_sw_desc *stx;
|
|
|
|
nsegs = m_get_sgllen(m);
|
|
vsegs = m_get_sgl(m);
|
|
ndesc = calc_tx_descs_ofld(m, nsegs);
|
|
busdma_map_sgl(vsegs, segs, nsegs);
|
|
|
|
stx = &q->sdesc[q->pidx];
|
|
KASSERT(stx->mi.mi_base == NULL, ("mi_base set"));
|
|
|
|
mtx_lock(&q->lock);
|
|
again: reclaim_completed_tx_(q, 16);
|
|
ret = check_desc_avail(adap, q, m, ndesc, TXQ_OFLD);
|
|
if (__predict_false(ret)) {
|
|
if (ret == 1) {
|
|
printf("no ofld desc avail\n");
|
|
|
|
m_set_priority(m, ndesc); /* save for restart */
|
|
mtx_unlock(&q->lock);
|
|
return (EINTR);
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
gen = q->gen;
|
|
q->in_use += ndesc;
|
|
pidx = q->pidx;
|
|
q->pidx += ndesc;
|
|
if (q->pidx >= q->size) {
|
|
q->pidx -= q->size;
|
|
q->gen ^= 1;
|
|
}
|
|
#ifdef T3_TRACE
|
|
T3_TRACE5(adap->tb[q->cntxt_id & 7],
|
|
"ofld_xmit: ndesc %u, pidx %u, len %u, main %u, frags %u",
|
|
ndesc, pidx, skb->len, skb->len - skb->data_len,
|
|
skb_shinfo(skb)->nr_frags);
|
|
#endif
|
|
mtx_unlock(&q->lock);
|
|
|
|
write_ofld_wr(adap, m, q, pidx, gen, ndesc, segs, nsegs);
|
|
check_ring_tx_db(adap, q);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* restart_offloadq - restart a suspended offload queue
|
|
* @qs: the queue set cotaining the offload queue
|
|
*
|
|
* Resumes transmission on a suspended Tx offload queue.
|
|
*/
|
|
static void
|
|
restart_offloadq(void *data, int npending)
|
|
{
|
|
struct mbuf *m;
|
|
struct sge_qset *qs = data;
|
|
struct sge_txq *q = &qs->txq[TXQ_OFLD];
|
|
adapter_t *adap = qs->port->adapter;
|
|
bus_dma_segment_t segs[TX_MAX_SEGS];
|
|
struct tx_sw_desc *stx = &q->sdesc[q->pidx];
|
|
int nsegs, cleaned;
|
|
|
|
mtx_lock(&q->lock);
|
|
again: cleaned = reclaim_completed_tx_(q, 16);
|
|
|
|
while ((m = mbufq_peek(&q->sendq)) != NULL) {
|
|
unsigned int gen, pidx;
|
|
unsigned int ndesc = m_get_priority(m);
|
|
|
|
if (__predict_false(q->size - q->in_use < ndesc)) {
|
|
setbit(&qs->txq_stopped, TXQ_OFLD);
|
|
smp_mb();
|
|
|
|
if (should_restart_tx(q) &&
|
|
test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
|
|
goto again;
|
|
q->stops++;
|
|
break;
|
|
}
|
|
|
|
gen = q->gen;
|
|
q->in_use += ndesc;
|
|
pidx = q->pidx;
|
|
q->pidx += ndesc;
|
|
if (q->pidx >= q->size) {
|
|
q->pidx -= q->size;
|
|
q->gen ^= 1;
|
|
}
|
|
|
|
(void)mbufq_dequeue(&q->sendq);
|
|
busdma_map_mbufs(&m, q, stx, segs, &nsegs);
|
|
mtx_unlock(&q->lock);
|
|
write_ofld_wr(adap, m, q, pidx, gen, ndesc, segs, nsegs);
|
|
mtx_lock(&q->lock);
|
|
}
|
|
mtx_unlock(&q->lock);
|
|
|
|
#if USE_GTS
|
|
set_bit(TXQ_RUNNING, &q->flags);
|
|
set_bit(TXQ_LAST_PKT_DB, &q->flags);
|
|
#endif
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
|
|
/**
|
|
* queue_set - return the queue set a packet should use
|
|
* @m: the packet
|
|
*
|
|
* Maps a packet to the SGE queue set it should use. The desired queue
|
|
* set is carried in bits 1-3 in the packet's priority.
|
|
*/
|
|
static __inline int
|
|
queue_set(const struct mbuf *m)
|
|
{
|
|
return m_get_priority(m) >> 1;
|
|
}
|
|
|
|
/**
|
|
* is_ctrl_pkt - return whether an offload packet is a control packet
|
|
* @m: the packet
|
|
*
|
|
* Determines whether an offload packet should use an OFLD or a CTRL
|
|
* Tx queue. This is indicated by bit 0 in the packet's priority.
|
|
*/
|
|
static __inline int
|
|
is_ctrl_pkt(const struct mbuf *m)
|
|
{
|
|
return m_get_priority(m) & 1;
|
|
}
|
|
|
|
/**
|
|
* t3_offload_tx - send an offload packet
|
|
* @tdev: the offload device to send to
|
|
* @m: the packet
|
|
*
|
|
* Sends an offload packet. We use the packet priority to select the
|
|
* appropriate Tx queue as follows: bit 0 indicates whether the packet
|
|
* should be sent as regular or control, bits 1-3 select the queue set.
|
|
*/
|
|
int
|
|
t3_offload_tx(struct t3cdev *tdev, struct mbuf *m)
|
|
{
|
|
adapter_t *adap = tdev2adap(tdev);
|
|
struct sge_qset *qs = &adap->sge.qs[queue_set(m)];
|
|
|
|
if (__predict_false(is_ctrl_pkt(m)))
|
|
return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], m);
|
|
|
|
return ofld_xmit(adap, &qs->txq[TXQ_OFLD], m);
|
|
}
|
|
|
|
/**
|
|
* deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
|
|
* @tdev: the offload device that will be receiving the packets
|
|
* @q: the SGE response queue that assembled the bundle
|
|
* @m: the partial bundle
|
|
* @n: the number of packets in the bundle
|
|
*
|
|
* Delivers a (partial) bundle of Rx offload packets to an offload device.
|
|
*/
|
|
static __inline void
|
|
deliver_partial_bundle(struct t3cdev *tdev,
|
|
struct sge_rspq *q,
|
|
struct mbuf *mbufs[], int n)
|
|
{
|
|
if (n) {
|
|
q->offload_bundles++;
|
|
cxgb_ofld_recv(tdev, mbufs, n);
|
|
}
|
|
}
|
|
|
|
static __inline int
|
|
rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
|
|
struct mbuf *m, struct mbuf *rx_gather[],
|
|
unsigned int gather_idx)
|
|
{
|
|
|
|
rq->offload_pkts++;
|
|
m->m_pkthdr.header = mtod(m, void *);
|
|
rx_gather[gather_idx++] = m;
|
|
if (gather_idx == RX_BUNDLE_SIZE) {
|
|
cxgb_ofld_recv(tdev, rx_gather, RX_BUNDLE_SIZE);
|
|
gather_idx = 0;
|
|
rq->offload_bundles++;
|
|
}
|
|
return (gather_idx);
|
|
}
|
|
|
|
static void
|
|
restart_tx(struct sge_qset *qs)
|
|
{
|
|
struct adapter *sc = qs->port->adapter;
|
|
|
|
|
|
if (isset(&qs->txq_stopped, TXQ_OFLD) &&
|
|
should_restart_tx(&qs->txq[TXQ_OFLD]) &&
|
|
test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
|
|
qs->txq[TXQ_OFLD].restarts++;
|
|
DPRINTF("restarting TXQ_OFLD\n");
|
|
taskqueue_enqueue(sc->tq, &qs->txq[TXQ_OFLD].qresume_task);
|
|
}
|
|
DPRINTF("stopped=0x%x restart=%d processed=%d cleaned=%d in_use=%d\n",
|
|
qs->txq_stopped, should_restart_tx(&qs->txq[TXQ_CTRL]),
|
|
qs->txq[TXQ_CTRL].processed, qs->txq[TXQ_CTRL].cleaned,
|
|
qs->txq[TXQ_CTRL].in_use);
|
|
|
|
if (isset(&qs->txq_stopped, TXQ_CTRL) &&
|
|
should_restart_tx(&qs->txq[TXQ_CTRL]) &&
|
|
test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
|
|
qs->txq[TXQ_CTRL].restarts++;
|
|
DPRINTF("restarting TXQ_CTRL\n");
|
|
taskqueue_enqueue(sc->tq, &qs->txq[TXQ_CTRL].qresume_task);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_sge_alloc_qset - initialize an SGE queue set
|
|
* @sc: the controller softc
|
|
* @id: the queue set id
|
|
* @nports: how many Ethernet ports will be using this queue set
|
|
* @irq_vec_idx: the IRQ vector index for response queue interrupts
|
|
* @p: configuration parameters for this queue set
|
|
* @ntxq: number of Tx queues for the queue set
|
|
* @pi: port info for queue set
|
|
*
|
|
* Allocate resources and initialize an SGE queue set. A queue set
|
|
* comprises a response queue, two Rx free-buffer queues, and up to 3
|
|
* Tx queues. The Tx queues are assigned roles in the order Ethernet
|
|
* queue, offload queue, and control queue.
|
|
*/
|
|
int
|
|
t3_sge_alloc_qset(adapter_t *sc, u_int id, int nports, int irq_vec_idx,
|
|
const struct qset_params *p, int ntxq, struct port_info *pi)
|
|
{
|
|
struct sge_qset *q = &sc->sge.qs[id];
|
|
int i, header_size, ret = 0;
|
|
|
|
for (i = 0; i < SGE_TXQ_PER_SET; i++) {
|
|
if ((q->txq[i].txq_mr.br_ring = malloc(cxgb_txq_buf_ring_size*sizeof(struct mbuf *),
|
|
M_DEVBUF, M_WAITOK|M_ZERO)) == NULL) {
|
|
device_printf(sc->dev, "failed to allocate mbuf ring\n");
|
|
goto err;
|
|
}
|
|
q->txq[i].txq_mr.br_prod = q->txq[i].txq_mr.br_cons = 0;
|
|
q->txq[i].txq_mr.br_size = cxgb_txq_buf_ring_size;
|
|
mtx_init(&q->txq[i].txq_mr.br_lock, "txq mbuf ring", NULL, MTX_DEF);
|
|
}
|
|
|
|
init_qset_cntxt(q, id);
|
|
|
|
if ((ret = alloc_ring(sc, p->fl_size, sizeof(struct rx_desc),
|
|
sizeof(struct rx_sw_desc), &q->fl[0].phys_addr,
|
|
&q->fl[0].desc, &q->fl[0].sdesc,
|
|
&q->fl[0].desc_tag, &q->fl[0].desc_map,
|
|
sc->rx_dmat, &q->fl[0].entry_tag)) != 0) {
|
|
printf("error %d from alloc ring fl0\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
if ((ret = alloc_ring(sc, p->jumbo_size, sizeof(struct rx_desc),
|
|
sizeof(struct rx_sw_desc), &q->fl[1].phys_addr,
|
|
&q->fl[1].desc, &q->fl[1].sdesc,
|
|
&q->fl[1].desc_tag, &q->fl[1].desc_map,
|
|
sc->rx_jumbo_dmat, &q->fl[1].entry_tag)) != 0) {
|
|
printf("error %d from alloc ring fl1\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
if ((ret = alloc_ring(sc, p->rspq_size, sizeof(struct rsp_desc), 0,
|
|
&q->rspq.phys_addr, &q->rspq.desc, NULL,
|
|
&q->rspq.desc_tag, &q->rspq.desc_map,
|
|
NULL, NULL)) != 0) {
|
|
printf("error %d from alloc ring rspq\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < ntxq; ++i) {
|
|
/*
|
|
* The control queue always uses immediate data so does not
|
|
* need to keep track of any mbufs.
|
|
* XXX Placeholder for future TOE support.
|
|
*/
|
|
size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
|
|
|
|
if ((ret = alloc_ring(sc, p->txq_size[i],
|
|
sizeof(struct tx_desc), sz,
|
|
&q->txq[i].phys_addr, &q->txq[i].desc,
|
|
&q->txq[i].sdesc, &q->txq[i].desc_tag,
|
|
&q->txq[i].desc_map,
|
|
sc->tx_dmat, &q->txq[i].entry_tag)) != 0) {
|
|
printf("error %d from alloc ring tx %i\n", ret, i);
|
|
goto err;
|
|
}
|
|
mbufq_init(&q->txq[i].sendq);
|
|
q->txq[i].gen = 1;
|
|
q->txq[i].size = p->txq_size[i];
|
|
snprintf(q->txq[i].lockbuf, TXQ_NAME_LEN, "t3 txq lock %d:%d:%d",
|
|
device_get_unit(sc->dev), irq_vec_idx, i);
|
|
MTX_INIT(&q->txq[i].lock, q->txq[i].lockbuf, NULL, MTX_DEF);
|
|
}
|
|
|
|
q->txq[TXQ_ETH].port = pi;
|
|
|
|
TASK_INIT(&q->txq[TXQ_OFLD].qresume_task, 0, restart_offloadq, q);
|
|
TASK_INIT(&q->txq[TXQ_CTRL].qresume_task, 0, restart_ctrlq, q);
|
|
TASK_INIT(&q->txq[TXQ_ETH].qreclaim_task, 0, sge_txq_reclaim_handler, &q->txq[TXQ_ETH]);
|
|
TASK_INIT(&q->txq[TXQ_OFLD].qreclaim_task, 0, sge_txq_reclaim_handler, &q->txq[TXQ_OFLD]);
|
|
|
|
q->fl[0].gen = q->fl[1].gen = 1;
|
|
q->fl[0].size = p->fl_size;
|
|
q->fl[1].size = p->jumbo_size;
|
|
|
|
q->rspq.gen = 1;
|
|
q->rspq.cidx = 0;
|
|
q->rspq.size = p->rspq_size;
|
|
|
|
|
|
header_size = sizeof(struct m_hdr) + sizeof(struct pkthdr) + sizeof(struct m_ext_) + sizeof(uint32_t);
|
|
q->txq[TXQ_ETH].stop_thres = nports *
|
|
flits_to_desc(sgl_len(TX_MAX_SEGS + 1) + 3);
|
|
|
|
q->fl[0].buf_size = (MCLBYTES - header_size);
|
|
q->fl[0].zone = zone_clust;
|
|
q->fl[0].type = EXT_CLUSTER;
|
|
#if __FreeBSD_version > 800000
|
|
if (cxgb_use_16k_clusters) {
|
|
q->fl[1].buf_size = MJUM16BYTES - header_size;
|
|
q->fl[1].zone = zone_jumbo16;
|
|
q->fl[1].type = EXT_JUMBO16;
|
|
} else {
|
|
q->fl[1].buf_size = MJUM9BYTES - header_size;
|
|
q->fl[1].zone = zone_jumbo9;
|
|
q->fl[1].type = EXT_JUMBO9;
|
|
}
|
|
#else
|
|
q->fl[1].buf_size = MJUMPAGESIZE - header_size;
|
|
q->fl[1].zone = zone_jumbop;
|
|
q->fl[1].type = EXT_JUMBOP;
|
|
#endif
|
|
q->lro.enabled = lro_default;
|
|
|
|
mtx_lock(&sc->sge.reg_lock);
|
|
ret = -t3_sge_init_rspcntxt(sc, q->rspq.cntxt_id, irq_vec_idx,
|
|
q->rspq.phys_addr, q->rspq.size,
|
|
q->fl[0].buf_size, 1, 0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_rspcntxt\n", ret);
|
|
goto err_unlock;
|
|
}
|
|
|
|
for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
|
|
ret = -t3_sge_init_flcntxt(sc, q->fl[i].cntxt_id, 0,
|
|
q->fl[i].phys_addr, q->fl[i].size,
|
|
q->fl[i].buf_size, p->cong_thres, 1,
|
|
0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_flcntxt for index i=%d\n", ret, i);
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
|
|
SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
|
|
q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
|
|
1, 0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_ecntxt\n", ret);
|
|
goto err_unlock;
|
|
}
|
|
|
|
if (ntxq > 1) {
|
|
ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_OFLD].cntxt_id,
|
|
USE_GTS, SGE_CNTXT_OFLD, id,
|
|
q->txq[TXQ_OFLD].phys_addr,
|
|
q->txq[TXQ_OFLD].size, 0, 1, 0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_ecntxt\n", ret);
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
if (ntxq > 2) {
|
|
ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_CTRL].cntxt_id, 0,
|
|
SGE_CNTXT_CTRL, id,
|
|
q->txq[TXQ_CTRL].phys_addr,
|
|
q->txq[TXQ_CTRL].size,
|
|
q->txq[TXQ_CTRL].token, 1, 0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_ecntxt\n", ret);
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
snprintf(q->rspq.lockbuf, RSPQ_NAME_LEN, "t3 rspq lock %d:%d",
|
|
device_get_unit(sc->dev), irq_vec_idx);
|
|
MTX_INIT(&q->rspq.lock, q->rspq.lockbuf, NULL, MTX_DEF);
|
|
|
|
mtx_unlock(&sc->sge.reg_lock);
|
|
t3_update_qset_coalesce(q, p);
|
|
q->port = pi;
|
|
|
|
refill_fl(sc, &q->fl[0], q->fl[0].size);
|
|
refill_fl(sc, &q->fl[1], q->fl[1].size);
|
|
refill_rspq(sc, &q->rspq, q->rspq.size - 1);
|
|
|
|
t3_write_reg(sc, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
|
|
V_NEWTIMER(q->rspq.holdoff_tmr));
|
|
|
|
return (0);
|
|
|
|
err_unlock:
|
|
mtx_unlock(&sc->sge.reg_lock);
|
|
err:
|
|
t3_free_qset(sc, q);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
t3_rx_eth(struct adapter *adap, struct sge_rspq *rq, struct mbuf *m, int ethpad)
|
|
{
|
|
struct cpl_rx_pkt *cpl = (struct cpl_rx_pkt *)(mtod(m, uint8_t *) + ethpad);
|
|
struct port_info *pi = &adap->port[adap->rxpkt_map[cpl->iff]];
|
|
struct ifnet *ifp = pi->ifp;
|
|
|
|
DPRINTF("rx_eth m=%p m->m_data=%p p->iff=%d\n", m, mtod(m, uint8_t *), cpl->iff);
|
|
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) && !cpl->fragment &&
|
|
cpl->csum_valid && cpl->csum == 0xffff) {
|
|
m->m_pkthdr.csum_flags = (CSUM_IP_CHECKED|CSUM_IP_VALID);
|
|
rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
|
|
m->m_pkthdr.csum_flags = (CSUM_IP_CHECKED|CSUM_IP_VALID|CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
/*
|
|
* XXX need to add VLAN support for 6.x
|
|
*/
|
|
#ifdef VLAN_SUPPORTED
|
|
if (__predict_false(cpl->vlan_valid)) {
|
|
m->m_pkthdr.ether_vtag = ntohs(cpl->vlan);
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
#endif
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.header = mtod(m, uint8_t *) + sizeof(*cpl) + ethpad;
|
|
#ifndef DISABLE_MBUF_IOVEC
|
|
m_explode(m);
|
|
#endif
|
|
/*
|
|
* adjust after conversion to mbuf chain
|
|
*/
|
|
m->m_pkthdr.len -= (sizeof(*cpl) + ethpad);
|
|
m->m_len -= (sizeof(*cpl) + ethpad);
|
|
m->m_data += (sizeof(*cpl) + ethpad);
|
|
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
static void
|
|
ext_free_handler(void *cl, void * arg)
|
|
{
|
|
uintptr_t type = (uintptr_t)arg;
|
|
uma_zone_t zone;
|
|
struct mbuf *m;
|
|
|
|
m = cl;
|
|
zone = m_getzonefromtype(type);
|
|
m->m_ext.ext_type = (int)type;
|
|
cxgb_ext_freed++;
|
|
cxgb_cache_put(zone, cl);
|
|
}
|
|
|
|
static void
|
|
init_cluster_mbuf(caddr_t cl, int flags, int type, uma_zone_t zone)
|
|
{
|
|
struct mbuf *m;
|
|
int header_size;
|
|
|
|
header_size = sizeof(struct m_hdr) + sizeof(struct pkthdr) +
|
|
sizeof(struct m_ext_) + sizeof(uint32_t);
|
|
|
|
bzero(cl, header_size);
|
|
m = (struct mbuf *)cl;
|
|
|
|
SLIST_INIT(&m->m_pkthdr.tags);
|
|
m->m_type = MT_DATA;
|
|
m->m_flags = flags | M_NOFREE | M_EXT;
|
|
m->m_data = cl + header_size;
|
|
m->m_ext.ext_buf = cl;
|
|
m->m_ext.ref_cnt = (uint32_t *)(cl + header_size - sizeof(uint32_t));
|
|
m->m_ext.ext_size = m_getsizefromtype(type);
|
|
m->m_ext.ext_free = ext_free_handler;
|
|
m->m_ext.ext_args = (void *)(uintptr_t)type;
|
|
m->m_ext.ext_type = EXT_EXTREF;
|
|
*(m->m_ext.ref_cnt) = 1;
|
|
DPRINTF("data=%p ref_cnt=%p\n", m->m_data, m->m_ext.ref_cnt);
|
|
}
|
|
|
|
|
|
/**
|
|
* get_packet - return the next ingress packet buffer from a free list
|
|
* @adap: the adapter that received the packet
|
|
* @drop_thres: # of remaining buffers before we start dropping packets
|
|
* @qs: the qset that the SGE free list holding the packet belongs to
|
|
* @mh: the mbuf header, contains a pointer to the head and tail of the mbuf chain
|
|
* @r: response descriptor
|
|
*
|
|
* Get the next packet from a free list and complete setup of the
|
|
* sk_buff. If the packet is small we make a copy and recycle the
|
|
* original buffer, otherwise we use the original buffer itself. If a
|
|
* positive drop threshold is supplied packets are dropped and their
|
|
* buffers recycled if (a) the number of remaining buffers is under the
|
|
* threshold and the packet is too big to copy, or (b) the packet should
|
|
* be copied but there is no memory for the copy.
|
|
*/
|
|
#ifdef DISABLE_MBUF_IOVEC
|
|
|
|
static int
|
|
get_packet(adapter_t *adap, unsigned int drop_thres, struct sge_qset *qs,
|
|
struct t3_mbuf_hdr *mh, struct rsp_desc *r)
|
|
{
|
|
|
|
unsigned int len_cq = ntohl(r->len_cq);
|
|
struct sge_fl *fl = (len_cq & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
|
|
struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
|
|
uint32_t len = G_RSPD_LEN(len_cq);
|
|
uint32_t flags = ntohl(r->flags);
|
|
uint8_t sopeop = G_RSPD_SOP_EOP(flags);
|
|
struct mbuf *m;
|
|
uint32_t *ref;
|
|
int ret = 0;
|
|
|
|
prefetch(sd->rxsd_cl);
|
|
|
|
fl->credits--;
|
|
bus_dmamap_sync(fl->entry_tag, sd->map, BUS_DMASYNC_POSTREAD);
|
|
|
|
if (recycle_enable && len <= SGE_RX_COPY_THRES && sopeop == RSPQ_SOP_EOP) {
|
|
if ((m0 = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
|
|
goto skip_recycle;
|
|
cl = mtod(m0, void *);
|
|
memcpy(cl, sd->data, len);
|
|
recycle_rx_buf(adap, fl, fl->cidx);
|
|
m = m0;
|
|
} else {
|
|
skip_recycle:
|
|
int flags = 0;
|
|
bus_dmamap_unload(fl->entry_tag, sd->map);
|
|
cl = sd->rxsd_cl;
|
|
m = m0 = (struct mbuf *)cl;
|
|
|
|
m0->m_len = len;
|
|
if ((sopeop == RSPQ_SOP_EOP) ||
|
|
(sopeop == RSPQ_SOP))
|
|
flags = M_PKTHDR;
|
|
init_cluster_mbuf(cl, flags, fl->type, fl->zone);
|
|
}
|
|
|
|
switch(sopeop) {
|
|
case RSPQ_SOP_EOP:
|
|
DBG(DBG_RX, ("get_packet: SOP-EOP m %p\n", m));
|
|
mh->mh_head = mh->mh_tail = m;
|
|
m->m_pkthdr.len = len;
|
|
ret = 1;
|
|
break;
|
|
case RSPQ_NSOP_NEOP:
|
|
DBG(DBG_RX, ("get_packet: NO_SOP-NO_EOP m %p\n", m));
|
|
if (mh->mh_tail == NULL) {
|
|
printf("discarding intermediate descriptor entry\n");
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
mh->mh_tail->m_next = m;
|
|
mh->mh_tail = m;
|
|
mh->mh_head->m_pkthdr.len += len;
|
|
ret = 0;
|
|
break;
|
|
case RSPQ_SOP:
|
|
DBG(DBG_RX, ("get_packet: SOP m %p\n", m));
|
|
m->m_pkthdr.len = len;
|
|
mh->mh_head = mh->mh_tail = m;
|
|
ret = 0;
|
|
break;
|
|
case RSPQ_EOP:
|
|
DBG(DBG_RX, ("get_packet: EOP m %p\n", m));
|
|
mh->mh_head->m_pkthdr.len += len;
|
|
mh->mh_tail->m_next = m;
|
|
mh->mh_tail = m;
|
|
ret = 1;
|
|
break;
|
|
}
|
|
if (++fl->cidx == fl->size)
|
|
fl->cidx = 0;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
#else
|
|
|
|
static int
|
|
get_packet(adapter_t *adap, unsigned int drop_thres, struct sge_qset *qs,
|
|
struct mbuf **m, struct rsp_desc *r)
|
|
{
|
|
|
|
unsigned int len_cq = ntohl(r->len_cq);
|
|
struct sge_fl *fl = (len_cq & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
|
|
struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
|
|
uint32_t len = G_RSPD_LEN(len_cq);
|
|
uint32_t flags = ntohl(r->flags);
|
|
uint8_t sopeop = G_RSPD_SOP_EOP(flags);
|
|
void *cl;
|
|
int ret = 0;
|
|
struct mbuf *m0;
|
|
#if 0
|
|
if ((sd + 1 )->rxsd_cl)
|
|
prefetch((sd + 1)->rxsd_cl);
|
|
if ((sd + 2)->rxsd_cl)
|
|
prefetch((sd + 2)->rxsd_cl);
|
|
#endif
|
|
DPRINTF("rx cpu=%d\n", curcpu);
|
|
fl->credits--;
|
|
bus_dmamap_sync(fl->entry_tag, sd->map, BUS_DMASYNC_POSTREAD);
|
|
|
|
if (recycle_enable && len <= SGE_RX_COPY_THRES && sopeop == RSPQ_SOP_EOP) {
|
|
if ((m0 = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
|
|
goto skip_recycle;
|
|
cl = mtod(m0, void *);
|
|
memcpy(cl, sd->data, len);
|
|
recycle_rx_buf(adap, fl, fl->cidx);
|
|
*m = m0;
|
|
} else {
|
|
skip_recycle:
|
|
bus_dmamap_unload(fl->entry_tag, sd->map);
|
|
cl = sd->rxsd_cl;
|
|
*m = m0 = (struct mbuf *)cl;
|
|
}
|
|
|
|
switch(sopeop) {
|
|
case RSPQ_SOP_EOP:
|
|
DBG(DBG_RX, ("get_packet: SOP-EOP m %p\n", m));
|
|
if (cl == sd->rxsd_cl)
|
|
init_cluster_mbuf(cl, M_PKTHDR, fl->type, fl->zone);
|
|
m0->m_len = m0->m_pkthdr.len = len;
|
|
ret = 1;
|
|
goto done;
|
|
break;
|
|
case RSPQ_NSOP_NEOP:
|
|
DBG(DBG_RX, ("get_packet: NO_SOP-NO_EOP m %p\n", m));
|
|
panic("chaining unsupported");
|
|
ret = 0;
|
|
break;
|
|
case RSPQ_SOP:
|
|
DBG(DBG_RX, ("get_packet: SOP m %p\n", m));
|
|
panic("chaining unsupported");
|
|
m_iovinit(m0);
|
|
ret = 0;
|
|
break;
|
|
case RSPQ_EOP:
|
|
DBG(DBG_RX, ("get_packet: EOP m %p\n", m));
|
|
panic("chaining unsupported");
|
|
ret = 1;
|
|
break;
|
|
}
|
|
panic("append not supported");
|
|
#if 0
|
|
m_iovappend(m0, cl, fl->buf_size, len, sizeof(uint32_t), sd->rxsd_ref);
|
|
#endif
|
|
done:
|
|
if (++fl->cidx == fl->size)
|
|
fl->cidx = 0;
|
|
|
|
return (ret);
|
|
}
|
|
#endif
|
|
/**
|
|
* handle_rsp_cntrl_info - handles control information in a response
|
|
* @qs: the queue set corresponding to the response
|
|
* @flags: the response control flags
|
|
*
|
|
* Handles the control information of an SGE response, such as GTS
|
|
* indications and completion credits for the queue set's Tx queues.
|
|
* HW coalesces credits, we don't do any extra SW coalescing.
|
|
*/
|
|
static __inline void
|
|
handle_rsp_cntrl_info(struct sge_qset *qs, uint32_t flags)
|
|
{
|
|
unsigned int credits;
|
|
|
|
#if USE_GTS
|
|
if (flags & F_RSPD_TXQ0_GTS)
|
|
clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
|
|
#endif
|
|
credits = G_RSPD_TXQ0_CR(flags);
|
|
if (credits)
|
|
qs->txq[TXQ_ETH].processed += credits;
|
|
|
|
credits = G_RSPD_TXQ2_CR(flags);
|
|
if (credits)
|
|
qs->txq[TXQ_CTRL].processed += credits;
|
|
|
|
# if USE_GTS
|
|
if (flags & F_RSPD_TXQ1_GTS)
|
|
clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
|
|
# endif
|
|
credits = G_RSPD_TXQ1_CR(flags);
|
|
if (credits)
|
|
qs->txq[TXQ_OFLD].processed += credits;
|
|
|
|
}
|
|
|
|
static void
|
|
check_ring_db(adapter_t *adap, struct sge_qset *qs,
|
|
unsigned int sleeping)
|
|
{
|
|
;
|
|
}
|
|
|
|
/**
|
|
* process_responses - process responses from an SGE response queue
|
|
* @adap: the adapter
|
|
* @qs: the queue set to which the response queue belongs
|
|
* @budget: how many responses can be processed in this round
|
|
*
|
|
* Process responses from an SGE response queue up to the supplied budget.
|
|
* Responses include received packets as well as credits and other events
|
|
* for the queues that belong to the response queue's queue set.
|
|
* A negative budget is effectively unlimited.
|
|
*
|
|
* Additionally choose the interrupt holdoff time for the next interrupt
|
|
* on this queue. If the system is under memory shortage use a fairly
|
|
* long delay to help recovery.
|
|
*/
|
|
int
|
|
process_responses(adapter_t *adap, struct sge_qset *qs, int budget)
|
|
{
|
|
struct sge_rspq *rspq = &qs->rspq;
|
|
struct rsp_desc *r = &rspq->desc[rspq->cidx];
|
|
int budget_left = budget;
|
|
unsigned int sleeping = 0;
|
|
int lro = qs->lro.enabled;
|
|
struct mbuf *offload_mbufs[RX_BUNDLE_SIZE];
|
|
int ngathered = 0;
|
|
#ifdef DEBUG
|
|
static int last_holdoff = 0;
|
|
if (cxgb_debug && rspq->holdoff_tmr != last_holdoff) {
|
|
printf("next_holdoff=%d\n", rspq->holdoff_tmr);
|
|
last_holdoff = rspq->holdoff_tmr;
|
|
}
|
|
#endif
|
|
rspq->next_holdoff = rspq->holdoff_tmr;
|
|
|
|
while (__predict_true(budget_left && is_new_response(r, rspq))) {
|
|
int eth, eop = 0, ethpad = 0;
|
|
uint32_t flags = ntohl(r->flags);
|
|
uint32_t rss_csum = *(const uint32_t *)r;
|
|
uint32_t rss_hash = be32toh(r->rss_hdr.rss_hash_val);
|
|
|
|
eth = (r->rss_hdr.opcode == CPL_RX_PKT);
|
|
|
|
if (__predict_false(flags & F_RSPD_ASYNC_NOTIF)) {
|
|
/* XXX */
|
|
printf("async notification\n");
|
|
|
|
} else if (flags & F_RSPD_IMM_DATA_VALID) {
|
|
struct mbuf *m = NULL;
|
|
|
|
#ifdef DISABLE_MBUF_IOVEC
|
|
DPRINTF("IMM DATA VALID opcode=0x%x rspq->cidx=%d\n",
|
|
r->rss_hdr.opcode, rspq->cidx);
|
|
|
|
m = rspq->rspq_mh.mh_head = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
rspq->next_holdoff = NOMEM_INTR_DELAY;
|
|
budget_left--;
|
|
break;
|
|
}
|
|
|
|
get_imm_packet(adap, r, &rspq->rspq_mh);
|
|
eop = 1;
|
|
#else
|
|
DPRINTF("IMM DATA VALID opcode=0x%x rspq->cidx=%d\n",
|
|
r->rss_hdr.opcode, rspq->cidx);
|
|
if (rspq->rspq_mbuf == NULL)
|
|
rspq->rspq_mbuf = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
else
|
|
m = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
|
|
/*
|
|
* XXX revisit me
|
|
*/
|
|
if (rspq->rspq_mbuf == NULL && m == NULL) {
|
|
rspq->next_holdoff = NOMEM_INTR_DELAY;
|
|
budget_left--;
|
|
break;
|
|
}
|
|
get_imm_packet(adap, r, rspq->rspq_mbuf, m, flags);
|
|
|
|
eop = 1;
|
|
rspq->imm_data++;
|
|
#endif
|
|
} else if (r->len_cq) {
|
|
int drop_thresh = eth ? SGE_RX_DROP_THRES : 0;
|
|
|
|
#ifdef DISABLE_MBUF_IOVEC
|
|
eop = get_packet(adap, drop_thresh, qs, &rspq->rspq_mh, r);
|
|
#else
|
|
eop = get_packet(adap, drop_thresh, qs, &rspq->rspq_mbuf, r);
|
|
#ifdef IFNET_MULTIQUEUE
|
|
rspq->rspq_mbuf->m_pkthdr.rss_hash = rss_hash;
|
|
#endif
|
|
#endif
|
|
ethpad = 2;
|
|
} else {
|
|
DPRINTF("pure response\n");
|
|
rspq->pure_rsps++;
|
|
}
|
|
|
|
if (flags & RSPD_CTRL_MASK) {
|
|
sleeping |= flags & RSPD_GTS_MASK;
|
|
handle_rsp_cntrl_info(qs, flags);
|
|
}
|
|
|
|
r++;
|
|
if (__predict_false(++rspq->cidx == rspq->size)) {
|
|
rspq->cidx = 0;
|
|
rspq->gen ^= 1;
|
|
r = rspq->desc;
|
|
}
|
|
prefetch(r);
|
|
if (++rspq->credits >= (rspq->size / 4)) {
|
|
refill_rspq(adap, rspq, rspq->credits);
|
|
rspq->credits = 0;
|
|
}
|
|
DPRINTF("eth=%d eop=%d flags=0x%x\n", eth, eop, flags);
|
|
|
|
if (!eth && eop) {
|
|
rspq->rspq_mh.mh_head->m_pkthdr.csum_data = rss_csum;
|
|
/*
|
|
* XXX size mismatch
|
|
*/
|
|
m_set_priority(rspq->rspq_mh.mh_head, rss_hash);
|
|
|
|
ngathered = rx_offload(&adap->tdev, rspq,
|
|
rspq->rspq_mh.mh_head, offload_mbufs, ngathered);
|
|
rspq->rspq_mh.mh_head = NULL;
|
|
DPRINTF("received offload packet\n");
|
|
|
|
} else if (eth && eop) {
|
|
prefetch(mtod(rspq->rspq_mh.mh_head, uint8_t *));
|
|
prefetch(mtod(rspq->rspq_mh.mh_head, uint8_t *) + L1_CACHE_BYTES);
|
|
|
|
t3_rx_eth_lro(adap, rspq, rspq->rspq_mh.mh_head, ethpad,
|
|
rss_hash, rss_csum, lro);
|
|
DPRINTF("received tunnel packet\n");
|
|
rspq->rspq_mh.mh_head = NULL;
|
|
|
|
}
|
|
__refill_fl_lt(adap, &qs->fl[0], 32);
|
|
__refill_fl_lt(adap, &qs->fl[1], 32);
|
|
--budget_left;
|
|
}
|
|
|
|
deliver_partial_bundle(&adap->tdev, rspq, offload_mbufs, ngathered);
|
|
t3_lro_flush(adap, qs, &qs->lro);
|
|
|
|
if (sleeping)
|
|
check_ring_db(adap, qs, sleeping);
|
|
|
|
smp_mb(); /* commit Tx queue processed updates */
|
|
if (__predict_false(qs->txq_stopped > 1)) {
|
|
printf("restarting tx on %p\n", qs);
|
|
|
|
restart_tx(qs);
|
|
}
|
|
|
|
__refill_fl_lt(adap, &qs->fl[0], 512);
|
|
__refill_fl_lt(adap, &qs->fl[1], 512);
|
|
budget -= budget_left;
|
|
return (budget);
|
|
}
|
|
|
|
/*
|
|
* A helper function that processes responses and issues GTS.
|
|
*/
|
|
static __inline int
|
|
process_responses_gts(adapter_t *adap, struct sge_rspq *rq)
|
|
{
|
|
int work;
|
|
static int last_holdoff = 0;
|
|
|
|
work = process_responses(adap, rspq_to_qset(rq), -1);
|
|
|
|
if (cxgb_debug && (rq->next_holdoff != last_holdoff)) {
|
|
printf("next_holdoff=%d\n", rq->next_holdoff);
|
|
last_holdoff = rq->next_holdoff;
|
|
}
|
|
t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
|
|
V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
|
|
|
|
return (work);
|
|
}
|
|
|
|
|
|
/*
|
|
* Interrupt handler for legacy INTx interrupts for T3B-based cards.
|
|
* Handles data events from SGE response queues as well as error and other
|
|
* async events as they all use the same interrupt pin. We use one SGE
|
|
* response queue per port in this mode and protect all response queues with
|
|
* queue 0's lock.
|
|
*/
|
|
void
|
|
t3b_intr(void *data)
|
|
{
|
|
uint32_t i, map;
|
|
adapter_t *adap = data;
|
|
struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
|
|
|
|
t3_write_reg(adap, A_PL_CLI, 0);
|
|
map = t3_read_reg(adap, A_SG_DATA_INTR);
|
|
|
|
if (!map)
|
|
return;
|
|
|
|
if (__predict_false(map & F_ERRINTR))
|
|
taskqueue_enqueue(adap->tq, &adap->slow_intr_task);
|
|
|
|
mtx_lock(&q0->lock);
|
|
for_each_port(adap, i)
|
|
if (map & (1 << i))
|
|
process_responses_gts(adap, &adap->sge.qs[i].rspq);
|
|
mtx_unlock(&q0->lock);
|
|
}
|
|
|
|
/*
|
|
* The MSI interrupt handler. This needs to handle data events from SGE
|
|
* response queues as well as error and other async events as they all use
|
|
* the same MSI vector. We use one SGE response queue per port in this mode
|
|
* and protect all response queues with queue 0's lock.
|
|
*/
|
|
void
|
|
t3_intr_msi(void *data)
|
|
{
|
|
adapter_t *adap = data;
|
|
struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
|
|
int i, new_packets = 0;
|
|
|
|
mtx_lock(&q0->lock);
|
|
|
|
for_each_port(adap, i)
|
|
if (process_responses_gts(adap, &adap->sge.qs[i].rspq))
|
|
new_packets = 1;
|
|
mtx_unlock(&q0->lock);
|
|
if (new_packets == 0)
|
|
taskqueue_enqueue(adap->tq, &adap->slow_intr_task);
|
|
}
|
|
|
|
void
|
|
t3_intr_msix(void *data)
|
|
{
|
|
struct sge_qset *qs = data;
|
|
adapter_t *adap = qs->port->adapter;
|
|
struct sge_rspq *rspq = &qs->rspq;
|
|
#ifndef IFNET_MULTIQUEUE
|
|
mtx_lock(&rspq->lock);
|
|
#else
|
|
if (mtx_trylock(&rspq->lock))
|
|
#endif
|
|
{
|
|
|
|
if (process_responses_gts(adap, rspq) == 0)
|
|
rspq->unhandled_irqs++;
|
|
mtx_unlock(&rspq->lock);
|
|
}
|
|
}
|
|
|
|
#define QDUMP_SBUF_SIZE 32 * 400
|
|
static int
|
|
t3_dump_rspq(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sge_rspq *rspq;
|
|
struct sge_qset *qs;
|
|
int i, err, dump_end, idx;
|
|
static int multiplier = 1;
|
|
struct sbuf *sb;
|
|
struct rsp_desc *rspd;
|
|
uint32_t data[4];
|
|
|
|
rspq = arg1;
|
|
qs = rspq_to_qset(rspq);
|
|
if (rspq->rspq_dump_count == 0)
|
|
return (0);
|
|
if (rspq->rspq_dump_count > RSPQ_Q_SIZE) {
|
|
log(LOG_WARNING,
|
|
"dump count is too large %d\n", rspq->rspq_dump_count);
|
|
rspq->rspq_dump_count = 0;
|
|
return (EINVAL);
|
|
}
|
|
if (rspq->rspq_dump_start > (RSPQ_Q_SIZE-1)) {
|
|
log(LOG_WARNING,
|
|
"dump start of %d is greater than queue size\n",
|
|
rspq->rspq_dump_start);
|
|
rspq->rspq_dump_start = 0;
|
|
return (EINVAL);
|
|
}
|
|
err = t3_sge_read_rspq(qs->port->adapter, rspq->cntxt_id, data);
|
|
if (err)
|
|
return (err);
|
|
retry_sbufops:
|
|
sb = sbuf_new(NULL, NULL, QDUMP_SBUF_SIZE*multiplier, SBUF_FIXEDLEN);
|
|
|
|
sbuf_printf(sb, " \n index=%u size=%u MSI-X/RspQ=%u intr enable=%u intr armed=%u\n",
|
|
(data[0] & 0xffff), data[0] >> 16, ((data[2] >> 20) & 0x3f),
|
|
((data[2] >> 26) & 1), ((data[2] >> 27) & 1));
|
|
sbuf_printf(sb, " generation=%u CQ mode=%u FL threshold=%u\n",
|
|
((data[2] >> 28) & 1), ((data[2] >> 31) & 1), data[3]);
|
|
|
|
sbuf_printf(sb, " start=%d -> end=%d\n", rspq->rspq_dump_start,
|
|
(rspq->rspq_dump_start + rspq->rspq_dump_count) & (RSPQ_Q_SIZE-1));
|
|
|
|
dump_end = rspq->rspq_dump_start + rspq->rspq_dump_count;
|
|
for (i = rspq->rspq_dump_start; i < dump_end; i++) {
|
|
idx = i & (RSPQ_Q_SIZE-1);
|
|
|
|
rspd = &rspq->desc[idx];
|
|
sbuf_printf(sb, "\tidx=%04d opcode=%02x cpu_idx=%x hash_type=%x cq_idx=%x\n",
|
|
idx, rspd->rss_hdr.opcode, rspd->rss_hdr.cpu_idx,
|
|
rspd->rss_hdr.hash_type, be16toh(rspd->rss_hdr.cq_idx));
|
|
sbuf_printf(sb, "\trss_hash_val=%x flags=%08x len_cq=%x intr_gen=%x\n",
|
|
rspd->rss_hdr.rss_hash_val, be32toh(rspd->flags),
|
|
be32toh(rspd->len_cq), rspd->intr_gen);
|
|
}
|
|
if (sbuf_overflowed(sb)) {
|
|
sbuf_delete(sb);
|
|
multiplier++;
|
|
goto retry_sbufops;
|
|
}
|
|
sbuf_finish(sb);
|
|
err = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
|
|
sbuf_delete(sb);
|
|
return (err);
|
|
}
|
|
|
|
|
|
/*
|
|
* broken by recent mbuf changes
|
|
*/
|
|
static int
|
|
t3_dump_txq(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sge_txq *txq;
|
|
struct sge_qset *qs;
|
|
int i, j, err, dump_end;
|
|
static int multiplier = 1;
|
|
struct sbuf *sb;
|
|
struct tx_desc *txd;
|
|
uint32_t *WR, wr_hi, wr_lo, gen;
|
|
uint32_t data[4];
|
|
|
|
txq = arg1;
|
|
qs = txq_to_qset(txq, TXQ_ETH);
|
|
if (txq->txq_dump_count == 0) {
|
|
return (0);
|
|
}
|
|
if (txq->txq_dump_count > TX_ETH_Q_SIZE) {
|
|
log(LOG_WARNING,
|
|
"dump count is too large %d\n", txq->txq_dump_count);
|
|
txq->txq_dump_count = 1;
|
|
return (EINVAL);
|
|
}
|
|
if (txq->txq_dump_start > (TX_ETH_Q_SIZE-1)) {
|
|
log(LOG_WARNING,
|
|
"dump start of %d is greater than queue size\n",
|
|
txq->txq_dump_start);
|
|
txq->txq_dump_start = 0;
|
|
return (EINVAL);
|
|
}
|
|
err = t3_sge_read_ecntxt(qs->port->adapter, txq->cntxt_id, data);
|
|
if (err)
|
|
return (err);
|
|
|
|
|
|
retry_sbufops:
|
|
sb = sbuf_new(NULL, NULL, QDUMP_SBUF_SIZE*multiplier, SBUF_FIXEDLEN);
|
|
|
|
sbuf_printf(sb, " \n credits=%u GTS=%u index=%u size=%u rspq#=%u cmdq#=%u\n",
|
|
(data[0] & 0x7fff), ((data[0] >> 15) & 1), (data[0] >> 16),
|
|
(data[1] & 0xffff), ((data[3] >> 4) & 7), ((data[3] >> 7) & 1));
|
|
sbuf_printf(sb, " TUN=%u TOE=%u generation%u uP token=%u valid=%u\n",
|
|
((data[3] >> 8) & 1), ((data[3] >> 9) & 1), ((data[3] >> 10) & 1),
|
|
((data[3] >> 11) & 0xfffff), ((data[3] >> 31) & 1));
|
|
sbuf_printf(sb, " qid=%d start=%d -> end=%d\n", qs->idx,
|
|
txq->txq_dump_start,
|
|
(txq->txq_dump_start + txq->txq_dump_count) & (TX_ETH_Q_SIZE-1));
|
|
|
|
dump_end = txq->txq_dump_start + txq->txq_dump_count;
|
|
for (i = txq->txq_dump_start; i < dump_end; i++) {
|
|
txd = &txq->desc[i & (TX_ETH_Q_SIZE-1)];
|
|
WR = (uint32_t *)txd->flit;
|
|
wr_hi = ntohl(WR[0]);
|
|
wr_lo = ntohl(WR[1]);
|
|
gen = G_WR_GEN(wr_lo);
|
|
|
|
sbuf_printf(sb," wr_hi %08x wr_lo %08x gen %d\n",
|
|
wr_hi, wr_lo, gen);
|
|
for (j = 2; j < 30; j += 4)
|
|
sbuf_printf(sb, "\t%08x %08x %08x %08x \n",
|
|
WR[j], WR[j + 1], WR[j + 2], WR[j + 3]);
|
|
|
|
}
|
|
if (sbuf_overflowed(sb)) {
|
|
sbuf_delete(sb);
|
|
multiplier++;
|
|
goto retry_sbufops;
|
|
}
|
|
sbuf_finish(sb);
|
|
err = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
|
|
sbuf_delete(sb);
|
|
return (err);
|
|
}
|
|
|
|
|
|
static int
|
|
t3_lro_enable(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
adapter_t *sc;
|
|
int i, j, enabled, err, nqsets = 0;
|
|
|
|
#ifndef LRO_WORKING
|
|
return (0);
|
|
#endif
|
|
sc = arg1;
|
|
enabled = sc->sge.qs[0].lro.enabled;
|
|
err = sysctl_handle_int(oidp, &enabled, arg2, req);
|
|
|
|
if (err != 0)
|
|
return (err);
|
|
if (enabled == sc->sge.qs[0].lro.enabled)
|
|
return (0);
|
|
|
|
for (i = 0; i < sc->params.nports; i++)
|
|
for (j = 0; j < sc->port[i].nqsets; j++)
|
|
nqsets++;
|
|
|
|
for (i = 0; i < nqsets; i++)
|
|
sc->sge.qs[i].lro.enabled = enabled;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
t3_set_coalesce_nsecs(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
adapter_t *sc = arg1;
|
|
struct qset_params *qsp = &sc->params.sge.qset[0];
|
|
int coalesce_nsecs;
|
|
struct sge_qset *qs;
|
|
int i, j, err, nqsets = 0;
|
|
struct mtx *lock;
|
|
|
|
if ((sc->flags & FULL_INIT_DONE) == 0)
|
|
return (ENXIO);
|
|
|
|
coalesce_nsecs = qsp->coalesce_nsecs;
|
|
err = sysctl_handle_int(oidp, &coalesce_nsecs, arg2, req);
|
|
|
|
if (err != 0) {
|
|
return (err);
|
|
}
|
|
if (coalesce_nsecs == qsp->coalesce_nsecs)
|
|
return (0);
|
|
|
|
for (i = 0; i < sc->params.nports; i++)
|
|
for (j = 0; j < sc->port[i].nqsets; j++)
|
|
nqsets++;
|
|
|
|
coalesce_nsecs = max(100, coalesce_nsecs);
|
|
|
|
for (i = 0; i < nqsets; i++) {
|
|
qs = &sc->sge.qs[i];
|
|
qsp = &sc->params.sge.qset[i];
|
|
qsp->coalesce_nsecs = coalesce_nsecs;
|
|
|
|
lock = (sc->flags & USING_MSIX) ? &qs->rspq.lock :
|
|
&sc->sge.qs[0].rspq.lock;
|
|
|
|
mtx_lock(lock);
|
|
t3_update_qset_coalesce(qs, qsp);
|
|
t3_write_reg(sc, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
|
|
V_NEWTIMER(qs->rspq.holdoff_tmr));
|
|
mtx_unlock(lock);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
void
|
|
t3_add_attach_sysctls(adapter_t *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *children;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->dev);
|
|
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
|
|
|
|
/* random information */
|
|
SYSCTL_ADD_STRING(ctx, children, OID_AUTO,
|
|
"firmware_version",
|
|
CTLFLAG_RD, &sc->fw_version,
|
|
0, "firmware version");
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
|
|
"enable_lro",
|
|
CTLTYPE_INT|CTLFLAG_RW, sc,
|
|
0, t3_lro_enable,
|
|
"I", "enable large receive offload");
|
|
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"enable_debug",
|
|
CTLFLAG_RW, &cxgb_debug,
|
|
0, "enable verbose debugging output");
|
|
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tunq_coalesce",
|
|
CTLFLAG_RD, &sc->tunq_coalesce,
|
|
"#tunneled packets freed");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"txq_overrun",
|
|
CTLFLAG_RD, &txq_fills,
|
|
0, "#times txq overrun");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"bogus_imm",
|
|
CTLFLAG_RD, &bogus_imm,
|
|
0, "#times a bogus immediate response was seen");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"cache_alloc",
|
|
CTLFLAG_RD, &cxgb_cached_allocations,
|
|
0, "#times a cluster was allocated from cache");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"cached",
|
|
CTLFLAG_RD, &cxgb_cached,
|
|
0, "#times a cluster was cached");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"ext_freed",
|
|
CTLFLAG_RD, &cxgb_ext_freed,
|
|
0, "#times a cluster was freed through ext_free");
|
|
}
|
|
|
|
|
|
static const char *rspq_name = "rspq";
|
|
static const char *txq_names[] =
|
|
{
|
|
"txq_eth",
|
|
"txq_ofld",
|
|
"txq_ctrl"
|
|
};
|
|
|
|
void
|
|
t3_add_configured_sysctls(adapter_t *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *children;
|
|
int i, j;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->dev);
|
|
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
|
|
"intr_coal",
|
|
CTLTYPE_INT|CTLFLAG_RW, sc,
|
|
0, t3_set_coalesce_nsecs,
|
|
"I", "interrupt coalescing timer (ns)");
|
|
|
|
for (i = 0; i < sc->params.nports; i++) {
|
|
struct port_info *pi = &sc->port[i];
|
|
struct sysctl_oid *poid;
|
|
struct sysctl_oid_list *poidlist;
|
|
|
|
snprintf(pi->namebuf, PORT_NAME_LEN, "port%d", i);
|
|
poid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO,
|
|
pi->namebuf, CTLFLAG_RD, NULL, "port statistics");
|
|
poidlist = SYSCTL_CHILDREN(poid);
|
|
SYSCTL_ADD_INT(ctx, poidlist, OID_AUTO,
|
|
"nqsets", CTLFLAG_RD, &pi->nqsets,
|
|
0, "#queue sets");
|
|
|
|
for (j = 0; j < pi->nqsets; j++) {
|
|
struct sge_qset *qs = &sc->sge.qs[pi->first_qset + j];
|
|
struct sysctl_oid *qspoid, *rspqpoid, *txqpoid;
|
|
struct sysctl_oid_list *qspoidlist, *rspqpoidlist, *txqpoidlist;
|
|
struct sge_txq *txq = &qs->txq[TXQ_ETH];
|
|
|
|
snprintf(qs->namebuf, QS_NAME_LEN, "qs%d", j);
|
|
|
|
qspoid = SYSCTL_ADD_NODE(ctx, poidlist, OID_AUTO,
|
|
qs->namebuf, CTLFLAG_RD, NULL, "qset statistics");
|
|
qspoidlist = SYSCTL_CHILDREN(qspoid);
|
|
|
|
rspqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
|
|
rspq_name, CTLFLAG_RD, NULL, "rspq statistics");
|
|
rspqpoidlist = SYSCTL_CHILDREN(rspqpoid);
|
|
|
|
txqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
|
|
txq_names[0], CTLFLAG_RD, NULL, "txq statistics");
|
|
txqpoidlist = SYSCTL_CHILDREN(txqpoid);
|
|
|
|
|
|
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "size",
|
|
CTLFLAG_RD, &qs->rspq.size,
|
|
0, "#entries in response queue");
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "cidx",
|
|
CTLFLAG_RD, &qs->rspq.cidx,
|
|
0, "consumer index");
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "credits",
|
|
CTLFLAG_RD, &qs->rspq.credits,
|
|
0, "#credits");
|
|
SYSCTL_ADD_XLONG(ctx, rspqpoidlist, OID_AUTO, "phys_addr",
|
|
CTLFLAG_RD, &qs->rspq.phys_addr,
|
|
"physical_address_of the queue");
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "dump_start",
|
|
CTLFLAG_RW, &qs->rspq.rspq_dump_start,
|
|
0, "start rspq dump entry");
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "dump_count",
|
|
CTLFLAG_RW, &qs->rspq.rspq_dump_count,
|
|
0, "#rspq entries to dump");
|
|
SYSCTL_ADD_PROC(ctx, rspqpoidlist, OID_AUTO, "qdump",
|
|
CTLTYPE_STRING | CTLFLAG_RD, &qs->rspq,
|
|
0, t3_dump_rspq, "A", "dump of the response queue");
|
|
|
|
|
|
|
|
SYSCTL_ADD_INT(ctx, txqpoidlist, OID_AUTO, "dropped",
|
|
CTLFLAG_RD, &qs->txq[TXQ_ETH].txq_drops,
|
|
0, "#tunneled packets dropped");
|
|
SYSCTL_ADD_INT(ctx, txqpoidlist, OID_AUTO, "sendqlen",
|
|
CTLFLAG_RD, &qs->txq[TXQ_ETH].sendq.qlen,
|
|
0, "#tunneled packets waiting to be sent");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "queue_pidx",
|
|
CTLFLAG_RD, (uint32_t *)(uintptr_t)&qs->txq[TXQ_ETH].txq_mr.br_prod,
|
|
0, "#tunneled packets queue producer index");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "queue_cidx",
|
|
CTLFLAG_RD, (uint32_t *)(uintptr_t)&qs->txq[TXQ_ETH].txq_mr.br_cons,
|
|
0, "#tunneled packets queue consumer index");
|
|
SYSCTL_ADD_INT(ctx, txqpoidlist, OID_AUTO, "processed",
|
|
CTLFLAG_RD, &qs->txq[TXQ_ETH].processed,
|
|
0, "#tunneled packets processed by the card");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "cleaned",
|
|
CTLFLAG_RD, &txq->cleaned,
|
|
0, "#tunneled packets cleaned");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "in_use",
|
|
CTLFLAG_RD, &txq->in_use,
|
|
0, "#tunneled packet slots in use");
|
|
SYSCTL_ADD_ULONG(ctx, txqpoidlist, OID_AUTO, "frees",
|
|
CTLFLAG_RD, &txq->txq_frees,
|
|
"#tunneled packets freed");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "skipped",
|
|
CTLFLAG_RD, &txq->txq_skipped,
|
|
0, "#tunneled packet descriptors skipped");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "coalesced",
|
|
CTLFLAG_RD, &txq->txq_coalesced,
|
|
0, "#tunneled packets coalesced");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "enqueued",
|
|
CTLFLAG_RD, &txq->txq_enqueued,
|
|
0, "#tunneled packets enqueued to hardware");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "stopped_flags",
|
|
CTLFLAG_RD, &qs->txq_stopped,
|
|
0, "tx queues stopped");
|
|
SYSCTL_ADD_XLONG(ctx, txqpoidlist, OID_AUTO, "phys_addr",
|
|
CTLFLAG_RD, &txq->phys_addr,
|
|
"physical_address_of the queue");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "qgen",
|
|
CTLFLAG_RW, &qs->txq[TXQ_ETH].gen,
|
|
0, "txq generation");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "hw_cidx",
|
|
CTLFLAG_RD, &txq->cidx,
|
|
0, "hardware queue cidx");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "hw_pidx",
|
|
CTLFLAG_RD, &txq->pidx,
|
|
0, "hardware queue pidx");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "dump_start",
|
|
CTLFLAG_RW, &qs->txq[TXQ_ETH].txq_dump_start,
|
|
0, "txq start idx for dump");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "dump_count",
|
|
CTLFLAG_RW, &qs->txq[TXQ_ETH].txq_dump_count,
|
|
0, "txq #entries to dump");
|
|
SYSCTL_ADD_PROC(ctx, txqpoidlist, OID_AUTO, "qdump",
|
|
CTLTYPE_STRING | CTLFLAG_RD, &qs->txq[TXQ_ETH],
|
|
0, t3_dump_txq, "A", "dump of the transmit queue");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_get_desc - dump an SGE descriptor for debugging purposes
|
|
* @qs: the queue set
|
|
* @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
|
|
* @idx: the descriptor index in the queue
|
|
* @data: where to dump the descriptor contents
|
|
*
|
|
* Dumps the contents of a HW descriptor of an SGE queue. Returns the
|
|
* size of the descriptor.
|
|
*/
|
|
int
|
|
t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
|
|
unsigned char *data)
|
|
{
|
|
if (qnum >= 6)
|
|
return (EINVAL);
|
|
|
|
if (qnum < 3) {
|
|
if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
|
|
return -EINVAL;
|
|
memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
|
|
return sizeof(struct tx_desc);
|
|
}
|
|
|
|
if (qnum == 3) {
|
|
if (!qs->rspq.desc || idx >= qs->rspq.size)
|
|
return (EINVAL);
|
|
memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
|
|
return sizeof(struct rsp_desc);
|
|
}
|
|
|
|
qnum -= 4;
|
|
if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
|
|
return (EINVAL);
|
|
memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
|
|
return sizeof(struct rx_desc);
|
|
}
|