freebsd-nq/sys/dev/acpica/acpi_pxm.c
Mark Johnston 0f8b212a1e acpi: Ensure that adjacent memory affinity table entries are coalesced
The SRAT may contain multiple distinct entries that together describe a
contiguous region of physical memory.  In this case we were not
coalescing the corresponding entries in the memory affinity table, which
led to fragmented phys_avail[] entries.  Since r338431 the vm_phys_segs[]
entries derived from phys_avail[] will be coalesced, resulting in a
situation where vm_phys_segs[] entries do not have a covering
phys_avail[] entry.  vm_page_startup() will not add such segments to the
physical memory allocator, leaving them unused.

Reported by:	Don Morris <dgmorris@earthlink.net>
Reviewed by:	kib, vangyzen
MFC after:	2 weeks
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D27620
2020-12-18 16:04:48 +00:00

713 lines
16 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2010 Hudson River Trading LLC
* Written by: John H. Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_vm.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_param.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/aclocal.h>
#include <contrib/dev/acpica/include/actables.h>
#include <machine/md_var.h>
#include <dev/acpica/acpivar.h>
#if MAXMEMDOM > 1
static struct cpu_info {
int enabled:1;
int has_memory:1;
int domain;
int id;
} *cpus;
static int max_cpus;
static int last_cpu;
struct mem_affinity mem_info[VM_PHYSSEG_MAX + 1];
int num_mem;
static ACPI_TABLE_SRAT *srat;
static vm_paddr_t srat_physaddr;
static int domain_pxm[MAXMEMDOM];
static int ndomain;
static vm_paddr_t maxphyaddr;
static ACPI_TABLE_SLIT *slit;
static vm_paddr_t slit_physaddr;
static int vm_locality_table[MAXMEMDOM * MAXMEMDOM];
static void srat_walk_table(acpi_subtable_handler *handler, void *arg);
/*
* SLIT parsing.
*/
static void
slit_parse_table(ACPI_TABLE_SLIT *s)
{
int i, j;
int i_domain, j_domain;
int offset = 0;
uint8_t e;
/*
* This maps the SLIT data into the VM-domain centric view.
* There may be sparse entries in the PXM namespace, so
* remap them to a VM-domain ID and if it doesn't exist,
* skip it.
*
* It should result in a packed 2d array of VM-domain
* locality information entries.
*/
if (bootverbose)
printf("SLIT.Localities: %d\n", (int) s->LocalityCount);
for (i = 0; i < s->LocalityCount; i++) {
i_domain = acpi_map_pxm_to_vm_domainid(i);
if (i_domain < 0)
continue;
if (bootverbose)
printf("%d: ", i);
for (j = 0; j < s->LocalityCount; j++) {
j_domain = acpi_map_pxm_to_vm_domainid(j);
if (j_domain < 0)
continue;
e = s->Entry[i * s->LocalityCount + j];
if (bootverbose)
printf("%d ", (int) e);
/* 255 == "no locality information" */
if (e == 255)
vm_locality_table[offset] = -1;
else
vm_locality_table[offset] = e;
offset++;
}
if (bootverbose)
printf("\n");
}
}
/*
* Look for an ACPI System Locality Distance Information Table ("SLIT")
*/
static int
parse_slit(void)
{
if (resource_disabled("slit", 0)) {
return (-1);
}
slit_physaddr = acpi_find_table(ACPI_SIG_SLIT);
if (slit_physaddr == 0) {
return (-1);
}
/*
* Make a pass over the table to populate the cpus[] and
* mem_info[] tables.
*/
slit = acpi_map_table(slit_physaddr, ACPI_SIG_SLIT);
slit_parse_table(slit);
acpi_unmap_table(slit);
slit = NULL;
return (0);
}
/*
* SRAT parsing.
*/
/*
* Returns true if a memory range overlaps with at least one range in
* phys_avail[].
*/
static int
overlaps_phys_avail(vm_paddr_t start, vm_paddr_t end)
{
int i;
for (i = 0; phys_avail[i] != 0 && phys_avail[i + 1] != 0; i += 2) {
if (phys_avail[i + 1] <= start)
continue;
if (phys_avail[i] < end)
return (1);
break;
}
return (0);
}
/*
* On x86 we can use the cpuid to index the cpus array, but on arm64
* we have an ACPI Processor UID with a larger range.
*
* Use this variable to indicate if the cpus can be stored by index.
*/
#ifdef __aarch64__
static const int cpus_use_indexing = 0;
#else
static const int cpus_use_indexing = 1;
#endif
/*
* Find CPU by processor ID (APIC ID on x86, Processor UID on arm64)
*/
static struct cpu_info *
cpu_find(int cpuid)
{
int i;
if (cpus_use_indexing) {
if (cpuid <= last_cpu && cpus[cpuid].enabled)
return (&cpus[cpuid]);
} else {
for (i = 0; i <= last_cpu; i++)
if (cpus[i].id == cpuid)
return (&cpus[i]);
}
return (NULL);
}
/*
* Find CPU by pcpu pointer.
*/
static struct cpu_info *
cpu_get_info(struct pcpu *pc)
{
struct cpu_info *cpup;
int id;
#ifdef __aarch64__
id = pc->pc_acpi_id;
#else
id = pc->pc_apic_id;
#endif
cpup = cpu_find(id);
if (cpup == NULL)
panic("SRAT: CPU with ID %u is not known", id);
return (cpup);
}
/*
* Add proximity information for a new CPU.
*/
static struct cpu_info *
cpu_add(int cpuid, int domain)
{
struct cpu_info *cpup;
if (cpus_use_indexing) {
if (cpuid >= max_cpus)
return (NULL);
last_cpu = imax(last_cpu, cpuid);
cpup = &cpus[cpuid];
} else {
if (last_cpu >= max_cpus - 1)
return (NULL);
cpup = &cpus[++last_cpu];
}
cpup->domain = domain;
cpup->id = cpuid;
cpup->enabled = 1;
return (cpup);
}
static void
srat_parse_entry(ACPI_SUBTABLE_HEADER *entry, void *arg)
{
ACPI_SRAT_CPU_AFFINITY *cpu;
ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
ACPI_SRAT_MEM_AFFINITY *mem;
ACPI_SRAT_GICC_AFFINITY *gicc;
static struct cpu_info *cpup;
uint64_t base, length;
int domain, i, slot;
switch (entry->Type) {
case ACPI_SRAT_TYPE_CPU_AFFINITY:
cpu = (ACPI_SRAT_CPU_AFFINITY *)entry;
domain = cpu->ProximityDomainLo |
cpu->ProximityDomainHi[0] << 8 |
cpu->ProximityDomainHi[1] << 16 |
cpu->ProximityDomainHi[2] << 24;
if (bootverbose)
printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
cpu->ApicId, domain,
(cpu->Flags & ACPI_SRAT_CPU_ENABLED) ?
"enabled" : "disabled");
if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
break;
cpup = cpu_find(cpu->ApicId);
if (cpup != NULL) {
printf("SRAT: Duplicate local APIC ID %u\n",
cpu->ApicId);
*(int *)arg = ENXIO;
break;
}
cpup = cpu_add(cpu->ApicId, domain);
if (cpup == NULL)
printf("SRAT: Ignoring local APIC ID %u (too high)\n",
cpu->ApicId);
break;
case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)entry;
if (bootverbose)
printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
x2apic->ApicId, x2apic->ProximityDomain,
(x2apic->Flags & ACPI_SRAT_CPU_ENABLED) ?
"enabled" : "disabled");
if (!(x2apic->Flags & ACPI_SRAT_CPU_ENABLED))
break;
KASSERT(cpu_find(x2apic->ApicId) == NULL,
("Duplicate local APIC ID %u", x2apic->ApicId));
cpup = cpu_add(x2apic->ApicId, x2apic->ProximityDomain);
if (cpup == NULL)
printf("SRAT: Ignoring local APIC ID %u (too high)\n",
x2apic->ApicId);
break;
case ACPI_SRAT_TYPE_GICC_AFFINITY:
gicc = (ACPI_SRAT_GICC_AFFINITY *)entry;
if (bootverbose)
printf("SRAT: Found CPU UID %u domain %d: %s\n",
gicc->AcpiProcessorUid, gicc->ProximityDomain,
(gicc->Flags & ACPI_SRAT_GICC_ENABLED) ?
"enabled" : "disabled");
if (!(gicc->Flags & ACPI_SRAT_GICC_ENABLED))
break;
KASSERT(cpu_find(gicc->AcpiProcessorUid) == NULL,
("Duplicate CPU UID %u", gicc->AcpiProcessorUid));
cpup = cpu_add(gicc->AcpiProcessorUid, gicc->ProximityDomain);
if (cpup == NULL)
printf("SRAT: Ignoring CPU UID %u (too high)\n",
gicc->AcpiProcessorUid);
break;
case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
mem = (ACPI_SRAT_MEM_AFFINITY *)entry;
base = mem->BaseAddress;
length = mem->Length;
domain = mem->ProximityDomain;
if (bootverbose)
printf(
"SRAT: Found memory domain %d addr 0x%jx len 0x%jx: %s\n",
domain, (uintmax_t)base, (uintmax_t)length,
(mem->Flags & ACPI_SRAT_MEM_ENABLED) ?
"enabled" : "disabled");
if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
break;
if (base >= maxphyaddr ||
!overlaps_phys_avail(base, base + length)) {
printf("SRAT: Ignoring memory at addr 0x%jx\n",
(uintmax_t)base);
break;
}
if (num_mem == VM_PHYSSEG_MAX) {
printf("SRAT: Too many memory regions\n");
*(int *)arg = ENXIO;
break;
}
slot = num_mem;
for (i = 0; i < num_mem; i++) {
if (mem_info[i].domain == domain) {
/* Try to extend an existing segment. */
if (base == mem_info[i].end) {
mem_info[i].end += length;
return;
}
if (base + length == mem_info[i].start) {
mem_info[i].start -= length;
return;
}
}
if (mem_info[i].end <= base)
continue;
if (mem_info[i].start < base + length) {
printf("SRAT: Overlapping memory entries\n");
*(int *)arg = ENXIO;
return;
}
slot = i;
}
for (i = num_mem; i > slot; i--)
mem_info[i] = mem_info[i - 1];
mem_info[slot].start = base;
mem_info[slot].end = base + length;
mem_info[slot].domain = domain;
num_mem++;
break;
}
}
/*
* Ensure each memory domain has at least one CPU and that each CPU
* has at least one memory domain.
*/
static int
check_domains(void)
{
int found, i, j;
for (i = 0; i < num_mem; i++) {
found = 0;
for (j = 0; j <= last_cpu; j++)
if (cpus[j].enabled &&
cpus[j].domain == mem_info[i].domain) {
cpus[j].has_memory = 1;
found++;
}
if (!found) {
printf("SRAT: No CPU found for memory domain %d\n",
mem_info[i].domain);
return (ENXIO);
}
}
for (i = 0; i <= last_cpu; i++)
if (cpus[i].enabled && !cpus[i].has_memory) {
found = 0;
for (j = 0; j < num_mem && !found; j++) {
if (mem_info[j].domain == cpus[i].domain)
found = 1;
}
if (!found) {
if (bootverbose)
printf("SRAT: mem dom %d is empty\n",
cpus[i].domain);
mem_info[num_mem].start = 0;
mem_info[num_mem].end = 0;
mem_info[num_mem].domain = cpus[i].domain;
num_mem++;
}
}
return (0);
}
/*
* Check that the SRAT memory regions cover all of the regions in
* phys_avail[].
*/
static int
check_phys_avail(void)
{
vm_paddr_t address;
int i, j;
/* j is the current offset into phys_avail[]. */
address = phys_avail[0];
j = 0;
for (i = 0; i < num_mem; i++) {
/*
* Consume as many phys_avail[] entries as fit in this
* region.
*/
while (address >= mem_info[i].start &&
address <= mem_info[i].end) {
/*
* If we cover the rest of this phys_avail[] entry,
* advance to the next entry.
*/
if (phys_avail[j + 1] <= mem_info[i].end) {
j += 2;
if (phys_avail[j] == 0 &&
phys_avail[j + 1] == 0) {
return (0);
}
address = phys_avail[j];
} else
address = mem_info[i].end + 1;
}
}
printf("SRAT: No memory region found for 0x%jx - 0x%jx\n",
(uintmax_t)phys_avail[j], (uintmax_t)phys_avail[j + 1]);
return (ENXIO);
}
/*
* Renumber the memory domains to be compact and zero-based if not
* already. Returns an error if there are too many domains.
*/
static int
renumber_domains(void)
{
int i, j, slot;
/* Enumerate all the domains. */
ndomain = 0;
for (i = 0; i < num_mem; i++) {
/* See if this domain is already known. */
for (j = 0; j < ndomain; j++) {
if (domain_pxm[j] >= mem_info[i].domain)
break;
}
if (j < ndomain && domain_pxm[j] == mem_info[i].domain)
continue;
if (ndomain >= MAXMEMDOM) {
ndomain = 1;
printf("SRAT: Too many memory domains\n");
return (EFBIG);
}
/* Insert the new domain at slot 'j'. */
slot = j;
for (j = ndomain; j > slot; j--)
domain_pxm[j] = domain_pxm[j - 1];
domain_pxm[slot] = mem_info[i].domain;
ndomain++;
}
/* Renumber each domain to its index in the sorted 'domain_pxm' list. */
for (i = 0; i < ndomain; i++) {
/*
* If the domain is already the right value, no need
* to renumber.
*/
if (domain_pxm[i] == i)
continue;
/* Walk the cpu[] and mem_info[] arrays to renumber. */
for (j = 0; j < num_mem; j++)
if (mem_info[j].domain == domain_pxm[i])
mem_info[j].domain = i;
for (j = 0; j <= last_cpu; j++)
if (cpus[j].enabled && cpus[j].domain == domain_pxm[i])
cpus[j].domain = i;
}
return (0);
}
/*
* Look for an ACPI System Resource Affinity Table ("SRAT"),
* allocate space for cpu information, and initialize globals.
*/
int
acpi_pxm_init(int ncpus, vm_paddr_t maxphys)
{
unsigned int idx, size;
vm_paddr_t addr;
if (resource_disabled("srat", 0))
return (-1);
max_cpus = ncpus;
last_cpu = -1;
maxphyaddr = maxphys;
srat_physaddr = acpi_find_table(ACPI_SIG_SRAT);
if (srat_physaddr == 0)
return (-1);
/*
* Allocate data structure:
*
* Find the last physical memory region and steal some memory from
* it. This is done because at this point in the boot process
* malloc is still not usable.
*/
for (idx = 0; phys_avail[idx + 1] != 0; idx += 2);
KASSERT(idx != 0, ("phys_avail is empty!"));
idx -= 2;
size = sizeof(*cpus) * max_cpus;
addr = trunc_page(phys_avail[idx + 1] - size);
KASSERT(addr >= phys_avail[idx],
("Not enough memory for SRAT table items"));
phys_avail[idx + 1] = addr - 1;
/*
* We cannot rely on PHYS_TO_DMAP because this code is also used in
* i386, so use pmap_mapbios to map the memory, this will end up using
* the default memory attribute (WB), and the DMAP when available.
*/
cpus = (struct cpu_info *)pmap_mapbios(addr, size);
bzero(cpus, size);
return (0);
}
static int
parse_srat(void)
{
int error;
/*
* Make a pass over the table to populate the cpus[] and
* mem_info[] tables.
*/
srat = acpi_map_table(srat_physaddr, ACPI_SIG_SRAT);
error = 0;
srat_walk_table(srat_parse_entry, &error);
acpi_unmap_table(srat);
srat = NULL;
if (error || check_domains() != 0 || check_phys_avail() != 0 ||
renumber_domains() != 0) {
srat_physaddr = 0;
return (-1);
}
return (0);
}
static void
init_mem_locality(void)
{
int i;
/*
* For now, assume -1 == "no locality information for
* this pairing.
*/
for (i = 0; i < MAXMEMDOM * MAXMEMDOM; i++)
vm_locality_table[i] = -1;
}
/*
* Parse SRAT and SLIT to save proximity info. Don't do
* anything if SRAT is not available.
*/
void
acpi_pxm_parse_tables(void)
{
if (srat_physaddr == 0)
return;
if (parse_srat() < 0)
return;
init_mem_locality();
(void)parse_slit();
}
/*
* Use saved data from SRAT/SLIT to update memory locality.
*/
void
acpi_pxm_set_mem_locality(void)
{
if (srat_physaddr == 0)
return;
vm_phys_register_domains(ndomain, mem_info, vm_locality_table);
}
static void
srat_walk_table(acpi_subtable_handler *handler, void *arg)
{
acpi_walk_subtables(srat + 1, (char *)srat + srat->Header.Length,
handler, arg);
}
/*
* Set up per-CPU domain IDs from information saved in 'cpus' and tear down data
* structures allocated by acpi_pxm_init().
*/
void
acpi_pxm_set_cpu_locality(void)
{
struct cpu_info *cpu;
struct pcpu *pc;
u_int i;
if (srat_physaddr == 0)
return;
for (i = 0; i < MAXCPU; i++) {
if (CPU_ABSENT(i))
continue;
pc = pcpu_find(i);
KASSERT(pc != NULL, ("no pcpu data for CPU %u", i));
cpu = cpu_get_info(pc);
pc->pc_domain = vm_ndomains > 1 ? cpu->domain : 0;
CPU_SET(i, &cpuset_domain[pc->pc_domain]);
if (bootverbose)
printf("SRAT: CPU %u has memory domain %d\n", i,
pc->pc_domain);
}
/* XXXMJ the page is leaked. */
pmap_unmapbios((vm_offset_t)cpus, sizeof(*cpus) * max_cpus);
srat_physaddr = 0;
cpus = NULL;
}
int
acpi_pxm_get_cpu_locality(int apic_id)
{
struct cpu_info *cpu;
cpu = cpu_find(apic_id);
if (cpu == NULL)
panic("SRAT: CPU with ID %u is not known", apic_id);
return (cpu->domain);
}
/*
* Map a _PXM value to a VM domain ID.
*
* Returns the domain ID, or -1 if no domain ID was found.
*/
int
acpi_map_pxm_to_vm_domainid(int pxm)
{
int i;
for (i = 0; i < ndomain; i++) {
if (domain_pxm[i] == pxm)
return (vm_ndomains > 1 ? i : 0);
}
return (-1);
}
#else /* MAXMEMDOM == 1 */
int
acpi_map_pxm_to_vm_domainid(int pxm)
{
return (-1);
}
#endif /* MAXMEMDOM > 1 */