freebsd-nq/sys/dev/netmap/netmap_kern.h
Vincenzo Maffione ee0005f11f netmap: simplify parameter passing
Changes imported from the netmap github.
2021-01-24 21:59:02 +00:00

2422 lines
74 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
* Copyright (C) 2013-2016 Universita` di Pisa
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $FreeBSD$
*
* The header contains the definitions of constants and function
* prototypes used only in kernelspace.
*/
#ifndef _NET_NETMAP_KERN_H_
#define _NET_NETMAP_KERN_H_
#if defined(linux)
#if defined(CONFIG_NETMAP_EXTMEM)
#define WITH_EXTMEM
#endif
#if defined(CONFIG_NETMAP_VALE)
#define WITH_VALE
#endif
#if defined(CONFIG_NETMAP_PIPE)
#define WITH_PIPES
#endif
#if defined(CONFIG_NETMAP_MONITOR)
#define WITH_MONITOR
#endif
#if defined(CONFIG_NETMAP_GENERIC)
#define WITH_GENERIC
#endif
#if defined(CONFIG_NETMAP_PTNETMAP)
#define WITH_PTNETMAP
#endif
#if defined(CONFIG_NETMAP_SINK)
#define WITH_SINK
#endif
#if defined(CONFIG_NETMAP_NULL)
#define WITH_NMNULL
#endif
#elif defined (_WIN32)
#define WITH_VALE // comment out to disable VALE support
#define WITH_PIPES
#define WITH_MONITOR
#define WITH_GENERIC
#define WITH_NMNULL
#else /* neither linux nor windows */
#define WITH_VALE // comment out to disable VALE support
#define WITH_PIPES
#define WITH_MONITOR
#define WITH_GENERIC
#define WITH_EXTMEM
#define WITH_NMNULL
#endif
#if defined(__FreeBSD__)
#include <sys/selinfo.h>
#define likely(x) __builtin_expect((long)!!(x), 1L)
#define unlikely(x) __builtin_expect((long)!!(x), 0L)
#define __user
#define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */
#define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */
#define NM_MTX_INIT(m) sx_init(&(m), #m)
#define NM_MTX_DESTROY(m) sx_destroy(&(m))
#define NM_MTX_LOCK(m) sx_xlock(&(m))
#define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ;
#define NM_MTX_UNLOCK(m) sx_xunlock(&(m))
#define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED)
#define NM_SELINFO_T struct nm_selinfo
#define NM_SELRECORD_T struct thread
#define MBUF_LEN(m) ((m)->m_pkthdr.len)
#define MBUF_TXQ(m) ((m)->m_pkthdr.flowid)
#define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m))
#define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif)
#define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */
/* atomic operations */
#include <machine/atomic.h>
#define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1))
#define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0)
#if __FreeBSD_version >= 1100030
#define WNA(_ifp) (_ifp)->if_netmap
#else /* older FreeBSD */
#define WNA(_ifp) (_ifp)->if_pspare[0]
#endif /* older FreeBSD */
#if __FreeBSD_version >= 1100005
struct netmap_adapter *netmap_getna(if_t ifp);
#endif
#if __FreeBSD_version >= 1100027
#define MBUF_REFCNT(m) ((m)->m_ext.ext_count)
#define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x
#else
#define MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
#define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x
#endif
#define MBUF_QUEUED(m) 1
struct nm_selinfo {
/* Support for select(2) and poll(2). */
struct selinfo si;
/* Support for kqueue(9). See comments in netmap_freebsd.c */
struct taskqueue *ntfytq;
struct task ntfytask;
struct mtx m;
char mtxname[32];
int kqueue_users;
};
struct hrtimer {
/* Not used in FreeBSD. */
};
#define NM_BNS_GET(b)
#define NM_BNS_PUT(b)
#elif defined (linux)
#define NM_LOCK_T safe_spinlock_t // see bsd_glue.h
#define NM_SELINFO_T wait_queue_head_t
#define MBUF_LEN(m) ((m)->len)
#define MBUF_TRANSMIT(na, ifp, m) \
({ \
/* Avoid infinite recursion with generic. */ \
m->priority = NM_MAGIC_PRIORITY_TX; \
(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \
0; \
})
/* See explanation in nm_os_generic_xmit_frame. */
#define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg)
#define NM_ATOMIC_T volatile long unsigned int
#define NM_MTX_T struct mutex /* OS-specific sleepable lock */
#define NM_MTX_INIT(m) mutex_init(&(m))
#define NM_MTX_DESTROY(m) do { (void)(m); } while (0)
#define NM_MTX_LOCK(m) mutex_lock(&(m))
#define NM_MTX_UNLOCK(m) mutex_unlock(&(m))
#define NM_MTX_ASSERT(m) mutex_is_locked(&(m))
#ifndef DEV_NETMAP
#define DEV_NETMAP
#endif /* DEV_NETMAP */
#elif defined (__APPLE__)
#warning apple support is incomplete.
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#define NM_LOCK_T IOLock *
#define NM_SELINFO_T struct selinfo
#define MBUF_LEN(m) ((m)->m_pkthdr.len)
#elif defined (_WIN32)
#include "../../../WINDOWS/win_glue.h"
#define NM_SELRECORD_T IO_STACK_LOCATION
#define NM_SELINFO_T win_SELINFO // see win_glue.h
#define NM_LOCK_T win_spinlock_t // see win_glue.h
#define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */
#define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m);
#define NM_MTX_DESTROY(m) do { (void)(m); } while (0)
#define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m))
#define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m))
#define NM_MTX_ASSERT(m) assert(&m.Count>0)
//These linknames are for the NDIS driver
#define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS"
#define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS"
//Definition of internal driver-to-driver ioctl codes
#define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180)
#define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195)
typedef struct hrtimer{
KTIMER timer;
BOOLEAN active;
KDPC deferred_proc;
};
/* MSVC does not have likely/unlikely support */
#ifdef _MSC_VER
#define likely(x) (x)
#define unlikely(x) (x)
#else
#define likely(x) __builtin_expect((long)!!(x), 1L)
#define unlikely(x) __builtin_expect((long)!!(x), 0L)
#endif //_MSC_VER
#else
#error unsupported platform
#endif /* end - platform-specific code */
#ifndef _WIN32 /* support for emulated sysctl */
#define SYSBEGIN(x)
#define SYSEND
#endif /* _WIN32 */
#define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x))
#define NMG_LOCK_T NM_MTX_T
#define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock)
#define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock)
#define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock)
#define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock)
#define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock)
#if defined(__FreeBSD__)
#define nm_prerr_int printf
#define nm_prinf_int printf
#elif defined (_WIN32)
#define nm_prerr_int DbgPrint
#define nm_prinf_int DbgPrint
#elif defined(linux)
#define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg)
#define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg)
#endif
#define nm_prinf(format, ...) \
do { \
struct timeval __xxts; \
microtime(&__xxts); \
nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
__LINE__, __FUNCTION__, ##__VA_ARGS__); \
} while (0)
#define nm_prerr(format, ...) \
do { \
struct timeval __xxts; \
microtime(&__xxts); \
nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
__LINE__, __FUNCTION__, ##__VA_ARGS__); \
} while (0)
/* Disabled printf (used to be nm_prdis). */
#define nm_prdis(format, ...)
/* Rate limited, lps indicates how many per second. */
#define nm_prlim(lps, format, ...) \
do { \
static int t0, __cnt; \
if (t0 != time_second) { \
t0 = time_second; \
__cnt = 0; \
} \
if (__cnt++ < lps) \
nm_prinf(format, ##__VA_ARGS__); \
} while (0)
struct netmap_adapter;
struct nm_bdg_fwd;
struct nm_bridge;
struct netmap_priv_d;
struct nm_bdg_args;
/* os-specific NM_SELINFO_T initialzation/destruction functions */
int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
void nm_os_selinfo_uninit(NM_SELINFO_T *);
const char *nm_dump_buf(char *p, int len, int lim, char *dst);
void nm_os_selwakeup(NM_SELINFO_T *si);
void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
int nm_os_ifnet_init(void);
void nm_os_ifnet_fini(void);
void nm_os_ifnet_lock(void);
void nm_os_ifnet_unlock(void);
unsigned nm_os_ifnet_mtu(struct ifnet *ifp);
void nm_os_get_module(void);
void nm_os_put_module(void);
void netmap_make_zombie(struct ifnet *);
void netmap_undo_zombie(struct ifnet *);
/* os independent alloc/realloc/free */
void *nm_os_malloc(size_t);
void *nm_os_vmalloc(size_t);
void *nm_os_realloc(void *, size_t new_size, size_t old_size);
void nm_os_free(void *);
void nm_os_vfree(void *);
/* os specific attach/detach enter/exit-netmap-mode routines */
void nm_os_onattach(struct ifnet *);
void nm_os_ondetach(struct ifnet *);
void nm_os_onenter(struct ifnet *);
void nm_os_onexit(struct ifnet *);
/* passes a packet up to the host stack.
* If the packet is sent (or dropped) immediately it returns NULL,
* otherwise it links the packet to prev and returns m.
* In this case, a final call with m=NULL and prev != NULL will send up
* the entire chain to the host stack.
*/
void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
int nm_os_mbuf_has_seg_offld(struct mbuf *m);
int nm_os_mbuf_has_csum_offld(struct mbuf *m);
#include "netmap_mbq.h"
extern NMG_LOCK_T netmap_global_lock;
enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
static __inline const char*
nm_txrx2str(enum txrx t)
{
return (t== NR_RX ? "RX" : "TX");
}
static __inline enum txrx
nm_txrx_swap(enum txrx t)
{
return (t== NR_RX ? NR_TX : NR_RX);
}
#define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++)
#ifdef WITH_MONITOR
struct netmap_zmon_list {
struct netmap_kring *next;
struct netmap_kring *prev;
};
#endif /* WITH_MONITOR */
/*
* private, kernel view of a ring. Keeps track of the status of
* a ring across system calls.
*
* nr_hwcur index of the next buffer to refill.
* It corresponds to ring->head
* at the time the system call returns.
*
* nr_hwtail index of the first buffer owned by the kernel.
* On RX, hwcur->hwtail are receive buffers
* not yet released. hwcur is advanced following
* ring->head, hwtail is advanced on incoming packets,
* and a wakeup is generated when hwtail passes ring->cur
* On TX, hwcur->rcur have been filled by the sender
* but not sent yet to the NIC; rcur->hwtail are available
* for new transmissions, and hwtail->hwcur-1 are pending
* transmissions not yet acknowledged.
*
* The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
* This is so that, on a reset, buffers owned by userspace are not
* modified by the kernel. In particular:
* RX rings: the next empty buffer (hwtail + hwofs) coincides with
* the next empty buffer as known by the hardware (next_to_check or so).
* TX rings: hwcur + hwofs coincides with next_to_send
*
* The following fields are used to implement lock-free copy of packets
* from input to output ports in VALE switch:
* nkr_hwlease buffer after the last one being copied.
* A writer in nm_bdg_flush reserves N buffers
* from nr_hwlease, advances it, then does the
* copy outside the lock.
* In RX rings (used for VALE ports),
* nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
* In TX rings (used for NIC or host stack ports)
* nkr_hwcur <= nkr_hwlease < nkr_hwtail
* nkr_leases array of nkr_num_slots where writers can report
* completion of their block. NR_NOSLOT (~0) indicates
* that the writer has not finished yet
* nkr_lease_idx index of next free slot in nr_leases, to be assigned
*
* The kring is manipulated by txsync/rxsync and generic netmap function.
*
* Concurrent rxsync or txsync on the same ring are prevented through
* by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
* for NIC rings, and for TX rings attached to the host stack.
*
* RX rings attached to the host stack use an mbq (rx_queue) on both
* rxsync_from_host() and netmap_transmit(). The mbq is protected
* by its internal lock.
*
* RX rings attached to the VALE switch are accessed by both senders
* and receiver. They are protected through the q_lock on the RX ring.
*/
struct netmap_kring {
struct netmap_ring *ring;
uint32_t nr_hwcur; /* should be nr_hwhead */
uint32_t nr_hwtail;
/*
* Copies of values in user rings, so we do not need to look
* at the ring (which could be modified). These are set in the
* *sync_prologue()/finalize() routines.
*/
uint32_t rhead;
uint32_t rcur;
uint32_t rtail;
uint32_t nr_kflags; /* private driver flags */
#define NKR_PENDINTR 0x1 // Pending interrupt.
#define NKR_EXCLUSIVE 0x2 /* exclusive binding */
#define NKR_FORWARD 0x4 /* (host ring only) there are
packets to forward
*/
#define NKR_NEEDRING 0x8 /* ring needed even if users==0
* (used internally by pipes and
* by ptnetmap host ports)
*/
#define NKR_NOINTR 0x10 /* don't use interrupts on this ring */
#define NKR_FAKERING 0x20 /* don't allocate/free buffers */
uint32_t nr_mode;
uint32_t nr_pending_mode;
#define NKR_NETMAP_OFF 0x0
#define NKR_NETMAP_ON 0x1
uint32_t nkr_num_slots;
/*
* On a NIC reset, the NIC ring indexes may be reset but the
* indexes in the netmap rings remain the same. nkr_hwofs
* keeps track of the offset between the two.
*/
int32_t nkr_hwofs;
/* last_reclaim is opaque marker to help reduce the frequency
* of operations such as reclaiming tx buffers. A possible use
* is set it to ticks and do the reclaim only once per tick.
*/
uint64_t last_reclaim;
NM_SELINFO_T si; /* poll/select wait queue */
NM_LOCK_T q_lock; /* protects kring and ring. */
NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */
/* the adapter the owns this kring */
struct netmap_adapter *na;
/* the adapter that wants to be notified when this kring has
* new slots avaialable. This is usually the same as the above,
* but wrappers may let it point to themselves
*/
struct netmap_adapter *notify_na;
/* The following fields are for VALE switch support */
struct nm_bdg_fwd *nkr_ft;
uint32_t *nkr_leases;
#define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */
uint32_t nkr_hwlease;
uint32_t nkr_lease_idx;
/* while nkr_stopped is set, no new [tr]xsync operations can
* be started on this kring.
* This is used by netmap_disable_all_rings()
* to find a synchronization point where critical data
* structures pointed to by the kring can be added or removed
*/
volatile int nkr_stopped;
/* Support for adapters without native netmap support.
* On tx rings we preallocate an array of tx buffers
* (same size as the netmap ring), on rx rings we
* store incoming mbufs in a queue that is drained by
* a rxsync.
*/
struct mbuf **tx_pool;
struct mbuf *tx_event; /* TX event used as a notification */
NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */
struct mbq rx_queue; /* intercepted rx mbufs. */
uint32_t users; /* existing bindings for this ring */
uint32_t ring_id; /* kring identifier */
enum txrx tx; /* kind of ring (tx or rx) */
char name[64]; /* diagnostic */
/* [tx]sync callback for this kring.
* The default nm_kring_create callback (netmap_krings_create)
* sets the nm_sync callback of each hardware tx(rx) kring to
* the corresponding nm_txsync(nm_rxsync) taken from the
* netmap_adapter; moreover, it sets the sync callback
* of the host tx(rx) ring to netmap_txsync_to_host
* (netmap_rxsync_from_host).
*
* Overrides: the above configuration is not changed by
* any of the nm_krings_create callbacks.
*/
int (*nm_sync)(struct netmap_kring *kring, int flags);
int (*nm_notify)(struct netmap_kring *kring, int flags);
#ifdef WITH_PIPES
struct netmap_kring *pipe; /* if this is a pipe ring,
* pointer to the other end
*/
uint32_t pipe_tail; /* hwtail updated by the other end */
#endif /* WITH_PIPES */
int (*save_notify)(struct netmap_kring *kring, int flags);
#ifdef WITH_MONITOR
/* array of krings that are monitoring this kring */
struct netmap_kring **monitors;
uint32_t max_monitors; /* current size of the monitors array */
uint32_t n_monitors; /* next unused entry in the monitor array */
uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
uint32_t mon_tail; /* last seen slot on rx */
/* circular list of zero-copy monitors */
struct netmap_zmon_list zmon_list[NR_TXRX];
/*
* Monitors work by intercepting the sync and notify callbacks of the
* monitored krings. This is implemented by replacing the pointers
* above and saving the previous ones in mon_* pointers below
*/
int (*mon_sync)(struct netmap_kring *kring, int flags);
int (*mon_notify)(struct netmap_kring *kring, int flags);
#endif
}
#ifdef _WIN32
__declspec(align(64));
#else
__attribute__((__aligned__(64)));
#endif
/* return 1 iff the kring needs to be turned on */
static inline int
nm_kring_pending_on(struct netmap_kring *kring)
{
return kring->nr_pending_mode == NKR_NETMAP_ON &&
kring->nr_mode == NKR_NETMAP_OFF;
}
/* return 1 iff the kring needs to be turned off */
static inline int
nm_kring_pending_off(struct netmap_kring *kring)
{
return kring->nr_pending_mode == NKR_NETMAP_OFF &&
kring->nr_mode == NKR_NETMAP_ON;
}
/* return the next index, with wraparound */
static inline uint32_t
nm_next(uint32_t i, uint32_t lim)
{
return unlikely (i == lim) ? 0 : i + 1;
}
/* return the previous index, with wraparound */
static inline uint32_t
nm_prev(uint32_t i, uint32_t lim)
{
return unlikely (i == 0) ? lim : i - 1;
}
/*
*
* Here is the layout for the Rx and Tx rings.
RxRING TxRING
+-----------------+ +-----------------+
| | | |
| free | | free |
+-----------------+ +-----------------+
head->| owned by user |<-hwcur | not sent to nic |<-hwcur
| | | yet |
+-----------------+ | |
cur->| available to | | |
| user, not read | +-----------------+
| yet | cur->| (being |
| | | prepared) |
| | | |
+-----------------+ + ------ +
tail->| |<-hwtail | |<-hwlease
| (being | ... | | ...
| prepared) | ... | | ...
+-----------------+ ... | | ...
| |<-hwlease +-----------------+
| | tail->| |<-hwtail
| | | |
| | | |
| | | |
+-----------------+ +-----------------+
* The cur/tail (user view) and hwcur/hwtail (kernel view)
* are used in the normal operation of the card.
*
* When a ring is the output of a switch port (Rx ring for
* a VALE port, Tx ring for the host stack or NIC), slots
* are reserved in blocks through 'hwlease' which points
* to the next unused slot.
* On an Rx ring, hwlease is always after hwtail,
* and completions cause hwtail to advance.
* On a Tx ring, hwlease is always between cur and hwtail,
* and completions cause cur to advance.
*
* nm_kr_space() returns the maximum number of slots that
* can be assigned.
* nm_kr_lease() reserves the required number of buffers,
* advances nkr_hwlease and also returns an entry in
* a circular array where completions should be reported.
*/
struct lut_entry;
#ifdef __FreeBSD__
#define plut_entry lut_entry
#endif
struct netmap_lut {
struct lut_entry *lut;
struct plut_entry *plut;
uint32_t objtotal; /* max buffer index */
uint32_t objsize; /* buffer size */
};
struct netmap_vp_adapter; // forward
struct nm_bridge;
/* Struct to be filled by nm_config callbacks. */
struct nm_config_info {
unsigned num_tx_rings;
unsigned num_rx_rings;
unsigned num_tx_descs;
unsigned num_rx_descs;
unsigned rx_buf_maxsize;
};
/*
* default type for the magic field.
* May be overriden in glue code.
*/
#ifndef NM_OS_MAGIC
#define NM_OS_MAGIC uint32_t
#endif /* !NM_OS_MAGIC */
/*
* The "struct netmap_adapter" extends the "struct adapter"
* (or equivalent) device descriptor.
* It contains all base fields needed to support netmap operation.
* There are in fact different types of netmap adapters
* (native, generic, VALE switch...) so a netmap_adapter is
* just the first field in the derived type.
*/
struct netmap_adapter {
/*
* On linux we do not have a good way to tell if an interface
* is netmap-capable. So we always use the following trick:
* NA(ifp) points here, and the first entry (which hopefully
* always exists and is at least 32 bits) contains a magic
* value which we can use to detect that the interface is good.
*/
NM_OS_MAGIC magic;
uint32_t na_flags; /* enabled, and other flags */
#define NAF_SKIP_INTR 1 /* use the regular interrupt handler.
* useful during initialization
*/
#define NAF_SW_ONLY 2 /* forward packets only to sw adapter */
#define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when
* forwarding packets coming from this
* interface
*/
#define NAF_MEM_OWNER 8 /* the adapter uses its own memory area
* that cannot be changed
*/
#define NAF_NATIVE 16 /* the adapter is native.
* Virtual ports (non persistent vale ports,
* pipes, monitors...) should never use
* this flag.
*/
#define NAF_NETMAP_ON 32 /* netmap is active (either native or
* emulated). Where possible (e.g. FreeBSD)
* IFCAP_NETMAP also mirrors this flag.
*/
#define NAF_HOST_RINGS 64 /* the adapter supports the host rings */
#define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */
/* free */
#define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */
#define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */
#define NAF_BUSY (1U<<31) /* the adapter is used internally and
* cannot be registered from userspace
*/
int active_fds; /* number of user-space descriptors using this
interface, which is equal to the number of
struct netmap_if objs in the mapped region. */
u_int num_rx_rings; /* number of adapter receive rings */
u_int num_tx_rings; /* number of adapter transmit rings */
u_int num_host_rx_rings; /* number of host receive rings */
u_int num_host_tx_rings; /* number of host transmit rings */
u_int num_tx_desc; /* number of descriptor in each queue */
u_int num_rx_desc;
/* tx_rings and rx_rings are private but allocated as a
* contiguous chunk of memory. Each array has N+K entries,
* N for the hardware rings and K for the host rings.
*/
struct netmap_kring **tx_rings; /* array of TX rings. */
struct netmap_kring **rx_rings; /* array of RX rings. */
void *tailroom; /* space below the rings array */
/* (used for leases) */
NM_SELINFO_T si[NR_TXRX]; /* global wait queues */
/* count users of the global wait queues */
int si_users[NR_TXRX];
void *pdev; /* used to store pci device */
/* copy of if_qflush and if_transmit pointers, to intercept
* packets from the network stack when netmap is active.
*/
int (*if_transmit)(struct ifnet *, struct mbuf *);
/* copy of if_input for netmap_send_up() */
void (*if_input)(struct ifnet *, struct mbuf *);
/* Back reference to the parent ifnet struct. Used for
* hardware ports (emulated netmap included). */
struct ifnet *ifp; /* adapter is ifp->if_softc */
/*---- callbacks for this netmap adapter -----*/
/*
* nm_dtor() is the cleanup routine called when destroying
* the adapter.
* Called with NMG_LOCK held.
*
* nm_register() is called on NIOCREGIF and close() to enter
* or exit netmap mode on the NIC
* Called with NNG_LOCK held.
*
* nm_txsync() pushes packets to the underlying hw/switch
*
* nm_rxsync() collects packets from the underlying hw/switch
*
* nm_config() returns configuration information from the OS
* Called with NMG_LOCK held.
*
* nm_krings_create() create and init the tx_rings and
* rx_rings arrays of kring structures. In particular,
* set the nm_sync callbacks for each ring.
* There is no need to also allocate the corresponding
* netmap_rings, since netmap_mem_rings_create() will always
* be called to provide the missing ones.
* Called with NNG_LOCK held.
*
* nm_krings_delete() cleanup and delete the tx_rings and rx_rings
* arrays
* Called with NMG_LOCK held.
*
* nm_notify() is used to act after data have become available
* (or the stopped state of the ring has changed)
* For hw devices this is typically a selwakeup(),
* but for NIC/host ports attached to a switch (or vice-versa)
* we also need to invoke the 'txsync' code downstream.
* This callback pointer is actually used only to initialize
* kring->nm_notify.
* Return values are the same as for netmap_rx_irq().
*/
void (*nm_dtor)(struct netmap_adapter *);
int (*nm_register)(struct netmap_adapter *, int onoff);
void (*nm_intr)(struct netmap_adapter *, int onoff);
int (*nm_txsync)(struct netmap_kring *kring, int flags);
int (*nm_rxsync)(struct netmap_kring *kring, int flags);
int (*nm_notify)(struct netmap_kring *kring, int flags);
#define NAF_FORCE_READ 1
#define NAF_FORCE_RECLAIM 2
#define NAF_CAN_FORWARD_DOWN 4
/* return configuration information */
int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
int (*nm_krings_create)(struct netmap_adapter *);
void (*nm_krings_delete)(struct netmap_adapter *);
/*
* nm_bdg_attach() initializes the na_vp field to point
* to an adapter that can be attached to a VALE switch. If the
* current adapter is already a VALE port, na_vp is simply a cast;
* otherwise, na_vp points to a netmap_bwrap_adapter.
* If applicable, this callback also initializes na_hostvp,
* that can be used to connect the adapter host rings to the
* switch.
* Called with NMG_LOCK held.
*
* nm_bdg_ctl() is called on the actual attach/detach to/from
* to/from the switch, to perform adapter-specific
* initializations
* Called with NMG_LOCK held.
*/
int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
struct nm_bridge *);
int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
/* adapter used to attach this adapter to a VALE switch (if any) */
struct netmap_vp_adapter *na_vp;
/* adapter used to attach the host rings of this adapter
* to a VALE switch (if any) */
struct netmap_vp_adapter *na_hostvp;
/* standard refcount to control the lifetime of the adapter
* (it should be equal to the lifetime of the corresponding ifp)
*/
int na_refcount;
/* memory allocator (opaque)
* We also cache a pointer to the lut_entry for translating
* buffer addresses, the total number of buffers and the buffer size.
*/
struct netmap_mem_d *nm_mem;
struct netmap_mem_d *nm_mem_prev;
struct netmap_lut na_lut;
/* additional information attached to this adapter
* by other netmap subsystems. Currently used by
* bwrap, LINUX/v1000 and ptnetmap
*/
void *na_private;
/* array of pipes that have this adapter as a parent */
struct netmap_pipe_adapter **na_pipes;
int na_next_pipe; /* next free slot in the array */
int na_max_pipes; /* size of the array */
/* Offset of ethernet header for each packet. */
u_int virt_hdr_len;
/* Max number of bytes that the NIC can store in the buffer
* referenced by each RX descriptor. This translates to the maximum
* bytes that a single netmap slot can reference. Larger packets
* require NS_MOREFRAG support. */
unsigned rx_buf_maxsize;
char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
#ifdef WITH_MONITOR
unsigned long monitor_id; /* debugging */
#endif
};
static __inline u_int
nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
}
static __inline void
nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
{
if (t == NR_TX)
na->num_tx_desc = v;
else
na->num_rx_desc = v;
}
static __inline u_int
nma_get_nrings(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
}
static __inline u_int
nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
}
static __inline void
nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
{
if (t == NR_TX)
na->num_tx_rings = v;
else
na->num_rx_rings = v;
}
static __inline void
nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
{
if (t == NR_TX)
na->num_host_tx_rings = v;
else
na->num_host_rx_rings = v;
}
static __inline struct netmap_kring**
NMR(struct netmap_adapter *na, enum txrx t)
{
return (t == NR_TX ? na->tx_rings : na->rx_rings);
}
int nma_intr_enable(struct netmap_adapter *na, int onoff);
/*
* If the NIC is owned by the kernel
* (i.e., bridge), neither another bridge nor user can use it;
* if the NIC is owned by a user, only users can share it.
* Evaluation must be done under NMG_LOCK().
*/
#define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY)
#define NETMAP_OWNED_BY_ANY(na) \
(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
/*
* derived netmap adapters for various types of ports
*/
struct netmap_vp_adapter { /* VALE software port */
struct netmap_adapter up;
/*
* Bridge support:
*
* bdg_port is the port number used in the bridge;
* na_bdg points to the bridge this NA is attached to.
*/
int bdg_port;
struct nm_bridge *na_bdg;
int retry;
int autodelete; /* remove the ifp on last reference */
/* Maximum Frame Size, used in bdg_mismatch_datapath() */
u_int mfs;
/* Last source MAC on this port */
uint64_t last_smac;
};
struct netmap_hw_adapter { /* physical device */
struct netmap_adapter up;
#ifdef linux
struct net_device_ops nm_ndo;
struct ethtool_ops nm_eto;
#endif
const struct ethtool_ops* save_ethtool;
int (*nm_hw_register)(struct netmap_adapter *, int onoff);
};
#ifdef WITH_GENERIC
/* Mitigation support. */
struct nm_generic_mit {
struct hrtimer mit_timer;
int mit_pending;
int mit_ring_idx; /* index of the ring being mitigated */
struct netmap_adapter *mit_na; /* backpointer */
};
struct netmap_generic_adapter { /* emulated device */
struct netmap_hw_adapter up;
/* Pointer to a previously used netmap adapter. */
struct netmap_adapter *prev;
/* Emulated netmap adapters support:
* - save_if_input saves the if_input hook (FreeBSD);
* - mit implements rx interrupt mitigation;
*/
void (*save_if_input)(struct ifnet *, struct mbuf *);
struct nm_generic_mit *mit;
#ifdef linux
netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
#endif
/* Is the adapter able to use multiple RX slots to scatter
* each packet pushed up by the driver? */
int rxsg;
/* Is the transmission path controlled by a netmap-aware
* device queue (i.e. qdisc on linux)? */
int txqdisc;
};
#endif /* WITH_GENERIC */
static __inline u_int
netmap_real_rings(struct netmap_adapter *na, enum txrx t)
{
return nma_get_nrings(na, t) +
!!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
}
/* account for fake rings */
static __inline u_int
netmap_all_rings(struct netmap_adapter *na, enum txrx t)
{
return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
}
int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
struct nm_bridge *);
struct nm_bdg_polling_state;
/*
* Bridge wrapper for non VALE ports attached to a VALE switch.
*
* The real device must already have its own netmap adapter (hwna).
* The bridge wrapper and the hwna adapter share the same set of
* netmap rings and buffers, but they have two separate sets of
* krings descriptors, with tx/rx meanings swapped:
*
* netmap
* bwrap krings rings krings hwna
* +------+ +------+ +-----+ +------+ +------+
* |tx_rings->| |\ /| |----| |<-tx_rings|
* | | +------+ \ / +-----+ +------+ | |
* | | X | |
* | | / \ | |
* | | +------+/ \+-----+ +------+ | |
* |rx_rings->| | | |----| |<-rx_rings|
* | | +------+ +-----+ +------+ | |
* +------+ +------+
*
* - packets coming from the bridge go to the brwap rx rings,
* which are also the hwna tx rings. The bwrap notify callback
* will then complete the hwna tx (see netmap_bwrap_notify).
*
* - packets coming from the outside go to the hwna rx rings,
* which are also the bwrap tx rings. The (overwritten) hwna
* notify method will then complete the bridge tx
* (see netmap_bwrap_intr_notify).
*
* The bridge wrapper may optionally connect the hwna 'host' rings
* to the bridge. This is done by using a second port in the
* bridge and connecting it to the 'host' netmap_vp_adapter
* contained in the netmap_bwrap_adapter. The brwap host adapter
* cross-links the hwna host rings in the same way as shown above.
*
* - packets coming from the bridge and directed to the host stack
* are handled by the bwrap host notify callback
* (see netmap_bwrap_host_notify)
*
* - packets coming from the host stack are still handled by the
* overwritten hwna notify callback (netmap_bwrap_intr_notify),
* but are diverted to the host adapter depending on the ring number.
*
*/
struct netmap_bwrap_adapter {
struct netmap_vp_adapter up;
struct netmap_vp_adapter host; /* for host rings */
struct netmap_adapter *hwna; /* the underlying device */
/*
* When we attach a physical interface to the bridge, we
* allow the controlling process to terminate, so we need
* a place to store the n_detmap_priv_d data structure.
* This is only done when physical interfaces
* are attached to a bridge.
*/
struct netmap_priv_d *na_kpriv;
struct nm_bdg_polling_state *na_polling_state;
/* we overwrite the hwna->na_vp pointer, so we save
* here its original value, to be restored at detach
*/
struct netmap_vp_adapter *saved_na_vp;
};
int nm_bdg_polling(struct nmreq_header *hdr);
#ifdef WITH_VALE
int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token);
int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token);
int netmap_vale_list(struct nmreq_header *hdr);
int netmap_vi_create(struct nmreq_header *hdr, int);
int nm_vi_create(struct nmreq_header *);
int nm_vi_destroy(const char *name);
#else /* !WITH_VALE */
#define netmap_vi_create(hdr, a) (EOPNOTSUPP)
#endif /* WITH_VALE */
#ifdef WITH_PIPES
#define NM_MAXPIPES 64 /* max number of pipes per adapter */
struct netmap_pipe_adapter {
/* pipe identifier is up.name */
struct netmap_adapter up;
#define NM_PIPE_ROLE_MASTER 0x1
#define NM_PIPE_ROLE_SLAVE 0x2
int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
struct netmap_adapter *parent; /* adapter that owns the memory */
struct netmap_pipe_adapter *peer; /* the other end of the pipe */
int peer_ref; /* 1 iff we are holding a ref to the peer */
struct ifnet *parent_ifp; /* maybe null */
u_int parent_slot; /* index in the parent pipe array */
};
#endif /* WITH_PIPES */
#ifdef WITH_NMNULL
struct netmap_null_adapter {
struct netmap_adapter up;
};
#endif /* WITH_NMNULL */
/* return slots reserved to rx clients; used in drivers */
static inline uint32_t
nm_kr_rxspace(struct netmap_kring *k)
{
int space = k->nr_hwtail - k->nr_hwcur;
if (space < 0)
space += k->nkr_num_slots;
nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
return space;
}
/* return slots reserved to tx clients */
#define nm_kr_txspace(_k) nm_kr_rxspace(_k)
/* True if no space in the tx ring, only valid after txsync_prologue */
static inline int
nm_kr_txempty(struct netmap_kring *kring)
{
return kring->rhead == kring->nr_hwtail;
}
/* True if no more completed slots in the rx ring, only valid after
* rxsync_prologue */
#define nm_kr_rxempty(_k) nm_kr_txempty(_k)
/* True if the application needs to wait for more space on the ring
* (more received packets or more free tx slots).
* Only valid after *xsync_prologue. */
static inline int
nm_kr_wouldblock(struct netmap_kring *kring)
{
return kring->rcur == kring->nr_hwtail;
}
/*
* protect against multiple threads using the same ring.
* also check that the ring has not been stopped or locked
*/
#define NM_KR_BUSY 1 /* some other thread is syncing the ring */
#define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */
#define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */
/* release the previously acquired right to use the *sync() methods of the ring */
static __inline void nm_kr_put(struct netmap_kring *kr)
{
NM_ATOMIC_CLEAR(&kr->nr_busy);
}
/* true if the ifp that backed the adapter has disappeared (e.g., the
* driver has been unloaded)
*/
static inline int nm_iszombie(struct netmap_adapter *na);
/* try to obtain exclusive right to issue the *sync() operations on the ring.
* The right is obtained and must be later relinquished via nm_kr_put() if and
* only if nm_kr_tryget() returns 0.
* If can_sleep is 1 there are only two other possible outcomes:
* - the function returns NM_KR_BUSY
* - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
* (if non-null)
* In both cases the caller will typically skip the ring, possibly collecting
* errors along the way.
* If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
* In the latter case, the function may also return NM_KR_LOCKED and leave *perr
* untouched: ideally, the caller should try again at a later time.
*/
static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
{
int busy = 1, stopped;
/* check a first time without taking the lock
* to avoid starvation for nm_kr_get()
*/
retry:
stopped = kr->nkr_stopped;
if (unlikely(stopped)) {
goto stop;
}
busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
/* we should not return NM_KR_BUSY if the ring was
* actually stopped, so check another time after
* the barrier provided by the atomic operation
*/
stopped = kr->nkr_stopped;
if (unlikely(stopped)) {
goto stop;
}
if (unlikely(nm_iszombie(kr->na))) {
stopped = NM_KR_STOPPED;
goto stop;
}
return unlikely(busy) ? NM_KR_BUSY : 0;
stop:
if (!busy)
nm_kr_put(kr);
if (stopped == NM_KR_STOPPED) {
/* if POLLERR is defined we want to use it to simplify netmap_poll().
* Otherwise, any non-zero value will do.
*/
#ifdef POLLERR
#define NM_POLLERR POLLERR
#else
#define NM_POLLERR 1
#endif /* POLLERR */
if (perr)
*perr |= NM_POLLERR;
#undef NM_POLLERR
} else if (can_sleep) {
tsleep(kr, 0, "NM_KR_TRYGET", 4);
goto retry;
}
return stopped;
}
/* put the ring in the 'stopped' state and wait for the current user (if any) to
* notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
*/
static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
{
kr->nkr_stopped = stopped;
while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
tsleep(kr, 0, "NM_KR_GET", 4);
}
/* restart a ring after a stop */
static __inline void nm_kr_start(struct netmap_kring *kr)
{
kr->nkr_stopped = 0;
nm_kr_put(kr);
}
/*
* The following functions are used by individual drivers to
* support netmap operation.
*
* netmap_attach() initializes a struct netmap_adapter, allocating the
* struct netmap_ring's and the struct selinfo.
*
* netmap_detach() frees the memory allocated by netmap_attach().
*
* netmap_transmit() replaces the if_transmit routine of the interface,
* and is used to intercept packets coming from the stack.
*
* netmap_load_map/netmap_reload_map are helper routines to set/reset
* the dmamap for a packet buffer
*
* netmap_reset() is a helper routine to be called in the hw driver
* when reinitializing a ring. It should not be called by
* virtual ports (vale, pipes, monitor)
*/
int netmap_attach(struct netmap_adapter *);
int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
void netmap_detach(struct ifnet *);
int netmap_transmit(struct ifnet *, struct mbuf *);
struct netmap_slot *netmap_reset(struct netmap_adapter *na,
enum txrx tx, u_int n, u_int new_cur);
int netmap_ring_reinit(struct netmap_kring *);
int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
/* Return codes for netmap_*x_irq. */
enum {
/* Driver should do normal interrupt processing, e.g. because
* the interface is not in netmap mode. */
NM_IRQ_PASS = 0,
/* Port is in netmap mode, and the interrupt work has been
* completed. The driver does not have to notify netmap
* again before the next interrupt. */
NM_IRQ_COMPLETED = -1,
/* Port is in netmap mode, but the interrupt work has not been
* completed. The driver has to make sure netmap will be
* notified again soon, even if no more interrupts come (e.g.
* on Linux the driver should not call napi_complete()). */
NM_IRQ_RESCHED = -2,
};
/* default functions to handle rx/tx interrupts */
int netmap_rx_irq(struct ifnet *, u_int, u_int *);
#define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
#ifdef WITH_VALE
/* functions used by external modules to interface with VALE */
#define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp)
#define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp)
#define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
#define netmap_bdg_idx(_vp) ((_vp)->bdg_port)
const char *netmap_bdg_name(struct netmap_vp_adapter *);
#else /* !WITH_VALE */
#define netmap_vp_to_ifp(_vp) NULL
#define netmap_ifp_to_vp(_ifp) NULL
#define netmap_ifp_to_host_vp(_ifp) NULL
#define netmap_bdg_idx(_vp) -1
#endif /* WITH_VALE */
static inline int
nm_netmap_on(struct netmap_adapter *na)
{
return na && na->na_flags & NAF_NETMAP_ON;
}
static inline int
nm_native_on(struct netmap_adapter *na)
{
return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
}
static inline struct netmap_kring *
netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t)
{
struct netmap_kring *kring = NULL;
if (!nm_native_on(na))
return NULL;
if (t == NR_RX && q < na->num_rx_rings)
kring = na->rx_rings[q];
else if (t == NR_TX && q < na->num_tx_rings)
kring = na->tx_rings[q];
else
return NULL;
return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL;
}
static inline int
nm_iszombie(struct netmap_adapter *na)
{
return na == NULL || (na->na_flags & NAF_ZOMBIE);
}
static inline void
nm_update_hostrings_mode(struct netmap_adapter *na)
{
/* Process nr_mode and nr_pending_mode for host rings. */
na->tx_rings[na->num_tx_rings]->nr_mode =
na->tx_rings[na->num_tx_rings]->nr_pending_mode;
na->rx_rings[na->num_rx_rings]->nr_mode =
na->rx_rings[na->num_rx_rings]->nr_pending_mode;
}
void nm_set_native_flags(struct netmap_adapter *);
void nm_clear_native_flags(struct netmap_adapter *);
void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff);
/*
* nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
* kthreads.
* We need netmap_ring* parameter, because in ptnetmap it is decoupled
* from host kring.
* The user-space ring pointers (head/cur/tail) are shared through
* CSB between host and guest.
*/
/*
* validates parameters in the ring/kring, returns a value for head
* If any error, returns ring_size to force a reinit.
*/
uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
/*
* validates parameters in the ring/kring, returns a value for head
* If any error, returns ring_size lim to force a reinit.
*/
uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
/* check/fix address and len in tx rings */
#if 1 /* debug version */
#define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \
nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \
kring->ring_id, nm_i, slot->buf_idx, len); \
if (_l > NETMAP_BUF_SIZE(_na)) \
_l = NETMAP_BUF_SIZE(_na); \
} } while (0)
#else /* no debug version */
#define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
if (_l > NETMAP_BUF_SIZE(_na)) \
_l = NETMAP_BUF_SIZE(_na); \
} while (0)
#endif
/*---------------------------------------------------------------*/
/*
* Support routines used by netmap subsystems
* (native drivers, VALE, generic, pipes, monitors, ...)
*/
/* common routine for all functions that create a netmap adapter. It performs
* two main tasks:
* - if the na points to an ifp, mark the ifp as netmap capable
* using na as its native adapter;
* - provide defaults for the setup callbacks and the memory allocator
*/
int netmap_attach_common(struct netmap_adapter *);
/* fill priv->np_[tr]xq{first,last} using the ringid and flags information
* coming from a struct nmreq_register
*/
int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr);
/* update the ring parameters (number and size of tx and rx rings).
* It calls the nm_config callback, if available.
*/
int netmap_update_config(struct netmap_adapter *na);
/* create and initialize the common fields of the krings array.
* using the information that must be already available in the na.
* tailroom can be used to request the allocation of additional
* tailroom bytes after the krings array. This is used by
* netmap_vp_adapter's (i.e., VALE ports) to make room for
* leasing-related data structures
*/
int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
/* deletes the kring array of the adapter. The array must have
* been created using netmap_krings_create
*/
void netmap_krings_delete(struct netmap_adapter *na);
int netmap_hw_krings_create(struct netmap_adapter *na);
void netmap_hw_krings_delete(struct netmap_adapter *na);
/* set the stopped/enabled status of ring
* When stopping, they also wait for all current activity on the ring to
* terminate. The status change is then notified using the na nm_notify
* callback.
*/
void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
/* set the stopped/enabled status of all rings of the adapter. */
void netmap_set_all_rings(struct netmap_adapter *, int stopped);
/* convenience wrappers for netmap_set_all_rings */
void netmap_disable_all_rings(struct ifnet *);
void netmap_enable_all_rings(struct ifnet *);
int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
struct nmreq_header *);
void netmap_do_unregif(struct netmap_priv_d *priv);
u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
int netmap_get_hw_na(struct ifnet *ifp,
struct netmap_mem_d *nmd, struct netmap_adapter **na);
#ifdef WITH_VALE
uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
struct netmap_vp_adapter *, void *private_data);
/* these are redefined in case of no VALE support */
int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct netmap_mem_d *nmd, int create);
void *netmap_vale_create(const char *bdg_name, int *return_status);
int netmap_vale_destroy(const char *bdg_name, void *auth_token);
#else /* !WITH_VALE */
#define netmap_bdg_learning(_1, _2, _3, _4) 0
#define netmap_get_vale_na(_1, _2, _3, _4) 0
#define netmap_bdg_create(_1, _2) NULL
#define netmap_bdg_destroy(_1, _2) 0
#endif /* !WITH_VALE */
#ifdef WITH_PIPES
/* max number of pipes per device */
#define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */
void netmap_pipe_dealloc(struct netmap_adapter *);
int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct netmap_mem_d *nmd, int create);
#else /* !WITH_PIPES */
#define NM_MAXPIPES 0
#define netmap_pipe_alloc(_1, _2) 0
#define netmap_pipe_dealloc(_1)
#define netmap_get_pipe_na(hdr, _2, _3, _4) \
((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
#endif
#ifdef WITH_MONITOR
int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct netmap_mem_d *nmd, int create);
void netmap_monitor_stop(struct netmap_adapter *na);
#else
#define netmap_get_monitor_na(hdr, _2, _3, _4) \
(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
#endif
#ifdef WITH_NMNULL
int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
struct netmap_mem_d *nmd, int create);
#else /* !WITH_NMNULL */
#define netmap_get_null_na(hdr, _2, _3, _4) \
(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
#endif /* WITH_NMNULL */
#ifdef CONFIG_NET_NS
struct net *netmap_bns_get(void);
void netmap_bns_put(struct net *);
void netmap_bns_getbridges(struct nm_bridge **, u_int *);
#else
extern struct nm_bridge *nm_bridges;
#define netmap_bns_get()
#define netmap_bns_put(_1)
#define netmap_bns_getbridges(b, n) \
do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
#endif
/* Various prototypes */
int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
int netmap_init(void);
void netmap_fini(void);
int netmap_get_memory(struct netmap_priv_d* p);
void netmap_dtor(void *data);
int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
struct thread *, int nr_body_is_user);
int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
struct thread *td);
size_t nmreq_size_by_type(uint16_t nr_reqtype);
/* netmap_adapter creation/destruction */
// #define NM_DEBUG_PUTGET 1
#ifdef NM_DEBUG_PUTGET
#define NM_DBG(f) __##f
void __netmap_adapter_get(struct netmap_adapter *na);
#define netmap_adapter_get(na) \
do { \
struct netmap_adapter *__na = na; \
nm_prinf("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \
__netmap_adapter_get(__na); \
} while (0)
int __netmap_adapter_put(struct netmap_adapter *na);
#define netmap_adapter_put(na) \
({ \
struct netmap_adapter *__na = na; \
nm_prinf("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \
__netmap_adapter_put(__na); \
})
#else /* !NM_DEBUG_PUTGET */
#define NM_DBG(f) f
void netmap_adapter_get(struct netmap_adapter *na);
int netmap_adapter_put(struct netmap_adapter *na);
#endif /* !NM_DEBUG_PUTGET */
/*
* module variables
*/
#define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr)
#define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize)
extern int netmap_no_pendintr;
extern int netmap_verbose;
#ifdef CONFIG_NETMAP_DEBUG
extern int netmap_debug; /* for debugging */
#else /* !CONFIG_NETMAP_DEBUG */
#define netmap_debug (0)
#endif /* !CONFIG_NETMAP_DEBUG */
enum { /* debug flags */
NM_DEBUG_ON = 1, /* generic debug messsages */
NM_DEBUG_HOST = 0x2, /* debug host stack */
NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */
NM_DEBUG_TXSYNC = 0x20,
NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */
NM_DEBUG_TXINTR = 0x200,
NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */
NM_DEBUG_NIC_TXSYNC = 0x2000,
NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */
NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */
NM_DEBUG_BDG = NM_DEBUG_VALE,
};
extern int netmap_txsync_retry;
extern int netmap_generic_hwcsum;
extern int netmap_generic_mit;
extern int netmap_generic_ringsize;
extern int netmap_generic_rings;
#ifdef linux
extern int netmap_generic_txqdisc;
#endif
/*
* NA returns a pointer to the struct netmap adapter from the ifp.
* WNA is os-specific and must be defined in glue code.
*/
#define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp))
/*
* we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
* based on the WNA field.
* Glue code may override this by defining its own NM_ATTACH_NA
*/
#ifndef NM_ATTACH_NA
/*
* On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
* overload another pointer in the netdev.
*
* We check if NA(ifp) is set and its first element has a related
* magic value. The capenable is within the struct netmap_adapter.
*/
#define NETMAP_MAGIC 0x52697a7a
#define NM_NA_VALID(ifp) (NA(ifp) && \
((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
#define NM_ATTACH_NA(ifp, na) do { \
WNA(ifp) = na; \
if (NA(ifp)) \
NA(ifp)->magic = \
((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \
} while(0)
#define NM_RESTORE_NA(ifp, na) WNA(ifp) = na;
#define NM_DETACH_NA(ifp) do { WNA(ifp) = NULL; } while (0)
#define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp))
#endif /* !NM_ATTACH_NA */
#define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
#if defined(__FreeBSD__)
/* Assigns the device IOMMU domain to an allocator.
* Returns -ENOMEM in case the domain is different */
#define nm_iommu_group_id(dev) (0)
/* Callback invoked by the dma machinery after a successful dmamap_load */
static void netmap_dmamap_cb(__unused void *arg,
__unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
{
}
/* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
* XXX can we do it without a callback ?
*/
static inline int
netmap_load_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (map)
bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
return 0;
}
static inline void
netmap_unload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map)
{
if (map)
bus_dmamap_unload(tag, map);
}
#define netmap_sync_map(na, tag, map, sz, t)
/* update the map when a buffer changes. */
static inline void
netmap_reload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
if (map) {
bus_dmamap_unload(tag, map);
bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
}
}
#elif defined(_WIN32)
#else /* linux */
int nm_iommu_group_id(bus_dma_tag_t dev);
#include <linux/dma-mapping.h>
/*
* on linux we need
* dma_map_single(&pdev->dev, virt_addr, len, direction)
* dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
*/
#if 0
struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l];
/* set time_stamp *before* dma to help avoid a possible race */
buffer_info->time_stamp = jiffies;
buffer_info->mapped_as_page = false;
buffer_info->length = len;
//buffer_info->next_to_watch = l;
/* reload dma map */
dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
NETMAP_BUF_SIZE, DMA_TO_DEVICE);
buffer_info->dma = dma_map_single(&adapter->pdev->dev,
addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
nm_prerr("dma mapping error");
/* goto dma_error; See e1000_put_txbuf() */
/* XXX reset */
}
tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
#endif
static inline int
netmap_load_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
{
if (map) {
*map = dma_map_single(na->pdev, buf, size,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(na->pdev, *map)) {
*map = 0;
return ENOMEM;
}
}
return 0;
}
static inline void
netmap_unload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
{
if (*map) {
dma_unmap_single(na->pdev, *map, sz,
DMA_BIDIRECTIONAL);
}
}
#ifdef NETMAP_LINUX_HAVE_DMASYNC
static inline void
netmap_sync_map_cpu(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
{
if (*map) {
dma_sync_single_for_cpu(na->pdev, *map, sz,
(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
}
}
static inline void
netmap_sync_map_dev(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
{
if (*map) {
dma_sync_single_for_device(na->pdev, *map, sz,
(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
}
}
static inline void
netmap_reload_map(struct netmap_adapter *na,
bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
{
u_int sz = NETMAP_BUF_SIZE(na);
if (*map) {
dma_unmap_single(na->pdev, *map, sz,
DMA_BIDIRECTIONAL);
}
*map = dma_map_single(na->pdev, buf, sz,
DMA_BIDIRECTIONAL);
}
#else /* !NETMAP_LINUX_HAVE_DMASYNC */
#define netmap_sync_map_cpu(na, tag, map, sz, t)
#define netmap_sync_map_dev(na, tag, map, sz, t)
#endif /* NETMAP_LINUX_HAVE_DMASYNC */
#endif /* linux */
/*
* functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
*/
static inline int
netmap_idx_n2k(struct netmap_kring *kr, int idx)
{
int n = kr->nkr_num_slots;
if (likely(kr->nkr_hwofs == 0)) {
return idx;
}
idx += kr->nkr_hwofs;
if (idx < 0)
return idx + n;
else if (idx < n)
return idx;
else
return idx - n;
}
static inline int
netmap_idx_k2n(struct netmap_kring *kr, int idx)
{
int n = kr->nkr_num_slots;
if (likely(kr->nkr_hwofs == 0)) {
return idx;
}
idx -= kr->nkr_hwofs;
if (idx < 0)
return idx + n;
else if (idx < n)
return idx;
else
return idx - n;
}
/* Entries of the look-up table. */
#ifdef __FreeBSD__
struct lut_entry {
void *vaddr; /* virtual address. */
vm_paddr_t paddr; /* physical address. */
};
#else /* linux & _WIN32 */
/* dma-mapping in linux can assign a buffer a different address
* depending on the device, so we need to have a separate
* physical-address look-up table for each na.
* We can still share the vaddrs, though, therefore we split
* the lut_entry structure.
*/
struct lut_entry {
void *vaddr; /* virtual address. */
};
struct plut_entry {
vm_paddr_t paddr; /* physical address. */
};
#endif /* linux & _WIN32 */
struct netmap_obj_pool;
/*
* NMB return the virtual address of a buffer (buffer 0 on bad index)
* PNMB also fills the physical address
*/
static inline void *
NMB(struct netmap_adapter *na, struct netmap_slot *slot)
{
struct lut_entry *lut = na->na_lut.lut;
uint32_t i = slot->buf_idx;
return (unlikely(i >= na->na_lut.objtotal)) ?
lut[0].vaddr : lut[i].vaddr;
}
static inline void *
PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
{
uint32_t i = slot->buf_idx;
struct lut_entry *lut = na->na_lut.lut;
struct plut_entry *plut = na->na_lut.plut;
void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
#ifdef _WIN32
*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
#else
*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
#endif
return ret;
}
/*
* Structure associated to each netmap file descriptor.
* It is created on open and left unbound (np_nifp == NULL).
* A successful NIOCREGIF will set np_nifp and the first few fields;
* this is protected by a global lock (NMG_LOCK) due to low contention.
*
* np_refs counts the number of references to the structure: one for the fd,
* plus (on FreeBSD) one for each active mmap which we track ourselves
* (linux automatically tracks them, but FreeBSD does not).
* np_refs is protected by NMG_LOCK.
*
* Read access to the structure is lock free, because ni_nifp once set
* can only go to 0 when nobody is using the entry anymore. Readers
* must check that np_nifp != NULL before using the other fields.
*/
struct netmap_priv_d {
struct netmap_if * volatile np_nifp; /* netmap if descriptor. */
struct netmap_adapter *np_na;
struct ifnet *np_ifp;
uint32_t np_flags; /* from the ioctl */
u_int np_qfirst[NR_TXRX],
np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
uint16_t np_txpoll;
uint16_t np_kloop_state; /* use with NMG_LOCK held */
#define NM_SYNC_KLOOP_RUNNING (1 << 0)
#define NM_SYNC_KLOOP_STOPPING (1 << 1)
int np_sync_flags; /* to be passed to nm_sync */
int np_refs; /* use with NMG_LOCK held */
/* pointers to the selinfo to be used for selrecord.
* Either the local or the global one depending on the
* number of rings.
*/
NM_SELINFO_T *np_si[NR_TXRX];
/* In the optional CSB mode, the user must specify the start address
* of two arrays of Communication Status Block (CSB) entries, for the
* two directions (kernel read application write, and kernel write
* application read).
* The number of entries must agree with the number of rings bound to
* the netmap file descriptor. The entries corresponding to the TX
* rings are laid out before the ones corresponding to the RX rings.
*
* Array of CSB entries for application --> kernel communication
* (N entries). */
struct nm_csb_atok *np_csb_atok_base;
/* Array of CSB entries for kernel --> application communication
* (N entries). */
struct nm_csb_ktoa *np_csb_ktoa_base;
#ifdef linux
struct file *np_filp; /* used by sync kloop */
#endif /* linux */
};
struct netmap_priv_d *netmap_priv_new(void);
void netmap_priv_delete(struct netmap_priv_d *);
static inline int nm_kring_pending(struct netmap_priv_d *np)
{
struct netmap_adapter *na = np->np_na;
enum txrx t;
int i;
for_rx_tx(t) {
for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
struct netmap_kring *kring = NMR(na, t)[i];
if (kring->nr_mode != kring->nr_pending_mode) {
return 1;
}
}
}
return 0;
}
/* call with NMG_LOCK held */
static __inline int
nm_si_user(struct netmap_priv_d *priv, enum txrx t)
{
return (priv->np_na != NULL &&
(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
}
#ifdef WITH_PIPES
int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
int netmap_pipe_krings_create_both(struct netmap_adapter *na,
struct netmap_adapter *ona);
void netmap_pipe_krings_delete_both(struct netmap_adapter *na,
struct netmap_adapter *ona);
int netmap_pipe_reg_both(struct netmap_adapter *na,
struct netmap_adapter *ona);
#endif /* WITH_PIPES */
#ifdef WITH_MONITOR
struct netmap_monitor_adapter {
struct netmap_adapter up;
struct netmap_priv_d priv;
uint32_t flags;
};
#endif /* WITH_MONITOR */
#ifdef WITH_GENERIC
/*
* generic netmap emulation for devices that do not have
* native netmap support.
*/
int generic_netmap_attach(struct ifnet *ifp);
int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
int na_is_generic(struct netmap_adapter *na);
/*
* the generic transmit routine is passed a structure to optionally
* build a queue of descriptors, in an OS-specific way.
* The payload is at addr, if non-null, and the routine should send or queue
* the packet, returning 0 if successful, 1 on failure.
*
* At the end, if head is non-null, there will be an additional call
* to the function with addr = NULL; this should tell the OS-specific
* routine to send the queue and free any resources. Failure is ignored.
*/
struct nm_os_gen_arg {
struct ifnet *ifp;
void *m; /* os-specific mbuf-like object */
void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
void *addr; /* payload of current packet */
u_int len; /* packet length */
u_int ring_nr; /* packet length */
u_int qevent; /* in txqdisc mode, place an event on this mbuf */
};
int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
static inline struct ifnet*
netmap_generic_getifp(struct netmap_generic_adapter *gna)
{
if (gna->prev)
return gna->prev->ifp;
return gna->up.up.ifp;
}
void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
//#define RATE_GENERIC /* Enables communication statistics for generic. */
#ifdef RATE_GENERIC
void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
#else
#define generic_rate(txp, txs, txi, rxp, rxs, rxi)
#endif
/*
* netmap_mitigation API. This is used by the generic adapter
* to reduce the number of interrupt requests/selwakeup
* to clients on incoming packets.
*/
void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
struct netmap_adapter *na);
void nm_os_mitigation_start(struct nm_generic_mit *mit);
void nm_os_mitigation_restart(struct nm_generic_mit *mit);
int nm_os_mitigation_active(struct nm_generic_mit *mit);
void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
#else /* !WITH_GENERIC */
#define generic_netmap_attach(ifp) (EOPNOTSUPP)
#define na_is_generic(na) (0)
#endif /* WITH_GENERIC */
/* Shared declarations for the VALE switch. */
/*
* Each transmit queue accumulates a batch of packets into
* a structure before forwarding. Packets to the same
* destination are put in a list using ft_next as a link field.
* ft_frags and ft_next are valid only on the first fragment.
*/
struct nm_bdg_fwd { /* forwarding entry for a bridge */
void *ft_buf; /* netmap or indirect buffer */
uint8_t ft_frags; /* how many fragments (only on 1st frag) */
uint16_t ft_offset; /* dst port (unused) */
uint16_t ft_flags; /* flags, e.g. indirect */
uint16_t ft_len; /* src fragment len */
uint16_t ft_next; /* next packet to same destination */
};
/* struct 'virtio_net_hdr' from linux. */
struct nm_vnet_hdr {
#define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */
#define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */
uint8_t flags;
#define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */
#define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */
#define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */
#define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */
#define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */
uint8_t gso_type;
uint16_t hdr_len;
uint16_t gso_size;
uint16_t csum_start;
uint16_t csum_offset;
};
#define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */
/* Private definitions for IPv4, IPv6, UDP and TCP headers. */
struct nm_iphdr {
uint8_t version_ihl;
uint8_t tos;
uint16_t tot_len;
uint16_t id;
uint16_t frag_off;
uint8_t ttl;
uint8_t protocol;
uint16_t check;
uint32_t saddr;
uint32_t daddr;
/*The options start here. */
};
struct nm_tcphdr {
uint16_t source;
uint16_t dest;
uint32_t seq;
uint32_t ack_seq;
uint8_t doff; /* Data offset + Reserved */
uint8_t flags;
uint16_t window;
uint16_t check;
uint16_t urg_ptr;
};
struct nm_udphdr {
uint16_t source;
uint16_t dest;
uint16_t len;
uint16_t check;
};
struct nm_ipv6hdr {
uint8_t priority_version;
uint8_t flow_lbl[3];
uint16_t payload_len;
uint8_t nexthdr;
uint8_t hop_limit;
uint8_t saddr[16];
uint8_t daddr[16];
};
/* Type used to store a checksum (in host byte order) that hasn't been
* folded yet.
*/
#define rawsum_t uint32_t
rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
size_t datalen, uint16_t *check);
void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
size_t datalen, uint16_t *check);
uint16_t nm_os_csum_fold(rawsum_t cur_sum);
void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
struct netmap_vp_adapter *dst_na,
const struct nm_bdg_fwd *ft_p,
struct netmap_ring *dst_ring,
u_int *j, u_int lim, u_int *howmany);
/* persistent virtual port routines */
int nm_os_vi_persist(const char *, struct ifnet **);
void nm_os_vi_detach(struct ifnet *);
void nm_os_vi_init_index(void);
/*
* kernel thread routines
*/
struct nm_kctx; /* OS-specific kernel context - opaque */
typedef void (*nm_kctx_worker_fn_t)(void *data);
/* kthread configuration */
struct nm_kctx_cfg {
long type; /* kthread type/identifier */
nm_kctx_worker_fn_t worker_fn; /* worker function */
void *worker_private;/* worker parameter */
int attach_user; /* attach kthread to user process */
};
/* kthread configuration */
struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
void *opaque);
int nm_os_kctx_worker_start(struct nm_kctx *);
void nm_os_kctx_worker_stop(struct nm_kctx *);
void nm_os_kctx_destroy(struct nm_kctx *);
void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
u_int nm_os_ncpus(void);
int netmap_sync_kloop(struct netmap_priv_d *priv,
struct nmreq_header *hdr);
int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
#ifdef WITH_PTNETMAP
/* ptnetmap guest routines */
/*
* ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
*/
struct ptnetmap_memdev;
int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
uint64_t *);
void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
/*
* netmap adapter for guest ptnetmap ports
*/
struct netmap_pt_guest_adapter {
/* The netmap adapter to be used by netmap applications.
* This field must be the first, to allow upcast. */
struct netmap_hw_adapter hwup;
/* The netmap adapter to be used by the driver. */
struct netmap_hw_adapter dr;
/* Reference counter to track users of backend netmap port: the
* network stack and netmap clients.
* Used to decide when we need (de)allocate krings/rings and
* start (stop) ptnetmap kthreads. */
int backend_users;
};
int netmap_pt_guest_attach(struct netmap_adapter *na,
unsigned int nifp_offset,
unsigned int memid);
bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
struct nm_csb_ktoa *ktoa,
struct netmap_kring *kring, int flags);
bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
struct nm_csb_ktoa *ktoa,
struct netmap_kring *kring, int flags);
int ptnet_nm_krings_create(struct netmap_adapter *na);
void ptnet_nm_krings_delete(struct netmap_adapter *na);
void ptnet_nm_dtor(struct netmap_adapter *na);
/* Helper function wrapping nm_sync_kloop_appl_read(). */
static inline void
ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
{
struct netmap_ring *ring = kring->ring;
/* Update hwcur and hwtail as known by the host. */
nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
/* nm_sync_finalize */
ring->tail = kring->rtail = kring->nr_hwtail;
}
#endif /* WITH_PTNETMAP */
#ifdef __FreeBSD__
/*
* FreeBSD mbuf allocator/deallocator in emulation mode:
*/
#if __FreeBSD_version < 1100000
/*
* For older versions of FreeBSD:
*
* We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
* so that the destructor, if invoked, will not free the packet.
* In principle we should set the destructor only on demand,
* but since there might be a race we better do it on allocation.
* As a consequence, we also need to set the destructor or we
* would leak buffers.
*/
/* mbuf destructor, also need to change the type to EXT_EXTREF,
* add an M_NOFREE flag, and then clear the flag and
* chain into uma_zfree(zone_pack, mf)
* (or reinstall the buffer ?)
*/
#define SET_MBUF_DESTRUCTOR(m, fn) do { \
(m)->m_ext.ext_free = (void *)fn; \
(m)->m_ext.ext_type = EXT_EXTREF; \
} while (0)
static int
void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2)
{
/* restore original mbuf */
m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1;
m->m_ext.ext_arg1 = NULL;
m->m_ext.ext_type = EXT_PACKET;
m->m_ext.ext_free = NULL;
if (MBUF_REFCNT(m) == 0)
SET_MBUF_REFCNT(m, 1);
uma_zfree(zone_pack, m);
return 0;
}
static inline struct mbuf *
nm_os_get_mbuf(struct ifnet *ifp, int len)
{
struct mbuf *m;
(void)ifp;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m) {
/* m_getcl() (mb_ctor_mbuf) has an assert that checks that
* M_NOFREE flag is not specified as third argument,
* so we have to set M_NOFREE after m_getcl(). */
m->m_flags |= M_NOFREE;
m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save
m->m_ext.ext_free = (void *)void_mbuf_dtor;
m->m_ext.ext_type = EXT_EXTREF;
nm_prdis(5, "create m %p refcnt %d", m, MBUF_REFCNT(m));
}
return m;
}
#else /* __FreeBSD_version >= 1100000 */
/*
* Newer versions of FreeBSD, using a straightforward scheme.
*
* We allocate mbufs with m_gethdr(), since the mbuf header is needed
* by the driver. We also attach a customly-provided external storage,
* which in this case is a netmap buffer. When calling m_extadd(), however
* we pass a NULL address, since the real address (and length) will be
* filled in by nm_os_generic_xmit_frame() right before calling
* if_transmit().
*
* The dtor function does nothing, however we need it since mb_free_ext()
* has a KASSERT(), checking that the mbuf dtor function is not NULL.
*/
#if __FreeBSD_version <= 1200050
static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { }
#else /* __FreeBSD_version >= 1200051 */
/* The arg1 and arg2 pointers argument were removed by r324446, which
* in included since version 1200051. */
static void void_mbuf_dtor(struct mbuf *m) { }
#endif /* __FreeBSD_version >= 1200051 */
#define SET_MBUF_DESTRUCTOR(m, fn) do { \
(m)->m_ext.ext_free = (fn != NULL) ? \
(void *)fn : (void *)void_mbuf_dtor; \
} while (0)
static inline struct mbuf *
nm_os_get_mbuf(struct ifnet *ifp, int len)
{
struct mbuf *m;
(void)ifp;
(void)len;
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL) {
return m;
}
m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
NULL, NULL, 0, EXT_NET_DRV);
return m;
}
#endif /* __FreeBSD_version >= 1100000 */
#endif /* __FreeBSD__ */
struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t);
int netmap_init_bridges(void);
void netmap_uninit_bridges(void);
/* Functions to read and write CSB fields from the kernel. */
#if defined (linux)
#define CSB_READ(csb, field, r) (get_user(r, &csb->field))
#define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
#else /* ! linux */
#define CSB_READ(csb, field, r) (r = fuword32(&csb->field))
#define CSB_WRITE(csb, field, v) (suword32(&csb->field, v))
#endif /* ! linux */
#endif /* _NET_NETMAP_KERN_H_ */