Hans Petter Selasky 1354026034 Commit initial version of new XHCI driver which was written from
scratch. This driver adds support for USB3.0 devices. The XHCI
interface is also backwards compatible to USB2.0 and USB1.0 and will
evntually replace the OHCI/UHCI and EHCI drivers.

There will be follow-up commits during the coming week to link the
driver into the default kernel build and add missing USB3.0
functionality in the USB core. Currently only the driver files are
committed.

Approved by:	thompsa (mentor)
2010-10-03 08:12:17 +00:00

3863 lines
87 KiB
C

/*-
* Copyright (c) 2010 Hans Petter Selasky. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* USB eXtensible Host Controller Interface, a.k.a. USB 3.0 controller.
*
* The XHCI 1.0 spec can be found at
* http://www.intel.com/technology/usb/download/xHCI_Specification_for_USB.pdf
* and the USB 3.0 spec at
* http://www.usb.org/developers/docs/usb_30_spec_060910.zip
*/
/*
* A few words about the design implementation: This driver emulates
* the concept about TDs which is found in EHCI specification. This
* way we avoid too much diveration among USB drivers.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/linker_set.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#define USB_DEBUG_VAR xhcidebug
#include <dev/usb/usb_core.h>
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_busdma.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/usb_transfer.h>
#include <dev/usb/usb_device.h>
#include <dev/usb/usb_hub.h>
#include <dev/usb/usb_util.h>
#include <dev/usb/usb_controller.h>
#include <dev/usb/usb_bus.h>
#include <dev/usb/controller/xhci.h>
#include <dev/usb/controller/xhcireg.h>
#define XHCI_BUS2SC(bus) \
((struct xhci_softc *)(((uint8_t *)(bus)) - \
((uint8_t *)&(((struct xhci_softc *)0)->sc_bus))))
#ifdef USB_DEBUG
static int xhcidebug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, xhci, CTLFLAG_RW, 0, "USB XHCI");
SYSCTL_INT(_hw_usb_xhci, OID_AUTO, debug, CTLFLAG_RW,
&xhcidebug, 0, "Debug level");
TUNABLE_INT("hw.usb.xhci.debug", &xhcidebug);
#endif
#define XHCI_INTR_ENDPT 1
struct xhci_std_temp {
struct xhci_softc *sc;
struct usb_page_cache *pc;
struct xhci_td *td;
struct xhci_td *td_next;
uint32_t len;
uint32_t offset;
uint32_t max_packet_size;
uint32_t average;
uint16_t isoc_delta;
uint16_t isoc_frame;
uint8_t shortpkt;
uint8_t multishort;
uint8_t last_frame;
uint8_t trb_type;
uint8_t direction;
uint8_t tbc;
uint8_t tlbpc;
uint8_t step_td;
};
static void xhci_do_poll(struct usb_bus *);
static void xhci_device_done(struct usb_xfer *, usb_error_t);
static void xhci_root_intr(struct xhci_softc *);
static void xhci_free_device_ext(struct usb_device *);
static struct xhci_endpoint_ext *xhci_get_endpoint_ext(struct usb_device *,
struct usb_endpoint_descriptor *);
static usb_proc_callback_t xhci_configure_msg;
static usb_error_t xhci_configure_device(struct usb_device *);
static usb_error_t xhci_configure_endpoint(struct usb_device *,
struct usb_endpoint_descriptor *, uint64_t, uint16_t,
uint8_t, uint8_t, uint8_t, uint16_t, uint16_t);
static usb_error_t xhci_configure_mask(struct usb_device *,
uint32_t, uint8_t);
static usb_error_t xhci_cmd_evaluate_ctx(struct xhci_softc *,
uint64_t, uint8_t);
static void xhci_endpoint_doorbell(struct usb_xfer *);
extern struct usb_bus_methods xhci_bus_methods;
#ifdef USB_DEBUG
static void
xhci_dump_trb(struct xhci_trb *trb)
{
DPRINTFN(5, "trb = %p\n", trb);
DPRINTFN(5, "qwTrb0 = 0x%016llx\n", (long long)le64toh(trb->qwTrb0));
DPRINTFN(5, "dwTrb2 = 0x%08x\n", le32toh(trb->dwTrb2));
DPRINTFN(5, "dwTrb3 = 0x%08x\n", le32toh(trb->dwTrb3));
}
static void
xhci_dump_endpoint(struct xhci_endp_ctx *pep)
{
DPRINTFN(5, "pep = %p\n", pep);
DPRINTFN(5, "dwEpCtx0=0x%08x\n", pep->dwEpCtx0);
DPRINTFN(5, "dwEpCtx1=0x%08x\n", pep->dwEpCtx1);
DPRINTFN(5, "qwEpCtx2=0x%016llx\n", (long long)pep->qwEpCtx2);
DPRINTFN(5, "dwEpCtx4=0x%08x\n", pep->dwEpCtx4);
DPRINTFN(5, "dwEpCtx5=0x%08x\n", pep->dwEpCtx5);
DPRINTFN(5, "dwEpCtx6=0x%08x\n", pep->dwEpCtx6);
DPRINTFN(5, "dwEpCtx7=0x%08x\n", pep->dwEpCtx7);
}
static void
xhci_dump_device(struct xhci_slot_ctx *psl)
{
DPRINTFN(5, "psl = %p\n", psl);
DPRINTFN(5, "dwSctx0=0x%08x\n", psl->dwSctx0);
DPRINTFN(5, "dwSctx1=0x%08x\n", psl->dwSctx1);
DPRINTFN(5, "dwSctx2=0x%08x\n", psl->dwSctx2);
DPRINTFN(5, "dwSctx3=0x%08x\n", psl->dwSctx3);
}
#endif
static void
xhci_iterate_hw_softc(struct usb_bus *bus, usb_bus_mem_sub_cb_t *cb)
{
struct xhci_softc *sc = XHCI_BUS2SC(bus);
uint8_t i;
cb(bus, &sc->sc_hw.root_pc, &sc->sc_hw.root_pg,
sizeof(struct xhci_hw_root), XHCI_PAGE_SIZE);
cb(bus, &sc->sc_hw.ctx_pc, &sc->sc_hw.ctx_pg,
sizeof(struct xhci_dev_ctx_addr), XHCI_PAGE_SIZE);
for (i = 0; i != XHCI_MAX_SCRATCHPADS; i++) {
cb(bus, &sc->sc_hw.scratch_pc[i], &sc->sc_hw.scratch_pg[i],
XHCI_PAGE_SIZE, XHCI_PAGE_SIZE);
}
}
usb_error_t
xhci_start_controller(struct xhci_softc *sc)
{
struct usb_page_search buf_res;
struct xhci_hw_root *phwr;
struct xhci_dev_ctx_addr *pdctxa;
uint64_t addr;
uint32_t temp;
uint16_t i;
DPRINTF("\n");
sc->sc_capa_off = 0;
sc->sc_oper_off = XREAD1(sc, capa, XHCI_CAPLENGTH);
sc->sc_runt_off = XREAD4(sc, capa, XHCI_RTSOFF) & ~0x1F;
sc->sc_door_off = XREAD4(sc, capa, XHCI_DBOFF) & ~0x3;
DPRINTF("CAPLENGTH=0x%x\n", sc->sc_oper_off);
DPRINTF("RUNTIMEOFFSET=0x%x\n", sc->sc_runt_off);
DPRINTF("DOOROFFSET=0x%x\n", sc->sc_door_off);
sc->sc_event_ccs = 1;
sc->sc_event_idx = 0;
sc->sc_command_ccs = 1;
sc->sc_command_idx = 0;
DPRINTF("xHCI version = 0x%04x\n", XREAD2(sc, capa, XHCI_HCIVERSION));
temp = XREAD4(sc, capa, XHCI_HCSPARAMS0);
DPRINTF("HCS0 = 0x%08x\n", temp);
if (XHCI_HCS0_CSZ(temp)) {
device_printf(sc->sc_bus.parent, "Driver does not "
"support 64-byte contexts.");
return (USB_ERR_IOERROR);
}
/* Reset controller */
XWRITE4(sc, oper, XHCI_USBCMD, XHCI_CMD_HCRST);
for (i = 0; i != 100; i++) {
usb_pause_mtx(NULL, hz / 1000);
temp = XREAD4(sc, oper, XHCI_USBCMD) &
(XHCI_CMD_HCRST | XHCI_STS_CNR);
if (!temp)
break;
}
if (temp) {
device_printf(sc->sc_bus.parent, "Controller "
"reset timeout.\n");
return (USB_ERR_IOERROR);
}
if (!(XREAD4(sc, oper, XHCI_PAGESIZE) & XHCI_PAGESIZE_4K)) {
device_printf(sc->sc_bus.parent, "Controller does "
"not support 4K page size.\n");
return (USB_ERR_IOERROR);
}
temp = XREAD4(sc, capa, XHCI_HCSPARAMS1);
i = XHCI_HCS1_N_PORTS(temp);
if (i == 0) {
device_printf(sc->sc_bus.parent, "Invalid number "
"of ports: %u\n", i);
return (USB_ERR_IOERROR);
}
sc->sc_noport = i;
sc->sc_noslot = XHCI_HCS1_DEVSLOT_MAX(temp);
if (sc->sc_noslot > XHCI_MAX_DEVICES)
sc->sc_noslot = XHCI_MAX_DEVICES;
/* setup number of device slots */
DPRINTF("CONFIG=0x%08x -> 0x%08x\n",
XREAD4(sc, oper, XHCI_CONFIG), sc->sc_noslot);
XWRITE4(sc, oper, XHCI_CONFIG, sc->sc_noslot);
DPRINTF("Max slots: %u\n", sc->sc_noslot);
temp = XREAD4(sc, capa, XHCI_HCSPARAMS2);
sc->sc_noscratch = XHCI_HCS2_SPB_MAX(temp);
if (sc->sc_noscratch > XHCI_MAX_SCRATCHPADS) {
device_printf(sc->sc_bus.parent, "XHCI request "
"too many scratchpads\n");
return (USB_ERR_NOMEM);
}
DPRINTF("Max scratch: %u\n", sc->sc_noscratch);
temp = XREAD4(sc, capa, XHCI_HCSPARAMS3);
sc->sc_exit_lat_max = XHCI_HCS3_U1_DEL(temp) +
XHCI_HCS3_U2_DEL(temp) + 250 /* us */;
temp = XREAD4(sc, oper, XHCI_USBSTS);
/* clear interrupts */
XWRITE4(sc, oper, XHCI_USBSTS, temp);
/* disable all device notifications */
XWRITE4(sc, oper, XHCI_DNCTRL, 0);
/* setup device context base address */
usbd_get_page(&sc->sc_hw.ctx_pc, 0, &buf_res);
pdctxa = buf_res.buffer;
memset(pdctxa, 0, sizeof(*pdctxa));
addr = buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_dev_ctx_addr *)0)->qwSpBufPtr[0];
/* slot 0 points to the table of scratchpad pointers */
pdctxa->qwBaaDevCtxAddr[0] = htole64(addr);
for (i = 0; i != sc->sc_noscratch; i++) {
struct usb_page_search buf_scp;
usbd_get_page(&sc->sc_hw.scratch_pc[i], 0, &buf_scp);
pdctxa->qwSpBufPtr[i] = htole64((uint64_t)buf_scp.physaddr);
}
addr = buf_res.physaddr;
XWRITE4(sc, oper, XHCI_DCBAAP_LO, (uint32_t)addr);
XWRITE4(sc, oper, XHCI_DCBAAP_HI, (uint32_t)(addr >> 32));
XWRITE4(sc, oper, XHCI_DCBAAP_LO, (uint32_t)addr);
XWRITE4(sc, oper, XHCI_DCBAAP_HI, (uint32_t)(addr >> 32));
/* Setup event table size */
temp = XREAD4(sc, capa, XHCI_HCSPARAMS2);
DPRINTF("HCS2=0x%08x\n", temp);
temp = XHCI_HCS2_ERST_MAX(temp);
temp = 1U << temp;
if (temp > XHCI_MAX_RSEG)
temp = XHCI_MAX_RSEG;
sc->sc_erst_max = temp;
DPRINTF("ERSTSZ=0x%08x -> 0x%08x\n",
XREAD4(sc, runt, XHCI_ERSTSZ(0)), temp);
XWRITE4(sc, runt, XHCI_ERSTSZ(0), XHCI_ERSTS_SET(temp));
/* Setup interrupt rate */
XWRITE4(sc, runt, XHCI_IMOD(0), XHCI_IMOD_DEFAULT);
usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res);
phwr = buf_res.buffer;
addr = buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_events[0];
/* reset hardware root structure */
memset(phwr, 0, sizeof(*phwr));
phwr->hwr_ring_seg[0].qwEvrsTablePtr = htole64(addr);
phwr->hwr_ring_seg[0].dwEvrsTableSize = htole32(XHCI_MAX_EVENTS);
DPRINTF("ERDP(0)=0x%016llx\n", (unsigned long long)addr);
XWRITE4(sc, runt, XHCI_ERDP_LO(0), (uint32_t)addr);
XWRITE4(sc, runt, XHCI_ERDP_HI(0), (uint32_t)(addr >> 32));
addr = (uint64_t)buf_res.physaddr;
DPRINTF("ERSTBA(0)=0x%016llx\n", (unsigned long long)addr);
XWRITE4(sc, runt, XHCI_ERSTBA_LO(0), (uint32_t)addr);
XWRITE4(sc, runt, XHCI_ERSTBA_HI(0), (uint32_t)(addr >> 32));
/* Setup interrupter registers */
temp = XREAD4(sc, runt, XHCI_IMAN(0));
temp |= XHCI_IMAN_INTR_ENA;
XWRITE4(sc, runt, XHCI_IMAN(0), temp);
/* setup command ring control base address */
addr = buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_commands[0];
DPRINTF("CRCR=0x%016llx\n", (unsigned long long)addr);
XWRITE4(sc, oper, XHCI_CRCR_LO, ((uint32_t)addr) | XHCI_CRCR_LO_RCS);
XWRITE4(sc, oper, XHCI_CRCR_HI, (uint32_t)(addr >> 32));
phwr->hwr_commands[XHCI_MAX_COMMANDS - 1].qwTrb0 = htole64(addr);
usb_bus_mem_flush_all(&sc->sc_bus, &xhci_iterate_hw_softc);
/* Go! */
XWRITE4(sc, oper, XHCI_USBCMD, XHCI_CMD_RS |
XHCI_CMD_INTE | XHCI_CMD_HSEE);
for (i = 0; i != 100; i++) {
usb_pause_mtx(NULL, hz / 1000);
temp = XREAD4(sc, oper, XHCI_USBSTS) & XHCI_STS_HCH;
if (!temp)
break;
}
if (temp) {
XWRITE4(sc, oper, XHCI_USBCMD, 0);
device_printf(sc->sc_bus.parent, "Run timeout.\n");
return (USB_ERR_IOERROR);
}
/* catch any lost interrupts */
xhci_do_poll(&sc->sc_bus);
return (0);
}
usb_error_t
xhci_halt_controller(struct xhci_softc *sc)
{
uint32_t temp;
uint16_t i;
DPRINTF("\n");
sc->sc_capa_off = 0;
sc->sc_oper_off = XREAD1(sc, capa, XHCI_CAPLENGTH);
sc->sc_runt_off = XREAD4(sc, capa, XHCI_RTSOFF) & ~0xF;
sc->sc_door_off = XREAD4(sc, capa, XHCI_DBOFF) & ~0x3;
/* Halt controller */
XWRITE4(sc, oper, XHCI_USBCMD, 0);
for (i = 0; i != 100; i++) {
usb_pause_mtx(NULL, hz / 1000);
temp = XREAD4(sc, oper, XHCI_USBSTS) & XHCI_STS_HCH;
if (temp)
break;
}
if (!temp) {
device_printf(sc->sc_bus.parent, "Controller halt timeout.\n");
return (USB_ERR_IOERROR);
}
return (0);
}
usb_error_t
xhci_init(struct xhci_softc *sc, device_t self)
{
/* initialise some bus fields */
sc->sc_bus.parent = self;
/* set the bus revision */
sc->sc_bus.usbrev = USB_REV_3_0;
/* set up the bus struct */
sc->sc_bus.methods = &xhci_bus_methods;
/* setup devices array */
sc->sc_bus.devices = sc->sc_devices;
sc->sc_bus.devices_max = XHCI_MAX_DEVICES;
/* setup command queue mutex and condition varible */
cv_init(&sc->sc_cmd_cv, "CMDQ");
sx_init(&sc->sc_cmd_sx, "CMDQ lock");
/* get all DMA memory */
if (usb_bus_mem_alloc_all(&sc->sc_bus,
USB_GET_DMA_TAG(self), &xhci_iterate_hw_softc)) {
return (ENOMEM);
}
sc->sc_config_msg[0].hdr.pm_callback = &xhci_configure_msg;
sc->sc_config_msg[0].bus = &sc->sc_bus;
sc->sc_config_msg[1].hdr.pm_callback = &xhci_configure_msg;
sc->sc_config_msg[1].bus = &sc->sc_bus;
if (usb_proc_create(&sc->sc_config_proc,
&sc->sc_bus.bus_mtx, device_get_nameunit(self), USB_PRI_MED)) {
printf("WARNING: Creation of XHCI configure "
"callback process failed.\n");
}
return (0);
}
void
xhci_uninit(struct xhci_softc *sc)
{
usb_proc_free(&sc->sc_config_proc);
usb_bus_mem_free_all(&sc->sc_bus, &xhci_iterate_hw_softc);
cv_destroy(&sc->sc_cmd_cv);
sx_destroy(&sc->sc_cmd_sx);
}
void
xhci_suspend(struct xhci_softc *sc)
{
/* XXX TODO */
}
void
xhci_resume(struct xhci_softc *sc)
{
/* XXX TODO */
}
void
xhci_shutdown(struct xhci_softc *sc)
{
DPRINTF("Stopping the XHCI\n");
xhci_halt_controller(sc);
}
static usb_error_t
xhci_generic_done_sub(struct usb_xfer *xfer)
{
struct xhci_td *td;
struct xhci_td *td_alt_next;
uint32_t len;
uint8_t status;
td = xfer->td_transfer_cache;
td_alt_next = td->alt_next;
if (xfer->aframes != xfer->nframes)
usbd_xfer_set_frame_len(xfer, xfer->aframes, 0);
while (1) {
usb_pc_cpu_invalidate(td->page_cache);
status = td->status;
len = td->remainder;
DPRINTFN(4, "xfer=%p[%u/%u] rem=%u/%u status=%u\n",
xfer, (unsigned int)xfer->aframes,
(unsigned int)xfer->nframes,
(unsigned int)len, (unsigned int)td->len,
(unsigned int)status);
/*
* Verify the status length and
* add the length to "frlengths[]":
*/
if (len > td->len) {
/* should not happen */
DPRINTF("Invalid status length, "
"0x%04x/0x%04x bytes\n", len, td->len);
status = XHCI_TRB_ERROR_LENGTH;
} else if (xfer->aframes != xfer->nframes) {
xfer->frlengths[xfer->aframes] += td->len - len;
}
/* Check for last transfer */
if (((void *)td) == xfer->td_transfer_last) {
td = NULL;
break;
}
/* Check for transfer error */
if (status != XHCI_TRB_ERROR_SHORT_PKT &&
status != XHCI_TRB_ERROR_SUCCESS) {
/* the transfer is finished */
td = NULL;
break;
}
/* Check for short transfer */
if (len > 0) {
if (xfer->flags_int.short_frames_ok ||
xfer->flags_int.isochronous_xfr ||
xfer->flags_int.control_xfr) {
/* follow alt next */
td = td->alt_next;
} else {
/* the transfer is finished */
td = NULL;
}
break;
}
td = td->obj_next;
if (td->alt_next != td_alt_next) {
/* this USB frame is complete */
break;
}
}
/* update transfer cache */
xfer->td_transfer_cache = td;
return ((status == XHCI_TRB_ERROR_STALL) ? USB_ERR_STALLED :
(status != XHCI_TRB_ERROR_SHORT_PKT &&
status != XHCI_TRB_ERROR_SUCCESS) ? USB_ERR_IOERROR :
USB_ERR_NORMAL_COMPLETION);
}
static void
xhci_generic_done(struct usb_xfer *xfer)
{
usb_error_t err = 0;
DPRINTFN(13, "xfer=%p endpoint=%p transfer done\n",
xfer, xfer->endpoint);
/* reset scanner */
xfer->td_transfer_cache = xfer->td_transfer_first;
if (xfer->flags_int.control_xfr) {
if (xfer->flags_int.control_hdr)
err = xhci_generic_done_sub(xfer);
xfer->aframes = 1;
if (xfer->td_transfer_cache == NULL)
goto done;
}
while (xfer->aframes != xfer->nframes) {
err = xhci_generic_done_sub(xfer);
xfer->aframes++;
if (xfer->td_transfer_cache == NULL)
goto done;
}
if (xfer->flags_int.control_xfr &&
!xfer->flags_int.control_act)
err = xhci_generic_done_sub(xfer);
done:
/* transfer is complete */
xhci_device_done(xfer, err);
}
static void
xhci_activate_transfer(struct usb_xfer *xfer)
{
struct xhci_td *td;
td = xfer->td_transfer_cache;
usb_pc_cpu_invalidate(td->page_cache);
if (!(td->td_trb[0].dwTrb3 & htole32(XHCI_TRB_3_CYCLE_BIT))) {
/* activate the transfer */
td->td_trb[0].dwTrb3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
usb_pc_cpu_flush(td->page_cache);
xhci_endpoint_doorbell(xfer);
}
}
static void
xhci_skip_transfer(struct usb_xfer *xfer)
{
struct xhci_td *td;
struct xhci_td *td_last;
td = xfer->td_transfer_cache;
td_last = xfer->td_transfer_last;
td = td->alt_next;
usb_pc_cpu_invalidate(td->page_cache);
if (!(td->td_trb[0].dwTrb3 & htole32(XHCI_TRB_3_CYCLE_BIT))) {
usb_pc_cpu_invalidate(td_last->page_cache);
/* copy LINK TRB to current waiting location */
td->td_trb[0].qwTrb0 = td_last->td_trb[td_last->ntrb].qwTrb0;
td->td_trb[0].dwTrb2 = td_last->td_trb[td_last->ntrb].dwTrb2;
usb_pc_cpu_flush(td->page_cache);
td->td_trb[0].dwTrb3 = td_last->td_trb[td_last->ntrb].dwTrb3;
usb_pc_cpu_flush(td->page_cache);
xhci_endpoint_doorbell(xfer);
}
}
/*------------------------------------------------------------------------*
* xhci_check_transfer
*------------------------------------------------------------------------*/
static void
xhci_check_transfer(struct xhci_softc *sc, struct xhci_trb *trb)
{
int64_t offset;
uint64_t td_event;
uint32_t temp;
uint32_t remainder;
uint8_t status;
uint8_t halted;
uint8_t epno;
uint8_t index;
uint8_t i;
/* decode TRB */
td_event = le64toh(trb->qwTrb0);
temp = le32toh(trb->dwTrb2);
remainder = XHCI_TRB_2_REM_GET(temp);
status = XHCI_TRB_2_ERROR_GET(temp);
temp = le32toh(trb->dwTrb3);
epno = XHCI_TRB_3_EP_GET(temp);
index = XHCI_TRB_3_SLOT_GET(temp);
/* check if error means halted */
halted = (status != XHCI_TRB_ERROR_SHORT_PKT &&
status != XHCI_TRB_ERROR_SUCCESS);
DPRINTF("slot=%u epno=%u remainder=%u status=%u\n",
index, epno, remainder, status);
if (index > sc->sc_noslot) {
DPRINTF("Invalid slot.\n");
return;
}
if ((epno == 0) || (epno >= XHCI_MAX_ENDPOINTS)) {
DPRINTF("Invalid endpoint.\n");
return;
}
/* try to find the USB transfer that generated the event */
for (i = 0; i != (XHCI_MAX_TRANSFERS - 1); i++) {
struct usb_xfer *xfer;
struct xhci_td *td;
struct xhci_endpoint_ext *pepext;
pepext = &sc->sc_hw.devs[index].endp[epno];
xfer = pepext->xfer[i];
if (xfer == NULL)
continue;
td = xfer->td_transfer_cache;
DPRINTFN(5, "Checking if 0x%016llx == (0x%016llx .. 0x%016llx)\n",
(long long)td_event,
(long long)td->td_self,
(long long)td->td_self + sizeof(td->td_trb));
/*
* NOTE: Some XHCI implementations might not trigger
* an event on the last LINK TRB so we need to
* consider both the last and second last event
* address as conditions for a successful transfer.
*
* NOTE: We assume that the XHCI will only trigger one
* event per chain of TRBs.
*/
offset = td_event - td->td_self;
if (offset >= 0 &&
offset < sizeof(td->td_trb)) {
usb_pc_cpu_invalidate(td->page_cache);
/* compute rest of remainder, if any */
for (i = (offset / 16) + 1; i < td->ntrb; i++) {
temp = le32toh(td->td_trb[i].dwTrb2);
remainder += XHCI_TRB_2_BYTES_GET(temp);
}
DPRINTFN(5, "New remainder: %u\n", remainder);
/* clear isochronous transfer errors */
if (xfer->flags_int.isochronous_xfr) {
if (halted) {
halted = 0;
status = XHCI_TRB_ERROR_SUCCESS;
remainder = td->len;
}
}
/* "td->remainder" is verified later */
td->remainder = remainder;
td->status = status;
usb_pc_cpu_flush(td->page_cache);
/*
* 1) Last transfer descriptor makes the
* transfer done
*/
if (((void *)td) == xfer->td_transfer_last) {
DPRINTF("TD is last\n");
xhci_generic_done(xfer);
break;
}
/*
* 2) Any kind of error makes the transfer
* done
*/
if (halted) {
DPRINTF("TD has I/O error\n");
xhci_generic_done(xfer);
break;
}
/*
* 3) If there is no alternate next transfer,
* a short packet also makes the transfer done
*/
if (td->remainder > 0) {
DPRINTF("TD has short pkt\n");
if (xfer->flags_int.short_frames_ok ||
xfer->flags_int.isochronous_xfr ||
xfer->flags_int.control_xfr) {
/* follow the alt next */
xfer->td_transfer_cache = td->alt_next;
xhci_activate_transfer(xfer);
break;
}
xhci_skip_transfer(xfer);
xhci_generic_done(xfer);
break;
}
/*
* 4) Transfer complete - go to next TD
*/
DPRINTF("Following next TD\n");
xfer->td_transfer_cache = td->obj_next;
xhci_activate_transfer(xfer);
break; /* there should only be one match */
}
}
}
static void
xhci_check_command(struct xhci_softc *sc, struct xhci_trb *trb)
{
if (sc->sc_cmd_addr == trb->qwTrb0) {
DPRINTF("Received command event\n");
sc->sc_cmd_result[0] = trb->dwTrb2;
sc->sc_cmd_result[1] = trb->dwTrb3;
cv_signal(&sc->sc_cmd_cv);
}
}
static void
xhci_interrupt_poll(struct xhci_softc *sc)
{
struct usb_page_search buf_res;
struct xhci_hw_root *phwr;
uint64_t addr;
uint32_t temp;
uint16_t i;
uint8_t event;
uint8_t j;
uint8_t k;
uint8_t t;
usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res);
phwr = buf_res.buffer;
/* Receive any events */
usb_pc_cpu_invalidate(&sc->sc_hw.root_pc);
i = sc->sc_event_idx;
j = sc->sc_event_ccs;
t = 2;
while (1) {
temp = le32toh(phwr->hwr_events[i].dwTrb3);
k = (temp & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
if (j != k)
break;
event = XHCI_TRB_3_TYPE_GET(temp);
DPRINTFN(10, "event[%u] = %u (0x%016llx 0x%08lx 0x%08lx)\n",
i, event, (long long)le64toh(phwr->hwr_events[i].qwTrb0),
(long)le32toh(phwr->hwr_events[i].dwTrb2),
(long)le32toh(phwr->hwr_events[i].dwTrb3));
switch (event) {
case XHCI_TRB_EVENT_TRANSFER:
xhci_check_transfer(sc, &phwr->hwr_events[i]);
break;
case XHCI_TRB_EVENT_CMD_COMPLETE:
xhci_check_command(sc, &phwr->hwr_events[i]);
break;
default:
DPRINTF("Unhandled event = %u\n", event);
break;
}
i++;
if (i == XHCI_MAX_EVENTS) {
i = 0;
j ^= 1;
/* check for timeout */
if (!--t)
break;
}
}
sc->sc_event_idx = i;
sc->sc_event_ccs = j;
/*
* NOTE: The Event Ring Dequeue Pointer Register is 64-bit
* latched. That means to activate the register we need to
* write both the low and high double word of the 64-bit
* register.
*/
addr = (uint32_t)buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_events[i];
/* try to clear busy bit */
addr |= XHCI_ERDP_LO_BUSY;
XWRITE4(sc, runt, XHCI_ERDP_LO(0), (uint32_t)addr);
XWRITE4(sc, runt, XHCI_ERDP_HI(0), (uint32_t)(addr >> 32));
}
static usb_error_t
xhci_do_command(struct xhci_softc *sc, struct xhci_trb *trb,
uint16_t timeout_ms)
{
struct usb_page_search buf_res;
struct xhci_hw_root *phwr;
uint64_t addr;
uint32_t temp;
uint8_t i;
uint8_t j;
int err;
XHCI_CMD_ASSERT_LOCKED(sc);
/* get hardware root structure */
usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res);
phwr = buf_res.buffer;
/* Queue command */
USB_BUS_LOCK(&sc->sc_bus);
i = sc->sc_command_idx;
j = sc->sc_command_ccs;
DPRINTFN(10, "command[%u] = %u (0x%016llx, 0x%08lx, 0x%08lx)\n",
i, XHCI_TRB_3_TYPE_GET(le32toh(trb->dwTrb3)),
(long long)le64toh(trb->qwTrb0),
(long)le32toh(trb->dwTrb2),
(long)le32toh(trb->dwTrb3));
phwr->hwr_commands[i].qwTrb0 = trb->qwTrb0;
phwr->hwr_commands[i].dwTrb2 = trb->dwTrb2;
usb_pc_cpu_flush(&sc->sc_hw.root_pc);
temp = trb->dwTrb3;
if (j)
temp |= htole32(XHCI_TRB_3_CYCLE_BIT);
else
temp &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
temp &= ~htole32(XHCI_TRB_3_TC_BIT);
phwr->hwr_commands[i].dwTrb3 = temp;
usb_pc_cpu_flush(&sc->sc_hw.root_pc);
addr = buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_commands[i];
sc->sc_cmd_addr = htole64(addr);
i++;
if (i == (XHCI_MAX_COMMANDS - 1)) {
if (j) {
temp = htole32(XHCI_TRB_3_TC_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
XHCI_TRB_3_CYCLE_BIT);
} else {
temp = htole32(XHCI_TRB_3_TC_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK));
}
phwr->hwr_commands[i].dwTrb3 = temp;
usb_pc_cpu_flush(&sc->sc_hw.root_pc);
i = 0;
j ^= 1;
}
sc->sc_command_idx = i;
sc->sc_command_ccs = j;
XWRITE4(sc, door, XHCI_DOORBELL(0), 0);
err = cv_timedwait(&sc->sc_cmd_cv, &sc->sc_bus.bus_mtx,
USB_MS_TO_TICKS(timeout_ms));
if (err) {
DPRINTFN(0, "Command timeout!\n");
err = USB_ERR_TIMEOUT;
trb->dwTrb2 = 0;
trb->dwTrb3 = 0;
} else {
temp = le32toh(sc->sc_cmd_result[0]);
if (XHCI_TRB_2_ERROR_GET(temp) != XHCI_TRB_ERROR_SUCCESS)
err = USB_ERR_IOERROR;
trb->dwTrb2 = sc->sc_cmd_result[0];
trb->dwTrb3 = sc->sc_cmd_result[1];
}
USB_BUS_UNLOCK(&sc->sc_bus);
return (err);
}
#if 0
static usb_error_t
xhci_cmd_nop(struct xhci_softc *sc)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NOOP);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 50 /* ms */));
}
#endif
static usb_error_t
xhci_cmd_enable_slot(struct xhci_softc *sc, uint8_t *pslot)
{
struct xhci_trb trb;
uint32_t temp;
usb_error_t err;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
trb.dwTrb3 = htole32(XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT));
err = xhci_do_command(sc, &trb, 50 /* ms */);
if (err)
goto done;
temp = le32toh(trb.dwTrb3);
*pslot = XHCI_TRB_3_SLOT_GET(temp);
done:
return (err);
}
static usb_error_t
xhci_cmd_disable_slot(struct xhci_softc *sc, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT) |
XHCI_TRB_3_SLOT_SET(slot_id);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 50 /* ms */));
}
static usb_error_t
xhci_cmd_set_address(struct xhci_softc *sc, uint64_t input_ctx,
uint8_t bsr, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = htole64(input_ctx);
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
XHCI_TRB_3_SLOT_SET(slot_id);
if (bsr)
temp |= XHCI_TRB_3_BSR_BIT;
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 500 /* ms */));
}
static usb_error_t
xhci_set_address(struct usb_device *udev, struct mtx *mtx, uint16_t address)
{
struct usb_page_search buf_inp;
struct usb_page_search buf_dev;
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct xhci_hw_dev *hdev;
struct xhci_dev_ctx *pdev;
struct xhci_endpoint_ext *pepext;
uint16_t mps;
usb_error_t err;
uint8_t index;
/* the root HUB case is not handled here */
if (udev->parent_hub == NULL)
return (USB_ERR_INVAL);
index = udev->controller_slot_id;
hdev = &sc->sc_hw.devs[index];
if (mtx != NULL)
mtx_unlock(mtx);
XHCI_CMD_LOCK(sc);
switch (hdev->state) {
case XHCI_ST_DEFAULT:
case XHCI_ST_ENABLED:
hdev->state = XHCI_ST_ENABLED;
/* set configure mask to slot and EP0 */
xhci_configure_mask(udev, 3, 0);
/* configure input slot context structure */
err = xhci_configure_device(udev);
if (err != 0) {
DPRINTF("Could not configure device\n");
break;
}
/* configure input endpoint context structure */
switch (udev->speed) {
case USB_SPEED_LOW:
case USB_SPEED_FULL:
mps = 8;
break;
case USB_SPEED_HIGH:
mps = 64;
break;
default:
mps = 512;
break;
}
pepext = xhci_get_endpoint_ext(udev,
&udev->ctrl_ep_desc);
err = xhci_configure_endpoint(udev,
&udev->ctrl_ep_desc, pepext->physaddr,
0, 1, 1, 0, mps, mps);
if (err != 0) {
DPRINTF("Could not configure default endpoint\n");
break;
}
/* execute set address command */
usbd_get_page(&hdev->input_pc, 0, &buf_inp);
err = xhci_cmd_set_address(sc, buf_inp.physaddr,
(address == 0), index);
if (err != 0) {
DPRINTF("Could not set address "
"for slot %u.\n", index);
if (address != 0)
break;
}
/* update device address to new value */
usbd_get_page(&hdev->device_pc, 0, &buf_dev);
pdev = buf_dev.buffer;
usb_pc_cpu_invalidate(&hdev->device_pc);
udev->address = XHCI_SCTX_3_DEV_ADDR_GET(pdev->ctx_slot.dwSctx3);
/* update device state to new value */
if (address != 0)
hdev->state = XHCI_ST_ADDRESSED;
else
hdev->state = XHCI_ST_DEFAULT;
break;
default:
DPRINTF("Wrong state for set address.\n");
err = USB_ERR_IOERROR;
break;
}
XHCI_CMD_UNLOCK(sc);
if (mtx != NULL)
mtx_lock(mtx);
return (err);
}
static usb_error_t
xhci_cmd_configure_ep(struct xhci_softc *sc, uint64_t input_ctx,
uint8_t deconfigure, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = htole64(input_ctx);
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP) |
XHCI_TRB_3_SLOT_SET(slot_id);
if (deconfigure)
temp |= XHCI_TRB_3_DCEP_BIT;
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 50 /* ms */));
}
static usb_error_t
xhci_cmd_evaluate_ctx(struct xhci_softc *sc, uint64_t input_ctx,
uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = htole64(input_ctx);
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX) |
XHCI_TRB_3_SLOT_SET(slot_id);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 50 /* ms */));
}
static usb_error_t
xhci_cmd_reset_ep(struct xhci_softc *sc, uint8_t preserve,
uint8_t ep_id, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP) |
XHCI_TRB_3_SLOT_SET(slot_id) |
XHCI_TRB_3_EP_SET(ep_id);
if (preserve)
temp |= XHCI_TRB_3_PRSV_BIT;
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 50 /* ms */));
}
static usb_error_t
xhci_cmd_set_tr_dequeue_ptr(struct xhci_softc *sc, uint64_t dequeue_ptr,
uint16_t stream_id, uint8_t ep_id, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = htole64(dequeue_ptr);
temp = XHCI_TRB_2_STREAM_SET(stream_id);
trb.dwTrb2 = htole32(temp);
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE) |
XHCI_TRB_3_SLOT_SET(slot_id) |
XHCI_TRB_3_EP_SET(ep_id);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 50 /* ms */));
}
static usb_error_t
xhci_cmd_stop_ep(struct xhci_softc *sc, uint8_t suspend,
uint8_t ep_id, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP) |
XHCI_TRB_3_SLOT_SET(slot_id) |
XHCI_TRB_3_EP_SET(ep_id);
if (suspend)
temp |= XHCI_TRB_3_SUSP_EP_BIT;
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 50 /* ms */));
}
static usb_error_t
xhci_cmd_reset_dev(struct xhci_softc *sc, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_DEVICE) |
XHCI_TRB_3_SLOT_SET(slot_id);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 50 /* ms */));
}
/*------------------------------------------------------------------------*
* xhci_interrupt - XHCI interrupt handler
*------------------------------------------------------------------------*/
void
xhci_interrupt(struct xhci_softc *sc)
{
uint32_t status;
uint32_t temp;
USB_BUS_LOCK(&sc->sc_bus);
status = XREAD4(sc, oper, XHCI_USBSTS);
/* acknowledge interrupts */
XWRITE4(sc, oper, XHCI_USBSTS, status);
temp = XREAD4(sc, runt, XHCI_IMAN(0));
/* acknowledge pending event */
XWRITE4(sc, runt, XHCI_IMAN(0), temp);
DPRINTFN(16, "real interrupt (sts=0x%08x, "
"iman=0x%08x)\n", status, temp);
if (status != 0) {
if (status & XHCI_STS_PCD) {
xhci_root_intr(sc);
}
if (status & XHCI_STS_HCH) {
printf("%s: host controller halted\n",
__FUNCTION__);
}
if (status & XHCI_STS_HSE) {
printf("%s: host system error\n",
__FUNCTION__);
}
if (status & XHCI_STS_HCE) {
printf("%s: host controller error\n",
__FUNCTION__);
}
}
xhci_interrupt_poll(sc);
USB_BUS_UNLOCK(&sc->sc_bus);
}
/*------------------------------------------------------------------------*
* xhci_timeout - XHCI timeout handler
*------------------------------------------------------------------------*/
static void
xhci_timeout(void *arg)
{
struct usb_xfer *xfer = arg;
DPRINTF("xfer=%p\n", xfer);
USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
/* transfer is transferred */
xhci_device_done(xfer, USB_ERR_TIMEOUT);
}
static void
xhci_do_poll(struct usb_bus *bus)
{
struct xhci_softc *sc = XHCI_BUS2SC(bus);
USB_BUS_LOCK(&sc->sc_bus);
xhci_interrupt_poll(sc);
USB_BUS_UNLOCK(&sc->sc_bus);
}
static void
xhci_setup_generic_chain_sub(struct xhci_std_temp *temp)
{
struct usb_page_search buf_res;
struct xhci_td *td;
struct xhci_td *td_next;
struct xhci_td *td_alt_next;
uint32_t buf_offset;
uint32_t average;
uint32_t len_old;
uint32_t dword;
uint8_t shortpkt_old;
uint8_t precompute;
uint8_t x;
td_alt_next = NULL;
buf_offset = 0;
shortpkt_old = temp->shortpkt;
len_old = temp->len;
precompute = 1;
restart:
td = temp->td;
td_next = temp->td_next;
while (1) {
if (temp->len == 0) {
if (temp->shortpkt)
break;
/* send a Zero Length Packet, ZLP, last */
temp->shortpkt = 1;
average = 0;
} else {
average = temp->average;
if (temp->len < average) {
if (temp->len % temp->max_packet_size) {
temp->shortpkt = 1;
}
average = temp->len;
}
}
if (td_next == NULL)
panic("%s: out of XHCI transfer descriptors!", __FUNCTION__);
/* get next TD */
td = td_next;
td_next = td->obj_next;
/* check if we are pre-computing */
if (precompute) {
/* update remaining length */
temp->len -= average;
continue;
}
/* fill out current TD */
td->len = average;
td->remainder = 0;
td->status = 0;
/* update remaining length */
temp->len -= average;
/* reset TRB index */
x = 0;
if (temp->trb_type == XHCI_TRB_TYPE_SETUP_STAGE) {
/* immediate data */
if (average > 8)
average = 8;
td->td_trb[0].qwTrb0 = 0;
usbd_copy_out(temp->pc, temp->offset + buf_offset,
(uint8_t *)(uintptr_t)&td->td_trb[0].qwTrb0,
average);
dword = XHCI_TRB_2_BYTES_SET(8) |
XHCI_TRB_2_TDSZ_SET(0) |
XHCI_TRB_2_IRQ_SET(0);
td->td_trb[0].dwTrb2 = htole32(dword);
dword = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
XHCI_TRB_3_IDT_BIT | XHCI_TRB_3_CYCLE_BIT;
/* check wLength */
if (td->td_trb[0].qwTrb0 &
htole64(XHCI_TRB_0_WLENGTH_MASK)) {
if (td->td_trb[0].qwTrb0 & htole64(1))
dword |= XHCI_TRB_3_TRT_IN;
else
dword |= XHCI_TRB_3_TRT_OUT;
}
td->td_trb[0].dwTrb3 = htole32(dword);
#ifdef USB_DEBUG
xhci_dump_trb(&td->td_trb[x]);
#endif
x++;
} else do {
uint32_t npkt;
/* fill out buffer pointers */
if (average == 0) {
npkt = 1;
memset(&buf_res, 0, sizeof(buf_res));
} else {
usbd_get_page(temp->pc, temp->offset +
buf_offset, &buf_res);
/* get length to end of page */
if (buf_res.length > average)
buf_res.length = average;
/* check for maximum length */
if (buf_res.length > XHCI_TD_PAGE_SIZE)
buf_res.length = XHCI_TD_PAGE_SIZE;
/* setup npkt */
npkt = (average + temp->max_packet_size - 1) /
temp->max_packet_size;
if (npkt > 31)
npkt = 31;
}
/* fill out TRB's */
td->td_trb[x].qwTrb0 =
htole64((uint64_t)buf_res.physaddr);
dword =
XHCI_TRB_2_BYTES_SET(buf_res.length) |
XHCI_TRB_2_TDSZ_SET(npkt) |
XHCI_TRB_2_IRQ_SET(0);
td->td_trb[x].dwTrb2 = htole32(dword);
dword = XHCI_TRB_3_CHAIN_BIT | XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TYPE_SET(temp->trb_type) |
XHCI_TRB_3_FRID_SET(temp->isoc_frame / 8) |
XHCI_TRB_3_TBC_SET(temp->tbc) |
XHCI_TRB_3_TLBPC_SET(temp->tlbpc);
if (temp->direction == UE_DIR_IN) {
dword |= XHCI_TRB_3_DIR_IN;
/*
* NOTE: Only the SETUP stage should
* use the IDT bit. Else transactions
* can be sent using the wrong data
* toggle value.
*/
if (temp->trb_type !=
XHCI_TRB_TYPE_SETUP_STAGE &&
temp->trb_type !=
XHCI_TRB_TYPE_STATUS_STAGE)
dword |= XHCI_TRB_3_ISP_BIT;
}
td->td_trb[x].dwTrb3 = htole32(dword);
average -= buf_res.length;
buf_offset += buf_res.length;
#ifdef USB_DEBUG
xhci_dump_trb(&td->td_trb[x]);
#endif
x++;
} while (average != 0);
td->td_trb[x-1].dwTrb3 |= htole32(XHCI_TRB_3_IOC_BIT);
/* store number of data TRB's */
td->ntrb = x;
DPRINTF("NTRB=%u\n", x);
/* fill out link TRB */
if (td_next != NULL) {
/* link the current TD with the next one */
td->td_trb[x].qwTrb0 = htole64((uint64_t)td_next->td_self);
DPRINTF("LINK=0x%08llx\n", (long long)td_next->td_self);
} else {
/* this field will get updated later */
DPRINTF("NOLINK\n");
}
dword = XHCI_TRB_2_IRQ_SET(0);
td->td_trb[x].dwTrb2 = htole32(dword);
dword = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
XHCI_TRB_3_CYCLE_BIT | XHCI_TRB_3_IOC_BIT;
td->td_trb[x].dwTrb3 = htole32(dword);
td->alt_next = td_alt_next;
#ifdef USB_DEBUG
xhci_dump_trb(&td->td_trb[x]);
#endif
usb_pc_cpu_flush(td->page_cache);
}
if (precompute) {
precompute = 0;
/* setup alt next pointer, if any */
if (temp->last_frame) {
td_alt_next = NULL;
} else {
/* we use this field internally */
td_alt_next = td_next;
}
/* restore */
temp->shortpkt = shortpkt_old;
temp->len = len_old;
goto restart;
}
/* remove cycle bit from first if we are stepping the TRBs */
if (temp->step_td)
td->td_trb[0].dwTrb3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
/* remove chain bit because this is the last TRB in the chain */
td->td_trb[td->ntrb - 1].dwTrb2 &= ~htole32(XHCI_TRB_2_TDSZ_SET(15));
td->td_trb[td->ntrb - 1].dwTrb3 &= ~htole32(XHCI_TRB_3_CHAIN_BIT);
usb_pc_cpu_flush(td->page_cache);
temp->td = td;
temp->td_next = td_next;
}
static void
xhci_setup_generic_chain(struct usb_xfer *xfer)
{
struct xhci_std_temp temp;
struct xhci_td *td;
uint32_t x;
uint32_t y;
uint8_t mult;
temp.step_td = 0;
temp.tbc = 0;
temp.tlbpc = 0;
temp.average = xfer->max_hc_frame_size;
temp.max_packet_size = xfer->max_packet_size;
temp.sc = XHCI_BUS2SC(xfer->xroot->bus);
temp.pc = NULL;
temp.last_frame = 0;
temp.offset = 0;
temp.multishort = xfer->flags_int.isochronous_xfr ||
xfer->flags_int.control_xfr ||
xfer->flags_int.short_frames_ok;
/* toggle the DMA set we are using */
xfer->flags_int.curr_dma_set ^= 1;
/* get next DMA set */
td = xfer->td_start[xfer->flags_int.curr_dma_set];
temp.td = NULL;
temp.td_next = td;
xfer->td_transfer_first = td;
xfer->td_transfer_cache = td;
if (xfer->flags_int.isochronous_xfr) {
uint8_t shift;
/* compute multiplier for ISOCHRONOUS transfers */
mult = xfer->endpoint->ecomp ?
(xfer->endpoint->ecomp->bmAttributes & 3) : 0;
/* check for USB 2.0 multiplier */
if (mult == 0) {
mult = (xfer->endpoint->edesc->
wMaxPacketSize[1] >> 3) & 3;
}
/* range check */
if (mult > 2)
mult = 3;
else
mult++;
x = XREAD4(temp.sc, runt, XHCI_MFINDEX);
DPRINTF("MFINDEX=0x%08x\n", x);
switch (usbd_get_speed(xfer->xroot->udev)) {
case USB_SPEED_FULL:
shift = 3;
temp.isoc_delta = 8; /* 1ms */
x += temp.isoc_delta - 1;
x &= ~(temp.isoc_delta - 1);
break;
default:
shift = usbd_xfer_get_fps_shift(xfer);
temp.isoc_delta = 1U << shift;
x += temp.isoc_delta - 1;
x &= ~(temp.isoc_delta - 1);
/* simple frame load balancing */
x += xfer->endpoint->usb_uframe;
break;
}
y = XHCI_MFINDEX_GET(x - xfer->endpoint->isoc_next);
if ((xfer->endpoint->is_synced == 0) ||
(y < (xfer->nframes << shift)) ||
(XHCI_MFINDEX_GET(-y) >= (128 * 8))) {
/*
* If there is data underflow or the pipe
* queue is empty we schedule the transfer a
* few frames ahead of the current frame
* position. Else two isochronous transfers
* might overlap.
*/
xfer->endpoint->isoc_next = XHCI_MFINDEX_GET(x + (3 * 8));
xfer->endpoint->is_synced = 1;
DPRINTFN(3, "start next=%d\n", xfer->endpoint->isoc_next);
}
/* compute isochronous completion time */
y = XHCI_MFINDEX_GET(xfer->endpoint->isoc_next - (x & ~7));
xfer->isoc_time_complete =
usb_isoc_time_expand(&temp.sc->sc_bus, x / 8) +
(y / 8) + (((xfer->nframes << shift) + 7) / 8);
x = 0;
temp.isoc_frame = xfer->endpoint->isoc_next;
temp.trb_type = XHCI_TRB_TYPE_ISOCH;
xfer->endpoint->isoc_next += xfer->nframes << shift;
} else if (xfer->flags_int.control_xfr) {
/* check if we should prepend a setup message */
if (xfer->flags_int.control_hdr) {
temp.len = xfer->frlengths[0];
temp.pc = xfer->frbuffers + 0;
temp.shortpkt = temp.len ? 1 : 0;
temp.trb_type = XHCI_TRB_TYPE_SETUP_STAGE;
temp.direction = 0;
/* check for last frame */
if (xfer->nframes == 1) {
/* no STATUS stage yet, SETUP is last */
if (xfer->flags_int.control_act)
temp.last_frame = 1;
}
xhci_setup_generic_chain_sub(&temp);
}
x = 1;
mult = 1;
temp.isoc_delta = 0;
temp.isoc_frame = 0;
temp.trb_type = XHCI_TRB_TYPE_DATA_STAGE;
} else {
x = 0;
mult = 1;
temp.isoc_delta = 0;
temp.isoc_frame = 0;
temp.trb_type = XHCI_TRB_TYPE_NORMAL;
}
if (x != xfer->nframes) {
/* setup page_cache pointer */
temp.pc = xfer->frbuffers + x;
/* set endpoint direction */
temp.direction = UE_GET_DIR(xfer->endpointno);
}
while (x != xfer->nframes) {
/* DATA0 / DATA1 message */
temp.len = xfer->frlengths[x];
temp.step_td = ((xfer->endpointno & UE_DIR_IN) &&
x != 0 && temp.multishort == 0);
x++;
if (x == xfer->nframes) {
if (xfer->flags_int.control_xfr) {
/* no STATUS stage yet, DATA is last */
if (xfer->flags_int.control_act)
temp.last_frame = 1;
} else {
temp.last_frame = 1;
}
}
if (temp.len == 0) {
/* make sure that we send an USB packet */
temp.shortpkt = 0;
temp.tbc = 0;
temp.tlbpc = mult - 1;
} else if (xfer->flags_int.isochronous_xfr) {
uint8_t tdpc;
/* isochronous transfers don't have short packet termination */
temp.shortpkt = 1;
/* isochronous transfers have a transfer limit */
if (temp.len > xfer->max_frame_size)
temp.len = xfer->max_frame_size;
/* compute TD packet count */
tdpc = (temp.len + xfer->max_packet_size - 1) /
xfer->max_packet_size;
temp.tbc = ((tdpc + mult - 1) / mult) - 1;
temp.tlbpc = (tdpc % mult);
if (temp.tlbpc == 0)
temp.tlbpc = mult - 1;
else
temp.tlbpc--;
} else {
/* regular data transfer */
temp.shortpkt = xfer->flags.force_short_xfer ? 0 : 1;
}
xhci_setup_generic_chain_sub(&temp);
if (xfer->flags_int.isochronous_xfr) {
temp.offset += xfer->frlengths[x - 1];
temp.isoc_frame += temp.isoc_delta;
} else {
/* get next Page Cache pointer */
temp.pc = xfer->frbuffers + x;
}
}
/* check if we should append a status stage */
if (xfer->flags_int.control_xfr &&
!xfer->flags_int.control_act) {
/*
* Send a DATA1 message and invert the current
* endpoint direction.
*/
temp.step_td = (xfer->nframes != 0);
temp.direction = UE_GET_DIR(xfer->endpointno) ^ UE_DIR_IN;
temp.len = 0;
temp.pc = NULL;
temp.shortpkt = 0;
temp.last_frame = 1;
temp.trb_type = XHCI_TRB_TYPE_STATUS_STAGE;
xhci_setup_generic_chain_sub(&temp);
}
td = temp.td;
/* must have at least one frame! */
xfer->td_transfer_last = td;
DPRINTF("first=%p last=%p\n", xfer->td_transfer_first, td);
}
static void
xhci_set_slot_pointer(struct xhci_softc *sc, uint8_t index, uint64_t dev_addr)
{
struct usb_page_search buf_res;
struct xhci_dev_ctx_addr *pdctxa;
usbd_get_page(&sc->sc_hw.ctx_pc, 0, &buf_res);
pdctxa = buf_res.buffer;
DPRINTF("addr[%u]=0x%016llx\n", index, (long long)dev_addr);
pdctxa->qwBaaDevCtxAddr[index] = htole64(dev_addr);
usb_pc_cpu_flush(&sc->sc_hw.ctx_pc);
}
static usb_error_t
xhci_configure_mask(struct usb_device *udev, uint32_t mask, uint8_t drop)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct usb_page_search buf_inp;
struct xhci_input_dev_ctx *pinp;
uint8_t index;
index = udev->controller_slot_id;
usbd_get_page(&sc->sc_hw.devs[index].input_pc, 0, &buf_inp);
pinp = buf_inp.buffer;
if (drop) {
mask &= XHCI_INCTX_NON_CTRL_MASK;
pinp->ctx_input.dwInCtx0 = htole32(mask);
pinp->ctx_input.dwInCtx1 = 0;
} else {
pinp->ctx_input.dwInCtx0 = 0;
pinp->ctx_input.dwInCtx1 = htole32(mask);
}
return (0);
}
static usb_error_t
xhci_configure_endpoint(struct usb_device *udev,
struct usb_endpoint_descriptor *edesc, uint64_t ring_addr,
uint16_t interval, uint8_t max_packet_count, uint8_t mult,
uint8_t fps_shift, uint16_t max_packet_size, uint16_t max_frame_size)
{
struct usb_page_search buf_inp;
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct xhci_input_dev_ctx *pinp;
uint32_t temp;
uint8_t index;
uint8_t epno;
uint8_t type;
index = udev->controller_slot_id;
usbd_get_page(&sc->sc_hw.devs[index].input_pc, 0, &buf_inp);
pinp = buf_inp.buffer;
epno = edesc->bEndpointAddress;
type = edesc->bmAttributes & UE_XFERTYPE;
if (type == UE_CONTROL)
epno |= UE_DIR_IN;
epno = XHCI_EPNO2EPID(epno);
if (epno == 0)
return (USB_ERR_NO_PIPE); /* invalid */
if (max_packet_count == 0)
return (USB_ERR_BAD_BUFSIZE);
max_packet_count--;
if (mult == 0)
return (USB_ERR_BAD_BUFSIZE);
temp = XHCI_EPCTX_0_EPSTATE_SET(0) |
XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
XHCI_EPCTX_0_LSA_SET(0);
switch (udev->speed) {
case USB_SPEED_FULL:
case USB_SPEED_LOW:
/* 1ms -> 125us */
fps_shift += 3;
break;
default:
break;
}
switch (type) {
case UE_INTERRUPT:
if (fps_shift > 3)
fps_shift--;
temp |= XHCI_EPCTX_0_IVAL_SET(fps_shift);
break;
case UE_ISOCHRONOUS:
temp |= XHCI_EPCTX_0_IVAL_SET(fps_shift);
switch (udev->speed) {
case USB_SPEED_SUPER:
if (mult > 3)
mult = 3;
temp |= XHCI_EPCTX_0_MULT_SET(mult - 1);
max_packet_count /= mult;
break;
default:
break;
}
break;
default:
break;
}
pinp->ctx_ep[epno - 1].dwEpCtx0 = htole32(temp);
temp =
XHCI_EPCTX_1_HID_SET(0) |
XHCI_EPCTX_1_MAXB_SET(max_packet_count) |
XHCI_EPCTX_1_MAXP_SIZE_SET(max_packet_size);
if ((udev->parent_hs_hub != NULL) || (udev->address != 0)) {
if (type != UE_ISOCHRONOUS)
temp |= XHCI_EPCTX_1_CERR_SET(3);
}
switch (type) {
case UE_CONTROL:
temp |= XHCI_EPCTX_1_EPTYPE_SET(4);
break;
case UE_ISOCHRONOUS:
temp |= XHCI_EPCTX_1_EPTYPE_SET(1);
break;
case UE_BULK:
temp |= XHCI_EPCTX_1_EPTYPE_SET(2);
break;
default:
temp |= XHCI_EPCTX_1_EPTYPE_SET(3);
break;
}
/* check for IN direction */
if (epno & 1)
temp |= XHCI_EPCTX_1_EPTYPE_SET(4);
pinp->ctx_ep[epno - 1].dwEpCtx1 = htole32(temp);
ring_addr |= XHCI_EPCTX_2_DCS_SET(1);
pinp->ctx_ep[epno - 1].qwEpCtx2 = htole64(ring_addr);
switch (edesc->bmAttributes & UE_XFERTYPE) {
case UE_INTERRUPT:
case UE_ISOCHRONOUS:
temp = XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(max_frame_size) |
XHCI_EPCTX_4_AVG_TRB_LEN_SET(MIN(XHCI_PAGE_SIZE,
max_frame_size));
break;
case UE_CONTROL:
temp = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8);
break;
default:
temp = XHCI_EPCTX_4_AVG_TRB_LEN_SET(XHCI_PAGE_SIZE);
break;
}
pinp->ctx_ep[epno - 1].dwEpCtx4 = htole32(temp);
#ifdef USB_DEBUG
xhci_dump_endpoint(&pinp->ctx_ep[epno - 1]);
#endif
usb_pc_cpu_flush(&sc->sc_hw.devs[index].input_pc);
return (0); /* success */
}
static usb_error_t
xhci_configure_endpoint_by_xfer(struct usb_xfer *xfer)
{
struct xhci_endpoint_ext *pepext;
struct usb_endpoint_ss_comp_descriptor *ecomp;
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
ecomp = xfer->endpoint->ecomp;
pepext->trb[0].dwTrb3 = 0; /* halt any transfers */
usb_pc_cpu_flush(pepext->page_cache);
return (xhci_configure_endpoint(xfer->xroot->udev,
xfer->endpoint->edesc, pepext->physaddr,
xfer->interval, xfer->max_packet_count,
(ecomp != NULL) ? (ecomp->bmAttributes & 3) + 1 : 1,
usbd_xfer_get_fps_shift(xfer), xfer->max_packet_size,
xfer->max_frame_size));
}
static usb_error_t
xhci_configure_device(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct usb_page_search buf_dev;
struct usb_page_search buf_inp;
struct usb_page_cache *pcdev;
struct usb_page_cache *pcinp;
struct xhci_input_dev_ctx *pinp;
struct xhci_dev_ctx *pdev;
struct usb_device *hubdev;
uint32_t temp;
uint32_t route;
uint8_t is_hub;
uint8_t index;
uint8_t rh_port;
index = udev->controller_slot_id;
DPRINTF("index=%u\n", index);
pcdev = &sc->sc_hw.devs[index].device_pc;
pcinp = &sc->sc_hw.devs[index].input_pc;
usbd_get_page(pcdev, 0, &buf_dev);
usbd_get_page(pcinp, 0, &buf_inp);
pdev = buf_dev.buffer;
pinp = buf_inp.buffer;
rh_port = 0;
route = 0;
/* figure out route string and root HUB port number */
for (hubdev = udev; hubdev != NULL; hubdev = hubdev->parent_hub) {
if (hubdev->parent_hub == NULL)
break;
/*
* NOTE: HS/FS/LS devices and the SS root HUB can have
* more than 15 ports
*/
rh_port = hubdev->port_no;
if (hubdev->parent_hub->parent_hub == NULL)
break;
route *= 16;
if (rh_port > 15)
route |= 15;
else
route |= rh_port;
}
temp = XHCI_SCTX_0_ROUTE_SET(route);
switch (sc->sc_hw.devs[index].state) {
case XHCI_ST_CONFIGURED:
temp |= XHCI_SCTX_0_CTX_NUM_SET(XHCI_MAX_ENDPOINTS - 1);
break;
default:
temp = XHCI_SCTX_0_CTX_NUM_SET(1);
break;
}
switch (udev->speed) {
case USB_SPEED_LOW:
temp |= XHCI_SCTX_0_SPEED_SET(2);
break;
case USB_SPEED_HIGH:
temp |= XHCI_SCTX_0_SPEED_SET(3);
break;
case USB_SPEED_FULL:
temp |= XHCI_SCTX_0_SPEED_SET(1);
break;
default:
temp |= XHCI_SCTX_0_SPEED_SET(4);
break;
}
is_hub = sc->sc_hw.devs[index].nports != 0 &&
(udev->speed == USB_SPEED_SUPER ||
udev->speed == USB_SPEED_HIGH);
if (is_hub) {
temp |= XHCI_SCTX_0_HUB_SET(1);
#if 0
if (udev->ddesc.bDeviceProtocol == UDPROTO_HSHUBMTT) {
DPRINTF("HUB supports MTT\n");
temp |= XHCI_SCTX_0_MTT_SET(1);
}
#endif
}
pinp->ctx_slot.dwSctx0 = htole32(temp);
temp = XHCI_SCTX_1_RH_PORT_SET(rh_port);
if (is_hub) {
temp |= XHCI_SCTX_1_NUM_PORTS_SET(
sc->sc_hw.devs[index].nports);
}
switch (udev->speed) {
case USB_SPEED_SUPER:
switch (sc->sc_hw.devs[index].state) {
case XHCI_ST_ADDRESSED:
case XHCI_ST_CONFIGURED:
/* enable power save */
temp |= XHCI_SCTX_1_MAX_EL_SET(sc->sc_exit_lat_max);
break;
default:
/* disable power save */
break;
}
break;
default:
break;
}
pinp->ctx_slot.dwSctx1 = htole32(temp);
temp = XHCI_SCTX_2_IRQ_TARGET_SET(0);
if (is_hub)
temp |= XHCI_SCTX_2_TT_THINK_TIME_SET(sc->sc_hw.devs[index].tt);
hubdev = udev->parent_hs_hub;
/* check if we should activate the transaction translator */
switch (udev->speed) {
case USB_SPEED_FULL:
case USB_SPEED_LOW:
if (hubdev != NULL) {
temp |= XHCI_SCTX_2_TT_HUB_SID_SET(
hubdev->controller_slot_id);
temp |= XHCI_SCTX_2_TT_PORT_NUM_SET(
udev->hs_port_no);
}
break;
default:
break;
}
pinp->ctx_slot.dwSctx2 = htole32(temp);
temp = XHCI_SCTX_3_DEV_ADDR_SET(udev->address) |
XHCI_SCTX_3_SLOT_STATE_SET(0);
pinp->ctx_slot.dwSctx3 = htole32(temp);
#ifdef USB_DEBUG
xhci_dump_device(&pinp->ctx_slot);
#endif
usb_pc_cpu_flush(pcinp);
return (0); /* success */
}
static usb_error_t
xhci_alloc_device_ext(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct usb_page_search buf_dev;
struct usb_page_search buf_ep;
struct xhci_trb *trb;
struct usb_page_cache *pc;
struct usb_page *pg;
uint64_t addr;
uint8_t index;
uint8_t i;
index = udev->controller_slot_id;
pc = &sc->sc_hw.devs[index].device_pc;
pg = &sc->sc_hw.devs[index].device_pg;
/* need to initialize the page cache */
pc->tag_parent = sc->sc_bus.dma_parent_tag;
if (usb_pc_alloc_mem(pc, pg, sizeof(struct xhci_dev_ctx), XHCI_PAGE_SIZE))
goto error;
usbd_get_page(pc, 0, &buf_dev);
pc = &sc->sc_hw.devs[index].input_pc;
pg = &sc->sc_hw.devs[index].input_pg;
/* need to initialize the page cache */
pc->tag_parent = sc->sc_bus.dma_parent_tag;
if (usb_pc_alloc_mem(pc, pg, sizeof(struct xhci_input_dev_ctx), XHCI_PAGE_SIZE))
goto error;
pc = &sc->sc_hw.devs[index].endpoint_pc;
pg = &sc->sc_hw.devs[index].endpoint_pg;
/* need to initialize the page cache */
pc->tag_parent = sc->sc_bus.dma_parent_tag;
if (usb_pc_alloc_mem(pc, pg, sizeof(struct xhci_dev_endpoint_trbs), XHCI_PAGE_SIZE))
goto error;
/* initialise all endpoint LINK TRBs */
for (i = 0; i != XHCI_MAX_ENDPOINTS; i++) {
/* lookup endpoint TRB ring */
usbd_get_page(pc, (uintptr_t)&((struct xhci_dev_endpoint_trbs *)0)->trb[i][0], &buf_ep);
/* get TRB pointer */
trb = buf_ep.buffer;
trb += XHCI_MAX_TRANSFERS - 1;
/* get TRB start address */
addr = buf_ep.physaddr;
/* create LINK TRB */
trb->qwTrb0 = htole64(addr);
trb->dwTrb2 = htole32(XHCI_TRB_2_IRQ_SET(0));
trb->dwTrb3 = htole32(XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK));
}
usb_pc_cpu_flush(pc);
xhci_set_slot_pointer(sc, index, buf_dev.physaddr);
return (0);
error:
xhci_free_device_ext(udev);
return (USB_ERR_NOMEM);
}
static void
xhci_free_device_ext(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
uint8_t index;
index = udev->controller_slot_id;
xhci_set_slot_pointer(sc, index, 0);
usb_pc_free_mem(&sc->sc_hw.devs[index].device_pc);
usb_pc_free_mem(&sc->sc_hw.devs[index].input_pc);
usb_pc_free_mem(&sc->sc_hw.devs[index].endpoint_pc);
}
static struct xhci_endpoint_ext *
xhci_get_endpoint_ext(struct usb_device *udev, struct usb_endpoint_descriptor *edesc)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct xhci_endpoint_ext *pepext;
struct usb_page_cache *pc;
struct usb_page_search buf_ep;
uint8_t epno;
uint8_t index;
epno = edesc->bEndpointAddress;
if ((edesc->bmAttributes & UE_XFERTYPE) == UE_CONTROL)
epno |= UE_DIR_IN;
epno = XHCI_EPNO2EPID(epno);
index = udev->controller_slot_id;
pc = &sc->sc_hw.devs[index].endpoint_pc;
usbd_get_page(pc, (uintptr_t)&((struct xhci_dev_endpoint_trbs *)0)->trb[epno][0], &buf_ep);
pepext = &sc->sc_hw.devs[index].endp[epno];
pepext->page_cache = pc;
pepext->trb = buf_ep.buffer;
pepext->physaddr = buf_ep.physaddr;
return (pepext);
}
static void
xhci_endpoint_doorbell(struct usb_xfer *xfer)
{
struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus);
uint8_t epno;
uint8_t index;
epno = xfer->endpointno;
if (xfer->flags_int.control_xfr)
epno |= UE_DIR_IN;
epno = XHCI_EPNO2EPID(epno);
index = xfer->xroot->udev->controller_slot_id;
if (xfer->xroot->udev->flags.self_suspended == 0)
XWRITE4(sc, door, XHCI_DOORBELL(index), epno | XHCI_DB_SID_SET(0));
}
static void
xhci_transfer_remove(struct usb_xfer *xfer, usb_error_t error)
{
struct xhci_endpoint_ext *pepext;
if (xfer->flags_int.bandwidth_reclaimed) {
xfer->flags_int.bandwidth_reclaimed = 0;
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
pepext->trb_used--;
pepext->xfer[xfer->qh_pos] = NULL;
if (error && pepext->trb_running != 0) {
pepext->trb_halted = 1;
pepext->trb_running = 0;
}
}
}
static usb_error_t
xhci_transfer_insert(struct usb_xfer *xfer)
{
struct xhci_td *td_first;
struct xhci_td *td_last;
struct xhci_endpoint_ext *pepext;
uint64_t addr;
uint8_t i;
uint8_t inext;
uint8_t trb_limit;
DPRINTFN(8, "\n");
/* check if already inserted */
if (xfer->flags_int.bandwidth_reclaimed) {
DPRINTFN(8, "Already in schedule\n");
return (0);
}
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
td_first = xfer->td_transfer_first;
td_last = xfer->td_transfer_last;
addr = pepext->physaddr;
switch (xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
case UE_INTERRUPT:
/* single buffered */
trb_limit = 1;
break;
default:
/* multi buffered */
trb_limit = (XHCI_MAX_TRANSFERS - 2);
break;
}
if (pepext->trb_used >= trb_limit) {
DPRINTFN(8, "Too many TDs queued.\n");
return (USB_ERR_NOMEM);
}
/* check for stopped condition, after putting transfer on interrupt queue */
if (pepext->trb_running == 0) {
struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus);
DPRINTFN(8, "Not running\n");
/* start configuration */
(void)usb_proc_msignal(&sc->sc_config_proc,
&sc->sc_config_msg[0], &sc->sc_config_msg[1]);
return (0);
}
pepext->trb_used++;
/* get current TRB index */
i = pepext->trb_index;
/* get next TRB index */
inext = (i + 1);
/* the last entry of the ring is a hardcoded link TRB */
if (inext >= (XHCI_MAX_TRANSFERS - 1))
inext = 0;
/* compute terminating return address */
addr += inext * sizeof(struct xhci_trb);
/* update next pointer of last link TRB */
td_last->td_trb[td_last->ntrb].qwTrb0 = htole64(addr);
td_last->td_trb[td_last->ntrb].dwTrb2 = htole32(XHCI_TRB_2_IRQ_SET(0));
td_last->td_trb[td_last->ntrb].dwTrb3 = htole32(XHCI_TRB_3_IOC_BIT |
XHCI_TRB_3_CYCLE_BIT | XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK));
#ifdef USB_DEBUG
xhci_dump_trb(&td_last->td_trb[td_last->ntrb]);
#endif
usb_pc_cpu_flush(td_last->page_cache);
/* write ahead chain end marker */
pepext->trb[inext].qwTrb0 = 0;
pepext->trb[inext].dwTrb2 = 0;
pepext->trb[inext].dwTrb3 = 0;
/* update next pointer of link TRB */
pepext->trb[i].qwTrb0 = htole64((uint64_t)td_first->td_self);
pepext->trb[i].dwTrb2 = htole32(XHCI_TRB_2_IRQ_SET(0));
#ifdef USB_DEBUG
xhci_dump_trb(&pepext->trb[i]);
#endif
usb_pc_cpu_flush(pepext->page_cache);
/* toggle cycle bit which activates the transfer chain */
pepext->trb[i].dwTrb3 = htole32(XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK));
usb_pc_cpu_flush(pepext->page_cache);
DPRINTF("qh_pos = %u\n", i);
pepext->xfer[i] = xfer;
xfer->qh_pos = i;
xfer->flags_int.bandwidth_reclaimed = 1;
pepext->trb_index = inext;
xhci_endpoint_doorbell(xfer);
return (0);
}
static void
xhci_root_intr(struct xhci_softc *sc)
{
uint16_t i;
USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED);
/* clear any old interrupt data */
memset(sc->sc_hub_idata, 0, sizeof(sc->sc_hub_idata));
for (i = 1; i <= sc->sc_noport; i++) {
/* pick out CHANGE bits from the status register */
if (XREAD4(sc, oper, XHCI_PORTSC(i)) & (
XHCI_PS_CSC | XHCI_PS_PEC |
XHCI_PS_OCC | XHCI_PS_WRC |
XHCI_PS_PRC | XHCI_PS_PLC |
XHCI_PS_CEC)) {
sc->sc_hub_idata[i / 8] |= 1 << (i % 8);
DPRINTF("port %d changed\n", i);
}
}
uhub_root_intr(&sc->sc_bus, sc->sc_hub_idata,
sizeof(sc->sc_hub_idata));
}
/*------------------------------------------------------------------------*
* xhci_device_done - XHCI done handler
*
* NOTE: This function can be called two times in a row on
* the same USB transfer. From close and from interrupt.
*------------------------------------------------------------------------*/
static void
xhci_device_done(struct usb_xfer *xfer, usb_error_t error)
{
DPRINTFN(2, "xfer=%p, endpoint=%p, error=%d\n",
xfer, xfer->endpoint, error);
/* remove transfer from HW queue */
xhci_transfer_remove(xfer, error);
/* dequeue transfer and start next transfer */
usbd_transfer_done(xfer, error);
}
/*------------------------------------------------------------------------*
* XHCI data transfer support (generic type)
*------------------------------------------------------------------------*/
static void
xhci_device_generic_open(struct usb_xfer *xfer)
{
if (xfer->flags_int.isochronous_xfr) {
switch (xfer->xroot->udev->speed) {
case USB_SPEED_FULL:
break;
default:
usb_hs_bandwidth_alloc(xfer);
break;
}
}
}
static void
xhci_device_generic_close(struct usb_xfer *xfer)
{
DPRINTF("\n");
xhci_device_done(xfer, USB_ERR_CANCELLED);
if (xfer->flags_int.isochronous_xfr) {
switch (xfer->xroot->udev->speed) {
case USB_SPEED_FULL:
break;
default:
usb_hs_bandwidth_free(xfer);
break;
}
}
}
static void
xhci_device_generic_multi_enter(struct usb_endpoint *ep,
struct usb_xfer *enter_xfer)
{
struct usb_xfer *xfer;
/* check if there is a current transfer */
xfer = ep->endpoint_q.curr;
if (xfer == NULL)
return;
/*
* Check if the current transfer is started and then pickup
* the next one, if any. Else wait for next start event due to
* block on failure feature.
*/
if (!xfer->flags_int.bandwidth_reclaimed)
return;
xfer = TAILQ_FIRST(&ep->endpoint_q.head);
if (xfer == NULL) {
/*
* In case of enter we have to consider that the
* transfer is queued by the USB core after the enter
* method is called.
*/
xfer = enter_xfer;
if (xfer == NULL)
return;
}
/* try to multi buffer */
xhci_transfer_insert(xfer);
}
static void
xhci_device_generic_enter(struct usb_xfer *xfer)
{
DPRINTF("\n");
/* setup TD's and QH */
xhci_setup_generic_chain(xfer);
xhci_device_generic_multi_enter(xfer->endpoint, xfer);
}
static void
xhci_device_generic_start(struct usb_xfer *xfer)
{
DPRINTF("\n");
/* try to insert xfer on HW queue */
xhci_transfer_insert(xfer);
/* try to multi buffer */
xhci_device_generic_multi_enter(xfer->endpoint, NULL);
/* add transfer last on interrupt queue */
usbd_transfer_enqueue(&xfer->xroot->bus->intr_q, xfer);
/* start timeout, if any */
if (xfer->timeout != 0)
usbd_transfer_timeout_ms(xfer, &xhci_timeout, xfer->timeout);
}
struct usb_pipe_methods xhci_device_generic_methods =
{
.open = xhci_device_generic_open,
.close = xhci_device_generic_close,
.enter = xhci_device_generic_enter,
.start = xhci_device_generic_start,
};
/*------------------------------------------------------------------------*
* xhci root HUB support
*------------------------------------------------------------------------*
* Simulate a hardware HUB by handling all the necessary requests.
*------------------------------------------------------------------------*/
#define HSETW(ptr, val) ptr[0] = (uint8_t)(val), ptr[1] = (uint8_t)((val) >> 8)
static const
struct usb_device_descriptor xhci_devd =
{
.bLength = sizeof(xhci_devd),
.bDescriptorType = UDESC_DEVICE, /* type */
HSETW(.bcdUSB, 0x0300), /* USB version */
.bDeviceClass = UDCLASS_HUB, /* class */
.bDeviceSubClass = UDSUBCLASS_HUB, /* subclass */
.bDeviceProtocol = UDPROTO_SSHUB, /* protocol */
.bMaxPacketSize = 9, /* max packet size */
HSETW(.idVendor, 0x0000), /* vendor */
HSETW(.idProduct, 0x0000), /* product */
HSETW(.bcdDevice, 0x0100), /* device version */
.iManufacturer = 1,
.iProduct = 2,
.iSerialNumber = 0,
.bNumConfigurations = 1, /* # of configurations */
};
static const
struct xhci_bos_desc xhci_bosd = {
.bosd = {
.bLength = sizeof(xhci_bosd.bosd),
.bDescriptorType = UDESC_BOS,
HSETW(.wTotalLength, sizeof(xhci_bosd)),
.bNumDeviceCaps = 3,
},
.usb2extd = {
.bLength = sizeof(xhci_bosd.usb2extd),
.bDescriptorType = 1,
.bDevCapabilityType = 2,
.bmAttributes = 2,
},
.usbdcd = {
.bLength = sizeof(xhci_bosd.usbdcd),
.bDescriptorType = UDESC_DEVICE_CAPABILITY,
.bDevCapabilityType = 3,
.bmAttributes = 0, /* XXX */
HSETW(.wSpeedsSupported, 0x000C),
.bFunctionalitySupport = 8,
.bU1DevExitLat = 255, /* dummy - not used */
.bU2DevExitLat = 255, /* dummy - not used */
},
.cidd = {
.bLength = sizeof(xhci_bosd.cidd),
.bDescriptorType = 1,
.bDevCapabilityType = 4,
.bReserved = 0,
.bContainerID = 0, /* XXX */
},
};
static const
struct xhci_config_desc xhci_confd = {
.confd = {
.bLength = sizeof(xhci_confd.confd),
.bDescriptorType = UDESC_CONFIG,
.wTotalLength[0] = sizeof(xhci_confd),
.bNumInterface = 1,
.bConfigurationValue = 1,
.iConfiguration = 0,
.bmAttributes = UC_SELF_POWERED,
.bMaxPower = 0 /* max power */
},
.ifcd = {
.bLength = sizeof(xhci_confd.ifcd),
.bDescriptorType = UDESC_INTERFACE,
.bNumEndpoints = 1,
.bInterfaceClass = UICLASS_HUB,
.bInterfaceSubClass = UISUBCLASS_HUB,
.bInterfaceProtocol = 0,
},
.endpd = {
.bLength = sizeof(xhci_confd.endpd),
.bDescriptorType = UDESC_ENDPOINT,
.bEndpointAddress = UE_DIR_IN | XHCI_INTR_ENDPT,
.bmAttributes = UE_INTERRUPT,
.wMaxPacketSize[0] = 2, /* max 15 ports */
.bInterval = 255,
},
.endpcd = {
.bLength = sizeof(xhci_confd.endpcd),
.bDescriptorType = UDESC_ENDPOINT_SS_COMP,
.bMaxBurst = 0,
.bmAttributes = 0,
},
};
static const
struct usb_hub_ss_descriptor xhci_hubd = {
.bLength = sizeof(xhci_hubd),
.bDescriptorType = UDESC_SS_HUB,
};
static usb_error_t
xhci_roothub_exec(struct usb_device *udev,
struct usb_device_request *req, const void **pptr, uint16_t *plength)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
const char *str_ptr;
const void *ptr;
uint32_t port;
uint32_t v;
uint16_t len;
uint16_t i;
uint16_t value;
uint16_t index;
uint8_t j;
usb_error_t err;
USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED);
/* buffer reset */
ptr = (const void *)&sc->sc_hub_desc;
len = 0;
err = 0;
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
DPRINTFN(3, "type=0x%02x request=0x%02x wLen=0x%04x "
"wValue=0x%04x wIndex=0x%04x\n",
req->bmRequestType, req->bRequest,
UGETW(req->wLength), value, index);
#define C(x,y) ((x) | ((y) << 8))
switch (C(req->bRequest, req->bmRequestType)) {
case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE):
case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE):
case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT):
/*
* DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops
* for the integrated root hub.
*/
break;
case C(UR_GET_CONFIG, UT_READ_DEVICE):
len = 1;
sc->sc_hub_desc.temp[0] = sc->sc_conf;
break;
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
switch (value >> 8) {
case UDESC_DEVICE:
if ((value & 0xff) != 0) {
err = USB_ERR_IOERROR;
goto done;
}
len = sizeof(xhci_devd);
ptr = (const void *)&xhci_devd;
break;
case UDESC_BOS:
if ((value & 0xff) != 0) {
err = USB_ERR_IOERROR;
goto done;
}
len = sizeof(xhci_bosd);
ptr = (const void *)&xhci_bosd;
break;
case UDESC_CONFIG:
if ((value & 0xff) != 0) {
err = USB_ERR_IOERROR;
goto done;
}
len = sizeof(xhci_confd);
ptr = (const void *)&xhci_confd;
break;
case UDESC_STRING:
switch (value & 0xff) {
case 0: /* Language table */
str_ptr = "\001";
break;
case 1: /* Vendor */
str_ptr = sc->sc_vendor;
break;
case 2: /* Product */
str_ptr = "XHCI root HUB";
break;
default:
str_ptr = "";
break;
}
len = usb_make_str_desc(
sc->sc_hub_desc.temp,
sizeof(sc->sc_hub_desc.temp),
str_ptr);
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
break;
case C(UR_GET_INTERFACE, UT_READ_INTERFACE):
len = 1;
sc->sc_hub_desc.temp[0] = 0;
break;
case C(UR_GET_STATUS, UT_READ_DEVICE):
len = 2;
USETW(sc->sc_hub_desc.stat.wStatus, UDS_SELF_POWERED);
break;
case C(UR_GET_STATUS, UT_READ_INTERFACE):
case C(UR_GET_STATUS, UT_READ_ENDPOINT):
len = 2;
USETW(sc->sc_hub_desc.stat.wStatus, 0);
break;
case C(UR_SET_ADDRESS, UT_WRITE_DEVICE):
if (value >= XHCI_MAX_DEVICES) {
err = USB_ERR_IOERROR;
goto done;
}
break;
case C(UR_SET_CONFIG, UT_WRITE_DEVICE):
if (value != 0 && value != 1) {
err = USB_ERR_IOERROR;
goto done;
}
sc->sc_conf = value;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_DEVICE):
case C(UR_SET_FEATURE, UT_WRITE_INTERFACE):
case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT):
err = USB_ERR_IOERROR;
goto done;
case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE):
break;
case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT):
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(9, "UR_CLEAR_PORT_FEATURE\n");
if ((index < 1) ||
(index > sc->sc_noport)) {
err = USB_ERR_IOERROR;
goto done;
}
port = XHCI_PORTSC(index);
v = XREAD4(sc, oper, port) & ~XHCI_PS_CLEAR;
switch (value) {
case UHF_C_BH_PORT_RESET:
XWRITE4(sc, oper, port, v | XHCI_PS_WRC);
break;
case UHF_C_PORT_CONFIG_ERROR:
XWRITE4(sc, oper, port, v | XHCI_PS_CEC);
break;
case UHF_C_PORT_LINK_STATE:
XWRITE4(sc, oper, port, v | XHCI_PS_PLC);
break;
case UHF_C_PORT_CONNECTION:
XWRITE4(sc, oper, port, v | XHCI_PS_CSC);
break;
case UHF_C_PORT_ENABLE:
XWRITE4(sc, oper, port, v | XHCI_PS_PEC);
break;
case UHF_C_PORT_OVER_CURRENT:
XWRITE4(sc, oper, port, v | XHCI_PS_OCC);
break;
case UHF_C_PORT_RESET:
XWRITE4(sc, oper, port, v | XHCI_PS_PRC);
break;
case UHF_PORT_ENABLE:
XWRITE4(sc, oper, port, v | XHCI_PS_PED);
break;
case UHF_PORT_POWER:
XWRITE4(sc, oper, port, v & ~XHCI_PS_PP);
break;
case UHF_PORT_INDICATOR:
XWRITE4(sc, oper, port, v & ~XHCI_PS_PIC_SET(3));
break;
case UHF_PORT_SUSPEND:
XWRITE4(sc, oper, port, v |
XHCI_PS_PLS_SET(0) | XHCI_PS_LWS);
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if ((value & 0xff) != 0) {
err = USB_ERR_IOERROR;
goto done;
}
v = XREAD4(sc, capa, XHCI_HCSPARAMS0);
sc->sc_hub_desc.hubd = xhci_hubd;
sc->sc_hub_desc.hubd.bNbrPorts = sc->sc_noport;
if (XHCI_HCS0_PPC(v))
i = UHD_PWR_INDIVIDUAL;
else
i = UHD_PWR_GANGED;
if (XHCI_HCS0_PIND(v))
i |= UHD_PORT_IND;
i |= UHD_OC_INDIVIDUAL;
USETW(sc->sc_hub_desc.hubd.wHubCharacteristics, i);
/* see XHCI section 5.4.9: */
sc->sc_hub_desc.hubd.bPwrOn2PwrGood = 10;
for (j = 1; j <= sc->sc_noport; j++) {
v = XREAD4(sc, oper, XHCI_PORTSC(j));
if (v & XHCI_PS_DR) {
sc->sc_hub_desc.hubd.
DeviceRemovable[j / 8] |= 1U << (j % 8);
}
}
len = sc->sc_hub_desc.hubd.bLength;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
len = 16;
memset(sc->sc_hub_desc.temp, 0, 16);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
DPRINTFN(9, "UR_GET_STATUS i=%d\n", index);
if ((index < 1) ||
(index > sc->sc_noport)) {
err = USB_ERR_IOERROR;
goto done;
}
v = XREAD4(sc, oper, XHCI_PORTSC(index));
DPRINTFN(9, "port status=0x%08x\n", v);
i = UPS_PORT_LINK_STATE_SET(XHCI_PS_PLS_GET(v));
switch (XHCI_PS_SPEED_GET(v)) {
case 3:
i |= UPS_HIGH_SPEED;
break;
case 2:
i |= UPS_LOW_SPEED;
break;
case 1:
/* FULL speed */
break;
default:
i |= UPS_OTHER_SPEED;
break;
}
if (v & XHCI_PS_CCS)
i |= UPS_CURRENT_CONNECT_STATUS;
if (v & XHCI_PS_PED)
i |= UPS_PORT_ENABLED;
if (v & XHCI_PS_OCA)
i |= UPS_OVERCURRENT_INDICATOR;
if (v & XHCI_PS_PR)
i |= UPS_RESET;
if (v & XHCI_PS_PP)
i |= UPS_PORT_POWER;
USETW(sc->sc_hub_desc.ps.wPortStatus, i);
i = 0;
if (v & XHCI_PS_CSC)
i |= UPS_C_CONNECT_STATUS;
if (v & XHCI_PS_PEC)
i |= UPS_C_PORT_ENABLED;
if (v & XHCI_PS_OCC)
i |= UPS_C_OVERCURRENT_INDICATOR;
if (v & XHCI_PS_WRC)
i |= UPS_C_BH_PORT_RESET;
if (v & XHCI_PS_PRC)
i |= UPS_C_PORT_RESET;
if (v & XHCI_PS_PLC)
i |= UPS_C_PORT_LINK_STATE;
if (v & XHCI_PS_CEC)
i |= UPS_C_PORT_CONFIG_ERROR;
USETW(sc->sc_hub_desc.ps.wPortChange, i);
len = sizeof(sc->sc_hub_desc.ps);
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
err = USB_ERR_IOERROR;
goto done;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
i = index >> 8;
index &= 0x00FF;
if ((index < 1) ||
(index > sc->sc_noport)) {
err = USB_ERR_IOERROR;
goto done;
}
port = XHCI_PORTSC(index);
v = XREAD4(sc, oper, port) & ~XHCI_PS_CLEAR;
switch (value) {
case UHF_PORT_U1_TIMEOUT:
if (XHCI_PS_SPEED_GET(v) != 4) {
err = USB_ERR_IOERROR;
goto done;
}
port = XHCI_PORTPMSC(index);
v = XREAD4(sc, oper, port);
v &= ~XHCI_PM3_U1TO_SET(0xFF);
v |= XHCI_PM3_U1TO_SET(i);
XWRITE4(sc, oper, port, v);
break;
case UHF_PORT_U2_TIMEOUT:
if (XHCI_PS_SPEED_GET(v) != 4) {
err = USB_ERR_IOERROR;
goto done;
}
port = XHCI_PORTPMSC(index);
v = XREAD4(sc, oper, port);
v &= ~XHCI_PM3_U2TO_SET(0xFF);
v |= XHCI_PM3_U2TO_SET(i);
XWRITE4(sc, oper, port, v);
break;
case UHF_BH_PORT_RESET:
XWRITE4(sc, oper, port, v | XHCI_PS_WPR);
break;
case UHF_PORT_LINK_STATE:
XWRITE4(sc, oper, port, v |
XHCI_PS_PLS_SET(i) | XHCI_PS_LWS);
/* 4ms settle time */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 250);
break;
case UHF_PORT_ENABLE:
DPRINTFN(3, "set port enable %d\n", index);
break;
case UHF_PORT_SUSPEND:
DPRINTFN(6, "suspend port %u (LPM=%u)\n", index, i);
j = XHCI_PS_SPEED_GET(v);
if ((j < 1) || (j > 3)) {
/* non-supported speed */
err = USB_ERR_IOERROR;
goto done;
}
XWRITE4(sc, oper, port, v |
XHCI_PS_PLS_SET(i ? 2 /* LPM */ : 3) | XHCI_PS_LWS);
break;
case UHF_PORT_RESET:
DPRINTFN(6, "reset port %d\n", index);
XWRITE4(sc, oper, port, v | XHCI_PS_PR);
break;
case UHF_PORT_POWER:
DPRINTFN(3, "set port power %d\n", index);
XWRITE4(sc, oper, port, v | XHCI_PS_PP);
break;
case UHF_PORT_TEST:
DPRINTFN(3, "set port test %d\n", index);
break;
case UHF_PORT_INDICATOR:
DPRINTFN(3, "set port indicator %d\n", index);
v &= ~XHCI_PS_PIC_SET(3);
v |= XHCI_PS_PIC_SET(1);
XWRITE4(sc, oper, port, v);
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
break;
case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
done:
*plength = len;
*pptr = ptr;
return (err);
}
static void
xhci_xfer_setup(struct usb_setup_params *parm)
{
struct usb_page_search page_info;
struct usb_page_cache *pc;
struct xhci_softc *sc;
struct usb_xfer *xfer;
void *last_obj;
uint32_t ntd;
uint32_t n;
sc = XHCI_BUS2SC(parm->udev->bus);
xfer = parm->curr_xfer;
/*
* The proof for the "ntd" formula is illustrated like this:
*
* +------------------------------------+
* | |
* | |remainder -> |
* | +-----+---+ |
* | | xxx | x | frm 0 |
* | +-----+---++ |
* | | xxx | xx | frm 1 |
* | +-----+----+ |
* | ... |
* +------------------------------------+
*
* "xxx" means a completely full USB transfer descriptor
*
* "x" and "xx" means a short USB packet
*
* For the remainder of an USB transfer modulo
* "max_data_length" we need two USB transfer descriptors.
* One to transfer the remaining data and one to finalise with
* a zero length packet in case the "force_short_xfer" flag is
* set. We only need two USB transfer descriptors in the case
* where the transfer length of the first one is a factor of
* "max_frame_size". The rest of the needed USB transfer
* descriptors is given by the buffer size divided by the
* maximum data payload.
*/
parm->hc_max_packet_size = 0x400;
parm->hc_max_packet_count = 16 * 3;
parm->hc_max_frame_size = XHCI_TD_PAYLOAD_MAX;
xfer->flags_int.bdma_enable = 1;
usbd_transfer_setup_sub(parm);
if (xfer->flags_int.isochronous_xfr) {
ntd = ((1 * xfer->nframes)
+ (xfer->max_data_length / xfer->max_hc_frame_size));
} else if (xfer->flags_int.control_xfr) {
ntd = ((2 * xfer->nframes) + 1 /* STATUS */
+ (xfer->max_data_length / xfer->max_hc_frame_size));
} else {
ntd = ((2 * xfer->nframes)
+ (xfer->max_data_length / xfer->max_hc_frame_size));
}
alloc_dma_set:
if (parm->err)
return;
/*
* Allocate queue heads and transfer descriptors
*/
last_obj = NULL;
if (usbd_transfer_setup_sub_malloc(
parm, &pc, sizeof(struct xhci_td),
XHCI_TD_ALIGN, ntd)) {
parm->err = USB_ERR_NOMEM;
return;
}
if (parm->buf) {
for (n = 0; n != ntd; n++) {
struct xhci_td *td;
usbd_get_page(pc + n, 0, &page_info);
td = page_info.buffer;
/* init TD */
td->td_self = page_info.physaddr;
td->obj_next = last_obj;
td->page_cache = pc + n;
last_obj = td;
usb_pc_cpu_flush(pc + n);
}
}
xfer->td_start[xfer->flags_int.curr_dma_set] = last_obj;
if (!xfer->flags_int.curr_dma_set) {
xfer->flags_int.curr_dma_set = 1;
goto alloc_dma_set;
}
}
static usb_error_t
xhci_configure_reset_endpoint(struct usb_xfer *xfer)
{
struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus);
struct usb_page_search buf_dev;
struct usb_page_search buf_inp;
struct usb_device *udev;
struct xhci_endpoint_ext *pepext;
struct usb_endpoint_descriptor *edesc;
struct xhci_dev_ctx *pdctx;
struct usb_page_cache *pcdev;
struct usb_page_cache *pcinp;
usb_error_t err;
uint8_t index;
uint8_t epno;
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
udev = xfer->xroot->udev;
index = udev->controller_slot_id;
pcdev = &sc->sc_hw.devs[index].device_pc;
pcinp = &sc->sc_hw.devs[index].input_pc;
usbd_get_page(pcdev, 0, &buf_dev);
usbd_get_page(pcinp, 0, &buf_inp);
pdctx = buf_dev.buffer;
edesc = xfer->endpoint->edesc;
epno = edesc->bEndpointAddress;
if ((edesc->bmAttributes & UE_XFERTYPE) == UE_CONTROL)
epno |= UE_DIR_IN;
epno = XHCI_EPNO2EPID(epno);
if (epno == 0)
return (USB_ERR_NO_PIPE); /* invalid */
XHCI_CMD_LOCK(sc);
/* configure endpoint */
err = xhci_configure_endpoint_by_xfer(xfer);
if (err != 0) {
XHCI_CMD_UNLOCK(sc);
return (err);
}
/*
* Get the endpoint into the stopped state according to the
* endpoint context state diagram in the XHCI specification:
*/
err = xhci_cmd_stop_ep(sc, 0, epno, index);
if (err != 0)
DPRINTF("Could not stop endpoint %u\n", epno);
err = xhci_cmd_reset_ep(sc, 0, epno, index);
if (err != 0)
DPRINTF("Could not reset endpoint %u\n", epno);
err = xhci_cmd_set_tr_dequeue_ptr(sc, pepext->physaddr |
XHCI_EPCTX_2_DCS_SET(1), 0, epno, index);
if (err != 0)
DPRINTF("Could not set dequeue ptr for endpoint %u\n", epno);
/*
* Get the endpoint into the running state according to the
* endpoint context state diagram in the XHCI specification:
*/
xhci_configure_mask(udev, 1U << epno, 0);
err = xhci_cmd_evaluate_ctx(sc, buf_inp.physaddr, index);
if (err != 0)
DPRINTF("Could not configure endpoint %u\n", epno);
err = xhci_cmd_configure_ep(sc, buf_inp.physaddr, 0, index);
if (err != 0)
DPRINTF("Could not configure endpoint %u\n", epno);
XHCI_CMD_UNLOCK(sc);
return (0);
}
static void
xhci_xfer_unsetup(struct usb_xfer *xfer)
{
return;
}
static void
xhci_start_dma_delay(struct usb_xfer *xfer)
{
struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus);
/* put transfer on interrupt queue (again) */
usbd_transfer_enqueue(&sc->sc_bus.intr_q, xfer);
(void)usb_proc_msignal(&sc->sc_config_proc,
&sc->sc_config_msg[0], &sc->sc_config_msg[1]);
}
static void
xhci_configure_msg(struct usb_proc_msg *pm)
{
struct xhci_softc *sc;
struct xhci_endpoint_ext *pepext;
struct usb_xfer *xfer;
sc = XHCI_BUS2SC(((struct usb_bus_msg *)pm)->bus);
restart:
TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry) {
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
if ((pepext->trb_halted != 0) ||
(pepext->trb_running == 0)) {
uint8_t i;
/* clear halted and running */
pepext->trb_halted = 0;
pepext->trb_running = 0;
/* nuke remaining buffered transfers */
for (i = 0; i != (XHCI_MAX_TRANSFERS - 1); i++) {
/*
* NOTE: We need to use the timeout
* error code here else existing
* isochronous clients can get
* confused:
*/
if (pepext->xfer[i] != NULL) {
xhci_device_done(pepext->xfer[i],
USB_ERR_TIMEOUT);
}
}
/*
* NOTE: The USB transfer cannot vanish in
* this state!
*/
USB_BUS_UNLOCK(&sc->sc_bus);
xhci_configure_reset_endpoint(xfer);
USB_BUS_LOCK(&sc->sc_bus);
/* check if halted is still cleared */
if (pepext->trb_halted == 0) {
pepext->trb_running = 1;
pepext->trb_index = 0;
}
goto restart;
}
if (xfer->flags_int.did_dma_delay) {
/* remove transfer from interrupt queue (again) */
usbd_transfer_dequeue(xfer);
/* we are finally done */
usb_dma_delay_done_cb(xfer);
/* queue changed - restart */
goto restart;
}
}
TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry) {
/* try to insert xfer on HW queue */
xhci_transfer_insert(xfer);
/* try to multi buffer */
xhci_device_generic_multi_enter(xfer->endpoint, NULL);
}
}
static void
xhci_ep_init(struct usb_device *udev, struct usb_endpoint_descriptor *edesc,
struct usb_endpoint *ep)
{
struct xhci_endpoint_ext *pepext;
DPRINTFN(2, "endpoint=%p, addr=%d, endpt=%d, mode=%d\n",
ep, udev->address, edesc->bEndpointAddress, udev->flags.usb_mode);
if (udev->flags.usb_mode != USB_MODE_HOST) {
/* not supported */
return;
}
if (udev->parent_hub == NULL) {
/* root HUB has special endpoint handling */
return;
}
ep->methods = &xhci_device_generic_methods;
pepext = xhci_get_endpoint_ext(udev, edesc);
USB_BUS_LOCK(udev->bus);
pepext->trb_halted = 1;
pepext->trb_running = 0;
USB_BUS_UNLOCK(udev->bus);
}
static void
xhci_ep_uninit(struct usb_device *udev, struct usb_endpoint *ep)
{
}
static void
xhci_ep_clear_stall(struct usb_device *udev, struct usb_endpoint *ep)
{
struct xhci_endpoint_ext *pepext;
DPRINTF("\n");
if (udev->flags.usb_mode != USB_MODE_HOST) {
/* not supported */
return;
}
if (udev->parent_hub == NULL) {
/* root HUB has special endpoint handling */
return;
}
pepext = xhci_get_endpoint_ext(udev, ep->edesc);
USB_BUS_LOCK(udev->bus);
pepext->trb_halted = 1;
pepext->trb_running = 0;
USB_BUS_UNLOCK(udev->bus);
}
static usb_error_t
xhci_device_init(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
usb_error_t err;
uint8_t temp;
/* no init for root HUB */
if (udev->parent_hub == NULL)
return (0);
XHCI_CMD_LOCK(sc);
/* set invalid default */
udev->controller_slot_id = sc->sc_noslot + 1;
/* try to get a new slot ID from the XHCI */
err = xhci_cmd_enable_slot(sc, &temp);
if (err) {
XHCI_CMD_UNLOCK(sc);
return (err);
}
if (temp > sc->sc_noslot) {
XHCI_CMD_UNLOCK(sc);
return (USB_ERR_BAD_ADDRESS);
}
if (sc->sc_hw.devs[temp].state != XHCI_ST_DISABLED) {
DPRINTF("slot %u already allocated.\n", temp);
XHCI_CMD_UNLOCK(sc);
return (USB_ERR_BAD_ADDRESS);
}
/* store slot ID for later reference */
udev->controller_slot_id = temp;
/* reset data structure */
memset(&sc->sc_hw.devs[temp], 0, sizeof(sc->sc_hw.devs[0]));
/* set mark slot allocated */
sc->sc_hw.devs[temp].state = XHCI_ST_ENABLED;
err = xhci_alloc_device_ext(udev);
XHCI_CMD_UNLOCK(sc);
/* get device into default state */
if (err == 0)
err = xhci_set_address(udev, NULL, 0);
return (err);
}
static void
xhci_device_uninit(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
uint8_t index;
/* no init for root HUB */
if (udev->parent_hub == NULL)
return;
XHCI_CMD_LOCK(sc);
index = udev->controller_slot_id;
if (index <= sc->sc_noslot) {
xhci_cmd_disable_slot(sc, index);
sc->sc_hw.devs[index].state = XHCI_ST_DISABLED;
/* free device extension */
xhci_free_device_ext(udev);
}
XHCI_CMD_UNLOCK(sc);
}
static void
xhci_get_dma_delay(struct usb_device *udev, uint32_t *pus)
{
/*
* Wait until the hardware has finished any possible use of
* the transfer descriptor(s)
*/
*pus = 2048; /* microseconds */
}
static void
xhci_device_resume(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
uint8_t index;
uint8_t n;
DPRINTF("\n");
/* check for root HUB */
if (udev->parent_hub == NULL)
return;
index = udev->controller_slot_id;
XHCI_CMD_LOCK(sc);
/* blindly resume all endpoints */
USB_BUS_LOCK(udev->bus);
for (n = 1; n != XHCI_MAX_ENDPOINTS; n++)
XWRITE4(sc, door, XHCI_DOORBELL(index), n | XHCI_DB_SID_SET(0));
USB_BUS_UNLOCK(udev->bus);
XHCI_CMD_UNLOCK(sc);
}
static void
xhci_device_suspend(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
uint8_t index;
uint8_t n;
usb_error_t err;
DPRINTF("\n");
/* check for root HUB */
if (udev->parent_hub == NULL)
return;
index = udev->controller_slot_id;
XHCI_CMD_LOCK(sc);
/* blindly suspend all endpoints */
for (n = 1; n != XHCI_MAX_ENDPOINTS; n++) {
err = xhci_cmd_stop_ep(sc, 1, n, index);
if (err != 0) {
DPRINTF("Failed to suspend endpoint "
"%u on slot %u (ignored).\n", n, index);
}
}
XHCI_CMD_UNLOCK(sc);
}
static void
xhci_set_hw_power(struct usb_bus *bus)
{
DPRINTF("\n");
}
static void
xhci_device_state_change(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct usb_page_search buf_inp;
usb_error_t err;
uint8_t index;
/* check for root HUB */
if (udev->parent_hub == NULL)
return;
index = udev->controller_slot_id;
DPRINTF("\n");
if (usb_get_device_state(udev) == USB_STATE_CONFIGURED) {
err = uhub_query_info(udev, &sc->sc_hw.devs[index].nports,
&sc->sc_hw.devs[index].tt);
if (err != 0)
sc->sc_hw.devs[index].nports = 0;
}
XHCI_CMD_LOCK(sc);
switch (usb_get_device_state(udev)) {
case USB_STATE_POWERED:
if (sc->sc_hw.devs[index].state == XHCI_ST_DEFAULT)
break;
sc->sc_hw.devs[index].state = XHCI_ST_DEFAULT;
err = xhci_cmd_reset_dev(sc, index);
if (err != 0) {
DPRINTF("Device reset failed "
"for slot %u.\n", index);
}
break;
case USB_STATE_ADDRESSED:
if (sc->sc_hw.devs[index].state == XHCI_ST_ADDRESSED)
break;
sc->sc_hw.devs[index].state = XHCI_ST_ADDRESSED;
err = xhci_cmd_configure_ep(sc, 0, 1, index);
if (err) {
DPRINTF("Failed to deconfigure "
"slot %u.\n", index);
}
break;
case USB_STATE_CONFIGURED:
if (sc->sc_hw.devs[index].state == XHCI_ST_CONFIGURED)
break;
sc->sc_hw.devs[index].state = XHCI_ST_CONFIGURED;
usbd_get_page(&sc->sc_hw.devs[index].input_pc, 0, &buf_inp);
xhci_configure_mask(udev, 1, 0);
err = xhci_configure_device(udev);
if (err != 0) {
DPRINTF("Could not configure device "
"at slot %u.\n", index);
}
err = xhci_cmd_evaluate_ctx(sc, buf_inp.physaddr, index);
if (err != 0) {
DPRINTF("Could not evaluate device "
"context at slot %u.\n", index);
}
break;
default:
break;
}
XHCI_CMD_UNLOCK(sc);
}
struct usb_bus_methods xhci_bus_methods = {
.endpoint_init = xhci_ep_init,
.endpoint_uninit = xhci_ep_uninit,
.xfer_setup = xhci_xfer_setup,
.xfer_unsetup = xhci_xfer_unsetup,
.get_dma_delay = xhci_get_dma_delay,
.device_init = xhci_device_init,
.device_uninit = xhci_device_uninit,
.device_resume = xhci_device_resume,
.device_suspend = xhci_device_suspend,
.set_hw_power = xhci_set_hw_power,
.roothub_exec = xhci_roothub_exec,
.xfer_poll = xhci_do_poll,
.start_dma_delay = xhci_start_dma_delay,
.set_address = xhci_set_address,
.clear_stall = xhci_ep_clear_stall,
.device_state_change = xhci_device_state_change,
};