freebsd-nq/sys/isa/atrtc.c
Garrett Wollman f23b4c91c4 Fix up some sloppy coding practices:
- Delete redundant declarations.
- Add -Wredundant-declarations to Makefile.i386 so they don't come back.
- Delete sloppy COMMON-style declarations of uninitialized data in
  header files.
- Add a few prototypes.
- Clean up warnings resulting from the above.

NB: ioconf.c will still generate a redundant-declaration warning, which
is unavoidable unless somebody volunteers to make `config' smarter.
1994-08-18 22:36:09 +00:00

540 lines
13 KiB
C

/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz and Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
* $Id: clock.c,v 1.15 1994/08/18 05:09:21 davidg Exp $
*/
/*
* Primitive clock interrupt routines.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <machine/segments.h>
#include <machine/frame.h>
#include <i386/isa/icu.h>
#include <i386/isa/isa.h>
#include <i386/isa/rtc.h>
#include <i386/isa/timerreg.h>
#include <machine/cpu.h>
/* X-tals being what they are, it's nice to be able to fudge this one... */
/* Note, the name changed here from XTALSPEED to TIMER_FREQ rgrimes 4/26/93 */
#ifndef TIMER_FREQ
#define TIMER_FREQ 1193182 /* XXX - should be in isa.h */
#endif
#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))
static int beeping;
int timer0_divisor = TIMER_DIV(100); /* XXX should be hz */
u_int timer0_prescale;
static char timer0_state = 0, timer2_state = 0;
static char timer0_reprogram = 0;
static void (*timer_func)() = hardclock;
static void (*new_function)();
static u_int new_rate;
static u_int hardclock_divisor;
#ifdef I586_CPU
int pentium_mhz = 0;
#endif
void
clkintr(frame)
struct clockframe frame;
{
#ifdef I586_CPU
/*
* This resets the CPU cycle counter to zero, to make our
* job easier in microtime(). Some fancy ifdefs could speed
* this up for Pentium-only kernels.
* We want this to be done as close as possible to the actual
* timer incrementing in hardclock(), because there is a window
* between the two where the value is no longer valid. Experimentation
* may reveal a good precompensation to apply in microtime().
*/
if(pentium_mhz) {
__asm __volatile("movl $0x10,%%ecx\n"
"xorl %%eax,%%eax\n"
"movl %%eax,%%edx\n"
".byte 0x0f, 0x30\n"
"#%0%1"
: "=m"(frame) /* no outputs */
: "b"(&frame) /* fake input */
: "ax", "cx", "dx");
}
#endif
hardclock(&frame);
}
static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
/*
* This routine receives statistical clock interrupts from the RTC.
* As explained above, these occur at 128 interrupts per second.
* When profiling, we receive interrupts at a rate of 1024 Hz.
*
* This does not actually add as much overhead as it sounds, because
* when the statistical clock is active, the hardclock driver no longer
* needs to keep (inaccurate) statistics on its own. This decouples
* statistics gathering from scheduling interrupts.
*
* The RTC chip requires that we read status register C (RTC_INTR)
* to acknowledge an interrupt, before it will generate the next one.
*/
void
rtcintr(struct clockframe frame)
{
u_char stat;
stat = rtcin(RTC_INTR);
if(stat & RTCIR_PERIOD) {
statclock(&frame);
}
}
#ifdef DEBUG
void
printrtc(void)
{
outb(IO_RTC, RTC_STATUSA);
printf("RTC status A = %x", inb(IO_RTC+1));
outb(IO_RTC, RTC_STATUSB);
printf(", B = %x", inb(IO_RTC+1));
outb(IO_RTC, RTC_INTR);
printf(", C = %x\n", inb(IO_RTC+1));
}
#endif
#if 0
void
timerintr(struct clockframe frame)
{
timer_func(&frame);
switch (timer0_state) {
case 0:
break;
case 1:
if ((timer0_prescale+=timer0_divisor) >= hardclock_divisor) {
hardclock(&frame);
timer0_prescale = 0;
}
break;
case 2:
disable_intr();
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(new_rate)%256);
outb(TIMER_CNTR0, TIMER_DIV(new_rate)/256);
enable_intr();
timer0_divisor = TIMER_DIV(new_rate);
timer0_prescale = 0;
timer_func = new_function;
timer0_state = 1;
break;
case 3:
if ((timer0_prescale+=timer0_divisor) >= hardclock_divisor) {
hardclock(&frame);
disable_intr();
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
outb(TIMER_CNTR0, TIMER_DIV(hz)%256);
outb(TIMER_CNTR0, TIMER_DIV(hz)/256);
enable_intr();
timer0_divisor = TIMER_DIV(hz);
timer0_prescale = 0;
timer_func = hardclock;;
timer0_state = 0;
}
break;
}
}
#endif
int
acquire_timer0(int rate, void (*function)() )
{
if (timer0_state || !function)
return -1;
new_function = function;
new_rate = rate;
timer0_state = 2;
return 0;
}
int
acquire_timer2(int mode)
{
if (timer2_state)
return -1;
timer2_state = 1;
outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
return 0;
}
int
release_timer0()
{
if (!timer0_state)
return -1;
timer0_state = 3;
return 0;
}
int
release_timer2()
{
if (!timer2_state)
return -1;
timer2_state = 0;
outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
return 0;
}
static int
getit()
{
int high, low;
disable_intr();
/* select timer0 and latch counter value */
outb(TIMER_MODE, TIMER_SEL0);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
enable_intr();
return ((high << 8) | low);
}
#ifdef I586_CPU
static long long cycles_per_sec = 0;
/*
* Figure out how fast the cyclecounter runs. This must be run with
* clock interrupts disabled, but with the timer/counter programmed
* and running.
*/
void
calibrate_cyclecounter(void)
{
volatile long edx, eax, lasteax, lastedx;
__asm __volatile(".byte 0x0f, 0x31" : "=a"(lasteax), "=d"(lastedx) : );
DELAY(1000000);
__asm __volatile(".byte 0x0f, 0x31" : "=a"(eax), "=d"(edx) : );
/*
* This assumes that you will never have a clock rate higher
* than 4GHz, probably a good assumption.
*/
cycles_per_sec = (long long)edx + eax;
cycles_per_sec -= (long long)lastedx + lasteax;
pentium_mhz = ((long)cycles_per_sec + 500000) / 1000000; /* round up */
}
#endif
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (TIMER_FREQ / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int counter_limit, prev_tick, tick, ticks_left, sec, usec;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*/
prev_tick = getit(0, 0);
n -= 20;
/*
* Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
* and without any avoidable overflows.
*/
sec = n / 1000000;
usec = n - sec * 1000000;
ticks_left = sec * TIMER_FREQ
+ usec * (TIMER_FREQ / 1000000)
+ usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
+ usec * (TIMER_FREQ % 1000) / 1000000;
while (ticks_left > 0) {
tick = getit(0, 0);
#ifdef DELAYDEBUG
++getit_calls;
#endif
if (tick > prev_tick)
ticks_left -= prev_tick - (tick - timer0_divisor);
else
ticks_left -= prev_tick - tick;
prev_tick = tick;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
static void
sysbeepstop()
{
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
release_timer2();
beeping = 0;
}
int
sysbeep(int pitch, int period)
{
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
return -1;
disable_intr();
outb(TIMER_CNTR2, pitch);
outb(TIMER_CNTR2, (pitch>>8));
enable_intr();
if (!beeping) {
outb(IO_PPI, inb(IO_PPI) | 3); /* enable counter2 output to speaker */
beeping = period;
timeout(sysbeepstop, 0, period);
}
return 0;
}
void
startrtclock()
{
int s;
/* initialize 8253 clock */
outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
/* Correct rounding will buy us a better precision in timekeeping */
outb (IO_TIMER1, TIMER_DIV(hz)%256);
outb (IO_TIMER1, TIMER_DIV(hz)/256);
timer0_divisor = hardclock_divisor = TIMER_DIV(hz);
/* initialize brain-dead battery powered clock */
outb (IO_RTC, RTC_STATUSA);
outb (IO_RTC+1, rtc_statusa);
outb (IO_RTC, RTC_STATUSB);
outb (IO_RTC+1, RTCSB_24HR);
outb (IO_RTC, RTC_DIAG);
if (s = inb (IO_RTC+1))
printf("RTC BIOS diagnostic error %b\n", s, RTCDG_BITS);
}
/* convert 2 digit BCD number */
int
bcd(int i)
{
return ((i/16)*10 + (i%16));
}
/* convert years to seconds (from 1970) */
unsigned long
ytos(int y)
{
int i;
unsigned long ret;
ret = 0;
for(i = 1970; i < y; i++) {
if (i % 4) ret += 365*24*60*60;
else ret += 366*24*60*60;
}
return ret;
}
/* convert months to seconds */
unsigned long
mtos(int m, int leap)
{
int i;
unsigned long ret;
ret = 0;
for(i=1; i<m; i++) {
switch(i){
case 1: case 3: case 5: case 7: case 8: case 10: case 12:
ret += 31*24*60*60; break;
case 4: case 6: case 9: case 11:
ret += 30*24*60*60; break;
case 2:
if (leap) ret += 29*24*60*60;
else ret += 28*24*60*60;
}
}
return ret;
}
/*
* Initialize the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
void
inittodr(time_t base)
{
unsigned long sec;
int leap, day_week, t, yd;
int sa,s;
/* do we have a realtime clock present? (otherwise we loop below) */
sa = rtcin(RTC_STATUSA);
if (sa == 0xff || sa == 0) return;
/* ready for a read? */
while ((sa&RTCSA_TUP) == RTCSA_TUP)
sa = rtcin(RTC_STATUSA);
sec = bcd(rtcin(RTC_YEAR)) + 1900;
if (sec < 1970)
sec += 100;
leap = !(sec % 4); sec = ytos(sec); /* year */
yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec+=yd; /* month */
t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec+=t; yd+=t; /* date */
day_week = rtcin(RTC_WDAY); /* day */
sec += bcd(rtcin(RTC_HRS)) * 60*60; /* hour */
sec += bcd(rtcin(RTC_MIN)) * 60; /* minutes */
sec += bcd(rtcin(RTC_SEC)); /* seconds */
sec += tz.tz_minuteswest * 60;
time.tv_sec = sec;
}
#ifdef garbage
/*
* Initialze the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
test_inittodr(time_t base)
{
outb(IO_RTC,9); /* year */
printf("%d ",bcd(inb(IO_RTC+1)));
outb(IO_RTC,8); /* month */
printf("%d ",bcd(inb(IO_RTC+1)));
outb(IO_RTC,7); /* day */
printf("%d ",bcd(inb(IO_RTC+1)));
outb(IO_RTC,4); /* hour */
printf("%d ",bcd(inb(IO_RTC+1)));
outb(IO_RTC,2); /* minutes */
printf("%d ",bcd(inb(IO_RTC+1)));
outb(IO_RTC,0); /* seconds */
printf("%d\n",bcd(inb(IO_RTC+1)));
time.tv_sec = base;
}
#endif
/*
* Wire clock interrupt in.
*/
void
enablertclock()
{
register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0, clkintr,
HWI_MASK | SWI_MASK, /* unit */ 0);
INTREN(IRQ0);
register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0, rtcintr,
SWI_CLOCK_MASK, /* unit */ 0);
INTREN(IRQ8);
outb(IO_RTC, RTC_STATUSB);
outb(IO_RTC+1, RTCSB_PINTR | RTCSB_24HR);
}
/*
* Delay for some number of milliseconds.
*/
void
spinwait(int millisecs)
{
DELAY(1000 * millisecs);
}
void
cpu_initclocks()
{
stathz = RTC_NOPROFRATE;
profhz = RTC_PROFRATE;
enablertclock();
}
void
setstatclockrate(int newhz)
{
if(newhz == RTC_PROFRATE) {
rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
} else {
rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
}
outb(IO_RTC, RTC_STATUSA);
outb(IO_RTC+1, rtc_statusa);
}