freebsd-nq/sys/kern/uipc_shm.c
Robert Watson 15bcf785ba Audit arguments to POSIX message queues, semaphores, and shared memory.
This requires minor changes to the audit framework to allow capturing
paths that are not filesystem paths (i.e., will not be canonicalised
relative to the process current working directory and/or filesystem
root).

Obtained from:	TrustedBSD Project
MFC after:	3 weeks
Sponsored by:	DARPA, AFRL
2017-03-31 13:43:00 +00:00

1125 lines
28 KiB
C

/*-
* Copyright (c) 2006, 2011, 2016-2017 Robert N. M. Watson
* All rights reserved.
*
* Portions of this software were developed by BAE Systems, the University of
* Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL
* contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent
* Computing (TC) research program.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Support for shared swap-backed anonymous memory objects via
* shm_open(2) and shm_unlink(2). While most of the implementation is
* here, vm_mmap.c contains mapping logic changes.
*
* TODO:
*
* (1) Need to export data to a userland tool via a sysctl. Should ipcs(1)
* and ipcrm(1) be expanded or should new tools to manage both POSIX
* kernel semaphores and POSIX shared memory be written?
*
* (2) Add support for this file type to fstat(1).
*
* (3) Resource limits? Does this need its own resource limits or are the
* existing limits in mmap(2) sufficient?
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_capsicum.h"
#include "opt_ktrace.h"
#include <sys/param.h>
#include <sys/capsicum.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/fnv_hash.h>
#include <sys/kernel.h>
#include <sys/uio.h>
#include <sys/signal.h>
#include <sys/jail.h>
#include <sys/ktrace.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/refcount.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/stat.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/systm.h>
#include <sys/sx.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <sys/unistd.h>
#include <sys/user.h>
#include <security/audit/audit.h>
#include <security/mac/mac_framework.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/swap_pager.h>
struct shm_mapping {
char *sm_path;
Fnv32_t sm_fnv;
struct shmfd *sm_shmfd;
LIST_ENTRY(shm_mapping) sm_link;
};
static MALLOC_DEFINE(M_SHMFD, "shmfd", "shared memory file descriptor");
static LIST_HEAD(, shm_mapping) *shm_dictionary;
static struct sx shm_dict_lock;
static struct mtx shm_timestamp_lock;
static u_long shm_hash;
static struct unrhdr *shm_ino_unr;
static dev_t shm_dev_ino;
#define SHM_HASH(fnv) (&shm_dictionary[(fnv) & shm_hash])
static void shm_init(void *arg);
static void shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd);
static struct shmfd *shm_lookup(char *path, Fnv32_t fnv);
static int shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred);
static fo_rdwr_t shm_read;
static fo_rdwr_t shm_write;
static fo_truncate_t shm_truncate;
static fo_stat_t shm_stat;
static fo_close_t shm_close;
static fo_chmod_t shm_chmod;
static fo_chown_t shm_chown;
static fo_seek_t shm_seek;
static fo_fill_kinfo_t shm_fill_kinfo;
static fo_mmap_t shm_mmap;
/* File descriptor operations. */
struct fileops shm_ops = {
.fo_read = shm_read,
.fo_write = shm_write,
.fo_truncate = shm_truncate,
.fo_ioctl = invfo_ioctl,
.fo_poll = invfo_poll,
.fo_kqfilter = invfo_kqfilter,
.fo_stat = shm_stat,
.fo_close = shm_close,
.fo_chmod = shm_chmod,
.fo_chown = shm_chown,
.fo_sendfile = vn_sendfile,
.fo_seek = shm_seek,
.fo_fill_kinfo = shm_fill_kinfo,
.fo_mmap = shm_mmap,
.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
};
FEATURE(posix_shm, "POSIX shared memory");
static int
uiomove_object_page(vm_object_t obj, size_t len, struct uio *uio)
{
vm_page_t m;
vm_pindex_t idx;
size_t tlen;
int error, offset, rv;
idx = OFF_TO_IDX(uio->uio_offset);
offset = uio->uio_offset & PAGE_MASK;
tlen = MIN(PAGE_SIZE - offset, len);
VM_OBJECT_WLOCK(obj);
/*
* Read I/O without either a corresponding resident page or swap
* page: use zero_region. This is intended to avoid instantiating
* pages on read from a sparse region.
*/
if (uio->uio_rw == UIO_READ && vm_page_lookup(obj, idx) == NULL &&
!vm_pager_has_page(obj, idx, NULL, NULL)) {
VM_OBJECT_WUNLOCK(obj);
return (uiomove(__DECONST(void *, zero_region), tlen, uio));
}
/*
* Parallel reads of the page content from disk are prevented
* by exclusive busy.
*
* Although the tmpfs vnode lock is held here, it is
* nonetheless safe to sleep waiting for a free page. The
* pageout daemon does not need to acquire the tmpfs vnode
* lock to page out tobj's pages because tobj is a OBJT_SWAP
* type object.
*/
m = vm_page_grab(obj, idx, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
if (m->valid != VM_PAGE_BITS_ALL) {
vm_page_xbusy(m);
if (vm_pager_has_page(obj, idx, NULL, NULL)) {
rv = vm_pager_get_pages(obj, &m, 1, NULL, NULL);
if (rv != VM_PAGER_OK) {
printf(
"uiomove_object: vm_obj %p idx %jd valid %x pager error %d\n",
obj, idx, m->valid, rv);
vm_page_lock(m);
vm_page_free(m);
vm_page_unlock(m);
VM_OBJECT_WUNLOCK(obj);
return (EIO);
}
} else
vm_page_zero_invalid(m, TRUE);
vm_page_xunbusy(m);
}
vm_page_lock(m);
vm_page_hold(m);
if (m->queue == PQ_NONE) {
vm_page_deactivate(m);
} else {
/* Requeue to maintain LRU ordering. */
vm_page_requeue(m);
}
vm_page_unlock(m);
VM_OBJECT_WUNLOCK(obj);
error = uiomove_fromphys(&m, offset, tlen, uio);
if (uio->uio_rw == UIO_WRITE && error == 0) {
VM_OBJECT_WLOCK(obj);
vm_page_dirty(m);
vm_pager_page_unswapped(m);
VM_OBJECT_WUNLOCK(obj);
}
vm_page_lock(m);
vm_page_unhold(m);
vm_page_unlock(m);
return (error);
}
int
uiomove_object(vm_object_t obj, off_t obj_size, struct uio *uio)
{
ssize_t resid;
size_t len;
int error;
error = 0;
while ((resid = uio->uio_resid) > 0) {
if (obj_size <= uio->uio_offset)
break;
len = MIN(obj_size - uio->uio_offset, resid);
if (len == 0)
break;
error = uiomove_object_page(obj, len, uio);
if (error != 0 || resid == uio->uio_resid)
break;
}
return (error);
}
static int
shm_seek(struct file *fp, off_t offset, int whence, struct thread *td)
{
struct shmfd *shmfd;
off_t foffset;
int error;
shmfd = fp->f_data;
foffset = foffset_lock(fp, 0);
error = 0;
switch (whence) {
case L_INCR:
if (foffset < 0 ||
(offset > 0 && foffset > OFF_MAX - offset)) {
error = EOVERFLOW;
break;
}
offset += foffset;
break;
case L_XTND:
if (offset > 0 && shmfd->shm_size > OFF_MAX - offset) {
error = EOVERFLOW;
break;
}
offset += shmfd->shm_size;
break;
case L_SET:
break;
default:
error = EINVAL;
}
if (error == 0) {
if (offset < 0 || offset > shmfd->shm_size)
error = EINVAL;
else
td->td_uretoff.tdu_off = offset;
}
foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
return (error);
}
static int
shm_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
int flags, struct thread *td)
{
struct shmfd *shmfd;
void *rl_cookie;
int error;
shmfd = fp->f_data;
#ifdef MAC
error = mac_posixshm_check_read(active_cred, fp->f_cred, shmfd);
if (error)
return (error);
#endif
foffset_lock_uio(fp, uio, flags);
rl_cookie = rangelock_rlock(&shmfd->shm_rl, uio->uio_offset,
uio->uio_offset + uio->uio_resid, &shmfd->shm_mtx);
error = uiomove_object(shmfd->shm_object, shmfd->shm_size, uio);
rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
foffset_unlock_uio(fp, uio, flags);
return (error);
}
static int
shm_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
int flags, struct thread *td)
{
struct shmfd *shmfd;
void *rl_cookie;
int error;
shmfd = fp->f_data;
#ifdef MAC
error = mac_posixshm_check_write(active_cred, fp->f_cred, shmfd);
if (error)
return (error);
#endif
foffset_lock_uio(fp, uio, flags);
if ((flags & FOF_OFFSET) == 0) {
rl_cookie = rangelock_wlock(&shmfd->shm_rl, 0, OFF_MAX,
&shmfd->shm_mtx);
} else {
rl_cookie = rangelock_wlock(&shmfd->shm_rl, uio->uio_offset,
uio->uio_offset + uio->uio_resid, &shmfd->shm_mtx);
}
error = uiomove_object(shmfd->shm_object, shmfd->shm_size, uio);
rangelock_unlock(&shmfd->shm_rl, rl_cookie, &shmfd->shm_mtx);
foffset_unlock_uio(fp, uio, flags);
return (error);
}
static int
shm_truncate(struct file *fp, off_t length, struct ucred *active_cred,
struct thread *td)
{
struct shmfd *shmfd;
#ifdef MAC
int error;
#endif
shmfd = fp->f_data;
#ifdef MAC
error = mac_posixshm_check_truncate(active_cred, fp->f_cred, shmfd);
if (error)
return (error);
#endif
return (shm_dotruncate(shmfd, length));
}
static int
shm_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
struct thread *td)
{
struct shmfd *shmfd;
#ifdef MAC
int error;
#endif
shmfd = fp->f_data;
#ifdef MAC
error = mac_posixshm_check_stat(active_cred, fp->f_cred, shmfd);
if (error)
return (error);
#endif
/*
* Attempt to return sanish values for fstat() on a memory file
* descriptor.
*/
bzero(sb, sizeof(*sb));
sb->st_blksize = PAGE_SIZE;
sb->st_size = shmfd->shm_size;
sb->st_blocks = howmany(sb->st_size, sb->st_blksize);
mtx_lock(&shm_timestamp_lock);
sb->st_atim = shmfd->shm_atime;
sb->st_ctim = shmfd->shm_ctime;
sb->st_mtim = shmfd->shm_mtime;
sb->st_birthtim = shmfd->shm_birthtime;
sb->st_mode = S_IFREG | shmfd->shm_mode; /* XXX */
sb->st_uid = shmfd->shm_uid;
sb->st_gid = shmfd->shm_gid;
mtx_unlock(&shm_timestamp_lock);
sb->st_dev = shm_dev_ino;
sb->st_ino = shmfd->shm_ino;
return (0);
}
static int
shm_close(struct file *fp, struct thread *td)
{
struct shmfd *shmfd;
shmfd = fp->f_data;
fp->f_data = NULL;
shm_drop(shmfd);
return (0);
}
int
shm_dotruncate(struct shmfd *shmfd, off_t length)
{
vm_object_t object;
vm_page_t m;
vm_pindex_t idx, nobjsize;
vm_ooffset_t delta;
int base, rv;
KASSERT(length >= 0, ("shm_dotruncate: length < 0"));
object = shmfd->shm_object;
VM_OBJECT_WLOCK(object);
if (length == shmfd->shm_size) {
VM_OBJECT_WUNLOCK(object);
return (0);
}
nobjsize = OFF_TO_IDX(length + PAGE_MASK);
/* Are we shrinking? If so, trim the end. */
if (length < shmfd->shm_size) {
/*
* Disallow any requests to shrink the size if this
* object is mapped into the kernel.
*/
if (shmfd->shm_kmappings > 0) {
VM_OBJECT_WUNLOCK(object);
return (EBUSY);
}
/*
* Zero the truncated part of the last page.
*/
base = length & PAGE_MASK;
if (base != 0) {
idx = OFF_TO_IDX(length);
retry:
m = vm_page_lookup(object, idx);
if (m != NULL) {
if (vm_page_sleep_if_busy(m, "shmtrc"))
goto retry;
} else if (vm_pager_has_page(object, idx, NULL, NULL)) {
m = vm_page_alloc(object, idx, VM_ALLOC_NORMAL);
if (m == NULL) {
VM_OBJECT_WUNLOCK(object);
VM_WAIT;
VM_OBJECT_WLOCK(object);
goto retry;
}
rv = vm_pager_get_pages(object, &m, 1, NULL,
NULL);
vm_page_lock(m);
if (rv == VM_PAGER_OK) {
/*
* Since the page was not resident,
* and therefore not recently
* accessed, immediately enqueue it
* for asynchronous laundering. The
* current operation is not regarded
* as an access.
*/
vm_page_launder(m);
vm_page_unlock(m);
vm_page_xunbusy(m);
} else {
vm_page_free(m);
vm_page_unlock(m);
VM_OBJECT_WUNLOCK(object);
return (EIO);
}
}
if (m != NULL) {
pmap_zero_page_area(m, base, PAGE_SIZE - base);
KASSERT(m->valid == VM_PAGE_BITS_ALL,
("shm_dotruncate: page %p is invalid", m));
vm_page_dirty(m);
vm_pager_page_unswapped(m);
}
}
delta = IDX_TO_OFF(object->size - nobjsize);
/* Toss in memory pages. */
if (nobjsize < object->size)
vm_object_page_remove(object, nobjsize, object->size,
0);
/* Toss pages from swap. */
if (object->type == OBJT_SWAP)
swap_pager_freespace(object, nobjsize, delta);
/* Free the swap accounted for shm */
swap_release_by_cred(delta, object->cred);
object->charge -= delta;
} else {
/* Try to reserve additional swap space. */
delta = IDX_TO_OFF(nobjsize - object->size);
if (!swap_reserve_by_cred(delta, object->cred)) {
VM_OBJECT_WUNLOCK(object);
return (ENOMEM);
}
object->charge += delta;
}
shmfd->shm_size = length;
mtx_lock(&shm_timestamp_lock);
vfs_timestamp(&shmfd->shm_ctime);
shmfd->shm_mtime = shmfd->shm_ctime;
mtx_unlock(&shm_timestamp_lock);
object->size = nobjsize;
VM_OBJECT_WUNLOCK(object);
return (0);
}
/*
* shmfd object management including creation and reference counting
* routines.
*/
struct shmfd *
shm_alloc(struct ucred *ucred, mode_t mode)
{
struct shmfd *shmfd;
int ino;
shmfd = malloc(sizeof(*shmfd), M_SHMFD, M_WAITOK | M_ZERO);
shmfd->shm_size = 0;
shmfd->shm_uid = ucred->cr_uid;
shmfd->shm_gid = ucred->cr_gid;
shmfd->shm_mode = mode;
shmfd->shm_object = vm_pager_allocate(OBJT_DEFAULT, NULL,
shmfd->shm_size, VM_PROT_DEFAULT, 0, ucred);
KASSERT(shmfd->shm_object != NULL, ("shm_create: vm_pager_allocate"));
shmfd->shm_object->pg_color = 0;
VM_OBJECT_WLOCK(shmfd->shm_object);
vm_object_clear_flag(shmfd->shm_object, OBJ_ONEMAPPING);
vm_object_set_flag(shmfd->shm_object, OBJ_COLORED | OBJ_NOSPLIT);
VM_OBJECT_WUNLOCK(shmfd->shm_object);
vfs_timestamp(&shmfd->shm_birthtime);
shmfd->shm_atime = shmfd->shm_mtime = shmfd->shm_ctime =
shmfd->shm_birthtime;
ino = alloc_unr(shm_ino_unr);
if (ino == -1)
shmfd->shm_ino = 0;
else
shmfd->shm_ino = ino;
refcount_init(&shmfd->shm_refs, 1);
mtx_init(&shmfd->shm_mtx, "shmrl", NULL, MTX_DEF);
rangelock_init(&shmfd->shm_rl);
#ifdef MAC
mac_posixshm_init(shmfd);
mac_posixshm_create(ucred, shmfd);
#endif
return (shmfd);
}
struct shmfd *
shm_hold(struct shmfd *shmfd)
{
refcount_acquire(&shmfd->shm_refs);
return (shmfd);
}
void
shm_drop(struct shmfd *shmfd)
{
if (refcount_release(&shmfd->shm_refs)) {
#ifdef MAC
mac_posixshm_destroy(shmfd);
#endif
rangelock_destroy(&shmfd->shm_rl);
mtx_destroy(&shmfd->shm_mtx);
vm_object_deallocate(shmfd->shm_object);
if (shmfd->shm_ino != 0)
free_unr(shm_ino_unr, shmfd->shm_ino);
free(shmfd, M_SHMFD);
}
}
/*
* Determine if the credentials have sufficient permissions for a
* specified combination of FREAD and FWRITE.
*/
int
shm_access(struct shmfd *shmfd, struct ucred *ucred, int flags)
{
accmode_t accmode;
int error;
accmode = 0;
if (flags & FREAD)
accmode |= VREAD;
if (flags & FWRITE)
accmode |= VWRITE;
mtx_lock(&shm_timestamp_lock);
error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid, shmfd->shm_gid,
accmode, ucred, NULL);
mtx_unlock(&shm_timestamp_lock);
return (error);
}
/*
* Dictionary management. We maintain an in-kernel dictionary to map
* paths to shmfd objects. We use the FNV hash on the path to store
* the mappings in a hash table.
*/
static void
shm_init(void *arg)
{
mtx_init(&shm_timestamp_lock, "shm timestamps", NULL, MTX_DEF);
sx_init(&shm_dict_lock, "shm dictionary");
shm_dictionary = hashinit(1024, M_SHMFD, &shm_hash);
shm_ino_unr = new_unrhdr(1, INT32_MAX, NULL);
KASSERT(shm_ino_unr != NULL, ("shm fake inodes not initialized"));
shm_dev_ino = devfs_alloc_cdp_inode();
KASSERT(shm_dev_ino > 0, ("shm dev inode not initialized"));
}
SYSINIT(shm_init, SI_SUB_SYSV_SHM, SI_ORDER_ANY, shm_init, NULL);
static struct shmfd *
shm_lookup(char *path, Fnv32_t fnv)
{
struct shm_mapping *map;
LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
if (map->sm_fnv != fnv)
continue;
if (strcmp(map->sm_path, path) == 0)
return (map->sm_shmfd);
}
return (NULL);
}
static void
shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd)
{
struct shm_mapping *map;
map = malloc(sizeof(struct shm_mapping), M_SHMFD, M_WAITOK);
map->sm_path = path;
map->sm_fnv = fnv;
map->sm_shmfd = shm_hold(shmfd);
shmfd->shm_path = path;
LIST_INSERT_HEAD(SHM_HASH(fnv), map, sm_link);
}
static int
shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred)
{
struct shm_mapping *map;
int error;
LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
if (map->sm_fnv != fnv)
continue;
if (strcmp(map->sm_path, path) == 0) {
#ifdef MAC
error = mac_posixshm_check_unlink(ucred, map->sm_shmfd);
if (error)
return (error);
#endif
error = shm_access(map->sm_shmfd, ucred,
FREAD | FWRITE);
if (error)
return (error);
map->sm_shmfd->shm_path = NULL;
LIST_REMOVE(map, sm_link);
shm_drop(map->sm_shmfd);
free(map->sm_path, M_SHMFD);
free(map, M_SHMFD);
return (0);
}
}
return (ENOENT);
}
int
kern_shm_open(struct thread *td, const char *userpath, int flags, mode_t mode,
struct filecaps *fcaps)
{
struct filedesc *fdp;
struct shmfd *shmfd;
struct file *fp;
char *path;
const char *pr_path;
size_t pr_pathlen;
Fnv32_t fnv;
mode_t cmode;
int fd, error;
#ifdef CAPABILITY_MODE
/*
* shm_open(2) is only allowed for anonymous objects.
*/
if (IN_CAPABILITY_MODE(td) && (userpath != SHM_ANON))
return (ECAPMODE);
#endif
AUDIT_ARG_FFLAGS(flags);
AUDIT_ARG_MODE(mode);
if ((flags & O_ACCMODE) != O_RDONLY && (flags & O_ACCMODE) != O_RDWR)
return (EINVAL);
if ((flags & ~(O_ACCMODE | O_CREAT | O_EXCL | O_TRUNC | O_CLOEXEC)) != 0)
return (EINVAL);
fdp = td->td_proc->p_fd;
cmode = (mode & ~fdp->fd_cmask) & ACCESSPERMS;
error = falloc_caps(td, &fp, &fd, O_CLOEXEC, fcaps);
if (error)
return (error);
/* A SHM_ANON path pointer creates an anonymous object. */
if (userpath == SHM_ANON) {
/* A read-only anonymous object is pointless. */
if ((flags & O_ACCMODE) == O_RDONLY) {
fdclose(td, fp, fd);
fdrop(fp, td);
return (EINVAL);
}
shmfd = shm_alloc(td->td_ucred, cmode);
} else {
path = malloc(MAXPATHLEN, M_SHMFD, M_WAITOK);
pr_path = td->td_ucred->cr_prison->pr_path;
/* Construct a full pathname for jailed callers. */
pr_pathlen = strcmp(pr_path, "/") == 0 ? 0
: strlcpy(path, pr_path, MAXPATHLEN);
error = copyinstr(userpath, path + pr_pathlen,
MAXPATHLEN - pr_pathlen, NULL);
#ifdef KTRACE
if (error == 0 && KTRPOINT(curthread, KTR_NAMEI))
ktrnamei(path);
#endif
/* Require paths to start with a '/' character. */
if (error == 0 && path[pr_pathlen] != '/')
error = EINVAL;
if (error) {
fdclose(td, fp, fd);
fdrop(fp, td);
free(path, M_SHMFD);
return (error);
}
AUDIT_ARG_UPATH1_CANON(path);
fnv = fnv_32_str(path, FNV1_32_INIT);
sx_xlock(&shm_dict_lock);
shmfd = shm_lookup(path, fnv);
if (shmfd == NULL) {
/* Object does not yet exist, create it if requested. */
if (flags & O_CREAT) {
#ifdef MAC
error = mac_posixshm_check_create(td->td_ucred,
path);
if (error == 0) {
#endif
shmfd = shm_alloc(td->td_ucred, cmode);
shm_insert(path, fnv, shmfd);
#ifdef MAC
}
#endif
} else {
free(path, M_SHMFD);
error = ENOENT;
}
} else {
/*
* Object already exists, obtain a new
* reference if requested and permitted.
*/
free(path, M_SHMFD);
if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
error = EEXIST;
else {
#ifdef MAC
error = mac_posixshm_check_open(td->td_ucred,
shmfd, FFLAGS(flags & O_ACCMODE));
if (error == 0)
#endif
error = shm_access(shmfd, td->td_ucred,
FFLAGS(flags & O_ACCMODE));
}
/*
* Truncate the file back to zero length if
* O_TRUNC was specified and the object was
* opened with read/write.
*/
if (error == 0 &&
(flags & (O_ACCMODE | O_TRUNC)) ==
(O_RDWR | O_TRUNC)) {
#ifdef MAC
error = mac_posixshm_check_truncate(
td->td_ucred, fp->f_cred, shmfd);
if (error == 0)
#endif
shm_dotruncate(shmfd, 0);
}
if (error == 0)
shm_hold(shmfd);
}
sx_xunlock(&shm_dict_lock);
if (error) {
fdclose(td, fp, fd);
fdrop(fp, td);
return (error);
}
}
finit(fp, FFLAGS(flags & O_ACCMODE), DTYPE_SHM, shmfd, &shm_ops);
td->td_retval[0] = fd;
fdrop(fp, td);
return (0);
}
/* System calls. */
int
sys_shm_open(struct thread *td, struct shm_open_args *uap)
{
return (kern_shm_open(td, uap->path, uap->flags, uap->mode, NULL));
}
int
sys_shm_unlink(struct thread *td, struct shm_unlink_args *uap)
{
char *path;
const char *pr_path;
size_t pr_pathlen;
Fnv32_t fnv;
int error;
path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
pr_path = td->td_ucred->cr_prison->pr_path;
pr_pathlen = strcmp(pr_path, "/") == 0 ? 0
: strlcpy(path, pr_path, MAXPATHLEN);
error = copyinstr(uap->path, path + pr_pathlen, MAXPATHLEN - pr_pathlen,
NULL);
if (error) {
free(path, M_TEMP);
return (error);
}
#ifdef KTRACE
if (KTRPOINT(curthread, KTR_NAMEI))
ktrnamei(path);
#endif
AUDIT_ARG_UPATH1_CANON(path);
fnv = fnv_32_str(path, FNV1_32_INIT);
sx_xlock(&shm_dict_lock);
error = shm_remove(path, fnv, td->td_ucred);
sx_xunlock(&shm_dict_lock);
free(path, M_TEMP);
return (error);
}
int
shm_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t objsize,
vm_prot_t prot, vm_prot_t cap_maxprot, int flags,
vm_ooffset_t foff, struct thread *td)
{
struct shmfd *shmfd;
vm_prot_t maxprot;
int error;
shmfd = fp->f_data;
maxprot = VM_PROT_NONE;
/* FREAD should always be set. */
if ((fp->f_flag & FREAD) != 0)
maxprot |= VM_PROT_EXECUTE | VM_PROT_READ;
if ((fp->f_flag & FWRITE) != 0)
maxprot |= VM_PROT_WRITE;
/* Don't permit shared writable mappings on read-only descriptors. */
if ((flags & MAP_SHARED) != 0 &&
(maxprot & VM_PROT_WRITE) == 0 &&
(prot & VM_PROT_WRITE) != 0)
return (EACCES);
maxprot &= cap_maxprot;
/* See comment in vn_mmap(). */
if (
#ifdef _LP64
objsize > OFF_MAX ||
#endif
foff < 0 || foff > OFF_MAX - objsize)
return (EINVAL);
#ifdef MAC
error = mac_posixshm_check_mmap(td->td_ucred, shmfd, prot, flags);
if (error != 0)
return (error);
#endif
mtx_lock(&shm_timestamp_lock);
vfs_timestamp(&shmfd->shm_atime);
mtx_unlock(&shm_timestamp_lock);
vm_object_reference(shmfd->shm_object);
error = vm_mmap_object(map, addr, objsize, prot, maxprot, flags,
shmfd->shm_object, foff, FALSE, td);
if (error != 0)
vm_object_deallocate(shmfd->shm_object);
return (0);
}
static int
shm_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
struct thread *td)
{
struct shmfd *shmfd;
int error;
error = 0;
shmfd = fp->f_data;
mtx_lock(&shm_timestamp_lock);
/*
* SUSv4 says that x bits of permission need not be affected.
* Be consistent with our shm_open there.
*/
#ifdef MAC
error = mac_posixshm_check_setmode(active_cred, shmfd, mode);
if (error != 0)
goto out;
#endif
error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid,
shmfd->shm_gid, VADMIN, active_cred, NULL);
if (error != 0)
goto out;
shmfd->shm_mode = mode & ACCESSPERMS;
out:
mtx_unlock(&shm_timestamp_lock);
return (error);
}
static int
shm_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
struct thread *td)
{
struct shmfd *shmfd;
int error;
error = 0;
shmfd = fp->f_data;
mtx_lock(&shm_timestamp_lock);
#ifdef MAC
error = mac_posixshm_check_setowner(active_cred, shmfd, uid, gid);
if (error != 0)
goto out;
#endif
if (uid == (uid_t)-1)
uid = shmfd->shm_uid;
if (gid == (gid_t)-1)
gid = shmfd->shm_gid;
if (((uid != shmfd->shm_uid && uid != active_cred->cr_uid) ||
(gid != shmfd->shm_gid && !groupmember(gid, active_cred))) &&
(error = priv_check_cred(active_cred, PRIV_VFS_CHOWN, 0)))
goto out;
shmfd->shm_uid = uid;
shmfd->shm_gid = gid;
out:
mtx_unlock(&shm_timestamp_lock);
return (error);
}
/*
* Helper routines to allow the backing object of a shared memory file
* descriptor to be mapped in the kernel.
*/
int
shm_map(struct file *fp, size_t size, off_t offset, void **memp)
{
struct shmfd *shmfd;
vm_offset_t kva, ofs;
vm_object_t obj;
int rv;
if (fp->f_type != DTYPE_SHM)
return (EINVAL);
shmfd = fp->f_data;
obj = shmfd->shm_object;
VM_OBJECT_WLOCK(obj);
/*
* XXXRW: This validation is probably insufficient, and subject to
* sign errors. It should be fixed.
*/
if (offset >= shmfd->shm_size ||
offset + size > round_page(shmfd->shm_size)) {
VM_OBJECT_WUNLOCK(obj);
return (EINVAL);
}
shmfd->shm_kmappings++;
vm_object_reference_locked(obj);
VM_OBJECT_WUNLOCK(obj);
/* Map the object into the kernel_map and wire it. */
kva = vm_map_min(kernel_map);
ofs = offset & PAGE_MASK;
offset = trunc_page(offset);
size = round_page(size + ofs);
rv = vm_map_find(kernel_map, obj, offset, &kva, size, 0,
VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
VM_PROT_READ | VM_PROT_WRITE, 0);
if (rv == KERN_SUCCESS) {
rv = vm_map_wire(kernel_map, kva, kva + size,
VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
if (rv == KERN_SUCCESS) {
*memp = (void *)(kva + ofs);
return (0);
}
vm_map_remove(kernel_map, kva, kva + size);
} else
vm_object_deallocate(obj);
/* On failure, drop our mapping reference. */
VM_OBJECT_WLOCK(obj);
shmfd->shm_kmappings--;
VM_OBJECT_WUNLOCK(obj);
return (vm_mmap_to_errno(rv));
}
/*
* We require the caller to unmap the entire entry. This allows us to
* safely decrement shm_kmappings when a mapping is removed.
*/
int
shm_unmap(struct file *fp, void *mem, size_t size)
{
struct shmfd *shmfd;
vm_map_entry_t entry;
vm_offset_t kva, ofs;
vm_object_t obj;
vm_pindex_t pindex;
vm_prot_t prot;
boolean_t wired;
vm_map_t map;
int rv;
if (fp->f_type != DTYPE_SHM)
return (EINVAL);
shmfd = fp->f_data;
kva = (vm_offset_t)mem;
ofs = kva & PAGE_MASK;
kva = trunc_page(kva);
size = round_page(size + ofs);
map = kernel_map;
rv = vm_map_lookup(&map, kva, VM_PROT_READ | VM_PROT_WRITE, &entry,
&obj, &pindex, &prot, &wired);
if (rv != KERN_SUCCESS)
return (EINVAL);
if (entry->start != kva || entry->end != kva + size) {
vm_map_lookup_done(map, entry);
return (EINVAL);
}
vm_map_lookup_done(map, entry);
if (obj != shmfd->shm_object)
return (EINVAL);
vm_map_remove(map, kva, kva + size);
VM_OBJECT_WLOCK(obj);
KASSERT(shmfd->shm_kmappings > 0, ("shm_unmap: object not mapped"));
shmfd->shm_kmappings--;
VM_OBJECT_WUNLOCK(obj);
return (0);
}
static int
shm_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
{
const char *path, *pr_path;
struct shmfd *shmfd;
size_t pr_pathlen;
kif->kf_type = KF_TYPE_SHM;
shmfd = fp->f_data;
mtx_lock(&shm_timestamp_lock);
kif->kf_un.kf_file.kf_file_mode = S_IFREG | shmfd->shm_mode; /* XXX */
mtx_unlock(&shm_timestamp_lock);
kif->kf_un.kf_file.kf_file_size = shmfd->shm_size;
if (shmfd->shm_path != NULL) {
sx_slock(&shm_dict_lock);
if (shmfd->shm_path != NULL) {
path = shmfd->shm_path;
pr_path = curthread->td_ucred->cr_prison->pr_path;
if (strcmp(pr_path, "/") != 0) {
/* Return the jail-rooted pathname. */
pr_pathlen = strlen(pr_path);
if (strncmp(path, pr_path, pr_pathlen) == 0 &&
path[pr_pathlen] == '/')
path += pr_pathlen;
}
strlcpy(kif->kf_path, path, sizeof(kif->kf_path));
}
sx_sunlock(&shm_dict_lock);
}
return (0);
}