freebsd-nq/sys/arm/arm/db_trace.c

643 lines
16 KiB
C

/* $NetBSD: db_trace.c,v 1.8 2003/01/17 22:28:48 thorpej Exp $ */
/*-
* Copyright (c) 2000, 2001 Ben Harris
* Copyright (c) 1996 Scott K. Stevens
*
* Mach Operating System
* Copyright (c) 1991,1990 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kdb.h>
#include <sys/stack.h>
#include <machine/armreg.h>
#include <machine/asm.h>
#include <machine/cpufunc.h>
#include <machine/db_machdep.h>
#include <machine/pcb.h>
#include <machine/stack.h>
#include <machine/vmparam.h>
#include <ddb/ddb.h>
#include <ddb/db_access.h>
#include <ddb/db_sym.h>
#include <ddb/db_output.h>
#ifdef __ARM_EABI__
/*
* Definitions for the instruction interpreter.
*
* The ARM EABI specifies how to perform the frame unwinding in the
* Exception Handling ABI for the ARM Architecture document. To perform
* the unwind we need to know the initial frame pointer, stack pointer,
* link register and program counter. We then find the entry within the
* index table that points to the function the program counter is within.
* This gives us either a list of three instructions to process, a 31-bit
* relative offset to a table of instructions, or a value telling us
* we can't unwind any further.
*
* When we have the instructions to process we need to decode them
* following table 4 in section 9.3. This describes a collection of bit
* patterns to encode that steps to take to update the stack pointer and
* link register to the correct values at the start of the function.
*/
/* A special case when we are unable to unwind past this function */
#define EXIDX_CANTUNWIND 1
/* The register names */
#define FP 11
#define SP 13
#define LR 14
#define PC 15
/*
* These are set in the linker script. Their addresses will be
* either the start or end of the exception table or index.
*/
extern int extab_start, extab_end, exidx_start, exidx_end;
/*
* Entry types.
* These are the only entry types that have been seen in the kernel.
*/
#define ENTRY_MASK 0xff000000
#define ENTRY_ARM_SU16 0x80000000
#define ENTRY_ARM_LU16 0x81000000
/* Instruction masks. */
#define INSN_VSP_MASK 0xc0
#define INSN_VSP_SIZE_MASK 0x3f
#define INSN_STD_MASK 0xf0
#define INSN_STD_DATA_MASK 0x0f
#define INSN_POP_TYPE_MASK 0x08
#define INSN_POP_COUNT_MASK 0x07
#define INSN_VSP_LARGE_INC_MASK 0xff
/* Instruction definitions */
#define INSN_VSP_INC 0x00
#define INSN_VSP_DEC 0x40
#define INSN_POP_MASKED 0x80
#define INSN_VSP_REG 0x90
#define INSN_POP_COUNT 0xa0
#define INSN_FINISH 0xb0
#define INSN_POP_REGS 0xb1
#define INSN_VSP_LARGE_INC 0xb2
/* An item in the exception index table */
struct unwind_idx {
uint32_t offset;
uint32_t insn;
};
/* The state of the unwind process */
struct unwind_state {
uint32_t registers[16];
uint32_t start_pc;
uint32_t *insn;
u_int entries;
u_int byte;
uint16_t update_mask;
};
/* Expand a 31-bit signed value to a 32-bit signed value */
static __inline int32_t
db_expand_prel31(uint32_t prel31)
{
return ((int32_t)(prel31 & 0x7fffffffu) << 1) / 2;
}
/*
* Perform a binary search of the index table to find the function
* with the largest address that doesn't exceed addr.
*/
static struct unwind_idx *
db_find_index(uint32_t addr)
{
unsigned int min, mid, max;
struct unwind_idx *start;
struct unwind_idx *item;
int32_t prel31_addr;
uint32_t func_addr;
start = (struct unwind_idx *)&exidx_start;
min = 0;
max = (&exidx_end - &exidx_start) / 2;
while (min != max) {
mid = min + (max - min + 1) / 2;
item = &start[mid];
prel31_addr = db_expand_prel31(item->offset);
func_addr = (uint32_t)&item->offset + prel31_addr;
if (func_addr <= addr) {
min = mid;
} else {
max = mid - 1;
}
}
return &start[min];
}
/* Reads the next byte from the instruction list */
static uint8_t
db_unwind_exec_read_byte(struct unwind_state *state)
{
uint8_t insn;
/* Read the unwind instruction */
insn = (*state->insn) >> (state->byte * 8);
/* Update the location of the next instruction */
if (state->byte == 0) {
state->byte = 3;
state->insn++;
state->entries--;
} else
state->byte--;
return insn;
}
/* Executes the next instruction on the list */
static int
db_unwind_exec_insn(struct unwind_state *state)
{
unsigned int insn;
uint32_t *vsp = (uint32_t *)state->registers[SP];
int update_vsp = 0;
/* This should never happen */
if (state->entries == 0)
return 1;
/* Read the next instruction */
insn = db_unwind_exec_read_byte(state);
if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
} else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
} else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
unsigned int mask, reg;
/* Load the mask */
mask = db_unwind_exec_read_byte(state);
mask |= (insn & INSN_STD_DATA_MASK) << 8;
/* We have a refuse to unwind instruction */
if (mask == 0)
return 1;
/* Update SP */
update_vsp = 1;
/* Load the registers */
for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
if (mask & 1) {
state->registers[reg] = *vsp++;
state->update_mask |= 1 << reg;
/* If we have updated SP kep its value */
if (reg == SP)
update_vsp = 0;
}
}
} else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
((insn & INSN_STD_DATA_MASK) != 13) &&
((insn & INSN_STD_DATA_MASK) != 15)) {
/* sp = register */
state->registers[SP] =
state->registers[insn & INSN_STD_DATA_MASK];
} else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
unsigned int count, reg;
/* Read how many registers to load */
count = insn & INSN_POP_COUNT_MASK;
/* Update sp */
update_vsp = 1;
/* Pop the registers */
for (reg = 4; reg <= 4 + count; reg++) {
state->registers[reg] = *vsp++;
state->update_mask |= 1 << reg;
}
/* Check if we are in the pop r14 version */
if ((insn & INSN_POP_TYPE_MASK) != 0) {
state->registers[14] = *vsp++;
}
} else if (insn == INSN_FINISH) {
/* Stop processing */
state->entries = 0;
} else if ((insn == INSN_POP_REGS)) {
unsigned int mask, reg;
mask = db_unwind_exec_read_byte(state);
if (mask == 0 || (mask & 0xf0) != 0)
return 1;
/* Update SP */
update_vsp = 1;
/* Load the registers */
for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
if (mask & 1) {
state->registers[reg] = *vsp++;
state->update_mask |= 1 << reg;
}
}
} else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
unsigned int uleb128;
/* Read the increment value */
uleb128 = db_unwind_exec_read_byte(state);
state->registers[SP] += 0x204 + (uleb128 << 2);
} else {
/* We hit a new instruction that needs to be implemented */
db_printf("Unhandled instruction %.2x\n", insn);
return 1;
}
if (update_vsp) {
state->registers[SP] = (uint32_t)vsp;
}
#if 0
db_printf("fp = %08x, sp = %08x, lr = %08x, pc = %08x\n",
state->registers[FP], state->registers[SP], state->registers[LR],
state->registers[PC]);
#endif
return 0;
}
/* Performs the unwind of a function */
static int
db_unwind_tab(struct unwind_state *state)
{
uint32_t entry;
/* Set PC to a known value */
state->registers[PC] = 0;
/* Read the personality */
entry = *state->insn & ENTRY_MASK;
if (entry == ENTRY_ARM_SU16) {
state->byte = 2;
state->entries = 1;
} else if (entry == ENTRY_ARM_LU16) {
state->byte = 1;
state->entries = ((*state->insn >> 16) & 0xFF) + 1;
} else {
db_printf("Unknown entry: %x\n", entry);
return 1;
}
while (state->entries > 0) {
if (db_unwind_exec_insn(state) != 0)
return 1;
}
/*
* The program counter was not updated, load it from the link register.
*/
if (state->registers[PC] == 0)
state->registers[PC] = state->registers[LR];
return 0;
}
static void
db_stack_trace_cmd(struct unwind_state *state)
{
struct unwind_idx *index;
const char *name;
db_expr_t value;
db_expr_t offset;
c_db_sym_t sym;
u_int reg, i;
char *sep;
uint16_t upd_mask;
bool finished;
finished = false;
while (!finished) {
/* Reset the mask of updated registers */
state->update_mask = 0;
/* The pc value is correct and will be overwritten, save it */
state->start_pc = state->registers[PC];
/* Find the item to run */
index = db_find_index(state->start_pc);
if (index->insn != EXIDX_CANTUNWIND) {
if (index->insn & (1 << 31)) {
/* The data is within the instruction */
state->insn = &index->insn;
} else {
/* A prel31 offset to the unwind table */
state->insn = (uint32_t *)
((uintptr_t)&index->insn +
db_expand_prel31(index->insn));
}
/* Run the unwind function */
finished = db_unwind_tab(state);
}
/* Print the frame details */
sym = db_search_symbol(state->start_pc, DB_STGY_ANY, &offset);
if (sym == C_DB_SYM_NULL) {
value = 0;
name = "(null)";
} else
db_symbol_values(sym, &name, &value);
db_printf("%s() at ", name);
db_printsym(state->start_pc, DB_STGY_PROC);
db_printf("\n");
db_printf("\t pc = 0x%08x lr = 0x%08x (", state->start_pc,
state->registers[LR]);
db_printsym(state->registers[LR], DB_STGY_PROC);
db_printf(")\n");
db_printf("\t sp = 0x%08x fp = 0x%08x",
state->registers[SP], state->registers[FP]);
/* Don't print the registers we have already printed */
upd_mask = state->update_mask &
~((1 << SP) | (1 << FP) | (1 << LR) | (1 << PC));
sep = "\n\t";
for (i = 0, reg = 0; upd_mask != 0; upd_mask >>= 1, reg++) {
if ((upd_mask & 1) != 0) {
db_printf("%s%sr%d = 0x%08x", sep,
(reg < 10) ? " " : "", reg,
state->registers[reg]);
i++;
if (i == 2) {
sep = "\n\t";
i = 0;
} else
sep = " ";
}
}
db_printf("\n");
/*
* Stop if directed to do so, or if we've unwound back to the
* kernel entry point, or if the unwind function didn't change
* anything (to avoid getting stuck in this loop forever).
* If the latter happens, it's an indication that the unwind
* information is incorrect somehow for the function named in
* the last frame printed before you see the unwind failure
* message (maybe it needs a STOP_UNWINDING).
*/
if (index->insn == EXIDX_CANTUNWIND) {
db_printf("Unable to unwind further\n");
finished = true;
} else if (state->registers[PC] < VM_MIN_KERNEL_ADDRESS) {
db_printf("Unable to unwind into user mode\n");
finished = true;
} else if (state->update_mask == 0) {
db_printf("Unwind failure (no registers changed)\n");
finished = true;
}
}
}
#endif
/*
* APCS stack frames are awkward beasts, so I don't think even trying to use
* a structure to represent them is a good idea.
*
* Here's the diagram from the APCS. Increasing address is _up_ the page.
*
* save code pointer [fp] <- fp points to here
* return link value [fp, #-4]
* return sp value [fp, #-8]
* return fp value [fp, #-12]
* [saved v7 value]
* [saved v6 value]
* [saved v5 value]
* [saved v4 value]
* [saved v3 value]
* [saved v2 value]
* [saved v1 value]
* [saved a4 value]
* [saved a3 value]
* [saved a2 value]
* [saved a1 value]
*
* The save code pointer points twelve bytes beyond the start of the
* code sequence (usually a single STM) that created the stack frame.
* We have to disassemble it if we want to know which of the optional
* fields are actually present.
*/
#ifndef __ARM_EABI__ /* The frame format is differend in AAPCS */
static void
db_stack_trace_cmd(db_expr_t addr, db_expr_t count, boolean_t kernel_only)
{
u_int32_t *frame, *lastframe;
c_db_sym_t sym;
const char *name;
db_expr_t value;
db_expr_t offset;
int scp_offset;
frame = (u_int32_t *)addr;
lastframe = NULL;
scp_offset = -(get_pc_str_offset() >> 2);
while (count-- && frame != NULL && !db_pager_quit) {
db_addr_t scp;
u_int32_t savecode;
int r;
u_int32_t *rp;
const char *sep;
/*
* In theory, the SCP isn't guaranteed to be in the function
* that generated the stack frame. We hope for the best.
*/
scp = frame[FR_SCP];
sym = db_search_symbol(scp, DB_STGY_ANY, &offset);
if (sym == C_DB_SYM_NULL) {
value = 0;
name = "(null)";
} else
db_symbol_values(sym, &name, &value);
db_printf("%s() at ", name);
db_printsym(scp, DB_STGY_PROC);
db_printf("\n");
#ifdef __PROG26
db_printf("\tscp=0x%08x rlv=0x%08x (", scp, frame[FR_RLV] & R15_PC);
db_printsym(frame[FR_RLV] & R15_PC, DB_STGY_PROC);
db_printf(")\n");
#else
db_printf("\tscp=0x%08x rlv=0x%08x (", scp, frame[FR_RLV]);
db_printsym(frame[FR_RLV], DB_STGY_PROC);
db_printf(")\n");
#endif
db_printf("\trsp=0x%08x rfp=0x%08x", frame[FR_RSP], frame[FR_RFP]);
savecode = ((u_int32_t *)scp)[scp_offset];
if ((savecode & 0x0e100000) == 0x08000000) {
/* Looks like an STM */
rp = frame - 4;
sep = "\n\t";
for (r = 10; r >= 0; r--) {
if (savecode & (1 << r)) {
db_printf("%sr%d=0x%08x",
sep, r, *rp--);
sep = (frame - rp) % 4 == 2 ?
"\n\t" : " ";
}
}
}
db_printf("\n");
/*
* Switch to next frame up
*/
if (frame[FR_RFP] == 0)
break; /* Top of stack */
lastframe = frame;
frame = (u_int32_t *)(frame[FR_RFP]);
if (INKERNEL((int)frame)) {
/* staying in kernel */
if (frame <= lastframe) {
db_printf("Bad frame pointer: %p\n", frame);
break;
}
} else if (INKERNEL((int)lastframe)) {
/* switch from user to kernel */
if (kernel_only)
break; /* kernel stack only */
} else {
/* in user */
if (frame <= lastframe) {
db_printf("Bad user frame pointer: %p\n",
frame);
break;
}
}
}
}
#endif
/* XXX stubs */
void
db_md_list_watchpoints()
{
}
int
db_md_clr_watchpoint(db_expr_t addr, db_expr_t size)
{
return (0);
}
int
db_md_set_watchpoint(db_expr_t addr, db_expr_t size)
{
return (0);
}
int
db_trace_thread(struct thread *thr, int count)
{
#ifdef __ARM_EABI__
struct unwind_state state;
#endif
struct pcb *ctx;
if (thr != curthread) {
ctx = kdb_thr_ctx(thr);
#ifdef __ARM_EABI__
state.registers[FP] = ctx->un_32.pcb32_r11;
state.registers[SP] = ctx->un_32.pcb32_sp;
state.registers[LR] = ctx->un_32.pcb32_lr;
state.registers[PC] = ctx->un_32.pcb32_pc;
db_stack_trace_cmd(&state);
#else
db_stack_trace_cmd(ctx->un_32.pcb32_r11, -1, TRUE);
#endif
} else
db_trace_self();
return (0);
}
void
db_trace_self(void)
{
#ifdef __ARM_EABI__
struct unwind_state state;
uint32_t sp;
/* Read the stack pointer */
__asm __volatile("mov %0, sp" : "=&r" (sp));
state.registers[FP] = (uint32_t)__builtin_frame_address(0);
state.registers[SP] = sp;
state.registers[LR] = (uint32_t)__builtin_return_address(0);
state.registers[PC] = (uint32_t)db_trace_self;
db_stack_trace_cmd(&state);
#else
db_addr_t addr;
addr = (db_addr_t)__builtin_frame_address(0);
db_stack_trace_cmd(addr, -1, FALSE);
#endif
}