643 lines
16 KiB
C
643 lines
16 KiB
C
/* $NetBSD: db_trace.c,v 1.8 2003/01/17 22:28:48 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2000, 2001 Ben Harris
|
|
* Copyright (c) 1996 Scott K. Stevens
|
|
*
|
|
* Mach Operating System
|
|
* Copyright (c) 1991,1990 Carnegie Mellon University
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and its
|
|
* documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
|
|
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
|
|
|
|
#include <sys/proc.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/stack.h>
|
|
#include <machine/armreg.h>
|
|
#include <machine/asm.h>
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/db_machdep.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/stack.h>
|
|
#include <machine/vmparam.h>
|
|
#include <ddb/ddb.h>
|
|
#include <ddb/db_access.h>
|
|
#include <ddb/db_sym.h>
|
|
#include <ddb/db_output.h>
|
|
|
|
#ifdef __ARM_EABI__
|
|
/*
|
|
* Definitions for the instruction interpreter.
|
|
*
|
|
* The ARM EABI specifies how to perform the frame unwinding in the
|
|
* Exception Handling ABI for the ARM Architecture document. To perform
|
|
* the unwind we need to know the initial frame pointer, stack pointer,
|
|
* link register and program counter. We then find the entry within the
|
|
* index table that points to the function the program counter is within.
|
|
* This gives us either a list of three instructions to process, a 31-bit
|
|
* relative offset to a table of instructions, or a value telling us
|
|
* we can't unwind any further.
|
|
*
|
|
* When we have the instructions to process we need to decode them
|
|
* following table 4 in section 9.3. This describes a collection of bit
|
|
* patterns to encode that steps to take to update the stack pointer and
|
|
* link register to the correct values at the start of the function.
|
|
*/
|
|
|
|
/* A special case when we are unable to unwind past this function */
|
|
#define EXIDX_CANTUNWIND 1
|
|
|
|
/* The register names */
|
|
#define FP 11
|
|
#define SP 13
|
|
#define LR 14
|
|
#define PC 15
|
|
|
|
/*
|
|
* These are set in the linker script. Their addresses will be
|
|
* either the start or end of the exception table or index.
|
|
*/
|
|
extern int extab_start, extab_end, exidx_start, exidx_end;
|
|
|
|
/*
|
|
* Entry types.
|
|
* These are the only entry types that have been seen in the kernel.
|
|
*/
|
|
#define ENTRY_MASK 0xff000000
|
|
#define ENTRY_ARM_SU16 0x80000000
|
|
#define ENTRY_ARM_LU16 0x81000000
|
|
|
|
/* Instruction masks. */
|
|
#define INSN_VSP_MASK 0xc0
|
|
#define INSN_VSP_SIZE_MASK 0x3f
|
|
#define INSN_STD_MASK 0xf0
|
|
#define INSN_STD_DATA_MASK 0x0f
|
|
#define INSN_POP_TYPE_MASK 0x08
|
|
#define INSN_POP_COUNT_MASK 0x07
|
|
#define INSN_VSP_LARGE_INC_MASK 0xff
|
|
|
|
/* Instruction definitions */
|
|
#define INSN_VSP_INC 0x00
|
|
#define INSN_VSP_DEC 0x40
|
|
#define INSN_POP_MASKED 0x80
|
|
#define INSN_VSP_REG 0x90
|
|
#define INSN_POP_COUNT 0xa0
|
|
#define INSN_FINISH 0xb0
|
|
#define INSN_POP_REGS 0xb1
|
|
#define INSN_VSP_LARGE_INC 0xb2
|
|
|
|
/* An item in the exception index table */
|
|
struct unwind_idx {
|
|
uint32_t offset;
|
|
uint32_t insn;
|
|
};
|
|
|
|
/* The state of the unwind process */
|
|
struct unwind_state {
|
|
uint32_t registers[16];
|
|
uint32_t start_pc;
|
|
uint32_t *insn;
|
|
u_int entries;
|
|
u_int byte;
|
|
uint16_t update_mask;
|
|
};
|
|
|
|
/* Expand a 31-bit signed value to a 32-bit signed value */
|
|
static __inline int32_t
|
|
db_expand_prel31(uint32_t prel31)
|
|
{
|
|
|
|
return ((int32_t)(prel31 & 0x7fffffffu) << 1) / 2;
|
|
}
|
|
|
|
/*
|
|
* Perform a binary search of the index table to find the function
|
|
* with the largest address that doesn't exceed addr.
|
|
*/
|
|
static struct unwind_idx *
|
|
db_find_index(uint32_t addr)
|
|
{
|
|
unsigned int min, mid, max;
|
|
struct unwind_idx *start;
|
|
struct unwind_idx *item;
|
|
int32_t prel31_addr;
|
|
uint32_t func_addr;
|
|
|
|
start = (struct unwind_idx *)&exidx_start;
|
|
|
|
min = 0;
|
|
max = (&exidx_end - &exidx_start) / 2;
|
|
|
|
while (min != max) {
|
|
mid = min + (max - min + 1) / 2;
|
|
|
|
item = &start[mid];
|
|
|
|
prel31_addr = db_expand_prel31(item->offset);
|
|
func_addr = (uint32_t)&item->offset + prel31_addr;
|
|
|
|
if (func_addr <= addr) {
|
|
min = mid;
|
|
} else {
|
|
max = mid - 1;
|
|
}
|
|
}
|
|
|
|
return &start[min];
|
|
}
|
|
|
|
/* Reads the next byte from the instruction list */
|
|
static uint8_t
|
|
db_unwind_exec_read_byte(struct unwind_state *state)
|
|
{
|
|
uint8_t insn;
|
|
|
|
/* Read the unwind instruction */
|
|
insn = (*state->insn) >> (state->byte * 8);
|
|
|
|
/* Update the location of the next instruction */
|
|
if (state->byte == 0) {
|
|
state->byte = 3;
|
|
state->insn++;
|
|
state->entries--;
|
|
} else
|
|
state->byte--;
|
|
|
|
return insn;
|
|
}
|
|
|
|
/* Executes the next instruction on the list */
|
|
static int
|
|
db_unwind_exec_insn(struct unwind_state *state)
|
|
{
|
|
unsigned int insn;
|
|
uint32_t *vsp = (uint32_t *)state->registers[SP];
|
|
int update_vsp = 0;
|
|
|
|
/* This should never happen */
|
|
if (state->entries == 0)
|
|
return 1;
|
|
|
|
/* Read the next instruction */
|
|
insn = db_unwind_exec_read_byte(state);
|
|
|
|
if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
|
|
state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
|
|
|
|
} else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
|
|
state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
|
|
|
|
} else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
|
|
unsigned int mask, reg;
|
|
|
|
/* Load the mask */
|
|
mask = db_unwind_exec_read_byte(state);
|
|
mask |= (insn & INSN_STD_DATA_MASK) << 8;
|
|
|
|
/* We have a refuse to unwind instruction */
|
|
if (mask == 0)
|
|
return 1;
|
|
|
|
/* Update SP */
|
|
update_vsp = 1;
|
|
|
|
/* Load the registers */
|
|
for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
|
|
if (mask & 1) {
|
|
state->registers[reg] = *vsp++;
|
|
state->update_mask |= 1 << reg;
|
|
|
|
/* If we have updated SP kep its value */
|
|
if (reg == SP)
|
|
update_vsp = 0;
|
|
}
|
|
}
|
|
|
|
} else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
|
|
((insn & INSN_STD_DATA_MASK) != 13) &&
|
|
((insn & INSN_STD_DATA_MASK) != 15)) {
|
|
/* sp = register */
|
|
state->registers[SP] =
|
|
state->registers[insn & INSN_STD_DATA_MASK];
|
|
|
|
} else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
|
|
unsigned int count, reg;
|
|
|
|
/* Read how many registers to load */
|
|
count = insn & INSN_POP_COUNT_MASK;
|
|
|
|
/* Update sp */
|
|
update_vsp = 1;
|
|
|
|
/* Pop the registers */
|
|
for (reg = 4; reg <= 4 + count; reg++) {
|
|
state->registers[reg] = *vsp++;
|
|
state->update_mask |= 1 << reg;
|
|
}
|
|
|
|
/* Check if we are in the pop r14 version */
|
|
if ((insn & INSN_POP_TYPE_MASK) != 0) {
|
|
state->registers[14] = *vsp++;
|
|
}
|
|
|
|
} else if (insn == INSN_FINISH) {
|
|
/* Stop processing */
|
|
state->entries = 0;
|
|
|
|
} else if ((insn == INSN_POP_REGS)) {
|
|
unsigned int mask, reg;
|
|
|
|
mask = db_unwind_exec_read_byte(state);
|
|
if (mask == 0 || (mask & 0xf0) != 0)
|
|
return 1;
|
|
|
|
/* Update SP */
|
|
update_vsp = 1;
|
|
|
|
/* Load the registers */
|
|
for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
|
|
if (mask & 1) {
|
|
state->registers[reg] = *vsp++;
|
|
state->update_mask |= 1 << reg;
|
|
}
|
|
}
|
|
|
|
} else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
|
|
unsigned int uleb128;
|
|
|
|
/* Read the increment value */
|
|
uleb128 = db_unwind_exec_read_byte(state);
|
|
|
|
state->registers[SP] += 0x204 + (uleb128 << 2);
|
|
|
|
} else {
|
|
/* We hit a new instruction that needs to be implemented */
|
|
db_printf("Unhandled instruction %.2x\n", insn);
|
|
return 1;
|
|
}
|
|
|
|
if (update_vsp) {
|
|
state->registers[SP] = (uint32_t)vsp;
|
|
}
|
|
|
|
#if 0
|
|
db_printf("fp = %08x, sp = %08x, lr = %08x, pc = %08x\n",
|
|
state->registers[FP], state->registers[SP], state->registers[LR],
|
|
state->registers[PC]);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Performs the unwind of a function */
|
|
static int
|
|
db_unwind_tab(struct unwind_state *state)
|
|
{
|
|
uint32_t entry;
|
|
|
|
/* Set PC to a known value */
|
|
state->registers[PC] = 0;
|
|
|
|
/* Read the personality */
|
|
entry = *state->insn & ENTRY_MASK;
|
|
|
|
if (entry == ENTRY_ARM_SU16) {
|
|
state->byte = 2;
|
|
state->entries = 1;
|
|
} else if (entry == ENTRY_ARM_LU16) {
|
|
state->byte = 1;
|
|
state->entries = ((*state->insn >> 16) & 0xFF) + 1;
|
|
} else {
|
|
db_printf("Unknown entry: %x\n", entry);
|
|
return 1;
|
|
}
|
|
|
|
while (state->entries > 0) {
|
|
if (db_unwind_exec_insn(state) != 0)
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The program counter was not updated, load it from the link register.
|
|
*/
|
|
if (state->registers[PC] == 0)
|
|
state->registers[PC] = state->registers[LR];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
db_stack_trace_cmd(struct unwind_state *state)
|
|
{
|
|
struct unwind_idx *index;
|
|
const char *name;
|
|
db_expr_t value;
|
|
db_expr_t offset;
|
|
c_db_sym_t sym;
|
|
u_int reg, i;
|
|
char *sep;
|
|
uint16_t upd_mask;
|
|
bool finished;
|
|
|
|
finished = false;
|
|
while (!finished) {
|
|
/* Reset the mask of updated registers */
|
|
state->update_mask = 0;
|
|
|
|
/* The pc value is correct and will be overwritten, save it */
|
|
state->start_pc = state->registers[PC];
|
|
|
|
/* Find the item to run */
|
|
index = db_find_index(state->start_pc);
|
|
|
|
if (index->insn != EXIDX_CANTUNWIND) {
|
|
if (index->insn & (1 << 31)) {
|
|
/* The data is within the instruction */
|
|
state->insn = &index->insn;
|
|
} else {
|
|
/* A prel31 offset to the unwind table */
|
|
state->insn = (uint32_t *)
|
|
((uintptr_t)&index->insn +
|
|
db_expand_prel31(index->insn));
|
|
}
|
|
/* Run the unwind function */
|
|
finished = db_unwind_tab(state);
|
|
}
|
|
|
|
/* Print the frame details */
|
|
sym = db_search_symbol(state->start_pc, DB_STGY_ANY, &offset);
|
|
if (sym == C_DB_SYM_NULL) {
|
|
value = 0;
|
|
name = "(null)";
|
|
} else
|
|
db_symbol_values(sym, &name, &value);
|
|
db_printf("%s() at ", name);
|
|
db_printsym(state->start_pc, DB_STGY_PROC);
|
|
db_printf("\n");
|
|
db_printf("\t pc = 0x%08x lr = 0x%08x (", state->start_pc,
|
|
state->registers[LR]);
|
|
db_printsym(state->registers[LR], DB_STGY_PROC);
|
|
db_printf(")\n");
|
|
db_printf("\t sp = 0x%08x fp = 0x%08x",
|
|
state->registers[SP], state->registers[FP]);
|
|
|
|
/* Don't print the registers we have already printed */
|
|
upd_mask = state->update_mask &
|
|
~((1 << SP) | (1 << FP) | (1 << LR) | (1 << PC));
|
|
sep = "\n\t";
|
|
for (i = 0, reg = 0; upd_mask != 0; upd_mask >>= 1, reg++) {
|
|
if ((upd_mask & 1) != 0) {
|
|
db_printf("%s%sr%d = 0x%08x", sep,
|
|
(reg < 10) ? " " : "", reg,
|
|
state->registers[reg]);
|
|
i++;
|
|
if (i == 2) {
|
|
sep = "\n\t";
|
|
i = 0;
|
|
} else
|
|
sep = " ";
|
|
|
|
}
|
|
}
|
|
db_printf("\n");
|
|
|
|
/*
|
|
* Stop if directed to do so, or if we've unwound back to the
|
|
* kernel entry point, or if the unwind function didn't change
|
|
* anything (to avoid getting stuck in this loop forever).
|
|
* If the latter happens, it's an indication that the unwind
|
|
* information is incorrect somehow for the function named in
|
|
* the last frame printed before you see the unwind failure
|
|
* message (maybe it needs a STOP_UNWINDING).
|
|
*/
|
|
if (index->insn == EXIDX_CANTUNWIND) {
|
|
db_printf("Unable to unwind further\n");
|
|
finished = true;
|
|
} else if (state->registers[PC] < VM_MIN_KERNEL_ADDRESS) {
|
|
db_printf("Unable to unwind into user mode\n");
|
|
finished = true;
|
|
} else if (state->update_mask == 0) {
|
|
db_printf("Unwind failure (no registers changed)\n");
|
|
finished = true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* APCS stack frames are awkward beasts, so I don't think even trying to use
|
|
* a structure to represent them is a good idea.
|
|
*
|
|
* Here's the diagram from the APCS. Increasing address is _up_ the page.
|
|
*
|
|
* save code pointer [fp] <- fp points to here
|
|
* return link value [fp, #-4]
|
|
* return sp value [fp, #-8]
|
|
* return fp value [fp, #-12]
|
|
* [saved v7 value]
|
|
* [saved v6 value]
|
|
* [saved v5 value]
|
|
* [saved v4 value]
|
|
* [saved v3 value]
|
|
* [saved v2 value]
|
|
* [saved v1 value]
|
|
* [saved a4 value]
|
|
* [saved a3 value]
|
|
* [saved a2 value]
|
|
* [saved a1 value]
|
|
*
|
|
* The save code pointer points twelve bytes beyond the start of the
|
|
* code sequence (usually a single STM) that created the stack frame.
|
|
* We have to disassemble it if we want to know which of the optional
|
|
* fields are actually present.
|
|
*/
|
|
|
|
#ifndef __ARM_EABI__ /* The frame format is differend in AAPCS */
|
|
static void
|
|
db_stack_trace_cmd(db_expr_t addr, db_expr_t count, boolean_t kernel_only)
|
|
{
|
|
u_int32_t *frame, *lastframe;
|
|
c_db_sym_t sym;
|
|
const char *name;
|
|
db_expr_t value;
|
|
db_expr_t offset;
|
|
int scp_offset;
|
|
|
|
frame = (u_int32_t *)addr;
|
|
lastframe = NULL;
|
|
scp_offset = -(get_pc_str_offset() >> 2);
|
|
|
|
while (count-- && frame != NULL && !db_pager_quit) {
|
|
db_addr_t scp;
|
|
u_int32_t savecode;
|
|
int r;
|
|
u_int32_t *rp;
|
|
const char *sep;
|
|
|
|
/*
|
|
* In theory, the SCP isn't guaranteed to be in the function
|
|
* that generated the stack frame. We hope for the best.
|
|
*/
|
|
scp = frame[FR_SCP];
|
|
|
|
sym = db_search_symbol(scp, DB_STGY_ANY, &offset);
|
|
if (sym == C_DB_SYM_NULL) {
|
|
value = 0;
|
|
name = "(null)";
|
|
} else
|
|
db_symbol_values(sym, &name, &value);
|
|
db_printf("%s() at ", name);
|
|
db_printsym(scp, DB_STGY_PROC);
|
|
db_printf("\n");
|
|
#ifdef __PROG26
|
|
db_printf("\tscp=0x%08x rlv=0x%08x (", scp, frame[FR_RLV] & R15_PC);
|
|
db_printsym(frame[FR_RLV] & R15_PC, DB_STGY_PROC);
|
|
db_printf(")\n");
|
|
#else
|
|
db_printf("\tscp=0x%08x rlv=0x%08x (", scp, frame[FR_RLV]);
|
|
db_printsym(frame[FR_RLV], DB_STGY_PROC);
|
|
db_printf(")\n");
|
|
#endif
|
|
db_printf("\trsp=0x%08x rfp=0x%08x", frame[FR_RSP], frame[FR_RFP]);
|
|
|
|
savecode = ((u_int32_t *)scp)[scp_offset];
|
|
if ((savecode & 0x0e100000) == 0x08000000) {
|
|
/* Looks like an STM */
|
|
rp = frame - 4;
|
|
sep = "\n\t";
|
|
for (r = 10; r >= 0; r--) {
|
|
if (savecode & (1 << r)) {
|
|
db_printf("%sr%d=0x%08x",
|
|
sep, r, *rp--);
|
|
sep = (frame - rp) % 4 == 2 ?
|
|
"\n\t" : " ";
|
|
}
|
|
}
|
|
}
|
|
|
|
db_printf("\n");
|
|
|
|
/*
|
|
* Switch to next frame up
|
|
*/
|
|
if (frame[FR_RFP] == 0)
|
|
break; /* Top of stack */
|
|
|
|
lastframe = frame;
|
|
frame = (u_int32_t *)(frame[FR_RFP]);
|
|
|
|
if (INKERNEL((int)frame)) {
|
|
/* staying in kernel */
|
|
if (frame <= lastframe) {
|
|
db_printf("Bad frame pointer: %p\n", frame);
|
|
break;
|
|
}
|
|
} else if (INKERNEL((int)lastframe)) {
|
|
/* switch from user to kernel */
|
|
if (kernel_only)
|
|
break; /* kernel stack only */
|
|
} else {
|
|
/* in user */
|
|
if (frame <= lastframe) {
|
|
db_printf("Bad user frame pointer: %p\n",
|
|
frame);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* XXX stubs */
|
|
void
|
|
db_md_list_watchpoints()
|
|
{
|
|
}
|
|
|
|
int
|
|
db_md_clr_watchpoint(db_expr_t addr, db_expr_t size)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
db_md_set_watchpoint(db_expr_t addr, db_expr_t size)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
db_trace_thread(struct thread *thr, int count)
|
|
{
|
|
#ifdef __ARM_EABI__
|
|
struct unwind_state state;
|
|
#endif
|
|
struct pcb *ctx;
|
|
|
|
if (thr != curthread) {
|
|
ctx = kdb_thr_ctx(thr);
|
|
|
|
#ifdef __ARM_EABI__
|
|
state.registers[FP] = ctx->un_32.pcb32_r11;
|
|
state.registers[SP] = ctx->un_32.pcb32_sp;
|
|
state.registers[LR] = ctx->un_32.pcb32_lr;
|
|
state.registers[PC] = ctx->un_32.pcb32_pc;
|
|
|
|
db_stack_trace_cmd(&state);
|
|
#else
|
|
db_stack_trace_cmd(ctx->un_32.pcb32_r11, -1, TRUE);
|
|
#endif
|
|
} else
|
|
db_trace_self();
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
db_trace_self(void)
|
|
{
|
|
#ifdef __ARM_EABI__
|
|
struct unwind_state state;
|
|
uint32_t sp;
|
|
|
|
/* Read the stack pointer */
|
|
__asm __volatile("mov %0, sp" : "=&r" (sp));
|
|
|
|
state.registers[FP] = (uint32_t)__builtin_frame_address(0);
|
|
state.registers[SP] = sp;
|
|
state.registers[LR] = (uint32_t)__builtin_return_address(0);
|
|
state.registers[PC] = (uint32_t)db_trace_self;
|
|
|
|
db_stack_trace_cmd(&state);
|
|
#else
|
|
db_addr_t addr;
|
|
|
|
addr = (db_addr_t)__builtin_frame_address(0);
|
|
db_stack_trace_cmd(addr, -1, FALSE);
|
|
#endif
|
|
}
|