freebsd-nq/contrib/ntp/ntpd/ntp_io.c
2017-03-23 22:06:06 +00:00

4801 lines
110 KiB
C

/*
* ntp_io.c - input/output routines for ntpd. The socket-opening code
* was shamelessly stolen from ntpd.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdio.h>
#include <signal.h>
#ifdef HAVE_FNMATCH_H
# include <fnmatch.h>
# if !defined(FNM_CASEFOLD) && defined(FNM_IGNORECASE)
# define FNM_CASEFOLD FNM_IGNORECASE
# endif
#endif
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif
#ifdef HAVE_SYS_SOCKIO_H /* UXPV: SIOC* #defines (Frank Vance <fvance@waii.com>) */
# include <sys/sockio.h>
#endif
#ifdef HAVE_SYS_UIO_H
# include <sys/uio.h>
#endif
#include "ntp_machine.h"
#include "ntpd.h"
#include "ntp_io.h"
#include "iosignal.h"
#include "ntp_lists.h"
#include "ntp_refclock.h"
#include "ntp_stdlib.h"
#include "ntp_worker.h"
#include "ntp_request.h"
#include "ntp_assert.h"
#include "timevalops.h"
#include "timespecops.h"
#include "ntpd-opts.h"
#include "safecast.h"
/* Don't include ISC's version of IPv6 variables and structures */
#define ISC_IPV6_H 1
#include <isc/mem.h>
#include <isc/interfaceiter.h>
#include <isc/netaddr.h>
#include <isc/result.h>
#include <isc/sockaddr.h>
#ifdef SIM
#include "ntpsim.h"
#endif
#ifdef HAS_ROUTING_SOCKET
# include <net/route.h>
# ifdef HAVE_RTNETLINK
# include <linux/rtnetlink.h>
# endif
#endif
/*
* setsockopt does not always have the same arg declaration
* across all platforms. If it's not defined we make it empty
*/
#ifndef SETSOCKOPT_ARG_CAST
#define SETSOCKOPT_ARG_CAST
#endif
extern int listen_to_virtual_ips;
#ifndef IPTOS_DSCP_EF
#define IPTOS_DSCP_EF 0xb8
#endif
int qos = IPTOS_DSCP_EF; /* QoS RFC3246 */
#ifdef LEAP_SMEAR
/* TODO burnicki: This should be moved to ntp_timer.c, but if we do so
* we get a linker error. Since we're running out of time before the leap
* second occurs, we let it here where it just works.
*/
int leap_smear_intv;
#endif
/*
* NIC rule entry
*/
typedef struct nic_rule_tag nic_rule;
struct nic_rule_tag {
nic_rule * next;
nic_rule_action action;
nic_rule_match match_type;
char * if_name;
sockaddr_u addr;
int prefixlen;
};
/*
* NIC rule listhead. Entries are added at the head so that the first
* match in the list is the last matching rule specified.
*/
nic_rule *nic_rule_list;
#if defined(SO_BINTIME) && defined(SCM_BINTIME) && defined(CMSG_FIRSTHDR)
# define HAVE_PACKET_TIMESTAMP
# define HAVE_BINTIME
# ifdef BINTIME_CTLMSGBUF_SIZE
# define CMSG_BUFSIZE BINTIME_CTLMSGBUF_SIZE
# else
# define CMSG_BUFSIZE 1536 /* moderate default */
# endif
#elif defined(SO_TIMESTAMPNS) && defined(SCM_TIMESTAMPNS) && defined(CMSG_FIRSTHDR)
# define HAVE_PACKET_TIMESTAMP
# define HAVE_TIMESTAMPNS
# ifdef TIMESTAMPNS_CTLMSGBUF_SIZE
# define CMSG_BUFSIZE TIMESTAMPNS_CTLMSGBUF_SIZE
# else
# define CMSG_BUFSIZE 1536 /* moderate default */
# endif
#elif defined(SO_TIMESTAMP) && defined(SCM_TIMESTAMP) && defined(CMSG_FIRSTHDR)
# define HAVE_PACKET_TIMESTAMP
# define HAVE_TIMESTAMP
# ifdef TIMESTAMP_CTLMSGBUF_SIZE
# define CMSG_BUFSIZE TIMESTAMP_CTLMSGBUF_SIZE
# else
# define CMSG_BUFSIZE 1536 /* moderate default */
# endif
#else
/* fill in for old/other timestamp interfaces */
#endif
#if defined(SYS_WINNT)
#include "win32_io.h"
#include <isc/win32os.h>
#endif
/*
* We do asynchronous input using the SIGIO facility. A number of
* recvbuf buffers are preallocated for input. In the signal
* handler we poll to see which sockets are ready and read the
* packets from them into the recvbuf's along with a time stamp and
* an indication of the source host and the interface it was received
* through. This allows us to get as accurate receive time stamps
* as possible independent of other processing going on.
*
* We watch the number of recvbufs available to the signal handler
* and allocate more when this number drops below the low water
* mark. If the signal handler should run out of buffers in the
* interim it will drop incoming frames, the idea being that it is
* better to drop a packet than to be inaccurate.
*/
/*
* Other statistics of possible interest
*/
volatile u_long packets_dropped; /* total number of packets dropped on reception */
volatile u_long packets_ignored; /* packets received on wild card interface */
volatile u_long packets_received; /* total number of packets received */
u_long packets_sent; /* total number of packets sent */
u_long packets_notsent; /* total number of packets which couldn't be sent */
volatile u_long handler_calls; /* number of calls to interrupt handler */
volatile u_long handler_pkts; /* number of pkts received by handler */
u_long io_timereset; /* time counters were reset */
/*
* Interface stuff
*/
endpt * any_interface; /* wildcard ipv4 interface */
endpt * any6_interface; /* wildcard ipv6 interface */
endpt * loopback_interface; /* loopback ipv4 interface */
isc_boolean_t broadcast_client_enabled; /* is broadcast client enabled */
u_int sys_ifnum; /* next .ifnum to assign */
int ninterfaces; /* Total number of interfaces */
int disable_dynamic_updates; /* scan interfaces once only */
#ifdef REFCLOCK
/*
* Refclock stuff. We keep a chain of structures with data concerning
* the guys we are doing I/O for.
*/
static struct refclockio *refio;
#endif /* REFCLOCK */
/*
* File descriptor masks etc. for call to select
* Not needed for I/O Completion Ports or anything outside this file
*/
static fd_set activefds;
static int maxactivefd;
/*
* bit alternating value to detect verified interfaces during an update cycle
*/
static u_short sys_interphase = 0;
static endpt * new_interface(endpt *);
static void add_interface(endpt *);
static int update_interfaces(u_short, interface_receiver_t,
void *);
static void remove_interface(endpt *);
static endpt * create_interface(u_short, endpt *);
static int is_wildcard_addr (const sockaddr_u *);
/*
* Multicast functions
*/
static isc_boolean_t addr_ismulticast (sockaddr_u *);
static isc_boolean_t is_anycast (sockaddr_u *,
const char *);
/*
* Not all platforms support multicast
*/
#ifdef MCAST
static isc_boolean_t socket_multicast_enable (endpt *, sockaddr_u *);
static isc_boolean_t socket_multicast_disable(endpt *, sockaddr_u *);
#endif
#ifdef DEBUG
static void interface_dump (const endpt *);
static void sockaddr_dump (const sockaddr_u *);
static void print_interface (const endpt *, const char *, const char *);
#define DPRINT_INTERFACE(level, args) do { if (debug >= (level)) { print_interface args; } } while (0)
#else
#define DPRINT_INTERFACE(level, args) do {} while (0)
#endif
typedef struct vsock vsock_t;
enum desc_type { FD_TYPE_SOCKET, FD_TYPE_FILE };
struct vsock {
vsock_t * link;
SOCKET fd;
enum desc_type type;
};
vsock_t *fd_list;
#if !defined(HAVE_IO_COMPLETION_PORT) && defined(HAS_ROUTING_SOCKET)
/*
* async notification processing (e. g. routing sockets)
*/
/*
* support for receiving data on fd that is not a refclock or a socket
* like e. g. routing sockets
*/
struct asyncio_reader {
struct asyncio_reader *link; /* the list this is being kept in */
SOCKET fd; /* fd to be read */
void *data; /* possibly local data */
void (*receiver)(struct asyncio_reader *); /* input handler */
};
struct asyncio_reader *asyncio_reader_list;
static void delete_asyncio_reader (struct asyncio_reader *);
static struct asyncio_reader *new_asyncio_reader (void);
static void add_asyncio_reader (struct asyncio_reader *, enum desc_type);
static void remove_asyncio_reader (struct asyncio_reader *);
#endif /* !defined(HAVE_IO_COMPLETION_PORT) && defined(HAS_ROUTING_SOCKET) */
static void init_async_notifications (void);
static int addr_eqprefix (const sockaddr_u *, const sockaddr_u *,
int);
static int addr_samesubnet (const sockaddr_u *, const sockaddr_u *,
const sockaddr_u *, const sockaddr_u *);
static int create_sockets (u_short);
static SOCKET open_socket (sockaddr_u *, int, int, endpt *);
static void set_reuseaddr (int);
static isc_boolean_t socket_broadcast_enable (struct interface *, SOCKET, sockaddr_u *);
#if !defined(HAVE_IO_COMPLETION_PORT) && !defined(HAVE_SIGNALED_IO)
static char * fdbits (int, const fd_set *);
#endif
#ifdef OS_MISSES_SPECIFIC_ROUTE_UPDATES
static isc_boolean_t socket_broadcast_disable (struct interface *, sockaddr_u *);
#endif
typedef struct remaddr remaddr_t;
struct remaddr {
remaddr_t * link;
sockaddr_u addr;
endpt * ep;
};
remaddr_t * remoteaddr_list;
endpt * ep_list; /* complete endpt list */
endpt * mc4_list; /* IPv4 mcast-capable unicast endpts */
endpt * mc6_list; /* IPv6 mcast-capable unicast endpts */
static endpt * wildipv4;
static endpt * wildipv6;
#ifdef SYS_WINNT
int accept_wildcard_if_for_winnt;
#else
const int accept_wildcard_if_for_winnt = FALSE;
#endif
static void add_fd_to_list (SOCKET, enum desc_type);
static endpt * find_addr_in_list (sockaddr_u *);
static endpt * find_flagged_addr_in_list(sockaddr_u *, u_int32);
static void delete_addr_from_list (sockaddr_u *);
static void delete_interface_from_list(endpt *);
static void close_and_delete_fd_from_list(SOCKET);
static void add_addr_to_list (sockaddr_u *, endpt *);
static void create_wildcards (u_short);
static endpt * findlocalinterface (sockaddr_u *, int, int);
static endpt * findclosestinterface (sockaddr_u *, int);
#ifdef DEBUG
static const char * action_text (nic_rule_action);
#endif
static nic_rule_action interface_action(char *, sockaddr_u *, u_int32);
static void convert_isc_if (isc_interface_t *,
endpt *, u_short);
static void calc_addr_distance(sockaddr_u *,
const sockaddr_u *,
const sockaddr_u *);
static int cmp_addr_distance(const sockaddr_u *,
const sockaddr_u *);
/*
* Routines to read the ntp packets
*/
#if !defined(HAVE_IO_COMPLETION_PORT)
static inline int read_network_packet (SOCKET, struct interface *, l_fp);
static void ntpd_addremove_io_fd (int, int, int);
static void input_handler_scan (const l_fp*, const fd_set*);
static int/*BOOL*/ sanitize_fdset (int errc);
#ifdef REFCLOCK
static inline int read_refclock_packet (SOCKET, struct refclockio *, l_fp);
#endif
#ifdef HAVE_SIGNALED_IO
static void input_handler (l_fp*);
#endif
#endif
#ifndef HAVE_IO_COMPLETION_PORT
void
maintain_activefds(
int fd,
int closing
)
{
int i;
if (fd < 0 || fd >= FD_SETSIZE) {
msyslog(LOG_ERR,
"Too many sockets in use, FD_SETSIZE %d exceeded by fd %d",
FD_SETSIZE, fd);
exit(1);
}
if (!closing) {
FD_SET(fd, &activefds);
maxactivefd = max(fd, maxactivefd);
} else {
FD_CLR(fd, &activefds);
if (maxactivefd && fd == maxactivefd) {
for (i = maxactivefd - 1; i >= 0; i--)
if (FD_ISSET(i, &activefds)) {
maxactivefd = i;
break;
}
INSIST(fd != maxactivefd);
}
}
}
#endif /* !HAVE_IO_COMPLETION_PORT */
#ifdef DEBUG_TIMING
/*
* collect timing information for various processing
* paths. currently we only pass them on to the file
* for later processing. this could also do histogram
* based analysis in other to reduce the load (and skew)
* dur to the file output
*/
void
collect_timing(struct recvbuf *rb, const char *tag, int count, l_fp *dts)
{
char buf[256];
snprintf(buf, sizeof(buf), "%s %d %s %s",
(rb != NULL)
? ((rb->dstadr != NULL)
? stoa(&rb->recv_srcadr)
: "-REFCLOCK-")
: "-",
count, lfptoa(dts, 9), tag);
record_timing_stats(buf);
}
#endif
/*
* About dynamic interfaces, sockets, reception and more...
*
* the code solves following tasks:
*
* - keep a current list of active interfaces in order
* to bind to to the interface address on NTP_PORT so that
* all wild and specific bindings for NTP_PORT are taken by ntpd
* to avoid other daemons messing with the time or sockets.
* - all interfaces keep a list of peers that are referencing
* the interface in order to quickly re-assign the peers to
* new interface in case an interface is deleted (=> gone from system or
* down)
* - have a preconfigured socket ready with the right local address
* for transmission and reception
* - have an address list for all destination addresses used within ntpd
* to find the "right" preconfigured socket.
* - facilitate updating the internal interface list with respect to
* the current kernel state
*
* special issues:
*
* - mapping of multicast addresses to the interface affected is not always
* one to one - especially on hosts with multiple interfaces
* the code here currently allocates a separate interface entry for those
* multicast addresses
* iff it is able to bind to a *new* socket with the multicast address (flags |= MCASTIF)
* in case of failure the multicast address is bound to an existing interface.
* - on some systems it is perfectly legal to assign the same address to
* multiple interfaces. Therefore this code does not keep a list of interfaces
* but a list of interfaces that represent a unique address as determined by the kernel
* by the procedure in findlocalinterface. Thus it is perfectly legal to see only
* one representative of a group of real interfaces if they share the same address.
*
* Frank Kardel 20050910
*/
/*
* init_io - initialize I/O module.
*/
void
init_io(void)
{
/* Init buffer free list and stat counters */
init_recvbuff(RECV_INIT);
/* update interface every 5 minutes as default */
interface_interval = 300;
#ifdef WORK_PIPE
addremove_io_fd = &ntpd_addremove_io_fd;
#endif
#if defined(SYS_WINNT)
init_io_completion_port();
#elif defined(HAVE_SIGNALED_IO)
(void) set_signal(input_handler);
#endif
}
static void
ntpd_addremove_io_fd(
int fd,
int is_pipe,
int remove_it
)
{
UNUSED_ARG(is_pipe);
#ifdef HAVE_SIGNALED_IO
if (!remove_it)
init_socket_sig(fd);
#endif /* not HAVE_SIGNALED_IO */
maintain_activefds(fd, remove_it);
}
/*
* io_open_sockets - call socket creation routine
*/
void
io_open_sockets(void)
{
static int already_opened;
if (already_opened || HAVE_OPT( SAVECONFIGQUIT ))
return;
already_opened = 1;
/*
* Create the sockets
*/
BLOCKIO();
create_sockets(NTP_PORT);
UNBLOCKIO();
init_async_notifications();
DPRINTF(3, ("io_open_sockets: maxactivefd %d\n", maxactivefd));
}
#ifdef DEBUG
/*
* function to dump the contents of the interface structure
* for debugging use only.
* We face a dilemma here -- sockets are FDs under POSIX and
* actually HANDLES under Windows. So we use '%lld' as format
* and cast the value to 'long long'; this should not hurt
* with UNIX-like systems and does not truncate values on Win64.
*/
void
interface_dump(const endpt *itf)
{
printf("Dumping interface: %p\n", itf);
printf("fd = %lld\n", (long long)itf->fd);
printf("bfd = %lld\n", (long long)itf->bfd);
printf("sin = %s,\n", stoa(&itf->sin));
sockaddr_dump(&itf->sin);
printf("bcast = %s,\n", stoa(&itf->bcast));
sockaddr_dump(&itf->bcast);
printf("mask = %s,\n", stoa(&itf->mask));
sockaddr_dump(&itf->mask);
printf("name = %s\n", itf->name);
printf("flags = 0x%08x\n", itf->flags);
printf("last_ttl = %d\n", itf->last_ttl);
printf("addr_refid = %08x\n", itf->addr_refid);
printf("num_mcast = %d\n", itf->num_mcast);
printf("received = %ld\n", itf->received);
printf("sent = %ld\n", itf->sent);
printf("notsent = %ld\n", itf->notsent);
printf("ifindex = %u\n", itf->ifindex);
printf("peercnt = %u\n", itf->peercnt);
printf("phase = %u\n", itf->phase);
}
/*
* sockaddr_dump - hex dump the start of a sockaddr_u
*/
static void
sockaddr_dump(const sockaddr_u *psau)
{
/* Limit the size of the sockaddr_in6 hex dump */
const int maxsize = min(32, sizeof(psau->sa6));
const u_char * cp;
int i;
/* XXX: Should we limit maxsize based on psau->saX.sin_family? */
cp = (const void *)&psau->sa6;
for(i = 0; i < maxsize; i++) {
printf("%02x", *cp++);
if (!((i + 1) % 4))
printf(" ");
}
printf("\n");
}
/*
* print_interface - helper to output debug information
*/
static void
print_interface(const endpt *iface, const char *pfx, const char *sfx)
{
printf("%sinterface #%d: fd=%lld, bfd=%lld, name=%s, flags=0x%x, ifindex=%u, sin=%s",
pfx,
iface->ifnum,
(long long)iface->fd,
(long long)iface->bfd,
iface->name,
iface->flags,
iface->ifindex,
stoa(&iface->sin));
if (AF_INET == iface->family) {
if (iface->flags & INT_BROADCAST)
printf(", bcast=%s", stoa(&iface->bcast));
printf(", mask=%s", stoa(&iface->mask));
}
printf(", %s:%s",
(iface->ignore_packets)
? "Disabled"
: "Enabled",
sfx);
if (debug > 4) /* in-depth debugging only */
interface_dump(iface);
}
#endif
#if !defined(HAVE_IO_COMPLETION_PORT) && defined(HAS_ROUTING_SOCKET)
/*
* create an asyncio_reader structure
*/
static struct asyncio_reader *
new_asyncio_reader(void)
{
struct asyncio_reader *reader;
reader = emalloc_zero(sizeof(*reader));
reader->fd = INVALID_SOCKET;
return reader;
}
/*
* delete a reader
*/
static void
delete_asyncio_reader(
struct asyncio_reader *reader
)
{
free(reader);
}
/*
* add asynchio_reader
*/
static void
add_asyncio_reader(
struct asyncio_reader * reader,
enum desc_type type)
{
LINK_SLIST(asyncio_reader_list, reader, link);
add_fd_to_list(reader->fd, type);
}
/*
* remove asynchio_reader
*/
static void
remove_asyncio_reader(
struct asyncio_reader *reader
)
{
struct asyncio_reader *unlinked;
UNLINK_SLIST(unlinked, asyncio_reader_list, reader, link,
struct asyncio_reader);
if (reader->fd != INVALID_SOCKET)
close_and_delete_fd_from_list(reader->fd);
reader->fd = INVALID_SOCKET;
}
#endif /* !defined(HAVE_IO_COMPLETION_PORT) && defined(HAS_ROUTING_SOCKET) */
/* compare two sockaddr prefixes */
static int
addr_eqprefix(
const sockaddr_u * a,
const sockaddr_u * b,
int prefixlen
)
{
isc_netaddr_t isc_a;
isc_netaddr_t isc_b;
isc_sockaddr_t isc_sa;
ZERO(isc_sa);
memcpy(&isc_sa.type, a, min(sizeof(isc_sa.type), sizeof(*a)));
isc_netaddr_fromsockaddr(&isc_a, &isc_sa);
ZERO(isc_sa);
memcpy(&isc_sa.type, b, min(sizeof(isc_sa.type), sizeof(*b)));
isc_netaddr_fromsockaddr(&isc_b, &isc_sa);
return (int)isc_netaddr_eqprefix(&isc_a, &isc_b,
(u_int)prefixlen);
}
static int
addr_samesubnet(
const sockaddr_u * a,
const sockaddr_u * a_mask,
const sockaddr_u * b,
const sockaddr_u * b_mask
)
{
const u_int32 * pa;
const u_int32 * pa_limit;
const u_int32 * pb;
const u_int32 * pm;
size_t loops;
REQUIRE(AF(a) == AF(a_mask));
REQUIRE(AF(b) == AF(b_mask));
/*
* With address and mask families verified to match, comparing
* the masks also validates the address's families match.
*/
if (!SOCK_EQ(a_mask, b_mask))
return FALSE;
if (IS_IPV6(a)) {
loops = sizeof(NSRCADR6(a)) / sizeof(*pa);
pa = (const void *)&NSRCADR6(a);
pb = (const void *)&NSRCADR6(b);
pm = (const void *)&NSRCADR6(a_mask);
} else {
loops = sizeof(NSRCADR(a)) / sizeof(*pa);
pa = (const void *)&NSRCADR(a);
pb = (const void *)&NSRCADR(b);
pm = (const void *)&NSRCADR(a_mask);
}
for (pa_limit = pa + loops; pa < pa_limit; pa++, pb++, pm++)
if ((*pa & *pm) != (*pb & *pm))
return FALSE;
return TRUE;
}
/*
* interface list enumerator - visitor pattern
*/
void
interface_enumerate(
interface_receiver_t receiver,
void * data
)
{
interface_info_t ifi;
ifi.action = IFS_EXISTS;
for (ifi.ep = ep_list; ifi.ep != NULL; ifi.ep = ifi.ep->elink)
(*receiver)(data, &ifi);
}
/*
* do standard initialization of interface structure
*/
static void
init_interface(
endpt *ep
)
{
ZERO(*ep);
ep->fd = INVALID_SOCKET;
ep->bfd = INVALID_SOCKET;
ep->phase = sys_interphase;
}
/*
* create new interface structure initialize from
* template structure or via standard initialization
* function
*/
static struct interface *
new_interface(
struct interface *interface
)
{
struct interface * iface;
iface = emalloc(sizeof(*iface));
if (NULL == interface)
init_interface(iface);
else /* use the template */
memcpy(iface, interface, sizeof(*iface));
/* count every new instance of an interface in the system */
iface->ifnum = sys_ifnum++;
iface->starttime = current_time;
# ifdef HAVE_IO_COMPLETION_PORT
if (!io_completion_port_add_interface(iface)) {
msyslog(LOG_EMERG, "cannot register interface with IO engine -- will exit now");
exit(1);
}
# endif
return iface;
}
/*
* return interface storage into free memory pool
*/
static void
delete_interface(
endpt *ep
)
{
# ifdef HAVE_IO_COMPLETION_PORT
io_completion_port_remove_interface(ep);
# endif
free(ep);
}
/*
* link interface into list of known interfaces
*/
static void
add_interface(
endpt * ep
)
{
endpt ** pmclisthead;
endpt * scan;
endpt * scan_next;
endpt * unlinked;
sockaddr_u * addr;
int ep_local;
int scan_local;
int same_subnet;
int ep_univ_iid; /* iface ID from MAC address */
int scan_univ_iid; /* see RFC 4291 */
int ep_privacy; /* random local iface ID */
int scan_privacy; /* see RFC 4941 */
int rc;
/* Calculate the refid */
ep->addr_refid = addr2refid(&ep->sin);
/* link at tail so ntpdc -c ifstats index increases each row */
LINK_TAIL_SLIST(ep_list, ep, elink, endpt);
ninterfaces++;
#ifdef MCAST
/* the rest is for enabled multicast-capable addresses only */
if (ep->ignore_packets || !(INT_MULTICAST & ep->flags) ||
INT_LOOPBACK & ep->flags)
return;
# ifndef INCLUDE_IPV6_MULTICAST_SUPPORT
if (AF_INET6 == ep->family)
return;
# endif
pmclisthead = (AF_INET == ep->family)
? &mc4_list
: &mc6_list;
if (AF_INET6 == ep->family) {
ep_local =
IN6_IS_ADDR_LINKLOCAL(PSOCK_ADDR6(&ep->sin)) ||
IN6_IS_ADDR_SITELOCAL(PSOCK_ADDR6(&ep->sin));
ep_univ_iid = IS_IID_UNIV(&ep->sin);
ep_privacy = !!(INT_PRIVACY & ep->flags);
} else {
ep_local = FALSE;
ep_univ_iid = FALSE;
ep_privacy = FALSE;
}
DPRINTF(4, ("add_interface mcast-capable %s%s%s%s\n",
stoa(&ep->sin),
(ep_local) ? " link/scope-local" : "",
(ep_univ_iid) ? " univ-IID" : "",
(ep_privacy) ? " privacy" : ""));
/*
* If we have multiple local addresses on the same network
* interface, and some are link- or site-local, do not multicast
* out from the link-/site-local addresses by default, to avoid
* duplicate manycastclient associations between v6 peers using
* link-local and global addresses. link-local can still be
* chosen using "nic ignore myv6globalprefix::/64".
* Similarly, if we have multiple global addresses from the same
* prefix on the same network interface, multicast from one,
* preferring EUI-64, then static, then least RFC 4941 privacy
* addresses.
*/
for (scan = *pmclisthead; scan != NULL; scan = scan_next) {
scan_next = scan->mclink;
if (ep->family != scan->family)
continue;
if (strcmp(ep->name, scan->name))
continue;
same_subnet = addr_samesubnet(&ep->sin, &ep->mask,
&scan->sin, &scan->mask);
if (AF_INET6 == ep->family) {
addr = &scan->sin;
scan_local =
IN6_IS_ADDR_LINKLOCAL(PSOCK_ADDR6(addr)) ||
IN6_IS_ADDR_SITELOCAL(PSOCK_ADDR6(addr));
scan_univ_iid = IS_IID_UNIV(addr);
scan_privacy = !!(INT_PRIVACY & scan->flags);
} else {
scan_local = FALSE;
scan_univ_iid = FALSE;
scan_privacy = FALSE;
}
DPRINTF(4, ("add_interface mcast-capable scan %s%s%s%s\n",
stoa(&scan->sin),
(scan_local) ? " link/scope-local" : "",
(scan_univ_iid) ? " univ-IID" : "",
(scan_privacy) ? " privacy" : ""));
if ((ep_local && !scan_local) || (same_subnet &&
((ep_privacy && !scan_privacy) ||
(!ep_univ_iid && scan_univ_iid)))) {
DPRINTF(4, ("did not add %s to %s of IPv6 multicast-capable list which already has %s\n",
stoa(&ep->sin),
(ep_local)
? "tail"
: "head",
stoa(&scan->sin)));
return;
}
if ((scan_local && !ep_local) || (same_subnet &&
((scan_privacy && !ep_privacy) ||
(!scan_univ_iid && ep_univ_iid)))) {
UNLINK_SLIST(unlinked, *pmclisthead,
scan, mclink, endpt);
DPRINTF(4, ("%s %s from IPv6 multicast-capable list to add %s\n",
(unlinked != scan)
? "Failed to remove"
: "removed",
stoa(&scan->sin), stoa(&ep->sin)));
}
}
/*
* Add link/site local at the tail of the multicast-
* capable unicast interfaces list, so that ntpd will
* send from global addresses before link-/site-local
* ones.
*/
if (ep_local)
LINK_TAIL_SLIST(*pmclisthead, ep, mclink, endpt);
else
LINK_SLIST(*pmclisthead, ep, mclink);
DPRINTF(4, ("added %s to %s of IPv%s multicast-capable unicast local address list\n",
stoa(&ep->sin),
(ep_local)
? "tail"
: "head",
(AF_INET == ep->family)
? "4"
: "6"));
if (INVALID_SOCKET == ep->fd)
return;
/*
* select the local address from which to send to multicast.
*/
switch (AF(&ep->sin)) {
case AF_INET :
rc = setsockopt(ep->fd, IPPROTO_IP,
IP_MULTICAST_IF,
(void *)&NSRCADR(&ep->sin),
sizeof(NSRCADR(&ep->sin)));
if (rc)
msyslog(LOG_ERR,
"setsockopt IP_MULTICAST_IF %s fails: %m",
stoa(&ep->sin));
break;
# ifdef INCLUDE_IPV6_MULTICAST_SUPPORT
case AF_INET6 :
rc = setsockopt(ep->fd, IPPROTO_IPV6,
IPV6_MULTICAST_IF,
(void *)&ep->ifindex,
sizeof(ep->ifindex));
/* do not complain if bound addr scope is ifindex */
if (rc && ep->ifindex != SCOPE(&ep->sin))
msyslog(LOG_ERR,
"setsockopt IPV6_MULTICAST_IF %u for %s fails: %m",
ep->ifindex, stoa(&ep->sin));
break;
# endif
}
#endif /* MCAST */
}
/*
* remove interface from known interface list and clean up
* associated resources
*/
static void
remove_interface(
endpt * ep
)
{
endpt * unlinked;
endpt ** pmclisthead;
sockaddr_u resmask;
UNLINK_SLIST(unlinked, ep_list, ep, elink, endpt);
if (!ep->ignore_packets && INT_MULTICAST & ep->flags) {
pmclisthead = (AF_INET == ep->family)
? &mc4_list
: &mc6_list;
UNLINK_SLIST(unlinked, *pmclisthead, ep, mclink, endpt);
DPRINTF(4, ("%s %s IPv%s multicast-capable unicast local address list\n",
stoa(&ep->sin),
(unlinked != NULL)
? "removed from"
: "not found on",
(AF_INET == ep->family)
? "4"
: "6"));
}
delete_interface_from_list(ep);
if (ep->fd != INVALID_SOCKET) {
msyslog(LOG_INFO,
"Deleting interface #%d %s, %s#%d, interface stats: received=%ld, sent=%ld, dropped=%ld, active_time=%ld secs",
ep->ifnum,
ep->name,
stoa(&ep->sin),
SRCPORT(&ep->sin),
ep->received,
ep->sent,
ep->notsent,
current_time - ep->starttime);
# ifdef HAVE_IO_COMPLETION_PORT
io_completion_port_remove_socket(ep->fd, ep);
# endif
close_and_delete_fd_from_list(ep->fd);
ep->fd = INVALID_SOCKET;
}
if (ep->bfd != INVALID_SOCKET) {
msyslog(LOG_INFO,
"stop listening for broadcasts to %s on interface #%d %s",
stoa(&ep->bcast), ep->ifnum, ep->name);
# ifdef HAVE_IO_COMPLETION_PORT
io_completion_port_remove_socket(ep->bfd, ep);
# endif
close_and_delete_fd_from_list(ep->bfd);
ep->bfd = INVALID_SOCKET;
}
# ifdef HAVE_IO_COMPLETION_PORT
io_completion_port_remove_interface(ep);
# endif
ninterfaces--;
mon_clearinterface(ep);
/* remove restrict interface entry */
SET_HOSTMASK(&resmask, AF(&ep->sin));
hack_restrict(RESTRICT_REMOVEIF, &ep->sin, &resmask,
RESM_NTPONLY | RESM_INTERFACE, RES_IGNORE, 0);
}
static void
log_listen_address(
endpt * ep
)
{
msyslog(LOG_INFO, "%s on %d %s %s",
(ep->ignore_packets)
? "Listen and drop"
: "Listen normally",
ep->ifnum,
ep->name,
sptoa(&ep->sin));
}
static void
create_wildcards(
u_short port
)
{
int v4wild;
#ifdef INCLUDE_IPV6_SUPPORT
int v6wild;
#endif
sockaddr_u wildaddr;
nic_rule_action action;
struct interface * wildif;
/*
* silence "potentially uninitialized" warnings from VC9
* failing to follow the logic. Ideally action could remain
* uninitialized, and the memset be the first statement under
* the first if (v4wild).
*/
action = ACTION_LISTEN;
ZERO(wildaddr);
#ifdef INCLUDE_IPV6_SUPPORT
/*
* create pseudo-interface with wildcard IPv6 address
*/
v6wild = ipv6_works;
if (v6wild) {
/* set wildaddr to the v6 wildcard address :: */
ZERO(wildaddr);
AF(&wildaddr) = AF_INET6;
SET_ADDR6N(&wildaddr, in6addr_any);
SET_PORT(&wildaddr, port);
SET_SCOPE(&wildaddr, 0);
/* check for interface/nic rules affecting the wildcard */
action = interface_action(NULL, &wildaddr, 0);
v6wild = (ACTION_IGNORE != action);
}
if (v6wild) {
wildif = new_interface(NULL);
strlcpy(wildif->name, "v6wildcard", sizeof(wildif->name));
memcpy(&wildif->sin, &wildaddr, sizeof(wildif->sin));
wildif->family = AF_INET6;
AF(&wildif->mask) = AF_INET6;
SET_ONESMASK(&wildif->mask);
wildif->flags = INT_UP | INT_WILDCARD;
wildif->ignore_packets = (ACTION_DROP == action);
wildif->fd = open_socket(&wildif->sin, 0, 1, wildif);
if (wildif->fd != INVALID_SOCKET) {
wildipv6 = wildif;
any6_interface = wildif;
add_addr_to_list(&wildif->sin, wildif);
add_interface(wildif);
log_listen_address(wildif);
} else {
msyslog(LOG_ERR,
"unable to bind to wildcard address %s - another process may be running - EXITING",
stoa(&wildif->sin));
exit(1);
}
DPRINT_INTERFACE(2, (wildif, "created ", "\n"));
}
#endif
/*
* create pseudo-interface with wildcard IPv4 address
*/
v4wild = ipv4_works;
if (v4wild) {
/* set wildaddr to the v4 wildcard address 0.0.0.0 */
AF(&wildaddr) = AF_INET;
SET_ADDR4N(&wildaddr, INADDR_ANY);
SET_PORT(&wildaddr, port);
/* check for interface/nic rules affecting the wildcard */
action = interface_action(NULL, &wildaddr, 0);
v4wild = (ACTION_IGNORE != action);
}
if (v4wild) {
wildif = new_interface(NULL);
strlcpy(wildif->name, "v4wildcard", sizeof(wildif->name));
memcpy(&wildif->sin, &wildaddr, sizeof(wildif->sin));
wildif->family = AF_INET;
AF(&wildif->mask) = AF_INET;
SET_ONESMASK(&wildif->mask);
wildif->flags = INT_BROADCAST | INT_UP | INT_WILDCARD;
wildif->ignore_packets = (ACTION_DROP == action);
#if defined(MCAST)
/*
* enable multicast reception on the broadcast socket
*/
AF(&wildif->bcast) = AF_INET;
SET_ADDR4N(&wildif->bcast, INADDR_ANY);
SET_PORT(&wildif->bcast, port);
#endif /* MCAST */
wildif->fd = open_socket(&wildif->sin, 0, 1, wildif);
if (wildif->fd != INVALID_SOCKET) {
wildipv4 = wildif;
any_interface = wildif;
add_addr_to_list(&wildif->sin, wildif);
add_interface(wildif);
log_listen_address(wildif);
} else {
msyslog(LOG_ERR,
"unable to bind to wildcard address %s - another process may be running - EXITING",
stoa(&wildif->sin));
exit(1);
}
DPRINT_INTERFACE(2, (wildif, "created ", "\n"));
}
}
/*
* add_nic_rule() -- insert a rule entry at the head of nic_rule_list.
*/
void
add_nic_rule(
nic_rule_match match_type,
const char * if_name, /* interface name or numeric address */
int prefixlen,
nic_rule_action action
)
{
nic_rule * rule;
isc_boolean_t is_ip;
rule = emalloc_zero(sizeof(*rule));
rule->match_type = match_type;
rule->prefixlen = prefixlen;
rule->action = action;
if (MATCH_IFNAME == match_type) {
REQUIRE(NULL != if_name);
rule->if_name = estrdup(if_name);
} else if (MATCH_IFADDR == match_type) {
REQUIRE(NULL != if_name);
/* set rule->addr */
is_ip = is_ip_address(if_name, AF_UNSPEC, &rule->addr);
REQUIRE(is_ip);
} else
REQUIRE(NULL == if_name);
LINK_SLIST(nic_rule_list, rule, next);
}
#ifdef DEBUG
static const char *
action_text(
nic_rule_action action
)
{
const char *t;
switch (action) {
default:
t = "ERROR"; /* quiet uninit warning */
DPRINTF(1, ("fatal: unknown nic_rule_action %d\n",
action));
ENSURE(0);
break;
case ACTION_LISTEN:
t = "listen";
break;
case ACTION_IGNORE:
t = "ignore";
break;
case ACTION_DROP:
t = "drop";
break;
}
return t;
}
#endif /* DEBUG */
static nic_rule_action
interface_action(
char * if_name,
sockaddr_u * if_addr,
u_int32 if_flags
)
{
nic_rule * rule;
int isloopback;
int iswildcard;
DPRINTF(4, ("interface_action: interface %s ",
(if_name != NULL) ? if_name : "wildcard"));
iswildcard = is_wildcard_addr(if_addr);
isloopback = !!(INT_LOOPBACK & if_flags);
/*
* Find any matching NIC rule from --interface / -I or ntp.conf
* interface/nic rules.
*/
for (rule = nic_rule_list; rule != NULL; rule = rule->next) {
switch (rule->match_type) {
case MATCH_ALL:
/* loopback and wildcard excluded from "all" */
if (isloopback || iswildcard)
break;
DPRINTF(4, ("nic all %s\n",
action_text(rule->action)));
return rule->action;
case MATCH_IPV4:
if (IS_IPV4(if_addr)) {
DPRINTF(4, ("nic ipv4 %s\n",
action_text(rule->action)));
return rule->action;
}
break;
case MATCH_IPV6:
if (IS_IPV6(if_addr)) {
DPRINTF(4, ("nic ipv6 %s\n",
action_text(rule->action)));
return rule->action;
}
break;
case MATCH_WILDCARD:
if (iswildcard) {
DPRINTF(4, ("nic wildcard %s\n",
action_text(rule->action)));
return rule->action;
}
break;
case MATCH_IFADDR:
if (rule->prefixlen != -1) {
if (addr_eqprefix(if_addr, &rule->addr,
rule->prefixlen)) {
DPRINTF(4, ("subnet address match - %s\n",
action_text(rule->action)));
return rule->action;
}
} else
if (SOCK_EQ(if_addr, &rule->addr)) {
DPRINTF(4, ("address match - %s\n",
action_text(rule->action)));
return rule->action;
}
break;
case MATCH_IFNAME:
if (if_name != NULL
#if defined(HAVE_FNMATCH) && defined(FNM_CASEFOLD)
&& !fnmatch(rule->if_name, if_name, FNM_CASEFOLD)
#else
&& !strcasecmp(if_name, rule->if_name)
#endif
) {
DPRINTF(4, ("interface name match - %s\n",
action_text(rule->action)));
return rule->action;
}
break;
}
}
/*
* Unless explicitly disabled such as with "nic ignore ::1"
* listen on loopback addresses. Since ntpq and ntpdc query
* "localhost" by default, which typically resolves to ::1 and
* 127.0.0.1, it's useful to default to listening on both.
*/
if (isloopback) {
DPRINTF(4, ("default loopback listen\n"));
return ACTION_LISTEN;
}
/*
* Treat wildcard addresses specially. If there is no explicit
* "nic ... wildcard" or "nic ... 0.0.0.0" or "nic ... ::" rule
* default to drop.
*/
if (iswildcard) {
DPRINTF(4, ("default wildcard drop\n"));
return ACTION_DROP;
}
/*
* Check for "virtual IP" (colon in the interface name) after
* the rules so that "ntpd --interface eth0:1 -novirtualips"
* does indeed listen on eth0:1's addresses.
*/
if (!listen_to_virtual_ips && if_name != NULL
&& (strchr(if_name, ':') != NULL)) {
DPRINTF(4, ("virtual ip - ignore\n"));
return ACTION_IGNORE;
}
/*
* If there are no --interface/-I command-line options and no
* interface/nic rules in ntp.conf, the default action is to
* listen. In the presence of rules from either, the default
* is to ignore. This implements ntpd's traditional listen-
* every default with no interface listen configuration, and
* ensures a single -I eth0 or "nic listen eth0" means do not
* listen on any other addresses.
*/
if (NULL == nic_rule_list) {
DPRINTF(4, ("default listen\n"));
return ACTION_LISTEN;
}
DPRINTF(4, ("implicit ignore\n"));
return ACTION_IGNORE;
}
static void
convert_isc_if(
isc_interface_t *isc_if,
endpt *itf,
u_short port
)
{
const u_char v6loop[16] = {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1};
strlcpy(itf->name, isc_if->name, sizeof(itf->name));
itf->ifindex = isc_if->ifindex;
itf->family = (u_short)isc_if->af;
AF(&itf->sin) = itf->family;
AF(&itf->mask) = itf->family;
AF(&itf->bcast) = itf->family;
SET_PORT(&itf->sin, port);
SET_PORT(&itf->mask, port);
SET_PORT(&itf->bcast, port);
if (IS_IPV4(&itf->sin)) {
NSRCADR(&itf->sin) = isc_if->address.type.in.s_addr;
NSRCADR(&itf->mask) = isc_if->netmask.type.in.s_addr;
if (isc_if->flags & INTERFACE_F_BROADCAST) {
itf->flags |= INT_BROADCAST;
NSRCADR(&itf->bcast) =
isc_if->broadcast.type.in.s_addr;
}
}
#ifdef INCLUDE_IPV6_SUPPORT
else if (IS_IPV6(&itf->sin)) {
SET_ADDR6N(&itf->sin, isc_if->address.type.in6);
SET_ADDR6N(&itf->mask, isc_if->netmask.type.in6);
SET_SCOPE(&itf->sin, isc_if->address.zone);
}
#endif /* INCLUDE_IPV6_SUPPORT */
/* Process the rest of the flags */
itf->flags |=
((INTERFACE_F_UP & isc_if->flags)
? INT_UP : 0)
| ((INTERFACE_F_LOOPBACK & isc_if->flags)
? INT_LOOPBACK : 0)
| ((INTERFACE_F_POINTTOPOINT & isc_if->flags)
? INT_PPP : 0)
| ((INTERFACE_F_MULTICAST & isc_if->flags)
? INT_MULTICAST : 0)
| ((INTERFACE_F_PRIVACY & isc_if->flags)
? INT_PRIVACY : 0)
;
/*
* Clear the loopback flag if the address is not localhost.
* http://bugs.ntp.org/1683
*/
if (INT_LOOPBACK & itf->flags) {
if (AF_INET == itf->family) {
if (127 != (SRCADR(&itf->sin) >> 24))
itf->flags &= ~INT_LOOPBACK;
} else {
if (memcmp(v6loop, NSRCADR6(&itf->sin),
sizeof(NSRCADR6(&itf->sin))))
itf->flags &= ~INT_LOOPBACK;
}
}
}
/*
* refresh_interface
*
* some OSes have been observed to keep
* cached routes even when more specific routes
* become available.
* this can be mitigated by re-binding
* the socket.
*/
static int
refresh_interface(
struct interface * interface
)
{
#ifdef OS_MISSES_SPECIFIC_ROUTE_UPDATES
if (interface->fd != INVALID_SOCKET) {
int bcast = (interface->flags & INT_BCASTXMIT) != 0;
/* as we forcibly close() the socket remove the
broadcast permission indication */
if (bcast)
socket_broadcast_disable(interface, &interface->sin);
close_and_delete_fd_from_list(interface->fd);
/* create new socket picking up a new first hop binding
at connect() time */
interface->fd = open_socket(&interface->sin,
bcast, 0, interface);
/*
* reset TTL indication so TTL is is set again
* next time around
*/
interface->last_ttl = 0;
return (interface->fd != INVALID_SOCKET);
} else
return 0; /* invalid sockets are not refreshable */
#else /* !OS_MISSES_SPECIFIC_ROUTE_UPDATES */
return (interface->fd != INVALID_SOCKET);
#endif /* !OS_MISSES_SPECIFIC_ROUTE_UPDATES */
}
/*
* interface_update - externally callable update function
*/
void
interface_update(
interface_receiver_t receiver,
void * data)
{
int new_interface_found;
if (disable_dynamic_updates)
return;
BLOCKIO();
new_interface_found = update_interfaces(NTP_PORT, receiver, data);
UNBLOCKIO();
if (!new_interface_found)
return;
#ifdef DEBUG
msyslog(LOG_DEBUG, "new interface(s) found: waking up resolver");
#endif
interrupt_worker_sleep();
}
/*
* sau_from_netaddr() - convert network address on-wire formats.
* Convert from libisc's isc_netaddr_t to NTP's sockaddr_u
*/
void
sau_from_netaddr(
sockaddr_u *psau,
const isc_netaddr_t *pna
)
{
ZERO_SOCK(psau);
AF(psau) = (u_short)pna->family;
switch (pna->family) {
case AF_INET:
memcpy(&psau->sa4.sin_addr, &pna->type.in,
sizeof(psau->sa4.sin_addr));
break;
case AF_INET6:
memcpy(&psau->sa6.sin6_addr, &pna->type.in6,
sizeof(psau->sa6.sin6_addr));
break;
}
}
static int
is_wildcard_addr(
const sockaddr_u *psau
)
{
if (IS_IPV4(psau) && !NSRCADR(psau))
return 1;
#ifdef INCLUDE_IPV6_SUPPORT
if (IS_IPV6(psau) && S_ADDR6_EQ(psau, &in6addr_any))
return 1;
#endif
return 0;
}
#ifdef OS_NEEDS_REUSEADDR_FOR_IFADDRBIND
/*
* enable/disable re-use of wildcard address socket
*/
static void
set_wildcard_reuse(
u_short family,
int on
)
{
struct interface *any;
SOCKET fd = INVALID_SOCKET;
any = ANY_INTERFACE_BYFAM(family);
if (any != NULL)
fd = any->fd;
if (fd != INVALID_SOCKET) {
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(char *)&on, sizeof(on)))
msyslog(LOG_ERR,
"set_wildcard_reuse: setsockopt(SO_REUSEADDR, %s) failed: %m",
on ? "on" : "off");
DPRINTF(4, ("set SO_REUSEADDR to %s on %s\n",
on ? "on" : "off",
stoa(&any->sin)));
}
}
#endif /* OS_NEEDS_REUSEADDR_FOR_IFADDRBIND */
static isc_boolean_t
check_flags6(
sockaddr_u *psau,
const char *name,
u_int32 flags6
)
{
#if defined(INCLUDE_IPV6_SUPPORT) && defined(SIOCGIFAFLAG_IN6)
struct in6_ifreq ifr6;
int fd;
if (psau->sa.sa_family != AF_INET6)
return ISC_FALSE;
if ((fd = socket(AF_INET6, SOCK_DGRAM, 0)) < 0)
return ISC_FALSE;
ZERO(ifr6);
memcpy(&ifr6.ifr_addr, &psau->sa6, sizeof(ifr6.ifr_addr));
strlcpy(ifr6.ifr_name, name, sizeof(ifr6.ifr_name));
if (ioctl(fd, SIOCGIFAFLAG_IN6, &ifr6) < 0) {
close(fd);
return ISC_FALSE;
}
close(fd);
if ((ifr6.ifr_ifru.ifru_flags6 & flags6) != 0)
return ISC_TRUE;
#endif /* INCLUDE_IPV6_SUPPORT && SIOCGIFAFLAG_IN6 */
return ISC_FALSE;
}
static isc_boolean_t
is_anycast(
sockaddr_u *psau,
const char *name
)
{
#ifdef IN6_IFF_ANYCAST
return check_flags6(psau, name, IN6_IFF_ANYCAST);
#else
return ISC_FALSE;
#endif
}
static isc_boolean_t
is_valid(
sockaddr_u *psau,
const char *name
)
{
u_int32 flags6;
flags6 = 0;
#ifdef IN6_IFF_DEPARTED
flags6 |= IN6_IFF_DEPARTED;
#endif
#ifdef IN6_IFF_DETACHED
flags6 |= IN6_IFF_DETACHED;
#endif
#ifdef IN6_IFF_TENTATIVE
flags6 |= IN6_IFF_TENTATIVE;
#endif
return check_flags6(psau, name, flags6) ? ISC_FALSE : ISC_TRUE;
}
/*
* update_interface strategy
*
* toggle configuration phase
*
* Phase 1:
* forall currently existing interfaces
* if address is known:
* drop socket - rebind again
*
* if address is NOT known:
* attempt to create a new interface entry
*
* Phase 2:
* forall currently known non MCAST and WILDCARD interfaces
* if interface does not match configuration phase (not seen in phase 1):
* remove interface from known interface list
* forall peers associated with this interface
* disconnect peer from this interface
*
* Phase 3:
* attempt to re-assign interfaces to peers
*
*/
static int
update_interfaces(
u_short port,
interface_receiver_t receiver,
void * data
)
{
isc_mem_t * mctx = (void *)-1;
interface_info_t ifi;
isc_interfaceiter_t * iter;
isc_result_t result;
isc_interface_t isc_if;
int new_interface_found;
unsigned int family;
endpt enumep;
endpt * ep;
endpt * next_ep;
DPRINTF(3, ("update_interfaces(%d)\n", port));
/*
* phase one - scan interfaces
* - create those that are not found
* - update those that are found
*/
new_interface_found = FALSE;
iter = NULL;
result = isc_interfaceiter_create(mctx, &iter);
if (result != ISC_R_SUCCESS)
return 0;
/*
* Toggle system interface scan phase to find untouched
* interfaces to be deleted.
*/
sys_interphase ^= 0x1;
for (result = isc_interfaceiter_first(iter);
ISC_R_SUCCESS == result;
result = isc_interfaceiter_next(iter)) {
result = isc_interfaceiter_current(iter, &isc_if);
if (result != ISC_R_SUCCESS)
break;
/* See if we have a valid family to use */
family = isc_if.address.family;
if (AF_INET != family && AF_INET6 != family)
continue;
if (AF_INET == family && !ipv4_works)
continue;
if (AF_INET6 == family && !ipv6_works)
continue;
/* create prototype */
init_interface(&enumep);
convert_isc_if(&isc_if, &enumep, port);
DPRINT_INTERFACE(4, (&enumep, "examining ", "\n"));
/*
* Check if and how we are going to use the interface.
*/
switch (interface_action(enumep.name, &enumep.sin,
enumep.flags)) {
case ACTION_IGNORE:
DPRINTF(4, ("ignoring interface %s (%s) - by nic rules\n",
enumep.name, stoa(&enumep.sin)));
continue;
case ACTION_LISTEN:
DPRINTF(4, ("listen interface %s (%s) - by nic rules\n",
enumep.name, stoa(&enumep.sin)));
enumep.ignore_packets = ISC_FALSE;
break;
case ACTION_DROP:
DPRINTF(4, ("drop on interface %s (%s) - by nic rules\n",
enumep.name, stoa(&enumep.sin)));
enumep.ignore_packets = ISC_TRUE;
break;
}
/* interfaces must be UP to be usable */
if (!(enumep.flags & INT_UP)) {
DPRINTF(4, ("skipping interface %s (%s) - DOWN\n",
enumep.name, stoa(&enumep.sin)));
continue;
}
/*
* skip any interfaces UP and bound to a wildcard
* address - some dhcp clients produce that in the
* wild
*/
if (is_wildcard_addr(&enumep.sin))
continue;
if (is_anycast(&enumep.sin, isc_if.name))
continue;
/*
* skip any address that is an invalid state to be used
*/
if (!is_valid(&enumep.sin, isc_if.name))
continue;
/*
* map to local *address* in order to map all duplicate
* interfaces to an endpt structure with the appropriate
* socket. Our name space is (ip-address), NOT
* (interface name, ip-address).
*/
ep = getinterface(&enumep.sin, INT_WILDCARD);
if (ep != NULL && refresh_interface(ep)) {
/*
* found existing and up to date interface -
* mark present.
*/
if (ep->phase != sys_interphase) {
/*
* On a new round we reset the name so
* the interface name shows up again if
* this address is no longer shared.
* We reset ignore_packets from the
* new prototype to respect any runtime
* changes to the nic rules.
*/
strlcpy(ep->name, enumep.name,
sizeof(ep->name));
ep->ignore_packets =
enumep.ignore_packets;
} else {
/* name collision - rename interface */
strlcpy(ep->name, "*multiple*",
sizeof(ep->name));
}
DPRINT_INTERFACE(4, (ep, "updating ",
" present\n"));
if (ep->ignore_packets !=
enumep.ignore_packets) {
/*
* We have conflicting configurations
* for the interface address. This is
* caused by using -I <interfacename>
* for an interface that shares its
* address with other interfaces. We
* can not disambiguate incoming
* packets delivered to this socket
* without extra syscalls/features.
* These are not (commonly) available.
* Note this is a more unusual
* configuration where several
* interfaces share an address but
* filtering via interface name is
* attempted. We resolve the
* configuration conflict by disabling
* the processing of received packets.
* This leads to no service on the
* interface address where the conflict
* occurs.
*/
msyslog(LOG_ERR,
"WARNING: conflicting enable configuration for interfaces %s and %s for address %s - unsupported configuration - address DISABLED",
enumep.name, ep->name,
stoa(&enumep.sin));
ep->ignore_packets = ISC_TRUE;
}
ep->phase = sys_interphase;
ifi.action = IFS_EXISTS;
ifi.ep = ep;
if (receiver != NULL)
(*receiver)(data, &ifi);
} else {
/*
* This is new or refreshing failed - add to
* our interface list. If refreshing failed we
* will delete the interface structure in phase
* 2 as the interface was not marked current.
* We can bind to the address as the refresh
* code already closed the offending socket
*/
ep = create_interface(port, &enumep);
if (ep != NULL) {
ifi.action = IFS_CREATED;
ifi.ep = ep;
if (receiver != NULL)
(*receiver)(data, &ifi);
new_interface_found = TRUE;
DPRINT_INTERFACE(3,
(ep, "updating ",
" new - created\n"));
} else {
DPRINT_INTERFACE(3,
(&enumep, "updating ",
" new - creation FAILED"));
msyslog(LOG_INFO,
"failed to init interface for address %s",
stoa(&enumep.sin));
continue;
}
}
}
isc_interfaceiter_destroy(&iter);
/*
* phase 2 - delete gone interfaces - reassigning peers to
* other interfaces
*/
for (ep = ep_list; ep != NULL; ep = next_ep) {
next_ep = ep->elink;
/*
* if phase does not match sys_phase this interface was
* not enumerated during the last interface scan - so it
* is gone and will be deleted here unless it did not
* originate from interface enumeration (INT_WILDCARD,
* INT_MCASTIF).
*/
if (((INT_WILDCARD | INT_MCASTIF) & ep->flags) ||
ep->phase == sys_interphase)
continue;
DPRINT_INTERFACE(3, (ep, "updating ",
"GONE - deleting\n"));
remove_interface(ep);
ifi.action = IFS_DELETED;
ifi.ep = ep;
if (receiver != NULL)
(*receiver)(data, &ifi);
/* disconnect peers from deleted endpt. */
while (ep->peers != NULL)
set_peerdstadr(ep->peers, NULL);
/*
* update globals in case we lose
* a loopback interface
*/
if (ep == loopback_interface)
loopback_interface = NULL;
delete_interface(ep);
}
/*
* phase 3 - re-configure as the world has possibly changed
*
* never ever make this conditional again - it is needed to track
* routing updates. see bug #2506
*/
refresh_all_peerinterfaces();
if (broadcast_client_enabled)
io_setbclient();
if (sys_bclient)
io_setbclient();
#ifdef MCAST
/*
* Check multicast interfaces and try to join multicast groups if
* not joined yet.
*/
for (ep = ep_list; ep != NULL; ep = ep->elink) {
remaddr_t *entry;
if (!(INT_MCASTIF & ep->flags) || (INT_MCASTOPEN & ep->flags))
continue;
/* Find remote address that was linked to this interface */
for (entry = remoteaddr_list;
entry != NULL;
entry = entry->link) {
if (entry->ep == ep) {
if (socket_multicast_enable(ep, &entry->addr)) {
msyslog(LOG_INFO,
"Joined %s socket to multicast group %s",
stoa(&ep->sin),
stoa(&entry->addr));
}
break;
}
}
}
#endif /* MCAST */
return new_interface_found;
}
/*
* create_sockets - create a socket for each interface plus a default
* socket for when we don't know where to send
*/
static int
create_sockets(
u_short port
)
{
#ifndef HAVE_IO_COMPLETION_PORT
/*
* I/O Completion Ports don't care about the select and FD_SET
*/
maxactivefd = 0;
FD_ZERO(&activefds);
#endif
DPRINTF(2, ("create_sockets(%d)\n", port));
create_wildcards(port);
update_interfaces(port, NULL, NULL);
/*
* Now that we have opened all the sockets, turn off the reuse
* flag for security.
*/
set_reuseaddr(0);
DPRINTF(2, ("create_sockets: Total interfaces = %d\n", ninterfaces));
return ninterfaces;
}
/*
* create_interface - create a new interface for a given prototype
* binding the socket.
*/
static struct interface *
create_interface(
u_short port,
struct interface * protot
)
{
sockaddr_u resmask;
endpt * iface;
#if defined(MCAST) && defined(MULTICAST_NONEWSOCKET)
remaddr_t * entry;
remaddr_t * next_entry;
#endif
DPRINTF(2, ("create_interface(%s#%d)\n", stoa(&protot->sin),
port));
/* build an interface */
iface = new_interface(protot);
/*
* create socket
*/
iface->fd = open_socket(&iface->sin, 0, 0, iface);
if (iface->fd != INVALID_SOCKET)
log_listen_address(iface);
if ((INT_BROADCAST & iface->flags)
&& iface->bfd != INVALID_SOCKET)
msyslog(LOG_INFO, "Listening on broadcast address %s#%d",
stoa((&iface->bcast)), port);
if (INVALID_SOCKET == iface->fd
&& INVALID_SOCKET == iface->bfd) {
msyslog(LOG_ERR, "unable to create socket on %s (%d) for %s#%d",
iface->name,
iface->ifnum,
stoa((&iface->sin)),
port);
delete_interface(iface);
return NULL;
}
/*
* Blacklist our own addresses, no use talking to ourself
*/
SET_HOSTMASK(&resmask, AF(&iface->sin));
hack_restrict(RESTRICT_FLAGS, &iface->sin, &resmask,
RESM_NTPONLY | RESM_INTERFACE, RES_IGNORE, 0);
/*
* set globals with the first found
* loopback interface of the appropriate class
*/
if (NULL == loopback_interface && AF_INET == iface->family
&& (INT_LOOPBACK & iface->flags))
loopback_interface = iface;
/*
* put into our interface list
*/
add_addr_to_list(&iface->sin, iface);
add_interface(iface);
#if defined(MCAST) && defined(MULTICAST_NONEWSOCKET)
/*
* Join any previously-configured compatible multicast groups.
*/
if (INT_MULTICAST & iface->flags &&
!((INT_LOOPBACK | INT_WILDCARD) & iface->flags) &&
!iface->ignore_packets) {
for (entry = remoteaddr_list;
entry != NULL;
entry = next_entry) {
next_entry = entry->link;
if (AF(&iface->sin) != AF(&entry->addr) ||
!IS_MCAST(&entry->addr))
continue;
if (socket_multicast_enable(iface,
&entry->addr))
msyslog(LOG_INFO,
"Joined %s socket to multicast group %s",
stoa(&iface->sin),
stoa(&entry->addr));
else
msyslog(LOG_ERR,
"Failed to join %s socket to multicast group %s",
stoa(&iface->sin),
stoa(&entry->addr));
}
}
#endif /* MCAST && MCAST_NONEWSOCKET */
DPRINT_INTERFACE(2, (iface, "created ", "\n"));
return iface;
}
#ifdef SO_EXCLUSIVEADDRUSE
static void
set_excladdruse(
SOCKET fd
)
{
int one = 1;
int failed;
#ifdef SYS_WINNT
DWORD err;
#endif
failed = setsockopt(fd, SOL_SOCKET, SO_EXCLUSIVEADDRUSE,
(char *)&one, sizeof(one));
if (!failed)
return;
#ifdef SYS_WINNT
/*
* Prior to Windows XP setting SO_EXCLUSIVEADDRUSE can fail with
* error WSAINVAL depending on service pack level and whether
* the user account is in the Administrators group. Do not
* complain if it fails that way on versions prior to XP (5.1).
*/
err = GetLastError();
if (isc_win32os_versioncheck(5, 1, 0, 0) < 0 /* < 5.1/XP */
&& WSAEINVAL == err)
return;
SetLastError(err);
#endif
msyslog(LOG_ERR,
"setsockopt(%d, SO_EXCLUSIVEADDRUSE, on): %m",
(int)fd);
}
#endif /* SO_EXCLUSIVEADDRUSE */
/*
* set_reuseaddr() - set/clear REUSEADDR on all sockets
* NB possible hole - should we be doing this on broadcast
* fd's also?
*/
static void
set_reuseaddr(
int flag
)
{
#ifndef SO_EXCLUSIVEADDRUSE
endpt *ep;
for (ep = ep_list; ep != NULL; ep = ep->elink) {
if (ep->flags & INT_WILDCARD)
continue;
/*
* if ep->fd is INVALID_SOCKET, we might have a adapter
* configured but not present
*/
DPRINTF(4, ("setting SO_REUSEADDR on %.16s@%s to %s\n",
ep->name, stoa(&ep->sin),
flag ? "on" : "off"));
if (ep->fd != INVALID_SOCKET) {
if (setsockopt(ep->fd, SOL_SOCKET, SO_REUSEADDR,
(char *)&flag, sizeof(flag))) {
msyslog(LOG_ERR, "set_reuseaddr: setsockopt(%s, SO_REUSEADDR, %s) failed: %m",
stoa(&ep->sin), flag ? "on" : "off");
}
}
}
#endif /* ! SO_EXCLUSIVEADDRUSE */
}
/*
* This is just a wrapper around an internal function so we can
* make other changes as necessary later on
*/
void
enable_broadcast(
struct interface * iface,
sockaddr_u * baddr
)
{
#ifdef OPEN_BCAST_SOCKET
socket_broadcast_enable(iface, iface->fd, baddr);
#endif
}
#ifdef OPEN_BCAST_SOCKET
/*
* Enable a broadcast address to a given socket
* The socket is in the ep_list all we need to do is enable
* broadcasting. It is not this function's job to select the socket
*/
static isc_boolean_t
socket_broadcast_enable(
struct interface * iface,
SOCKET fd,
sockaddr_u * baddr
)
{
#ifdef SO_BROADCAST
int on = 1;
if (IS_IPV4(baddr)) {
/* if this interface can support broadcast, set SO_BROADCAST */
if (setsockopt(fd, SOL_SOCKET, SO_BROADCAST,
(char *)&on, sizeof(on)))
msyslog(LOG_ERR,
"setsockopt(SO_BROADCAST) enable failure on address %s: %m",
stoa(baddr));
else
DPRINTF(2, ("Broadcast enabled on socket %d for address %s\n",
fd, stoa(baddr)));
}
iface->flags |= INT_BCASTXMIT;
return ISC_TRUE;
#else
return ISC_FALSE;
#endif /* SO_BROADCAST */
}
#ifdef OS_MISSES_SPECIFIC_ROUTE_UPDATES
/*
* Remove a broadcast address from a given socket
* The socket is in the ep_list all we need to do is disable
* broadcasting. It is not this function's job to select the socket
*/
static isc_boolean_t
socket_broadcast_disable(
struct interface * iface,
sockaddr_u * baddr
)
{
#ifdef SO_BROADCAST
int off = 0; /* This seems to be OK as an int */
if (IS_IPV4(baddr) && setsockopt(iface->fd, SOL_SOCKET,
SO_BROADCAST, (char *)&off, sizeof(off)))
msyslog(LOG_ERR,
"setsockopt(SO_BROADCAST) disable failure on address %s: %m",
stoa(baddr));
iface->flags &= ~INT_BCASTXMIT;
return ISC_TRUE;
#else
return ISC_FALSE;
#endif /* SO_BROADCAST */
}
#endif /* OS_MISSES_SPECIFIC_ROUTE_UPDATES */
#endif /* OPEN_BCAST_SOCKET */
/*
* return the broadcast client flag value
*/
isc_boolean_t
get_broadcastclient_flag(void)
{
return (broadcast_client_enabled);
}
/*
* Check to see if the address is a multicast address
*/
static isc_boolean_t
addr_ismulticast(
sockaddr_u *maddr
)
{
isc_boolean_t result;
#ifndef INCLUDE_IPV6_MULTICAST_SUPPORT
/*
* If we don't have IPV6 support any IPV6 addr is not multicast
*/
if (IS_IPV6(maddr))
result = ISC_FALSE;
else
#endif
result = IS_MCAST(maddr);
if (!result)
DPRINTF(4, ("address %s is not multicast\n",
stoa(maddr)));
return result;
}
/*
* Multicast servers need to set the appropriate Multicast interface
* socket option in order for it to know which interface to use for
* send the multicast packet.
*/
void
enable_multicast_if(
struct interface * iface,
sockaddr_u * maddr
)
{
#ifdef MCAST
#ifdef IP_MULTICAST_LOOP
TYPEOF_IP_MULTICAST_LOOP off = 0;
#endif
#if defined(INCLUDE_IPV6_MULTICAST_SUPPORT) && defined(IPV6_MULTICAST_LOOP)
u_int off6 = 0;
#endif
REQUIRE(AF(maddr) == AF(&iface->sin));
switch (AF(&iface->sin)) {
case AF_INET:
#ifdef IP_MULTICAST_LOOP
/*
* Don't send back to itself, but allow failure to set
*/
if (setsockopt(iface->fd, IPPROTO_IP,
IP_MULTICAST_LOOP,
SETSOCKOPT_ARG_CAST &off,
sizeof(off))) {
msyslog(LOG_ERR,
"setsockopt IP_MULTICAST_LOOP failed: %m on socket %d, addr %s for multicast address %s",
iface->fd, stoa(&iface->sin),
stoa(maddr));
}
#endif
break;
case AF_INET6:
#ifdef INCLUDE_IPV6_MULTICAST_SUPPORT
#ifdef IPV6_MULTICAST_LOOP
/*
* Don't send back to itself, but allow failure to set
*/
if (setsockopt(iface->fd, IPPROTO_IPV6,
IPV6_MULTICAST_LOOP,
(char *) &off6, sizeof(off6))) {
msyslog(LOG_ERR,
"setsockopt IPV6_MULTICAST_LOOP failed: %m on socket %d, addr %s for multicast address %s",
iface->fd, stoa(&iface->sin),
stoa(maddr));
}
#endif
break;
#else
return;
#endif /* INCLUDE_IPV6_MULTICAST_SUPPORT */
}
return;
#endif
}
/*
* Add a multicast address to a given socket
* The socket is in the ep_list all we need to do is enable
* multicasting. It is not this function's job to select the socket
*/
#if defined(MCAST)
static isc_boolean_t
socket_multicast_enable(
endpt * iface,
sockaddr_u * maddr
)
{
struct ip_mreq mreq;
# ifdef INCLUDE_IPV6_MULTICAST_SUPPORT
struct ipv6_mreq mreq6;
# endif
switch (AF(maddr)) {
case AF_INET:
ZERO(mreq);
mreq.imr_multiaddr = SOCK_ADDR4(maddr);
mreq.imr_interface.s_addr = htonl(INADDR_ANY);
if (setsockopt(iface->fd,
IPPROTO_IP,
IP_ADD_MEMBERSHIP,
(char *)&mreq,
sizeof(mreq))) {
DPRINTF(2, (
"setsockopt IP_ADD_MEMBERSHIP failed: %m on socket %d, addr %s for %x / %x (%s)",
iface->fd, stoa(&iface->sin),
mreq.imr_multiaddr.s_addr,
mreq.imr_interface.s_addr,
stoa(maddr)));
return ISC_FALSE;
}
DPRINTF(4, ("Added IPv4 multicast membership on socket %d, addr %s for %x / %x (%s)\n",
iface->fd, stoa(&iface->sin),
mreq.imr_multiaddr.s_addr,
mreq.imr_interface.s_addr, stoa(maddr)));
break;
case AF_INET6:
# ifdef INCLUDE_IPV6_MULTICAST_SUPPORT
/*
* Enable reception of multicast packets.
* If the address is link-local we can get the
* interface index from the scope id. Don't do this
* for other types of multicast addresses. For now let
* the kernel figure it out.
*/
ZERO(mreq6);
mreq6.ipv6mr_multiaddr = SOCK_ADDR6(maddr);
mreq6.ipv6mr_interface = iface->ifindex;
if (setsockopt(iface->fd, IPPROTO_IPV6,
IPV6_JOIN_GROUP, (char *)&mreq6,
sizeof(mreq6))) {
DPRINTF(2, (
"setsockopt IPV6_JOIN_GROUP failed: %m on socket %d, addr %s for interface %u (%s)",
iface->fd, stoa(&iface->sin),
mreq6.ipv6mr_interface, stoa(maddr)));
return ISC_FALSE;
}
DPRINTF(4, ("Added IPv6 multicast group on socket %d, addr %s for interface %u (%s)\n",
iface->fd, stoa(&iface->sin),
mreq6.ipv6mr_interface, stoa(maddr)));
# else
return ISC_FALSE;
# endif /* INCLUDE_IPV6_MULTICAST_SUPPORT */
}
iface->flags |= INT_MCASTOPEN;
iface->num_mcast++;
return ISC_TRUE;
}
#endif /* MCAST */
/*
* Remove a multicast address from a given socket
* The socket is in the ep_list all we need to do is disable
* multicasting. It is not this function's job to select the socket
*/
#ifdef MCAST
static isc_boolean_t
socket_multicast_disable(
struct interface * iface,
sockaddr_u * maddr
)
{
# ifdef INCLUDE_IPV6_MULTICAST_SUPPORT
struct ipv6_mreq mreq6;
# endif
struct ip_mreq mreq;
ZERO(mreq);
if (find_addr_in_list(maddr) == NULL) {
DPRINTF(4, ("socket_multicast_disable(%s): not found\n",
stoa(maddr)));
return ISC_TRUE;
}
switch (AF(maddr)) {
case AF_INET:
mreq.imr_multiaddr = SOCK_ADDR4(maddr);
mreq.imr_interface = SOCK_ADDR4(&iface->sin);
if (setsockopt(iface->fd, IPPROTO_IP,
IP_DROP_MEMBERSHIP, (char *)&mreq,
sizeof(mreq))) {
msyslog(LOG_ERR,
"setsockopt IP_DROP_MEMBERSHIP failed: %m on socket %d, addr %s for %x / %x (%s)",
iface->fd, stoa(&iface->sin),
SRCADR(maddr), SRCADR(&iface->sin),
stoa(maddr));
return ISC_FALSE;
}
break;
case AF_INET6:
# ifdef INCLUDE_IPV6_MULTICAST_SUPPORT
/*
* Disable reception of multicast packets
* If the address is link-local we can get the
* interface index from the scope id. Don't do this
* for other types of multicast addresses. For now let
* the kernel figure it out.
*/
mreq6.ipv6mr_multiaddr = SOCK_ADDR6(maddr);
mreq6.ipv6mr_interface = iface->ifindex;
if (setsockopt(iface->fd, IPPROTO_IPV6,
IPV6_LEAVE_GROUP, (char *)&mreq6,
sizeof(mreq6))) {
msyslog(LOG_ERR,
"setsockopt IPV6_LEAVE_GROUP failure: %m on socket %d, addr %s for %d (%s)",
iface->fd, stoa(&iface->sin),
iface->ifindex, stoa(maddr));
return ISC_FALSE;
}
break;
# else
return ISC_FALSE;
# endif /* INCLUDE_IPV6_MULTICAST_SUPPORT */
}
iface->num_mcast--;
if (!iface->num_mcast)
iface->flags &= ~INT_MCASTOPEN;
return ISC_TRUE;
}
#endif /* MCAST */
/*
* io_setbclient - open the broadcast client sockets
*/
void
io_setbclient(void)
{
#ifdef OPEN_BCAST_SOCKET
struct interface * interf;
unsigned int nif;
nif = 0;
set_reuseaddr(1);
for (interf = ep_list;
interf != NULL;
interf = interf->elink) {
if (interf->flags & (INT_WILDCARD | INT_LOOPBACK))
continue;
/* use only allowed addresses */
if (interf->ignore_packets)
continue;
/* Need a broadcast-capable interface */
if (!(interf->flags & INT_BROADCAST))
continue;
/* Only IPv4 addresses are valid for broadcast */
REQUIRE(IS_IPV4(&interf->bcast));
/* Do we already have the broadcast address open? */
if (interf->flags & INT_BCASTOPEN) {
/*
* account for already open interfaces to avoid
* misleading warning below
*/
nif++;
continue;
}
/*
* Try to open the broadcast address
*/
interf->family = AF_INET;
interf->bfd = open_socket(&interf->bcast, 1, 0, interf);
/*
* If we succeeded then we use it otherwise enable
* broadcast on the interface address
*/
if (interf->bfd != INVALID_SOCKET) {
nif++;
interf->flags |= INT_BCASTOPEN;
msyslog(LOG_INFO,
"Listen for broadcasts to %s on interface #%d %s",
stoa(&interf->bcast), interf->ifnum, interf->name);
} else switch (errno) {
/* Silently ignore EADDRINUSE as we probably
* opened the socket already for an address in
* the same network */
case EADDRINUSE:
/* Some systems cannot bind a socket to a broadcast
* address, as that is not a valid host address. */
case EADDRNOTAVAIL:
# ifdef SYS_WINNT /*TODO: use for other systems, too? */
/* avoid recurrence here -- if we already have a
* regular socket, it's quite useless to try this
* again.
*/
if (interf->fd != INVALID_SOCKET) {
interf->flags |= INT_BCASTOPEN;
nif++;
}
# endif
break;
default:
msyslog(LOG_INFO,
"failed to listen for broadcasts to %s on interface #%d %s",
stoa(&interf->bcast), interf->ifnum, interf->name);
break;
}
}
set_reuseaddr(0);
if (nif != 0) {
broadcast_client_enabled = ISC_TRUE;
DPRINTF(1, ("io_setbclient: listening to %d broadcast addresses\n", nif));
} else {
broadcast_client_enabled = ISC_FALSE;
msyslog(LOG_ERR,
"Unable to listen for broadcasts, no broadcast interfaces available");
}
#else
msyslog(LOG_ERR,
"io_setbclient: Broadcast Client disabled by build");
#endif /* OPEN_BCAST_SOCKET */
}
/*
* io_unsetbclient - close the broadcast client sockets
*/
void
io_unsetbclient(void)
{
endpt *ep;
for (ep = ep_list; ep != NULL; ep = ep->elink) {
if (INT_WILDCARD & ep->flags)
continue;
if (!(INT_BCASTOPEN & ep->flags))
continue;
if (ep->bfd != INVALID_SOCKET) {
/* destroy broadcast listening socket */
msyslog(LOG_INFO,
"stop listening for broadcasts to %s on interface #%d %s",
stoa(&ep->bcast), ep->ifnum, ep->name);
# ifdef HAVE_IO_COMPLETION_PORT
io_completion_port_remove_socket(ep->bfd, ep);
# endif
close_and_delete_fd_from_list(ep->bfd);
ep->bfd = INVALID_SOCKET;
}
ep->flags &= ~INT_BCASTOPEN;
}
broadcast_client_enabled = ISC_FALSE;
}
/*
* io_multicast_add() - add multicast group address
*/
void
io_multicast_add(
sockaddr_u *addr
)
{
#ifdef MCAST
endpt * ep;
endpt * one_ep;
/*
* Check to see if this is a multicast address
*/
if (!addr_ismulticast(addr))
return;
/* If we already have it we can just return */
if (NULL != find_flagged_addr_in_list(addr, INT_MCASTOPEN)) {
msyslog(LOG_INFO,
"Duplicate request found for multicast address %s",
stoa(addr));
return;
}
# ifndef MULTICAST_NONEWSOCKET
ep = new_interface(NULL);
/*
* Open a new socket for the multicast address
*/
ep->sin = *addr;
SET_PORT(&ep->sin, NTP_PORT);
ep->family = AF(&ep->sin);
AF(&ep->mask) = ep->family;
SET_ONESMASK(&ep->mask);
set_reuseaddr(1);
ep->bfd = INVALID_SOCKET;
ep->fd = open_socket(&ep->sin, 0, 0, ep);
if (ep->fd != INVALID_SOCKET) {
ep->ignore_packets = ISC_FALSE;
ep->flags |= INT_MCASTIF;
strlcpy(ep->name, "multicast", sizeof(ep->name));
DPRINT_INTERFACE(2, (ep, "multicast add ", "\n"));
add_interface(ep);
log_listen_address(ep);
} else {
/* bind failed, re-use wildcard interface */
delete_interface(ep);
if (IS_IPV4(addr))
ep = wildipv4;
else if (IS_IPV6(addr))
ep = wildipv6;
else
ep = NULL;
if (ep != NULL) {
/* HACK ! -- stuff in an address */
/* because we don't bind addr? DH */
ep->bcast = *addr;
msyslog(LOG_ERR,
"multicast address %s using wildcard interface #%d %s",
stoa(addr), ep->ifnum, ep->name);
} else {
msyslog(LOG_ERR,
"No multicast socket available to use for address %s",
stoa(addr));
return;
}
}
{ /* in place of the { following for in #else clause */
one_ep = ep;
# else /* MULTICAST_NONEWSOCKET follows */
/*
* For the case where we can't use a separate socket (Windows)
* join each applicable endpoint socket to the group address.
*/
if (IS_IPV4(addr))
one_ep = wildipv4;
else
one_ep = wildipv6;
for (ep = ep_list; ep != NULL; ep = ep->elink) {
if (ep->ignore_packets || AF(&ep->sin) != AF(addr) ||
!(INT_MULTICAST & ep->flags) ||
(INT_LOOPBACK | INT_WILDCARD) & ep->flags)
continue;
one_ep = ep;
# endif /* MULTICAST_NONEWSOCKET */
if (socket_multicast_enable(ep, addr))
msyslog(LOG_INFO,
"Joined %s socket to multicast group %s",
stoa(&ep->sin),
stoa(addr));
}
add_addr_to_list(addr, one_ep);
#else /* !MCAST follows*/
msyslog(LOG_ERR,
"Can not add multicast address %s: no multicast support",
stoa(addr));
#endif
return;
}
/*
* io_multicast_del() - delete multicast group address
*/
void
io_multicast_del(
sockaddr_u * addr
)
{
#ifdef MCAST
endpt *iface;
/*
* Check to see if this is a multicast address
*/
if (!addr_ismulticast(addr)) {
msyslog(LOG_ERR, "invalid multicast address %s",
stoa(addr));
return;
}
/*
* Disable reception of multicast packets
*/
while ((iface = find_flagged_addr_in_list(addr, INT_MCASTOPEN))
!= NULL)
socket_multicast_disable(iface, addr);
delete_addr_from_list(addr);
#else /* not MCAST */
msyslog(LOG_ERR,
"Can not delete multicast address %s: no multicast support",
stoa(addr));
#endif /* not MCAST */
}
/*
* open_socket - open a socket, returning the file descriptor
*/
static SOCKET
open_socket(
sockaddr_u * addr,
int bcast,
int turn_off_reuse,
endpt * interf
)
{
SOCKET fd;
int errval;
/*
* int is OK for REUSEADR per
* http://www.kohala.com/start/mcast.api.txt
*/
int on = 1;
int off = 0;
if (IS_IPV6(addr) && !ipv6_works)
return INVALID_SOCKET;
/* create a datagram (UDP) socket */
fd = socket(AF(addr), SOCK_DGRAM, 0);
if (INVALID_SOCKET == fd) {
errval = socket_errno();
msyslog(LOG_ERR,
"socket(AF_INET%s, SOCK_DGRAM, 0) failed on address %s: %m",
IS_IPV6(addr) ? "6" : "", stoa(addr));
if (errval == EPROTONOSUPPORT ||
errval == EAFNOSUPPORT ||
errval == EPFNOSUPPORT)
return (INVALID_SOCKET);
errno = errval;
msyslog(LOG_ERR,
"unexpected socket() error %m code %d (not EPROTONOSUPPORT nor EAFNOSUPPORT nor EPFNOSUPPORT) - exiting",
errno);
exit(1);
}
#ifdef SYS_WINNT
connection_reset_fix(fd, addr);
#endif
/*
* Fixup the file descriptor for some systems
* See bug #530 for details of the issue.
*/
fd = move_fd(fd);
/*
* set SO_REUSEADDR since we will be binding the same port
* number on each interface according to turn_off_reuse.
* This is undesirable on Windows versions starting with
* Windows XP (numeric version 5.1).
*/
#ifdef SYS_WINNT
if (isc_win32os_versioncheck(5, 1, 0, 0) < 0) /* before 5.1 */
#endif
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(char *)((turn_off_reuse)
? &off
: &on),
sizeof(on))) {
msyslog(LOG_ERR,
"setsockopt SO_REUSEADDR %s fails for address %s: %m",
(turn_off_reuse)
? "off"
: "on",
stoa(addr));
closesocket(fd);
return INVALID_SOCKET;
}
#ifdef SO_EXCLUSIVEADDRUSE
/*
* setting SO_EXCLUSIVEADDRUSE on the wildcard we open
* first will cause more specific binds to fail.
*/
if (!(interf->flags & INT_WILDCARD))
set_excladdruse(fd);
#endif
/*
* IPv4 specific options go here
*/
if (IS_IPV4(addr)) {
#if defined(IPPROTO_IP) && defined(IP_TOS)
if (setsockopt(fd, IPPROTO_IP, IP_TOS, (char*)&qos,
sizeof(qos)))
msyslog(LOG_ERR,
"setsockopt IP_TOS (%02x) fails on address %s: %m",
qos, stoa(addr));
#endif /* IPPROTO_IP && IP_TOS */
if (bcast)
socket_broadcast_enable(interf, fd, addr);
}
/*
* IPv6 specific options go here
*/
if (IS_IPV6(addr)) {
#if defined(IPPROTO_IPV6) && defined(IPV6_TCLASS)
if (setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, (char*)&qos,
sizeof(qos)))
msyslog(LOG_ERR,
"setsockopt IPV6_TCLASS (%02x) fails on address %s: %m",
qos, stoa(addr));
#endif /* IPPROTO_IPV6 && IPV6_TCLASS */
#ifdef IPV6_V6ONLY
if (isc_net_probe_ipv6only() == ISC_R_SUCCESS
&& setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY,
(char*)&on, sizeof(on)))
msyslog(LOG_ERR,
"setsockopt IPV6_V6ONLY on fails on address %s: %m",
stoa(addr));
#endif
#ifdef IPV6_BINDV6ONLY
if (setsockopt(fd, IPPROTO_IPV6, IPV6_BINDV6ONLY,
(char*)&on, sizeof(on)))
msyslog(LOG_ERR,
"setsockopt IPV6_BINDV6ONLY on fails on address %s: %m",
stoa(addr));
#endif
}
#ifdef OS_NEEDS_REUSEADDR_FOR_IFADDRBIND
/*
* some OSes don't allow binding to more specific
* addresses if a wildcard address already bound
* to the port and SO_REUSEADDR is not set
*/
if (!is_wildcard_addr(addr))
set_wildcard_reuse(AF(addr), 1);
#endif
/*
* bind the local address.
*/
errval = bind(fd, &addr->sa, SOCKLEN(addr));
#ifdef OS_NEEDS_REUSEADDR_FOR_IFADDRBIND
if (!is_wildcard_addr(addr))
set_wildcard_reuse(AF(addr), 0);
#endif
if (errval < 0) {
/*
* Don't log this under all conditions
*/
if (turn_off_reuse == 0
#ifdef DEBUG
|| debug > 1
#endif
) {
msyslog(LOG_ERR,
"bind(%d) AF_INET%s %s#%d%s flags 0x%x failed: %m",
fd, IS_IPV6(addr) ? "6" : "",
stoa(addr), SRCPORT(addr),
IS_MCAST(addr) ? " (multicast)" : "",
interf->flags);
}
closesocket(fd);
return INVALID_SOCKET;
}
#ifdef HAVE_TIMESTAMP
{
if (setsockopt(fd, SOL_SOCKET, SO_TIMESTAMP,
(char*)&on, sizeof(on)))
msyslog(LOG_DEBUG,
"setsockopt SO_TIMESTAMP on fails on address %s: %m",
stoa(addr));
else
DPRINTF(4, ("setsockopt SO_TIMESTAMP enabled on fd %d address %s\n",
fd, stoa(addr)));
}
#endif
#ifdef HAVE_TIMESTAMPNS
{
if (setsockopt(fd, SOL_SOCKET, SO_TIMESTAMPNS,
(char*)&on, sizeof(on)))
msyslog(LOG_DEBUG,
"setsockopt SO_TIMESTAMPNS on fails on address %s: %m",
stoa(addr));
else
DPRINTF(4, ("setsockopt SO_TIMESTAMPNS enabled on fd %d address %s\n",
fd, stoa(addr)));
}
#endif
#ifdef HAVE_BINTIME
{
if (setsockopt(fd, SOL_SOCKET, SO_BINTIME,
(char*)&on, sizeof(on)))
msyslog(LOG_DEBUG,
"setsockopt SO_BINTIME on fails on address %s: %m",
stoa(addr));
else
DPRINTF(4, ("setsockopt SO_BINTIME enabled on fd %d address %s\n",
fd, stoa(addr)));
}
#endif
DPRINTF(4, ("bind(%d) AF_INET%s, addr %s%%%d#%d, flags 0x%x\n",
fd, IS_IPV6(addr) ? "6" : "", stoa(addr),
SCOPE(addr), SRCPORT(addr), interf->flags));
make_socket_nonblocking(fd);
#ifdef HAVE_SIGNALED_IO
init_socket_sig(fd);
#endif /* not HAVE_SIGNALED_IO */
add_fd_to_list(fd, FD_TYPE_SOCKET);
#if !defined(SYS_WINNT) && !defined(VMS)
DPRINTF(4, ("flags for fd %d: 0x%x\n", fd,
fcntl(fd, F_GETFL, 0)));
#endif /* SYS_WINNT || VMS */
#if defined(HAVE_IO_COMPLETION_PORT)
/*
* Add the socket to the completion port
*/
if (!io_completion_port_add_socket(fd, interf, bcast)) {
msyslog(LOG_ERR, "unable to set up io completion port - EXITING");
exit(1);
}
#endif
return fd;
}
/* XXX ELIMINATE sendpkt similar in ntpq.c, ntpdc.c, ntp_io.c, ntptrace.c */
/*
* sendpkt - send a packet to the specified destination. Maintain a
* send error cache so that only the first consecutive error for a
* destination is logged.
*/
void
sendpkt(
sockaddr_u * dest,
struct interface * ep,
int ttl,
struct pkt * pkt,
int len
)
{
endpt * src;
int ismcast;
int cc;
int rc;
u_char cttl;
ismcast = IS_MCAST(dest);
if (!ismcast)
src = ep;
else
src = (IS_IPV4(dest))
? mc4_list
: mc6_list;
if (NULL == src) {
/*
* unbound peer - drop request and wait for better
* network conditions
*/
DPRINTF(2, ("%ssendpkt(dst=%s, ttl=%d, len=%d): no interface - IGNORED\n",
ismcast ? "\tMCAST\t***** " : "",
stoa(dest), ttl, len));
return;
}
do {
DPRINTF(2, ("%ssendpkt(%d, dst=%s, src=%s, ttl=%d, len=%d)\n",
ismcast ? "\tMCAST\t***** " : "", src->fd,
stoa(dest), stoa(&src->sin), ttl, len));
#ifdef MCAST
/*
* for the moment we use the bcast option to set multicast ttl
*/
if (ismcast && ttl > 0 && ttl != src->last_ttl) {
/*
* set the multicast ttl for outgoing packets
*/
switch (AF(&src->sin)) {
case AF_INET :
cttl = (u_char)ttl;
rc = setsockopt(src->fd, IPPROTO_IP,
IP_MULTICAST_TTL,
(void *)&cttl,
sizeof(cttl));
break;
# ifdef INCLUDE_IPV6_SUPPORT
case AF_INET6 :
rc = setsockopt(src->fd, IPPROTO_IPV6,
IPV6_MULTICAST_HOPS,
(void *)&ttl,
sizeof(ttl));
break;
# endif /* INCLUDE_IPV6_SUPPORT */
default:
rc = 0;
}
if (!rc)
src->last_ttl = ttl;
else
msyslog(LOG_ERR,
"setsockopt IP_MULTICAST_TTL/IPV6_MULTICAST_HOPS fails on address %s: %m",
stoa(&src->sin));
}
#endif /* MCAST */
#ifdef SIM
cc = simulate_server(dest, src, pkt);
#elif defined(HAVE_IO_COMPLETION_PORT)
cc = io_completion_port_sendto(src, src->fd, pkt,
(size_t)len, (sockaddr_u *)&dest->sa);
#else
cc = sendto(src->fd, (char *)pkt, (u_int)len, 0,
&dest->sa, SOCKLEN(dest));
#endif
if (cc == -1) {
src->notsent++;
packets_notsent++;
} else {
src->sent++;
packets_sent++;
}
if (ismcast)
src = src->mclink;
} while (ismcast && src != NULL);
}
#if !defined(HAVE_IO_COMPLETION_PORT)
#if !defined(HAVE_SIGNALED_IO)
/*
* fdbits - generate ascii representation of fd_set (FAU debug support)
* HFDF format - highest fd first.
*/
static char *
fdbits(
int count,
const fd_set* set
)
{
static char buffer[256];
char * buf = buffer;
count = min(count, 255);
while (count >= 0) {
*buf++ = FD_ISSET(count, set) ? '#' : '-';
count--;
}
*buf = '\0';
return buffer;
}
#endif
#ifdef REFCLOCK
/*
* Routine to read the refclock packets for a specific interface
* Return the number of bytes read. That way we know if we should
* read it again or go on to the next one if no bytes returned
*/
static inline int
read_refclock_packet(
SOCKET fd,
struct refclockio * rp,
l_fp ts
)
{
u_int read_count;
int buflen;
int saved_errno;
int consumed;
struct recvbuf * rb;
rb = get_free_recv_buffer();
if (NULL == rb) {
/*
* No buffer space available - just drop the packet
*/
char buf[RX_BUFF_SIZE];
buflen = read(fd, buf, sizeof buf);
packets_dropped++;
return (buflen);
}
/* TALOS-CAN-0064: avoid signed/unsigned clashes that can lead
* to buffer overrun and memory corruption
*/
if (rp->datalen <= 0 || (size_t)rp->datalen > sizeof(rb->recv_space))
read_count = sizeof(rb->recv_space);
else
read_count = (u_int)rp->datalen;
do {
buflen = read(fd, (char *)&rb->recv_space, read_count);
} while (buflen < 0 && EINTR == errno);
if (buflen <= 0) {
saved_errno = errno;
freerecvbuf(rb);
errno = saved_errno;
return buflen;
}
/*
* Got one. Mark how and when it got here,
* put it on the full list and do bookkeeping.
*/
rb->recv_length = buflen;
rb->recv_peer = rp->srcclock;
rb->dstadr = 0;
rb->fd = fd;
rb->recv_time = ts;
rb->receiver = rp->clock_recv;
consumed = indicate_refclock_packet(rp, rb);
if (!consumed) {
rp->recvcount++;
packets_received++;
}
return buflen;
}
#endif /* REFCLOCK */
#ifdef HAVE_PACKET_TIMESTAMP
/*
* extract timestamps from control message buffer
*/
static l_fp
fetch_timestamp(
struct recvbuf * rb,
struct msghdr * msghdr,
l_fp ts
)
{
struct cmsghdr * cmsghdr;
unsigned long ticks;
double fuzz;
l_fp lfpfuzz;
l_fp nts;
#ifdef DEBUG_TIMING
l_fp dts;
#endif
cmsghdr = CMSG_FIRSTHDR(msghdr);
while (cmsghdr != NULL) {
switch (cmsghdr->cmsg_type)
{
#ifdef HAVE_BINTIME
case SCM_BINTIME:
#endif /* HAVE_BINTIME */
#ifdef HAVE_TIMESTAMPNS
case SCM_TIMESTAMPNS:
#endif /* HAVE_TIMESTAMPNS */
#ifdef HAVE_TIMESTAMP
case SCM_TIMESTAMP:
#endif /* HAVE_TIMESTAMP */
#if defined(HAVE_BINTIME) || defined (HAVE_TIMESTAMPNS) || defined(HAVE_TIMESTAMP)
switch (cmsghdr->cmsg_type)
{
#ifdef HAVE_BINTIME
case SCM_BINTIME:
{
struct bintime pbt;
memcpy(&pbt, CMSG_DATA(cmsghdr), sizeof(pbt));
/*
* bintime documentation is at http://phk.freebsd.dk/pubs/timecounter.pdf
*/
nts.l_i = pbt.sec + JAN_1970;
nts.l_uf = (u_int32)(pbt.frac >> 32);
if (sys_tick > measured_tick &&
sys_tick > 1e-9) {
ticks = (unsigned long)(nts.l_uf / (unsigned long)(sys_tick * FRAC));
nts.l_uf = (unsigned long)(ticks * (unsigned long)(sys_tick * FRAC));
}
DPRINTF(4, ("fetch_timestamp: system bintime network time stamp: %ld.%09lu\n",
pbt.sec, (unsigned long)((nts.l_uf / FRAC) * 1e9)));
}
break;
#endif /* HAVE_BINTIME */
#ifdef HAVE_TIMESTAMPNS
case SCM_TIMESTAMPNS:
{
struct timespec pts;
memcpy(&pts, CMSG_DATA(cmsghdr), sizeof(pts));
if (sys_tick > measured_tick &&
sys_tick > 1e-9) {
ticks = (unsigned long)((pts.tv_nsec * 1e-9) /
sys_tick);
pts.tv_nsec = (long)(ticks * 1e9 *
sys_tick);
}
DPRINTF(4, ("fetch_timestamp: system nsec network time stamp: %ld.%09ld\n",
pts.tv_sec, pts.tv_nsec));
nts = tspec_stamp_to_lfp(pts);
}
break;
#endif /* HAVE_TIMESTAMPNS */
#ifdef HAVE_TIMESTAMP
case SCM_TIMESTAMP:
{
struct timeval ptv;
memcpy(&ptv, CMSG_DATA(cmsghdr), sizeof(ptv));
if (sys_tick > measured_tick &&
sys_tick > 1e-6) {
ticks = (unsigned long)((ptv.tv_usec * 1e-6) /
sys_tick);
ptv.tv_usec = (long)(ticks * 1e6 *
sys_tick);
}
DPRINTF(4, ("fetch_timestamp: system usec network time stamp: %jd.%06ld\n",
(intmax_t)ptv.tv_sec, (long)ptv.tv_usec));
nts = tval_stamp_to_lfp(ptv);
}
break;
#endif /* HAVE_TIMESTAMP */
}
fuzz = ntp_random() * 2. / FRAC * sys_fuzz;
DTOLFP(fuzz, &lfpfuzz);
L_ADD(&nts, &lfpfuzz);
#ifdef DEBUG_TIMING
dts = ts;
L_SUB(&dts, &nts);
collect_timing(rb, "input processing delay", 1,
&dts);
DPRINTF(4, ("fetch_timestamp: timestamp delta: %s (incl. fuzz)\n",
lfptoa(&dts, 9)));
#endif /* DEBUG_TIMING */
ts = nts; /* network time stamp */
break;
#endif /* HAVE_BINTIME || HAVE_TIMESTAMPNS || HAVE_TIMESTAMP */
default:
DPRINTF(4, ("fetch_timestamp: skipping control message 0x%x\n",
cmsghdr->cmsg_type));
}
cmsghdr = CMSG_NXTHDR(msghdr, cmsghdr);
}
return ts;
}
#endif /* HAVE_PACKET_TIMESTAMP */
/*
* Routine to read the network NTP packets for a specific interface
* Return the number of bytes read. That way we know if we should
* read it again or go on to the next one if no bytes returned
*/
static inline int
read_network_packet(
SOCKET fd,
struct interface * itf,
l_fp ts
)
{
GETSOCKNAME_SOCKLEN_TYPE fromlen;
int buflen;
register struct recvbuf *rb;
#ifdef HAVE_PACKET_TIMESTAMP
struct msghdr msghdr;
struct iovec iovec;
char control[CMSG_BUFSIZE];
#endif
/*
* Get a buffer and read the frame. If we
* haven't got a buffer, or this is received
* on a disallowed socket, just dump the
* packet.
*/
rb = get_free_recv_buffer();
if (NULL == rb || itf->ignore_packets) {
char buf[RX_BUFF_SIZE];
sockaddr_u from;
if (rb != NULL)
freerecvbuf(rb);
fromlen = sizeof(from);
buflen = recvfrom(fd, buf, sizeof(buf), 0,
&from.sa, &fromlen);
DPRINTF(4, ("%s on (%lu) fd=%d from %s\n",
(itf->ignore_packets)
? "ignore"
: "drop",
free_recvbuffs(), fd, stoa(&from)));
if (itf->ignore_packets)
packets_ignored++;
else
packets_dropped++;
return (buflen);
}
fromlen = sizeof(rb->recv_srcadr);
#ifndef HAVE_PACKET_TIMESTAMP
rb->recv_length = recvfrom(fd, (char *)&rb->recv_space,
sizeof(rb->recv_space), 0,
&rb->recv_srcadr.sa, &fromlen);
#else
iovec.iov_base = &rb->recv_space;
iovec.iov_len = sizeof(rb->recv_space);
msghdr.msg_name = &rb->recv_srcadr;
msghdr.msg_namelen = fromlen;
msghdr.msg_iov = &iovec;
msghdr.msg_iovlen = 1;
msghdr.msg_control = (void *)&control;
msghdr.msg_controllen = sizeof(control);
msghdr.msg_flags = 0;
rb->recv_length = recvmsg(fd, &msghdr, 0);
#endif
buflen = rb->recv_length;
if (buflen == 0 || (buflen == -1 &&
(EWOULDBLOCK == errno
#ifdef EAGAIN
|| EAGAIN == errno
#endif
))) {
freerecvbuf(rb);
return (buflen);
} else if (buflen < 0) {
msyslog(LOG_ERR, "recvfrom(%s) fd=%d: %m",
stoa(&rb->recv_srcadr), fd);
DPRINTF(5, ("read_network_packet: fd=%d dropped (bad recvfrom)\n",
fd));
freerecvbuf(rb);
return (buflen);
}
DPRINTF(3, ("read_network_packet: fd=%d length %d from %s\n",
fd, buflen, stoa(&rb->recv_srcadr)));
#ifdef ENABLE_BUG3020_FIX
if (ISREFCLOCKADR(&rb->recv_srcadr)) {
msyslog(LOG_ERR, "recvfrom(%s) fd=%d: refclock srcadr on a network interface!",
stoa(&rb->recv_srcadr), fd);
DPRINTF(1, ("read_network_packet: fd=%d dropped (refclock srcadr))\n",
fd));
packets_dropped++;
freerecvbuf(rb);
return (buflen);
}
#endif
/*
** Bug 2672: Some OSes (MacOSX and Linux) don't block spoofed ::1
*/
if (AF_INET6 == itf->family) {
DPRINTF(2, ("Got an IPv6 packet, from <%s> (%d) to <%s> (%d)\n",
stoa(&rb->recv_srcadr),
IN6_IS_ADDR_LOOPBACK(PSOCK_ADDR6(&rb->recv_srcadr)),
stoa(&itf->sin),
!IN6_IS_ADDR_LOOPBACK(PSOCK_ADDR6(&itf->sin))
));
if ( IN6_IS_ADDR_LOOPBACK(PSOCK_ADDR6(&rb->recv_srcadr))
&& !IN6_IS_ADDR_LOOPBACK(PSOCK_ADDR6(&itf->sin))
) {
packets_dropped++;
DPRINTF(2, ("DROPPING that packet\n"));
freerecvbuf(rb);
return buflen;
}
DPRINTF(2, ("processing that packet\n"));
}
/*
* Got one. Mark how and when it got here,
* put it on the full list and do bookkeeping.
*/
rb->dstadr = itf;
rb->fd = fd;
#ifdef HAVE_PACKET_TIMESTAMP
/* pick up a network time stamp if possible */
ts = fetch_timestamp(rb, &msghdr, ts);
#endif
rb->recv_time = ts;
rb->receiver = receive;
add_full_recv_buffer(rb);
itf->received++;
packets_received++;
return (buflen);
}
/*
* attempt to handle io (select()/signaled IO)
*/
void
io_handler(void)
{
# ifndef HAVE_SIGNALED_IO
fd_set rdfdes;
int nfound;
/*
* Use select() on all on all input fd's for unlimited
* time. select() will terminate on SIGALARM or on the
* reception of input. Using select() means we can't do
* robust signal handling and we get a potential race
* between checking for alarms and doing the select().
* Mostly harmless, I think.
*/
/*
* On VMS, I suspect that select() can't be interrupted
* by a "signal" either, so I take the easy way out and
* have select() time out after one second.
* System clock updates really aren't time-critical,
* and - lacking a hardware reference clock - I have
* yet to learn about anything else that is.
*/
++handler_calls;
rdfdes = activefds;
# if !defined(VMS) && !defined(SYS_VXWORKS)
nfound = select(maxactivefd + 1, &rdfdes, NULL,
NULL, NULL);
# else /* VMS, VxWorks */
/* make select() wake up after one second */
{
struct timeval t1;
t1.tv_sec = 1;
t1.tv_usec = 0;
nfound = select(maxactivefd + 1,
&rdfdes, NULL, NULL,
&t1);
}
# endif /* VMS, VxWorks */
if (nfound < 0 && sanitize_fdset(errno)) {
struct timeval t1;
t1.tv_sec = 0;
t1.tv_usec = 0;
rdfdes = activefds;
nfound = select(maxactivefd + 1,
&rdfdes, NULL, NULL,
&t1);
}
if (nfound > 0) {
l_fp ts;
get_systime(&ts);
input_handler_scan(&ts, &rdfdes);
} else if (nfound == -1 && errno != EINTR) {
msyslog(LOG_ERR, "select() error: %m");
}
# ifdef DEBUG
else if (debug > 4) {
msyslog(LOG_DEBUG, "select(): nfound=%d, error: %m", nfound);
} else {
DPRINTF(3, ("select() returned %d: %m\n", nfound));
}
# endif /* DEBUG */
# else /* HAVE_SIGNALED_IO */
wait_for_signal();
# endif /* HAVE_SIGNALED_IO */
}
#ifdef HAVE_SIGNALED_IO
/*
* input_handler - receive packets asynchronously
*
* ALWAYS IN SIGNAL HANDLER CONTEXT -- only async-safe functions allowed!
*/
static RETSIGTYPE
input_handler(
l_fp * cts
)
{
int n;
struct timeval tvzero;
fd_set fds;
++handler_calls;
/*
* Do a poll to see who has data
*/
fds = activefds;
tvzero.tv_sec = tvzero.tv_usec = 0;
n = select(maxactivefd + 1, &fds, NULL, NULL, &tvzero);
if (n < 0 && sanitize_fdset(errno)) {
fds = activefds;
tvzero.tv_sec = tvzero.tv_usec = 0;
n = select(maxactivefd + 1, &fds, NULL, NULL, &tvzero);
}
if (n > 0)
input_handler_scan(cts, &fds);
}
#endif /* HAVE_SIGNALED_IO */
/*
* Try to sanitize the global FD set
*
* SIGNAL HANDLER CONTEXT if HAVE_SIGNALED_IO, ordinary userspace otherwise
*/
static int/*BOOL*/
sanitize_fdset(
int errc
)
{
int j, b, maxscan;
# ifndef HAVE_SIGNALED_IO
/*
* extended FAU debugging output
*/
if (errc != EINTR) {
msyslog(LOG_ERR,
"select(%d, %s, 0L, 0L, &0.0) error: %m",
maxactivefd + 1,
fdbits(maxactivefd, &activefds));
}
# endif
if (errc != EBADF)
return FALSE;
/* if we have oviously bad FDs, try to sanitize the FD set. */
for (j = 0, maxscan = 0; j <= maxactivefd; j++) {
if (FD_ISSET(j, &activefds)) {
if (-1 != read(j, &b, 0)) {
maxscan = j;
continue;
}
# ifndef HAVE_SIGNALED_IO
msyslog(LOG_ERR,
"Removing bad file descriptor %d from select set",
j);
# endif
FD_CLR(j, &activefds);
}
}
if (maxactivefd != maxscan)
maxactivefd = maxscan;
return TRUE;
}
/*
* scan the known FDs (clocks, servers, ...) for presence in a 'fd_set'.
*
* SIGNAL HANDLER CONTEXT if HAVE_SIGNALED_IO, ordinary userspace otherwise
*/
static void
input_handler_scan(
const l_fp * cts,
const fd_set * pfds
)
{
int buflen;
u_int idx;
int doing;
SOCKET fd;
blocking_child *c;
l_fp ts; /* Timestamp at BOselect() gob */
#if defined(DEBUG_TIMING)
l_fp ts_e; /* Timestamp at EOselect() gob */
#endif
endpt * ep;
#ifdef REFCLOCK
struct refclockio *rp;
int saved_errno;
const char * clk;
#endif
#ifdef HAS_ROUTING_SOCKET
struct asyncio_reader * asyncio_reader;
struct asyncio_reader * next_asyncio_reader;
#endif
++handler_pkts;
ts = *cts;
#ifdef REFCLOCK
/*
* Check out the reference clocks first, if any
*/
for (rp = refio; rp != NULL; rp = rp->next) {
fd = rp->fd;
if (!FD_ISSET(fd, pfds))
continue;
buflen = read_refclock_packet(fd, rp, ts);
/*
* The first read must succeed after select() indicates
* readability, or we've reached a permanent EOF.
* http://bugs.ntp.org/1732 reported ntpd munching CPU
* after a USB GPS was unplugged because select was
* indicating EOF but ntpd didn't remove the descriptor
* from the activefds set.
*/
if (buflen < 0 && EAGAIN != errno) {
saved_errno = errno;
clk = refnumtoa(&rp->srcclock->srcadr);
errno = saved_errno;
msyslog(LOG_ERR, "%s read: %m", clk);
maintain_activefds(fd, TRUE);
} else if (0 == buflen) {
clk = refnumtoa(&rp->srcclock->srcadr);
msyslog(LOG_ERR, "%s read EOF", clk);
maintain_activefds(fd, TRUE);
} else {
/* drain any remaining refclock input */
do {
buflen = read_refclock_packet(fd, rp, ts);
} while (buflen > 0);
}
}
#endif /* REFCLOCK */
/*
* Loop through the interfaces looking for data to read.
*/
for (ep = ep_list; ep != NULL; ep = ep->elink) {
for (doing = 0; doing < 2; doing++) {
if (!doing) {
fd = ep->fd;
} else {
if (!(ep->flags & INT_BCASTOPEN))
break;
fd = ep->bfd;
}
if (fd < 0)
continue;
if (FD_ISSET(fd, pfds))
do {
buflen = read_network_packet(
fd, ep, ts);
} while (buflen > 0);
/* Check more interfaces */
}
}
#ifdef HAS_ROUTING_SOCKET
/*
* scan list of asyncio readers - currently only used for routing sockets
*/
asyncio_reader = asyncio_reader_list;
while (asyncio_reader != NULL) {
/* callback may unlink and free asyncio_reader */
next_asyncio_reader = asyncio_reader->link;
if (FD_ISSET(asyncio_reader->fd, pfds))
(*asyncio_reader->receiver)(asyncio_reader);
asyncio_reader = next_asyncio_reader;
}
#endif /* HAS_ROUTING_SOCKET */
/*
* Check for a response from a blocking child
*/
for (idx = 0; idx < blocking_children_alloc; idx++) {
c = blocking_children[idx];
if (NULL == c || -1 == c->resp_read_pipe)
continue;
if (FD_ISSET(c->resp_read_pipe, pfds)) {
++c->resp_ready_seen;
++blocking_child_ready_seen;
}
}
/* We've done our work */
#if defined(DEBUG_TIMING)
get_systime(&ts_e);
/*
* (ts_e - ts) is the amount of time we spent
* processing this gob of file descriptors. Log
* it.
*/
L_SUB(&ts_e, &ts);
collect_timing(NULL, "input handler", 1, &ts_e);
if (debug > 3)
msyslog(LOG_DEBUG,
"input_handler: Processed a gob of fd's in %s msec",
lfptoms(&ts_e, 6));
#endif /* DEBUG_TIMING */
}
#endif /* !HAVE_IO_COMPLETION_PORT */
/*
* find an interface suitable for the src address
*/
endpt *
select_peerinterface(
struct peer * peer,
sockaddr_u * srcadr,
endpt * dstadr
)
{
endpt *ep;
#ifndef SIM
endpt *wild;
wild = ANY_INTERFACE_CHOOSE(srcadr);
/*
* Initialize the peer structure and dance the interface jig.
* Reference clocks step the loopback waltz, the others
* squaredance around the interface list looking for a buddy. If
* the dance peters out, there is always the wildcard interface.
* This might happen in some systems and would preclude proper
* operation with public key cryptography.
*/
if (ISREFCLOCKADR(srcadr)) {
ep = loopback_interface;
} else if (peer->cast_flags &
(MDF_BCLNT | MDF_ACAST | MDF_MCAST | MDF_BCAST)) {
ep = findbcastinter(srcadr);
if (ep != NULL)
DPRINTF(4, ("Found *-cast interface %s for address %s\n",
stoa(&ep->sin), stoa(srcadr)));
else
DPRINTF(4, ("No *-cast local address found for address %s\n",
stoa(srcadr)));
} else {
ep = dstadr;
if (NULL == ep)
ep = wild;
}
/*
* If it is a multicast address, findbcastinter() may not find
* it. For unicast, we get to find the interface when dstadr is
* given to us as the wildcard (ANY_INTERFACE_CHOOSE). Either
* way, try a little harder.
*/
if (wild == ep)
ep = findinterface(srcadr);
/*
* we do not bind to the wildcard interfaces for output
* as our (network) source address would be undefined and
* crypto will not work without knowing the own transmit address
*/
if (ep != NULL && INT_WILDCARD & ep->flags)
if (!accept_wildcard_if_for_winnt)
ep = NULL;
#else /* SIM follows */
ep = loopback_interface;
#endif
return ep;
}
/*
* findinterface - find local interface corresponding to address
*/
endpt *
findinterface(
sockaddr_u *addr
)
{
endpt *iface;
iface = findlocalinterface(addr, INT_WILDCARD, 0);
if (NULL == iface) {
DPRINTF(4, ("Found no interface for address %s - returning wildcard\n",
stoa(addr)));
iface = ANY_INTERFACE_CHOOSE(addr);
} else
DPRINTF(4, ("Found interface #%d %s for address %s\n",
iface->ifnum, iface->name, stoa(addr)));
return iface;
}
/*
* findlocalinterface - find local interface corresponding to addr,
* which does not have any of flags set. If bast is nonzero, addr is
* a broadcast address.
*
* This code attempts to find the local sending address for an outgoing
* address by connecting a new socket to destinationaddress:NTP_PORT
* and reading the sockname of the resulting connect.
* the complicated sequence simulates the routing table lookup
* for to first hop without duplicating any of the routing logic into
* ntpd. preferably we would have used an API call - but its not there -
* so this is the best we can do here short of duplicating to entire routing
* logic in ntpd which would be a silly and really unportable thing to do.
*
*/
static endpt *
findlocalinterface(
sockaddr_u * addr,
int flags,
int bcast
)
{
GETSOCKNAME_SOCKLEN_TYPE sockaddrlen;
endpt * iface;
sockaddr_u saddr;
SOCKET s;
int rtn;
int on;
DPRINTF(4, ("Finding interface for addr %s in list of addresses\n",
stoa(addr)));
s = socket(AF(addr), SOCK_DGRAM, 0);
if (INVALID_SOCKET == s)
return NULL;
/*
* If we are looking for broadcast interface we need to set this
* socket to allow broadcast
*/
if (bcast) {
on = 1;
if (SOCKET_ERROR == setsockopt(s, SOL_SOCKET,
SO_BROADCAST,
(char *)&on,
sizeof(on))) {
closesocket(s);
return NULL;
}
}
rtn = connect(s, &addr->sa, SOCKLEN(addr));
if (SOCKET_ERROR == rtn) {
closesocket(s);
return NULL;
}
sockaddrlen = sizeof(saddr);
rtn = getsockname(s, &saddr.sa, &sockaddrlen);
closesocket(s);
if (SOCKET_ERROR == rtn)
return NULL;
DPRINTF(4, ("findlocalinterface: kernel maps %s to %s\n",
stoa(addr), stoa(&saddr)));
iface = getinterface(&saddr, flags);
/*
* if we didn't find an exact match on saddr, find the closest
* available local address. This handles the case of the
* address suggested by the kernel being excluded by nic rules
* or the user's -I and -L options to ntpd.
* See http://bugs.ntp.org/1184 and http://bugs.ntp.org/1683
* for more background.
*/
if (NULL == iface || iface->ignore_packets)
iface = findclosestinterface(&saddr,
flags | INT_LOOPBACK);
/* Don't use an interface which will ignore replies */
if (iface != NULL && iface->ignore_packets)
iface = NULL;
return iface;
}
/*
* findclosestinterface
*
* If there are -I/--interface or -L/novirtualips command-line options,
* or "nic" or "interface" rules in ntp.conf, findlocalinterface() may
* find the kernel's preferred local address for a given peer address is
* administratively unavailable to ntpd, and punt to this routine's more
* expensive search.
*
* Find the numerically closest local address to the one connect()
* suggested. This matches an address on the same subnet first, as
* needed by Bug 1184, and provides a consistent choice if there are
* multiple feasible local addresses, regardless of the order ntpd
* enumerated them.
*/
endpt *
findclosestinterface(
sockaddr_u * addr,
int flags
)
{
endpt * ep;
endpt * winner;
sockaddr_u addr_dist;
sockaddr_u min_dist;
ZERO_SOCK(&min_dist);
winner = NULL;
for (ep = ep_list; ep != NULL; ep = ep->elink) {
if (ep->ignore_packets ||
AF(addr) != ep->family ||
flags & ep->flags)
continue;
calc_addr_distance(&addr_dist, addr, &ep->sin);
if (NULL == winner ||
-1 == cmp_addr_distance(&addr_dist, &min_dist)) {
min_dist = addr_dist;
winner = ep;
}
}
if (NULL == winner)
DPRINTF(4, ("findclosestinterface(%s) failed\n",
stoa(addr)));
else
DPRINTF(4, ("findclosestinterface(%s) -> %s\n",
stoa(addr), stoa(&winner->sin)));
return winner;
}
/*
* calc_addr_distance - calculate the distance between two addresses,
* the absolute value of the difference between
* the addresses numerically, stored as an address.
*/
static void
calc_addr_distance(
sockaddr_u * dist,
const sockaddr_u * a1,
const sockaddr_u * a2
)
{
u_int32 a1val;
u_int32 a2val;
u_int32 v4dist;
int found_greater;
int a1_greater;
int i;
REQUIRE(AF(a1) == AF(a2));
ZERO_SOCK(dist);
AF(dist) = AF(a1);
/* v4 can be done a bit simpler */
if (IS_IPV4(a1)) {
a1val = SRCADR(a1);
a2val = SRCADR(a2);
v4dist = (a1val > a2val)
? a1val - a2val
: a2val - a1val;
SET_ADDR4(dist, v4dist);
return;
}
found_greater = FALSE;
a1_greater = FALSE; /* suppress pot. uninit. warning */
for (i = 0; i < (int)sizeof(NSRCADR6(a1)); i++) {
if (!found_greater &&
NSRCADR6(a1)[i] != NSRCADR6(a2)[i]) {
found_greater = TRUE;
a1_greater = (NSRCADR6(a1)[i] > NSRCADR6(a2)[i]);
}
if (!found_greater) {
NSRCADR6(dist)[i] = 0;
} else {
if (a1_greater)
NSRCADR6(dist)[i] = NSRCADR6(a1)[i] -
NSRCADR6(a2)[i];
else
NSRCADR6(dist)[i] = NSRCADR6(a2)[i] -
NSRCADR6(a1)[i];
}
}
}
/*
* cmp_addr_distance - compare two address distances, returning -1, 0,
* 1 to indicate their relationship.
*/
static int
cmp_addr_distance(
const sockaddr_u * d1,
const sockaddr_u * d2
)
{
int i;
REQUIRE(AF(d1) == AF(d2));
if (IS_IPV4(d1)) {
if (SRCADR(d1) < SRCADR(d2))
return -1;
else if (SRCADR(d1) == SRCADR(d2))
return 0;
else
return 1;
}
for (i = 0; i < (int)sizeof(NSRCADR6(d1)); i++) {
if (NSRCADR6(d1)[i] < NSRCADR6(d2)[i])
return -1;
else if (NSRCADR6(d1)[i] > NSRCADR6(d2)[i])
return 1;
}
return 0;
}
/*
* fetch an interface structure the matches the
* address and has the given flags NOT set
*/
endpt *
getinterface(
sockaddr_u * addr,
u_int32 flags
)
{
endpt *iface;
iface = find_addr_in_list(addr);
if (iface != NULL && (iface->flags & flags))
iface = NULL;
return iface;
}
/*
* findbcastinter - find broadcast interface corresponding to address
*/
endpt *
findbcastinter(
sockaddr_u *addr
)
{
endpt * iface;
iface = NULL;
#if !defined(MPE) && (defined(SIOCGIFCONF) || defined(SYS_WINNT))
DPRINTF(4, ("Finding broadcast/multicast interface for addr %s in list of addresses\n",
stoa(addr)));
iface = findlocalinterface(addr, INT_LOOPBACK | INT_WILDCARD,
1);
if (iface != NULL) {
DPRINTF(4, ("Easily found bcast-/mcast- interface index #%d %s\n",
iface->ifnum, iface->name));
return iface;
}
/*
* plan B - try to find something reasonable in our lists in
* case kernel lookup doesn't help
*/
for (iface = ep_list; iface != NULL; iface = iface->elink) {
if (iface->flags & INT_WILDCARD)
continue;
/* Don't bother with ignored interfaces */
if (iface->ignore_packets)
continue;
/*
* First look if this is the correct family
*/
if(AF(&iface->sin) != AF(addr))
continue;
/* Skip the loopback addresses */
if (iface->flags & INT_LOOPBACK)
continue;
/*
* If we are looking to match a multicast address and
* this interface is one...
*/
if (addr_ismulticast(addr)
&& (iface->flags & INT_MULTICAST)) {
#ifdef INCLUDE_IPV6_SUPPORT
/*
* ...it is the winner unless we're looking for
* an interface to use for link-local multicast
* and its address is not link-local.
*/
if (IS_IPV6(addr)
&& IN6_IS_ADDR_MC_LINKLOCAL(PSOCK_ADDR6(addr))
&& !IN6_IS_ADDR_LINKLOCAL(PSOCK_ADDR6(&iface->sin)))
continue;
#endif
break;
}
/*
* We match only those interfaces marked as
* broadcastable and either the explicit broadcast
* address or the network portion of the IP address.
* Sloppy.
*/
if (IS_IPV4(addr)) {
if (SOCK_EQ(&iface->bcast, addr))
break;
if ((NSRCADR(&iface->sin) & NSRCADR(&iface->mask))
== (NSRCADR(addr) & NSRCADR(&iface->mask)))
break;
}
#ifdef INCLUDE_IPV6_SUPPORT
else if (IS_IPV6(addr)) {
if (SOCK_EQ(&iface->bcast, addr))
break;
if (SOCK_EQ(netof(&iface->sin), netof(addr)))
break;
}
#endif
}
#endif /* SIOCGIFCONF */
if (NULL == iface) {
DPRINTF(4, ("No bcast interface found for %s\n",
stoa(addr)));
iface = ANY_INTERFACE_CHOOSE(addr);
} else {
DPRINTF(4, ("Found bcast-/mcast- interface index #%d %s\n",
iface->ifnum, iface->name));
}
return iface;
}
/*
* io_clr_stats - clear I/O module statistics
*/
void
io_clr_stats(void)
{
packets_dropped = 0;
packets_ignored = 0;
packets_received = 0;
packets_sent = 0;
packets_notsent = 0;
handler_calls = 0;
handler_pkts = 0;
io_timereset = current_time;
}
#ifdef REFCLOCK
/*
* io_addclock - add a reference clock to the list and arrange that we
* get SIGIO interrupts from it.
*/
int
io_addclock(
struct refclockio *rio
)
{
BLOCKIO();
/*
* Stuff the I/O structure in the list and mark the descriptor
* in use. There is a harmless (I hope) race condition here.
*/
rio->active = TRUE;
# ifdef HAVE_SIGNALED_IO
if (init_clock_sig(rio)) {
UNBLOCKIO();
return 0;
}
# elif defined(HAVE_IO_COMPLETION_PORT)
if (!io_completion_port_add_clock_io(rio)) {
UNBLOCKIO();
return 0;
}
# endif
/*
* enqueue
*/
LINK_SLIST(refio, rio, next);
/*
* register fd
*/
add_fd_to_list(rio->fd, FD_TYPE_FILE);
UNBLOCKIO();
return 1;
}
/*
* io_closeclock - close the clock in the I/O structure given
*/
void
io_closeclock(
struct refclockio *rio
)
{
struct refclockio *unlinked;
BLOCKIO();
/*
* Remove structure from the list
*/
rio->active = FALSE;
UNLINK_SLIST(unlinked, refio, rio, next, struct refclockio);
if (NULL != unlinked) {
/* Close the descriptor. The order of operations is
* important here in case of async / overlapped IO:
* only after we have removed the clock from the
* IO completion port we can be sure no further
* input is queued. So...
* - we first disable feeding to the queu by removing
* the clock from the IO engine
* - close the file (which brings down any IO on it)
* - clear the buffer from results for this fd
*/
# ifdef HAVE_IO_COMPLETION_PORT
io_completion_port_remove_clock_io(rio);
# endif
close_and_delete_fd_from_list(rio->fd);
purge_recv_buffers_for_fd(rio->fd);
rio->fd = -1;
}
UNBLOCKIO();
}
#endif /* REFCLOCK */
/*
* On NT a SOCKET is an unsigned int so we cannot possibly keep it in
* an array. So we use one of the ISC_LIST functions to hold the
* socket value and use that when we want to enumerate it.
*
* This routine is called by the forked intres child process to close
* all open sockets. On Windows there's no need as intres runs in
* the same process as a thread.
*/
#ifndef SYS_WINNT
void
kill_asyncio(
int startfd
)
{
BLOCKIO();
/*
* In the child process we do not maintain activefds and
* maxactivefd. Zeroing maxactivefd disables code which
* maintains it in close_and_delete_fd_from_list().
*/
maxactivefd = 0;
while (fd_list != NULL)
close_and_delete_fd_from_list(fd_list->fd);
UNBLOCKIO();
}
#endif /* !SYS_WINNT */
/*
* Add and delete functions for the list of open sockets
*/
static void
add_fd_to_list(
SOCKET fd,
enum desc_type type
)
{
vsock_t *lsock = emalloc(sizeof(*lsock));
lsock->fd = fd;
lsock->type = type;
LINK_SLIST(fd_list, lsock, link);
maintain_activefds(fd, 0);
}
static void
close_and_delete_fd_from_list(
SOCKET fd
)
{
vsock_t *lsock;
UNLINK_EXPR_SLIST(lsock, fd_list, fd ==
UNLINK_EXPR_SLIST_CURRENT()->fd, link, vsock_t);
if (NULL == lsock)
return;
switch (lsock->type) {
case FD_TYPE_SOCKET:
closesocket(lsock->fd);
break;
case FD_TYPE_FILE:
closeserial((int)lsock->fd);
break;
default:
msyslog(LOG_ERR,
"internal error - illegal descriptor type %d - EXITING",
(int)lsock->type);
exit(1);
}
free(lsock);
/*
* remove from activefds
*/
maintain_activefds(fd, 1);
}
static void
add_addr_to_list(
sockaddr_u * addr,
endpt * ep
)
{
remaddr_t *laddr;
#ifdef DEBUG
if (find_addr_in_list(addr) == NULL) {
#endif
/* not there yet - add to list */
laddr = emalloc(sizeof(*laddr));
laddr->addr = *addr;
laddr->ep = ep;
LINK_SLIST(remoteaddr_list, laddr, link);
DPRINTF(4, ("Added addr %s to list of addresses\n",
stoa(addr)));
#ifdef DEBUG
} else
DPRINTF(4, ("WARNING: Attempt to add duplicate addr %s to address list\n",
stoa(addr)));
#endif
}
static void
delete_addr_from_list(
sockaddr_u *addr
)
{
remaddr_t *unlinked;
UNLINK_EXPR_SLIST(unlinked, remoteaddr_list, SOCK_EQ(addr,
&(UNLINK_EXPR_SLIST_CURRENT()->addr)), link, remaddr_t);
if (unlinked != NULL) {
DPRINTF(4, ("Deleted addr %s from list of addresses\n",
stoa(addr)));
free(unlinked);
}
}
static void
delete_interface_from_list(
endpt *iface
)
{
remaddr_t *unlinked;
for (;;) {
UNLINK_EXPR_SLIST(unlinked, remoteaddr_list, iface ==
UNLINK_EXPR_SLIST_CURRENT()->ep, link,
remaddr_t);
if (unlinked == NULL)
break;
DPRINTF(4, ("Deleted addr %s for interface #%d %s from list of addresses\n",
stoa(&unlinked->addr), iface->ifnum,
iface->name));
free(unlinked);
}
}
static struct interface *
find_addr_in_list(
sockaddr_u *addr
)
{
remaddr_t *entry;
DPRINTF(4, ("Searching for addr %s in list of addresses - ",
stoa(addr)));
for (entry = remoteaddr_list;
entry != NULL;
entry = entry->link)
if (SOCK_EQ(&entry->addr, addr)) {
DPRINTF(4, ("FOUND\n"));
return entry->ep;
}
DPRINTF(4, ("NOT FOUND\n"));
return NULL;
}
/*
* Find the given address with the all given flags set in the list
*/
static endpt *
find_flagged_addr_in_list(
sockaddr_u * addr,
u_int32 flags
)
{
remaddr_t *entry;
DPRINTF(4, ("Finding addr %s with flags %d in list: ",
stoa(addr), flags));
for (entry = remoteaddr_list;
entry != NULL;
entry = entry->link)
if (SOCK_EQ(&entry->addr, addr)
&& (entry->ep->flags & flags) == flags) {
DPRINTF(4, ("FOUND\n"));
return entry->ep;
}
DPRINTF(4, ("NOT FOUND\n"));
return NULL;
}
const char *
localaddrtoa(
endpt *la
)
{
return (NULL == la)
? "<null>"
: stoa(&la->sin);
}
#ifdef HAS_ROUTING_SOCKET
# ifndef UPDATE_GRACE
# define UPDATE_GRACE 2 /* wait UPDATE_GRACE seconds before scanning */
# endif
static void
process_routing_msgs(struct asyncio_reader *reader)
{
char buffer[5120];
int cnt, msg_type;
#ifdef HAVE_RTNETLINK
struct nlmsghdr *nh;
#else
struct rt_msghdr rtm;
char *p;
#endif
if (disable_dynamic_updates) {
/*
* discard ourselves if we are not needed any more
* usually happens when running unprivileged
*/
remove_asyncio_reader(reader);
delete_asyncio_reader(reader);
return;
}
cnt = read(reader->fd, buffer, sizeof(buffer));
if (cnt < 0) {
if (errno == ENOBUFS) {
msyslog(LOG_ERR,
"routing socket reports: %m");
} else {
msyslog(LOG_ERR,
"routing socket reports: %m - disabling");
remove_asyncio_reader(reader);
delete_asyncio_reader(reader);
}
return;
}
/*
* process routing message
*/
#ifdef HAVE_RTNETLINK
for (nh = UA_PTR(struct nlmsghdr, buffer);
NLMSG_OK(nh, cnt);
nh = NLMSG_NEXT(nh, cnt)) {
msg_type = nh->nlmsg_type;
#else
for (p = buffer;
(p + sizeof(struct rt_msghdr)) <= (buffer + cnt);
p += rtm.rtm_msglen) {
memcpy(&rtm, p, sizeof(rtm));
if (rtm.rtm_version != RTM_VERSION) {
msyslog(LOG_ERR,
"version mismatch (got %d - expected %d) on routing socket - disabling",
rtm.rtm_version, RTM_VERSION);
remove_asyncio_reader(reader);
delete_asyncio_reader(reader);
return;
}
msg_type = rtm.rtm_type;
#endif
switch (msg_type) {
#ifdef RTM_NEWADDR
case RTM_NEWADDR:
#endif
#ifdef RTM_DELADDR
case RTM_DELADDR:
#endif
#ifdef RTM_ADD
case RTM_ADD:
#endif
#ifdef RTM_DELETE
case RTM_DELETE:
#endif
#ifdef RTM_REDIRECT
case RTM_REDIRECT:
#endif
#ifdef RTM_CHANGE
case RTM_CHANGE:
#endif
#ifdef RTM_LOSING
case RTM_LOSING:
#endif
#ifdef RTM_IFINFO
case RTM_IFINFO:
#endif
#ifdef RTM_IFANNOUNCE
case RTM_IFANNOUNCE:
#endif
#ifdef RTM_NEWLINK
case RTM_NEWLINK:
#endif
#ifdef RTM_DELLINK
case RTM_DELLINK:
#endif
#ifdef RTM_NEWROUTE
case RTM_NEWROUTE:
#endif
#ifdef RTM_DELROUTE
case RTM_DELROUTE:
#endif
/*
* we are keen on new and deleted addresses and
* if an interface goes up and down or routing
* changes
*/
DPRINTF(3, ("routing message op = %d: scheduling interface update\n",
msg_type));
timer_interfacetimeout(current_time + UPDATE_GRACE);
break;
#ifdef HAVE_RTNETLINK
case NLMSG_DONE:
/* end of multipart message */
return;
#endif
default:
/*
* the rest doesn't bother us.
*/
DPRINTF(4, ("routing message op = %d: ignored\n",
msg_type));
break;
}
}
}
/*
* set up routing notifications
*/
static void
init_async_notifications()
{
struct asyncio_reader *reader;
#ifdef HAVE_RTNETLINK
int fd = socket(PF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
struct sockaddr_nl sa;
#else
int fd = socket(PF_ROUTE, SOCK_RAW, 0);
#endif
if (fd < 0) {
msyslog(LOG_ERR,
"unable to open routing socket (%m) - using polled interface update");
return;
}
fd = move_fd(fd);
#ifdef HAVE_RTNETLINK
ZERO(sa);
sa.nl_family = PF_NETLINK;
sa.nl_groups = RTMGRP_LINK | RTMGRP_IPV4_IFADDR
| RTMGRP_IPV6_IFADDR | RTMGRP_IPV4_ROUTE
| RTMGRP_IPV4_MROUTE | RTMGRP_IPV6_ROUTE
| RTMGRP_IPV6_MROUTE;
if (bind(fd, (struct sockaddr *)&sa, sizeof(sa)) < 0) {
msyslog(LOG_ERR,
"bind failed on routing socket (%m) - using polled interface update");
return;
}
#endif
make_socket_nonblocking(fd);
#if defined(HAVE_SIGNALED_IO)
init_socket_sig(fd);
#endif /* HAVE_SIGNALED_IO */
reader = new_asyncio_reader();
reader->fd = fd;
reader->receiver = process_routing_msgs;
add_asyncio_reader(reader, FD_TYPE_SOCKET);
msyslog(LOG_INFO,
"Listening on routing socket on fd #%d for interface updates",
fd);
}
#else
/* HAS_ROUTING_SOCKET not defined */
static void
init_async_notifications(void)
{
}
#endif