25227ab8c5
o re-enable ural_disable_rf_tune().
2391 lines
59 KiB
C
2391 lines
59 KiB
C
/* $FreeBSD$ */
|
|
|
|
/*-
|
|
* Copyright (c) 2005, 2006
|
|
* Damien Bergamini <damien.bergamini@free.fr>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*-
|
|
* Ralink Technology RT2500USB chipset driver
|
|
* http://www.ralinktech.com/
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/clock.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_radiotap.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <dev/usb/usb.h>
|
|
#include <dev/usb/usbdi.h>
|
|
#include <dev/usb/usbdi_util.h>
|
|
#include "usbdevs.h"
|
|
|
|
#include <dev/usb/if_uralreg.h>
|
|
#include <dev/usb/if_uralvar.h>
|
|
|
|
#ifdef USB_DEBUG
|
|
#define DPRINTF(x) do { if (uraldebug > 0) logprintf x; } while (0)
|
|
#define DPRINTFN(n, x) do { if (uraldebug >= (n)) logprintf x; } while (0)
|
|
int uraldebug = 0;
|
|
SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural");
|
|
SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RW, &uraldebug, 0,
|
|
"ural debug level");
|
|
#else
|
|
#define DPRINTF(x)
|
|
#define DPRINTFN(n, x)
|
|
#endif
|
|
|
|
/* various supported device vendors/products */
|
|
static const struct usb_devno ural_devs[] = {
|
|
{ USB_VENDOR_ASUS, USB_PRODUCT_ASUS_WL167G },
|
|
{ USB_VENDOR_ASUS, USB_PRODUCT_RALINK_RT2570 },
|
|
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050 },
|
|
{ USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54U },
|
|
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DWLG122 },
|
|
{ USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWBKG },
|
|
{ USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254 },
|
|
{ USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB54G },
|
|
{ USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_WUSB54GP },
|
|
{ USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_HU200TS },
|
|
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54 },
|
|
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54AI },
|
|
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_KG54YB },
|
|
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_NINWIFI },
|
|
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570 },
|
|
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_2 },
|
|
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2570_3 },
|
|
{ USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570 },
|
|
{ USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2570_2 },
|
|
{ USB_VENDOR_VTECH, USB_PRODUCT_VTECH_RT2570 },
|
|
{ USB_VENDOR_ZINWELL, USB_PRODUCT_ZINWELL_RT2570 }
|
|
};
|
|
|
|
MODULE_DEPEND(ural, wlan, 1, 1, 1);
|
|
|
|
Static int ural_alloc_tx_list(struct ural_softc *);
|
|
Static void ural_free_tx_list(struct ural_softc *);
|
|
Static int ural_alloc_rx_list(struct ural_softc *);
|
|
Static void ural_free_rx_list(struct ural_softc *);
|
|
Static int ural_media_change(struct ifnet *);
|
|
Static void ural_next_scan(void *);
|
|
Static void ural_task(void *);
|
|
Static int ural_newstate(struct ieee80211com *,
|
|
enum ieee80211_state, int);
|
|
Static int ural_rxrate(struct ural_rx_desc *);
|
|
Static void ural_txeof(usbd_xfer_handle, usbd_private_handle,
|
|
usbd_status);
|
|
Static void ural_rxeof(usbd_xfer_handle, usbd_private_handle,
|
|
usbd_status);
|
|
Static int ural_ack_rate(struct ieee80211com *, int);
|
|
Static uint16_t ural_txtime(int, int, uint32_t);
|
|
Static uint8_t ural_plcp_signal(int);
|
|
Static void ural_setup_tx_desc(struct ural_softc *,
|
|
struct ural_tx_desc *, uint32_t, int, int);
|
|
Static int ural_tx_bcn(struct ural_softc *, struct mbuf *,
|
|
struct ieee80211_node *);
|
|
Static int ural_tx_mgt(struct ural_softc *, struct mbuf *,
|
|
struct ieee80211_node *);
|
|
Static int ural_tx_data(struct ural_softc *, struct mbuf *,
|
|
struct ieee80211_node *);
|
|
Static void ural_start(struct ifnet *);
|
|
Static void ural_watchdog(struct ifnet *);
|
|
Static int ural_reset(struct ifnet *);
|
|
Static int ural_ioctl(struct ifnet *, u_long, caddr_t);
|
|
Static void ural_set_testmode(struct ural_softc *);
|
|
Static void ural_eeprom_read(struct ural_softc *, uint16_t, void *,
|
|
int);
|
|
Static uint16_t ural_read(struct ural_softc *, uint16_t);
|
|
Static void ural_read_multi(struct ural_softc *, uint16_t, void *,
|
|
int);
|
|
Static void ural_write(struct ural_softc *, uint16_t, uint16_t);
|
|
Static void ural_write_multi(struct ural_softc *, uint16_t, void *,
|
|
int);
|
|
Static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
|
|
Static uint8_t ural_bbp_read(struct ural_softc *, uint8_t);
|
|
Static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
|
|
Static void ural_set_chan(struct ural_softc *,
|
|
struct ieee80211_channel *);
|
|
Static void ural_disable_rf_tune(struct ural_softc *);
|
|
Static void ural_enable_tsf_sync(struct ural_softc *);
|
|
Static void ural_update_slot(struct ifnet *);
|
|
Static void ural_set_txpreamble(struct ural_softc *);
|
|
Static void ural_set_basicrates(struct ural_softc *);
|
|
Static void ural_set_bssid(struct ural_softc *, uint8_t *);
|
|
Static void ural_set_macaddr(struct ural_softc *, uint8_t *);
|
|
Static void ural_update_promisc(struct ural_softc *);
|
|
Static const char *ural_get_rf(int);
|
|
Static void ural_read_eeprom(struct ural_softc *);
|
|
Static int ural_bbp_init(struct ural_softc *);
|
|
Static void ural_set_txantenna(struct ural_softc *, int);
|
|
Static void ural_set_rxantenna(struct ural_softc *, int);
|
|
Static void ural_init(void *);
|
|
Static void ural_stop(void *);
|
|
Static void ural_amrr_start(struct ural_softc *,
|
|
struct ieee80211_node *);
|
|
Static void ural_amrr_timeout(void *);
|
|
Static void ural_amrr_update(usbd_xfer_handle, usbd_private_handle,
|
|
usbd_status status);
|
|
Static void ural_ratectl(struct ural_amrr *,
|
|
struct ieee80211_node *);
|
|
|
|
/*
|
|
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
|
|
*/
|
|
static const struct ieee80211_rateset ural_rateset_11a =
|
|
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
|
|
|
|
static const struct ieee80211_rateset ural_rateset_11b =
|
|
{ 4, { 2, 4, 11, 22 } };
|
|
|
|
static const struct ieee80211_rateset ural_rateset_11g =
|
|
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
|
|
|
|
/*
|
|
* Default values for MAC registers; values taken from the reference driver.
|
|
*/
|
|
static const struct {
|
|
uint16_t reg;
|
|
uint16_t val;
|
|
} ural_def_mac[] = {
|
|
{ RAL_TXRX_CSR5, 0x8c8d },
|
|
{ RAL_TXRX_CSR6, 0x8b8a },
|
|
{ RAL_TXRX_CSR7, 0x8687 },
|
|
{ RAL_TXRX_CSR8, 0x0085 },
|
|
{ RAL_MAC_CSR13, 0x1111 },
|
|
{ RAL_MAC_CSR14, 0x1e11 },
|
|
{ RAL_TXRX_CSR21, 0xe78f },
|
|
{ RAL_MAC_CSR9, 0xff1d },
|
|
{ RAL_MAC_CSR11, 0x0002 },
|
|
{ RAL_MAC_CSR22, 0x0053 },
|
|
{ RAL_MAC_CSR15, 0x0000 },
|
|
{ RAL_MAC_CSR8, 0x0780 },
|
|
{ RAL_TXRX_CSR19, 0x0000 },
|
|
{ RAL_TXRX_CSR18, 0x005a },
|
|
{ RAL_PHY_CSR2, 0x0000 },
|
|
{ RAL_TXRX_CSR0, 0x1ec0 },
|
|
{ RAL_PHY_CSR4, 0x000f }
|
|
};
|
|
|
|
/*
|
|
* Default values for BBP registers; values taken from the reference driver.
|
|
*/
|
|
static const struct {
|
|
uint8_t reg;
|
|
uint8_t val;
|
|
} ural_def_bbp[] = {
|
|
{ 3, 0x02 },
|
|
{ 4, 0x19 },
|
|
{ 14, 0x1c },
|
|
{ 15, 0x30 },
|
|
{ 16, 0xac },
|
|
{ 17, 0x48 },
|
|
{ 18, 0x18 },
|
|
{ 19, 0xff },
|
|
{ 20, 0x1e },
|
|
{ 21, 0x08 },
|
|
{ 22, 0x08 },
|
|
{ 23, 0x08 },
|
|
{ 24, 0x80 },
|
|
{ 25, 0x50 },
|
|
{ 26, 0x08 },
|
|
{ 27, 0x23 },
|
|
{ 30, 0x10 },
|
|
{ 31, 0x2b },
|
|
{ 32, 0xb9 },
|
|
{ 34, 0x12 },
|
|
{ 35, 0x50 },
|
|
{ 39, 0xc4 },
|
|
{ 40, 0x02 },
|
|
{ 41, 0x60 },
|
|
{ 53, 0x10 },
|
|
{ 54, 0x18 },
|
|
{ 56, 0x08 },
|
|
{ 57, 0x10 },
|
|
{ 58, 0x08 },
|
|
{ 61, 0x60 },
|
|
{ 62, 0x10 },
|
|
{ 75, 0xff }
|
|
};
|
|
|
|
/*
|
|
* Default values for RF register R2 indexed by channel numbers.
|
|
*/
|
|
static const uint32_t ural_rf2522_r2[] = {
|
|
0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
|
|
0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
|
|
};
|
|
|
|
static const uint32_t ural_rf2523_r2[] = {
|
|
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
|
|
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
|
|
};
|
|
|
|
static const uint32_t ural_rf2524_r2[] = {
|
|
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
|
|
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
|
|
};
|
|
|
|
static const uint32_t ural_rf2525_r2[] = {
|
|
0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
|
|
0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
|
|
};
|
|
|
|
static const uint32_t ural_rf2525_hi_r2[] = {
|
|
0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
|
|
0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
|
|
};
|
|
|
|
static const uint32_t ural_rf2525e_r2[] = {
|
|
0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
|
|
0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
|
|
};
|
|
|
|
static const uint32_t ural_rf2526_hi_r2[] = {
|
|
0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
|
|
0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
|
|
};
|
|
|
|
static const uint32_t ural_rf2526_r2[] = {
|
|
0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
|
|
0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
|
|
};
|
|
|
|
/*
|
|
* For dual-band RF, RF registers R1 and R4 also depend on channel number;
|
|
* values taken from the reference driver.
|
|
*/
|
|
static const struct {
|
|
uint8_t chan;
|
|
uint32_t r1;
|
|
uint32_t r2;
|
|
uint32_t r4;
|
|
} ural_rf5222[] = {
|
|
{ 1, 0x08808, 0x0044d, 0x00282 },
|
|
{ 2, 0x08808, 0x0044e, 0x00282 },
|
|
{ 3, 0x08808, 0x0044f, 0x00282 },
|
|
{ 4, 0x08808, 0x00460, 0x00282 },
|
|
{ 5, 0x08808, 0x00461, 0x00282 },
|
|
{ 6, 0x08808, 0x00462, 0x00282 },
|
|
{ 7, 0x08808, 0x00463, 0x00282 },
|
|
{ 8, 0x08808, 0x00464, 0x00282 },
|
|
{ 9, 0x08808, 0x00465, 0x00282 },
|
|
{ 10, 0x08808, 0x00466, 0x00282 },
|
|
{ 11, 0x08808, 0x00467, 0x00282 },
|
|
{ 12, 0x08808, 0x00468, 0x00282 },
|
|
{ 13, 0x08808, 0x00469, 0x00282 },
|
|
{ 14, 0x08808, 0x0046b, 0x00286 },
|
|
|
|
{ 36, 0x08804, 0x06225, 0x00287 },
|
|
{ 40, 0x08804, 0x06226, 0x00287 },
|
|
{ 44, 0x08804, 0x06227, 0x00287 },
|
|
{ 48, 0x08804, 0x06228, 0x00287 },
|
|
{ 52, 0x08804, 0x06229, 0x00287 },
|
|
{ 56, 0x08804, 0x0622a, 0x00287 },
|
|
{ 60, 0x08804, 0x0622b, 0x00287 },
|
|
{ 64, 0x08804, 0x0622c, 0x00287 },
|
|
|
|
{ 100, 0x08804, 0x02200, 0x00283 },
|
|
{ 104, 0x08804, 0x02201, 0x00283 },
|
|
{ 108, 0x08804, 0x02202, 0x00283 },
|
|
{ 112, 0x08804, 0x02203, 0x00283 },
|
|
{ 116, 0x08804, 0x02204, 0x00283 },
|
|
{ 120, 0x08804, 0x02205, 0x00283 },
|
|
{ 124, 0x08804, 0x02206, 0x00283 },
|
|
{ 128, 0x08804, 0x02207, 0x00283 },
|
|
{ 132, 0x08804, 0x02208, 0x00283 },
|
|
{ 136, 0x08804, 0x02209, 0x00283 },
|
|
{ 140, 0x08804, 0x0220a, 0x00283 },
|
|
|
|
{ 149, 0x08808, 0x02429, 0x00281 },
|
|
{ 153, 0x08808, 0x0242b, 0x00281 },
|
|
{ 157, 0x08808, 0x0242d, 0x00281 },
|
|
{ 161, 0x08808, 0x0242f, 0x00281 }
|
|
};
|
|
|
|
USB_DECLARE_DRIVER(ural);
|
|
|
|
USB_MATCH(ural)
|
|
{
|
|
USB_MATCH_START(ural, uaa);
|
|
|
|
if (uaa->iface != NULL)
|
|
return UMATCH_NONE;
|
|
|
|
return (usb_lookup(ural_devs, uaa->vendor, uaa->product) != NULL) ?
|
|
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
|
|
}
|
|
|
|
USB_ATTACH(ural)
|
|
{
|
|
USB_ATTACH_START(ural, sc, uaa);
|
|
struct ifnet *ifp;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
usb_interface_descriptor_t *id;
|
|
usb_endpoint_descriptor_t *ed;
|
|
usbd_status error;
|
|
char devinfo[1024];
|
|
int i;
|
|
|
|
sc->sc_udev = uaa->device;
|
|
|
|
usbd_devinfo(sc->sc_udev, 0, devinfo);
|
|
USB_ATTACH_SETUP;
|
|
|
|
if (usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0) != 0) {
|
|
printf("%s: could not set configuration no\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
USB_ATTACH_ERROR_RETURN;
|
|
}
|
|
|
|
/* get the first interface handle */
|
|
error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
|
|
&sc->sc_iface);
|
|
if (error != 0) {
|
|
printf("%s: could not get interface handle\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
USB_ATTACH_ERROR_RETURN;
|
|
}
|
|
|
|
/*
|
|
* Find endpoints.
|
|
*/
|
|
id = usbd_get_interface_descriptor(sc->sc_iface);
|
|
|
|
sc->sc_rx_no = sc->sc_tx_no = -1;
|
|
for (i = 0; i < id->bNumEndpoints; i++) {
|
|
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
|
|
if (ed == NULL) {
|
|
printf("%s: no endpoint descriptor for %d\n",
|
|
USBDEVNAME(sc->sc_dev), i);
|
|
USB_ATTACH_ERROR_RETURN;
|
|
}
|
|
|
|
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
|
|
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
|
|
sc->sc_rx_no = ed->bEndpointAddress;
|
|
else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
|
|
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
|
|
sc->sc_tx_no = ed->bEndpointAddress;
|
|
}
|
|
if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
|
|
printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
|
|
USB_ATTACH_ERROR_RETURN;
|
|
}
|
|
|
|
mtx_init(&sc->sc_mtx, USBDEVNAME(sc->sc_dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF | MTX_RECURSE);
|
|
|
|
usb_init_task(&sc->sc_task, ural_task, sc);
|
|
callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
|
|
callout_init(&sc->amrr_ch, 0);
|
|
|
|
/* retrieve RT2570 rev. no */
|
|
sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
|
|
|
|
/* retrieve MAC address and various other things from EEPROM */
|
|
ural_read_eeprom(sc);
|
|
|
|
printf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
|
|
USBDEVNAME(sc->sc_dev), sc->asic_rev, ural_get_rf(sc->rf_rev));
|
|
|
|
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
printf("%s: can not if_alloc()\n", USBDEVNAME(sc->sc_dev));
|
|
USB_ATTACH_ERROR_RETURN;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, "ural", USBDEVUNIT(sc->sc_dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
|
|
IFF_NEEDSGIANT; /* USB stack is still under Giant lock */
|
|
ifp->if_init = ural_init;
|
|
ifp->if_ioctl = ural_ioctl;
|
|
ifp->if_start = ural_start;
|
|
ifp->if_watchdog = ural_watchdog;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
|
|
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
ic->ic_ifp = ifp;
|
|
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
|
|
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/* set device capabilities */
|
|
ic->ic_caps =
|
|
IEEE80211_C_IBSS | /* IBSS mode supported */
|
|
IEEE80211_C_MONITOR | /* monitor mode supported */
|
|
IEEE80211_C_HOSTAP | /* HostAp mode supported */
|
|
IEEE80211_C_TXPMGT | /* tx power management */
|
|
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
|
|
IEEE80211_C_SHSLOT | /* short slot time supported */
|
|
IEEE80211_C_WPA; /* 802.11i */
|
|
|
|
if (sc->rf_rev == RAL_RF_5222) {
|
|
/* set supported .11a rates */
|
|
ic->ic_sup_rates[IEEE80211_MODE_11A] = ural_rateset_11a;
|
|
|
|
/* set supported .11a channels */
|
|
for (i = 36; i <= 64; i += 4) {
|
|
ic->ic_channels[i].ic_freq =
|
|
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
|
|
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
|
|
}
|
|
for (i = 100; i <= 140; i += 4) {
|
|
ic->ic_channels[i].ic_freq =
|
|
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
|
|
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
|
|
}
|
|
for (i = 149; i <= 161; i += 4) {
|
|
ic->ic_channels[i].ic_freq =
|
|
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
|
|
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
|
|
}
|
|
}
|
|
|
|
/* set supported .11b and .11g rates */
|
|
ic->ic_sup_rates[IEEE80211_MODE_11B] = ural_rateset_11b;
|
|
ic->ic_sup_rates[IEEE80211_MODE_11G] = ural_rateset_11g;
|
|
|
|
/* set supported .11b and .11g channels (1 through 14) */
|
|
for (i = 1; i <= 14; i++) {
|
|
ic->ic_channels[i].ic_freq =
|
|
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
|
|
ic->ic_channels[i].ic_flags =
|
|
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
|
|
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
|
|
}
|
|
|
|
ieee80211_ifattach(ic);
|
|
ic->ic_reset = ural_reset;
|
|
|
|
/* override state transition machine */
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = ural_newstate;
|
|
ieee80211_media_init(ic, ural_media_change, ieee80211_media_status);
|
|
|
|
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
|
|
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
|
|
|
|
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
|
|
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
|
|
sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
|
|
|
|
sc->sc_txtap_len = sizeof sc->sc_txtapu;
|
|
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
|
|
sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
|
|
|
|
if (bootverbose)
|
|
ieee80211_announce(ic);
|
|
|
|
USB_ATTACH_SUCCESS_RETURN;
|
|
}
|
|
|
|
USB_DETACH(ural)
|
|
{
|
|
USB_DETACH_START(ural, sc);
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
|
|
usb_rem_task(sc->sc_udev, &sc->sc_task);
|
|
callout_stop(&sc->scan_ch);
|
|
callout_stop(&sc->amrr_ch);
|
|
|
|
if (sc->amrr_xfer != NULL) {
|
|
usbd_free_xfer(sc->amrr_xfer);
|
|
sc->amrr_xfer = NULL;
|
|
}
|
|
|
|
if (sc->sc_rx_pipeh != NULL) {
|
|
usbd_abort_pipe(sc->sc_rx_pipeh);
|
|
usbd_close_pipe(sc->sc_rx_pipeh);
|
|
}
|
|
|
|
if (sc->sc_tx_pipeh != NULL) {
|
|
usbd_abort_pipe(sc->sc_tx_pipeh);
|
|
usbd_close_pipe(sc->sc_tx_pipeh);
|
|
}
|
|
|
|
ural_free_rx_list(sc);
|
|
ural_free_tx_list(sc);
|
|
|
|
bpfdetach(ifp);
|
|
ieee80211_ifdetach(ic);
|
|
if_free(ifp);
|
|
|
|
mtx_destroy(&sc->sc_mtx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
Static int
|
|
ural_alloc_tx_list(struct ural_softc *sc)
|
|
{
|
|
struct ural_tx_data *data;
|
|
int i, error;
|
|
|
|
sc->tx_queued = 0;
|
|
|
|
for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
|
|
data = &sc->tx_data[i];
|
|
|
|
data->sc = sc;
|
|
|
|
data->xfer = usbd_alloc_xfer(sc->sc_udev);
|
|
if (data->xfer == NULL) {
|
|
printf("%s: could not allocate tx xfer\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
data->buf = usbd_alloc_buffer(data->xfer,
|
|
RAL_TX_DESC_SIZE + MCLBYTES);
|
|
if (data->buf == NULL) {
|
|
printf("%s: could not allocate tx buffer\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail: ural_free_tx_list(sc);
|
|
return error;
|
|
}
|
|
|
|
Static void
|
|
ural_free_tx_list(struct ural_softc *sc)
|
|
{
|
|
struct ural_tx_data *data;
|
|
int i;
|
|
|
|
for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
|
|
data = &sc->tx_data[i];
|
|
|
|
if (data->xfer != NULL) {
|
|
usbd_free_xfer(data->xfer);
|
|
data->xfer = NULL;
|
|
}
|
|
|
|
if (data->ni != NULL) {
|
|
ieee80211_free_node(data->ni);
|
|
data->ni = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
Static int
|
|
ural_alloc_rx_list(struct ural_softc *sc)
|
|
{
|
|
struct ural_rx_data *data;
|
|
int i, error;
|
|
|
|
for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
|
|
data = &sc->rx_data[i];
|
|
|
|
data->sc = sc;
|
|
|
|
data->xfer = usbd_alloc_xfer(sc->sc_udev);
|
|
if (data->xfer == NULL) {
|
|
printf("%s: could not allocate rx xfer\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
|
|
printf("%s: could not allocate rx buffer\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (data->m == NULL) {
|
|
printf("%s: could not allocate rx mbuf\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
data->buf = mtod(data->m, uint8_t *);
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail: ural_free_tx_list(sc);
|
|
return error;
|
|
}
|
|
|
|
Static void
|
|
ural_free_rx_list(struct ural_softc *sc)
|
|
{
|
|
struct ural_rx_data *data;
|
|
int i;
|
|
|
|
for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
|
|
data = &sc->rx_data[i];
|
|
|
|
if (data->xfer != NULL) {
|
|
usbd_free_xfer(data->xfer);
|
|
data->xfer = NULL;
|
|
}
|
|
|
|
if (data->m != NULL) {
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
Static int
|
|
ural_media_change(struct ifnet *ifp)
|
|
{
|
|
struct ural_softc *sc = ifp->if_softc;
|
|
int error;
|
|
|
|
RAL_LOCK(sc);
|
|
|
|
error = ieee80211_media_change(ifp);
|
|
if (error != ENETRESET) {
|
|
RAL_UNLOCK(sc);
|
|
return error;
|
|
}
|
|
|
|
if ((ifp->if_flags & IFF_UP) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
ural_init(sc);
|
|
|
|
RAL_UNLOCK(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called periodically (every 200ms) during scanning to
|
|
* switch from one channel to another.
|
|
*/
|
|
Static void
|
|
ural_next_scan(void *arg)
|
|
{
|
|
struct ural_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_state == IEEE80211_S_SCAN)
|
|
ieee80211_next_scan(ic);
|
|
}
|
|
|
|
Static void
|
|
ural_task(void *arg)
|
|
{
|
|
struct ural_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
enum ieee80211_state ostate;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *m;
|
|
|
|
ostate = ic->ic_state;
|
|
|
|
switch (sc->sc_state) {
|
|
case IEEE80211_S_INIT:
|
|
if (ostate == IEEE80211_S_RUN) {
|
|
/* abort TSF synchronization */
|
|
ural_write(sc, RAL_TXRX_CSR19, 0);
|
|
|
|
/* force tx led to stop blinking */
|
|
ural_write(sc, RAL_MAC_CSR20, 0);
|
|
}
|
|
break;
|
|
|
|
case IEEE80211_S_SCAN:
|
|
ural_set_chan(sc, ic->ic_curchan);
|
|
callout_reset(&sc->scan_ch, hz / 5, ural_next_scan, sc);
|
|
break;
|
|
|
|
case IEEE80211_S_AUTH:
|
|
ural_set_chan(sc, ic->ic_curchan);
|
|
break;
|
|
|
|
case IEEE80211_S_ASSOC:
|
|
ural_set_chan(sc, ic->ic_curchan);
|
|
break;
|
|
|
|
case IEEE80211_S_RUN:
|
|
ural_set_chan(sc, ic->ic_curchan);
|
|
|
|
ni = ic->ic_bss;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
ural_update_slot(ic->ic_ifp);
|
|
ural_set_txpreamble(sc);
|
|
ural_set_basicrates(sc);
|
|
ural_set_bssid(sc, ni->ni_bssid);
|
|
}
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
|
|
ic->ic_opmode == IEEE80211_M_IBSS) {
|
|
m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
|
|
if (m == NULL) {
|
|
printf("%s: could not allocate beacon\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
return;
|
|
}
|
|
|
|
if (ural_tx_bcn(sc, m, ni) != 0) {
|
|
printf("%s: could not send beacon\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* make tx led blink on tx (controlled by ASIC) */
|
|
ural_write(sc, RAL_MAC_CSR20, 1);
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
ural_enable_tsf_sync(sc);
|
|
|
|
/* enable automatic rate adaptation in STA mode */
|
|
if (ic->ic_opmode == IEEE80211_M_STA &&
|
|
ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
|
|
ural_amrr_start(sc, ni);
|
|
|
|
break;
|
|
}
|
|
|
|
sc->sc_newstate(ic, sc->sc_state, -1);
|
|
}
|
|
|
|
Static int
|
|
ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ural_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
usb_rem_task(sc->sc_udev, &sc->sc_task);
|
|
callout_stop(&sc->scan_ch);
|
|
callout_stop(&sc->amrr_ch);
|
|
|
|
/* do it in a process context */
|
|
sc->sc_state = nstate;
|
|
usb_add_task(sc->sc_udev, &sc->sc_task);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* quickly determine if a given rate is CCK or OFDM */
|
|
#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
|
|
|
|
#define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
|
|
#define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
|
|
|
|
#define RAL_SIFS 10 /* us */
|
|
|
|
#define RAL_RXTX_TURNAROUND 5 /* us */
|
|
|
|
/*
|
|
* This function is only used by the Rx radiotap code.
|
|
*/
|
|
Static int
|
|
ural_rxrate(struct ural_rx_desc *desc)
|
|
{
|
|
if (le32toh(desc->flags) & RAL_RX_OFDM) {
|
|
/* reverse function of ural_plcp_signal */
|
|
switch (desc->rate) {
|
|
case 0xb: return 12;
|
|
case 0xf: return 18;
|
|
case 0xa: return 24;
|
|
case 0xe: return 36;
|
|
case 0x9: return 48;
|
|
case 0xd: return 72;
|
|
case 0x8: return 96;
|
|
case 0xc: return 108;
|
|
}
|
|
} else {
|
|
if (desc->rate == 10)
|
|
return 2;
|
|
if (desc->rate == 20)
|
|
return 4;
|
|
if (desc->rate == 55)
|
|
return 11;
|
|
if (desc->rate == 110)
|
|
return 22;
|
|
}
|
|
return 2; /* should not get there */
|
|
}
|
|
|
|
Static void
|
|
ural_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
|
|
{
|
|
struct ural_tx_data *data = priv;
|
|
struct ural_softc *sc = data->sc;
|
|
struct ifnet *ifp = sc->sc_ic.ic_ifp;
|
|
|
|
if (status != USBD_NORMAL_COMPLETION) {
|
|
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
|
|
return;
|
|
|
|
printf("%s: could not transmit buffer: %s\n",
|
|
USBDEVNAME(sc->sc_dev), usbd_errstr(status));
|
|
|
|
if (status == USBD_STALLED)
|
|
usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
|
|
|
|
ifp->if_oerrors++;
|
|
return;
|
|
}
|
|
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
ieee80211_free_node(data->ni);
|
|
data->ni = NULL;
|
|
|
|
sc->tx_queued--;
|
|
ifp->if_opackets++;
|
|
|
|
DPRINTFN(10, ("tx done\n"));
|
|
|
|
sc->sc_tx_timer = 0;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
ural_start(ifp);
|
|
}
|
|
|
|
Static void
|
|
ural_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
|
|
{
|
|
struct ural_rx_data *data = priv;
|
|
struct ural_softc *sc = data->sc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ural_rx_desc *desc;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *mnew, *m;
|
|
int len;
|
|
|
|
if (status != USBD_NORMAL_COMPLETION) {
|
|
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
|
|
return;
|
|
|
|
if (status == USBD_STALLED)
|
|
usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
|
|
goto skip;
|
|
}
|
|
|
|
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
|
|
|
|
if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
|
|
DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
|
|
len));
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
|
|
/* rx descriptor is located at the end */
|
|
desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
|
|
|
|
if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
|
|
(le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
|
|
/*
|
|
* This should not happen since we did not request to receive
|
|
* those frames when we filled RAL_TXRX_CSR2.
|
|
*/
|
|
DPRINTFN(5, ("PHY or CRC error\n"));
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
|
|
mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (mnew == NULL) {
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
|
|
m = data->m;
|
|
data->m = mnew;
|
|
data->buf = mtod(data->m, uint8_t *);
|
|
|
|
/* finalize mbuf */
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
|
|
m->m_flags |= M_HASFCS; /* h/w leaves FCS */
|
|
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
|
|
|
|
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
|
|
tap->wr_rate = ural_rxrate(desc);
|
|
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
|
|
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
|
|
tap->wr_antenna = sc->rx_ant;
|
|
tap->wr_antsignal = desc->rssi;
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
|
|
}
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
|
|
|
|
/* send the frame to the 802.11 layer */
|
|
ieee80211_input(ic, m, ni, desc->rssi, 0);
|
|
|
|
/* node is no longer needed */
|
|
ieee80211_free_node(ni);
|
|
|
|
DPRINTFN(15, ("rx done\n"));
|
|
|
|
skip: /* setup a new transfer */
|
|
usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
|
|
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
|
|
usbd_transfer(xfer);
|
|
}
|
|
|
|
/*
|
|
* Return the expected ack rate for a frame transmitted at rate `rate'.
|
|
* XXX: this should depend on the destination node basic rate set.
|
|
*/
|
|
Static int
|
|
ural_ack_rate(struct ieee80211com *ic, int rate)
|
|
{
|
|
switch (rate) {
|
|
/* CCK rates */
|
|
case 2:
|
|
return 2;
|
|
case 4:
|
|
case 11:
|
|
case 22:
|
|
return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
|
|
|
|
/* OFDM rates */
|
|
case 12:
|
|
case 18:
|
|
return 12;
|
|
case 24:
|
|
case 36:
|
|
return 24;
|
|
case 48:
|
|
case 72:
|
|
case 96:
|
|
case 108:
|
|
return 48;
|
|
}
|
|
|
|
/* default to 1Mbps */
|
|
return 2;
|
|
}
|
|
|
|
/*
|
|
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
|
|
* The function automatically determines the operating mode depending on the
|
|
* given rate. `flags' indicates whether short preamble is in use or not.
|
|
*/
|
|
Static uint16_t
|
|
ural_txtime(int len, int rate, uint32_t flags)
|
|
{
|
|
uint16_t txtime;
|
|
|
|
if (RAL_RATE_IS_OFDM(rate)) {
|
|
/* IEEE Std 802.11a-1999, pp. 37 */
|
|
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
|
|
txtime = 16 + 4 + 4 * txtime + 6;
|
|
} else {
|
|
/* IEEE Std 802.11b-1999, pp. 28 */
|
|
txtime = (16 * len + rate - 1) / rate;
|
|
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
|
|
txtime += 72 + 24;
|
|
else
|
|
txtime += 144 + 48;
|
|
}
|
|
return txtime;
|
|
}
|
|
|
|
Static uint8_t
|
|
ural_plcp_signal(int rate)
|
|
{
|
|
switch (rate) {
|
|
/* CCK rates (returned values are device-dependent) */
|
|
case 2: return 0x0;
|
|
case 4: return 0x1;
|
|
case 11: return 0x2;
|
|
case 22: return 0x3;
|
|
|
|
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
|
|
case 12: return 0xb;
|
|
case 18: return 0xf;
|
|
case 24: return 0xa;
|
|
case 36: return 0xe;
|
|
case 48: return 0x9;
|
|
case 72: return 0xd;
|
|
case 96: return 0x8;
|
|
case 108: return 0xc;
|
|
|
|
/* unsupported rates (should not get there) */
|
|
default: return 0xff;
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
|
|
uint32_t flags, int len, int rate)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint16_t plcp_length;
|
|
int remainder;
|
|
|
|
desc->flags = htole32(flags);
|
|
desc->flags |= htole32(RAL_TX_NEWSEQ);
|
|
desc->flags |= htole32(len << 16);
|
|
|
|
desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
|
|
desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame)));
|
|
|
|
/* setup PLCP fields */
|
|
desc->plcp_signal = ural_plcp_signal(rate);
|
|
desc->plcp_service = 4;
|
|
|
|
len += IEEE80211_CRC_LEN;
|
|
if (RAL_RATE_IS_OFDM(rate)) {
|
|
desc->flags |= htole32(RAL_TX_OFDM);
|
|
|
|
plcp_length = len & 0xfff;
|
|
desc->plcp_length_hi = plcp_length >> 6;
|
|
desc->plcp_length_lo = plcp_length & 0x3f;
|
|
} else {
|
|
plcp_length = (16 * len + rate - 1) / rate;
|
|
if (rate == 22) {
|
|
remainder = (16 * len) % 22;
|
|
if (remainder != 0 && remainder < 7)
|
|
desc->plcp_service |= RAL_PLCP_LENGEXT;
|
|
}
|
|
desc->plcp_length_hi = plcp_length >> 8;
|
|
desc->plcp_length_lo = plcp_length & 0xff;
|
|
|
|
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
|
|
desc->plcp_signal |= 0x08;
|
|
}
|
|
|
|
desc->iv = 0;
|
|
desc->eiv = 0;
|
|
}
|
|
|
|
#define RAL_TX_TIMEOUT 5000
|
|
|
|
Static int
|
|
ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
|
|
{
|
|
struct ural_tx_desc *desc;
|
|
usbd_xfer_handle xfer;
|
|
uint8_t cmd = 0;
|
|
usbd_status error;
|
|
uint8_t *buf;
|
|
int xferlen, rate;
|
|
|
|
rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
|
|
|
|
xfer = usbd_alloc_xfer(sc->sc_udev);
|
|
if (xfer == NULL)
|
|
return ENOMEM;
|
|
|
|
/* xfer length needs to be a multiple of two! */
|
|
xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
|
|
|
|
buf = usbd_alloc_buffer(xfer, xferlen);
|
|
if (buf == NULL) {
|
|
usbd_free_xfer(xfer);
|
|
return ENOMEM;
|
|
}
|
|
|
|
usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, &cmd, sizeof cmd,
|
|
USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, NULL);
|
|
|
|
error = usbd_sync_transfer(xfer);
|
|
if (error != 0) {
|
|
usbd_free_xfer(xfer);
|
|
return error;
|
|
}
|
|
|
|
desc = (struct ural_tx_desc *)buf;
|
|
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
|
|
ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
|
|
m0->m_pkthdr.len, rate);
|
|
|
|
DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
|
|
m0->m_pkthdr.len, rate, xferlen));
|
|
|
|
usbd_setup_xfer(xfer, sc->sc_tx_pipeh, NULL, buf, xferlen,
|
|
USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT, NULL);
|
|
|
|
error = usbd_sync_transfer(xfer);
|
|
usbd_free_xfer(xfer);
|
|
|
|
return error;
|
|
}
|
|
|
|
Static int
|
|
ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ural_tx_desc *desc;
|
|
struct ural_tx_data *data;
|
|
struct ieee80211_frame *wh;
|
|
uint32_t flags = 0;
|
|
uint16_t dur;
|
|
usbd_status error;
|
|
int xferlen, rate;
|
|
|
|
data = &sc->tx_data[0];
|
|
desc = (struct ural_tx_desc *)data->buf;
|
|
|
|
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
|
|
|
|
data->m = m0;
|
|
data->ni = ni;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
flags |= RAL_TX_ACK;
|
|
|
|
dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
|
|
*(uint16_t *)wh->i_dur = htole16(dur);
|
|
|
|
/* tell hardware to add timestamp for probe responses */
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
|
|
IEEE80211_FC0_TYPE_MGT &&
|
|
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
|
|
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
flags |= RAL_TX_TIMESTAMP;
|
|
}
|
|
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->wt_flags = 0;
|
|
tap->wt_rate = rate;
|
|
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
|
|
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
|
|
tap->wt_antenna = sc->tx_ant;
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
|
|
}
|
|
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
|
|
ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
|
|
|
|
/* align end on a 2-bytes boundary */
|
|
xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
|
|
|
|
/*
|
|
* No space left in the last URB to store the extra 2 bytes, force
|
|
* sending of another URB.
|
|
*/
|
|
if ((xferlen % 64) == 0)
|
|
xferlen += 2;
|
|
|
|
DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
|
|
m0->m_pkthdr.len, rate, xferlen));
|
|
|
|
usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
|
|
xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
|
|
ural_txeof);
|
|
|
|
error = usbd_transfer(data->xfer);
|
|
if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
|
|
return error;
|
|
|
|
sc->tx_queued++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
Static int
|
|
ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ural_tx_desc *desc;
|
|
struct ural_tx_data *data;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_key *k;
|
|
uint32_t flags = 0;
|
|
uint16_t dur;
|
|
usbd_status error;
|
|
int xferlen, rate;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
|
|
rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
|
|
else
|
|
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
|
|
|
|
rate &= IEEE80211_RATE_VAL;
|
|
|
|
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
|
|
k = ieee80211_crypto_encap(ic, ni, m0);
|
|
if (k == NULL) {
|
|
m_freem(m0);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
}
|
|
|
|
data = &sc->tx_data[0];
|
|
desc = (struct ural_tx_desc *)data->buf;
|
|
|
|
data->m = m0;
|
|
data->ni = ni;
|
|
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
flags |= RAL_TX_ACK;
|
|
flags |= RAL_TX_RETRY(7);
|
|
|
|
dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
|
|
ic->ic_flags) + RAL_SIFS;
|
|
*(uint16_t *)wh->i_dur = htole16(dur);
|
|
}
|
|
|
|
if (sc->sc_drvbpf != NULL) {
|
|
struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->wt_flags = 0;
|
|
tap->wt_rate = rate;
|
|
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
|
|
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
|
|
tap->wt_antenna = sc->tx_ant;
|
|
|
|
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
|
|
}
|
|
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
|
|
ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
|
|
|
|
/* align end on a 2-bytes boundary */
|
|
xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
|
|
|
|
/*
|
|
* No space left in the last URB to store the extra 2 bytes, force
|
|
* sending of another URB.
|
|
*/
|
|
if ((xferlen % 64) == 0)
|
|
xferlen += 2;
|
|
|
|
DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
|
|
m0->m_pkthdr.len, rate, xferlen));
|
|
|
|
usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
|
|
xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RAL_TX_TIMEOUT,
|
|
ural_txeof);
|
|
|
|
error = usbd_transfer(data->xfer);
|
|
if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
|
|
return error;
|
|
|
|
sc->tx_queued++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
Static void
|
|
ural_start(struct ifnet *ifp)
|
|
{
|
|
struct ural_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct mbuf *m0;
|
|
struct ether_header *eh;
|
|
struct ieee80211_node *ni;
|
|
|
|
for (;;) {
|
|
IF_POLL(&ic->ic_mgtq, m0);
|
|
if (m0 != NULL) {
|
|
if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
IF_DEQUEUE(&ic->ic_mgtq, m0);
|
|
|
|
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
|
|
m0->m_pkthdr.rcvif = NULL;
|
|
|
|
if (ic->ic_rawbpf != NULL)
|
|
bpf_mtap(ic->ic_rawbpf, m0);
|
|
|
|
if (ural_tx_mgt(sc, m0, ni) != 0)
|
|
break;
|
|
|
|
} else {
|
|
if (ic->ic_state != IEEE80211_S_RUN)
|
|
break;
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
if (m0->m_len < sizeof (struct ether_header) &&
|
|
!(m0 = m_pullup(m0, sizeof (struct ether_header))))
|
|
continue;
|
|
|
|
eh = mtod(m0, struct ether_header *);
|
|
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
|
|
if (ni == NULL) {
|
|
m_freem(m0);
|
|
continue;
|
|
}
|
|
BPF_MTAP(ifp, m0);
|
|
|
|
m0 = ieee80211_encap(ic, m0, ni);
|
|
if (m0 == NULL) {
|
|
ieee80211_free_node(ni);
|
|
continue;
|
|
}
|
|
|
|
if (ic->ic_rawbpf != NULL)
|
|
bpf_mtap(ic->ic_rawbpf, m0);
|
|
|
|
if (ural_tx_data(sc, m0, ni) != 0) {
|
|
ieee80211_free_node(ni);
|
|
ifp->if_oerrors++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sc->sc_tx_timer = 5;
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ural_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct ural_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
RAL_LOCK(sc);
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
if (sc->sc_tx_timer > 0) {
|
|
if (--sc->sc_tx_timer == 0) {
|
|
device_printf(sc->sc_dev, "device timeout\n");
|
|
/*ural_init(sc); XXX needs a process context! */
|
|
ifp->if_oerrors++;
|
|
RAL_UNLOCK(sc);
|
|
return;
|
|
}
|
|
ifp->if_timer = 1;
|
|
}
|
|
|
|
ieee80211_watchdog(ic);
|
|
|
|
RAL_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* This function allows for fast channel switching in monitor mode (used by
|
|
* net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
|
|
* generate a new beacon frame.
|
|
*/
|
|
Static int
|
|
ural_reset(struct ifnet *ifp)
|
|
{
|
|
struct ural_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
return ENETRESET;
|
|
|
|
ural_set_chan(sc, ic->ic_curchan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
Static int
|
|
ural_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct ural_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
int error = 0;
|
|
|
|
RAL_LOCK(sc);
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
ural_update_promisc(sc);
|
|
else
|
|
ural_init(sc);
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
ural_stop(sc);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = ieee80211_ioctl(ic, cmd, data);
|
|
}
|
|
|
|
if (error == ENETRESET) {
|
|
if ((ifp->if_flags & IFF_UP) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) &&
|
|
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
|
|
ural_init(sc);
|
|
error = 0;
|
|
}
|
|
|
|
RAL_UNLOCK(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
Static void
|
|
ural_set_testmode(struct ural_softc *sc)
|
|
{
|
|
usb_device_request_t req;
|
|
usbd_status error;
|
|
|
|
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
|
|
req.bRequest = RAL_VENDOR_REQUEST;
|
|
USETW(req.wValue, 4);
|
|
USETW(req.wIndex, 1);
|
|
USETW(req.wLength, 0);
|
|
|
|
error = usbd_do_request(sc->sc_udev, &req, NULL);
|
|
if (error != 0) {
|
|
printf("%s: could not set test mode: %s\n",
|
|
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
|
|
{
|
|
usb_device_request_t req;
|
|
usbd_status error;
|
|
|
|
req.bmRequestType = UT_READ_VENDOR_DEVICE;
|
|
req.bRequest = RAL_READ_EEPROM;
|
|
USETW(req.wValue, 0);
|
|
USETW(req.wIndex, addr);
|
|
USETW(req.wLength, len);
|
|
|
|
error = usbd_do_request(sc->sc_udev, &req, buf);
|
|
if (error != 0) {
|
|
printf("%s: could not read EEPROM: %s\n",
|
|
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
|
|
}
|
|
}
|
|
|
|
Static uint16_t
|
|
ural_read(struct ural_softc *sc, uint16_t reg)
|
|
{
|
|
usb_device_request_t req;
|
|
usbd_status error;
|
|
uint16_t val;
|
|
|
|
req.bmRequestType = UT_READ_VENDOR_DEVICE;
|
|
req.bRequest = RAL_READ_MAC;
|
|
USETW(req.wValue, 0);
|
|
USETW(req.wIndex, reg);
|
|
USETW(req.wLength, sizeof (uint16_t));
|
|
|
|
error = usbd_do_request(sc->sc_udev, &req, &val);
|
|
if (error != 0) {
|
|
printf("%s: could not read MAC register: %s\n",
|
|
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
|
|
return 0;
|
|
}
|
|
|
|
return le16toh(val);
|
|
}
|
|
|
|
Static void
|
|
ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
|
|
{
|
|
usb_device_request_t req;
|
|
usbd_status error;
|
|
|
|
req.bmRequestType = UT_READ_VENDOR_DEVICE;
|
|
req.bRequest = RAL_READ_MULTI_MAC;
|
|
USETW(req.wValue, 0);
|
|
USETW(req.wIndex, reg);
|
|
USETW(req.wLength, len);
|
|
|
|
error = usbd_do_request(sc->sc_udev, &req, buf);
|
|
if (error != 0) {
|
|
printf("%s: could not read MAC register: %s\n",
|
|
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
|
|
{
|
|
usb_device_request_t req;
|
|
usbd_status error;
|
|
|
|
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
|
|
req.bRequest = RAL_WRITE_MAC;
|
|
USETW(req.wValue, val);
|
|
USETW(req.wIndex, reg);
|
|
USETW(req.wLength, 0);
|
|
|
|
error = usbd_do_request(sc->sc_udev, &req, NULL);
|
|
if (error != 0) {
|
|
printf("%s: could not write MAC register: %s\n",
|
|
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
|
|
{
|
|
usb_device_request_t req;
|
|
usbd_status error;
|
|
|
|
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
|
|
req.bRequest = RAL_WRITE_MULTI_MAC;
|
|
USETW(req.wValue, 0);
|
|
USETW(req.wIndex, reg);
|
|
USETW(req.wLength, len);
|
|
|
|
error = usbd_do_request(sc->sc_udev, &req, buf);
|
|
if (error != 0) {
|
|
printf("%s: could not write MAC register: %s\n",
|
|
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
|
|
{
|
|
uint16_t tmp;
|
|
int ntries;
|
|
|
|
for (ntries = 0; ntries < 5; ntries++) {
|
|
if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
|
|
break;
|
|
}
|
|
if (ntries == 5) {
|
|
printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
|
|
return;
|
|
}
|
|
|
|
tmp = reg << 8 | val;
|
|
ural_write(sc, RAL_PHY_CSR7, tmp);
|
|
}
|
|
|
|
Static uint8_t
|
|
ural_bbp_read(struct ural_softc *sc, uint8_t reg)
|
|
{
|
|
uint16_t val;
|
|
int ntries;
|
|
|
|
val = RAL_BBP_WRITE | reg << 8;
|
|
ural_write(sc, RAL_PHY_CSR7, val);
|
|
|
|
for (ntries = 0; ntries < 5; ntries++) {
|
|
if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
|
|
break;
|
|
}
|
|
if (ntries == 5) {
|
|
printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
|
|
return 0;
|
|
}
|
|
|
|
return ural_read(sc, RAL_PHY_CSR7) & 0xff;
|
|
}
|
|
|
|
Static void
|
|
ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
|
|
{
|
|
uint32_t tmp;
|
|
int ntries;
|
|
|
|
for (ntries = 0; ntries < 5; ntries++) {
|
|
if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
|
|
break;
|
|
}
|
|
if (ntries == 5) {
|
|
printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
|
|
return;
|
|
}
|
|
|
|
tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
|
|
ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff);
|
|
ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
|
|
|
|
/* remember last written value in sc */
|
|
sc->rf_regs[reg] = val;
|
|
|
|
DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
|
|
}
|
|
|
|
Static void
|
|
ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint8_t power, tmp;
|
|
u_int i, chan;
|
|
|
|
chan = ieee80211_chan2ieee(ic, c);
|
|
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
|
|
return;
|
|
|
|
if (IEEE80211_IS_CHAN_2GHZ(c))
|
|
power = min(sc->txpow[chan - 1], 31);
|
|
else
|
|
power = 31;
|
|
|
|
DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
|
|
|
|
switch (sc->rf_rev) {
|
|
case RAL_RF_2522:
|
|
ural_rf_write(sc, RAL_RF1, 0x00814);
|
|
ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
|
|
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
|
|
break;
|
|
|
|
case RAL_RF_2523:
|
|
ural_rf_write(sc, RAL_RF1, 0x08804);
|
|
ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
|
|
ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
|
|
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
|
|
break;
|
|
|
|
case RAL_RF_2524:
|
|
ural_rf_write(sc, RAL_RF1, 0x0c808);
|
|
ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
|
|
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
|
|
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
|
|
break;
|
|
|
|
case RAL_RF_2525:
|
|
ural_rf_write(sc, RAL_RF1, 0x08808);
|
|
ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
|
|
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
|
|
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
|
|
|
|
ural_rf_write(sc, RAL_RF1, 0x08808);
|
|
ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
|
|
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
|
|
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
|
|
break;
|
|
|
|
case RAL_RF_2525E:
|
|
ural_rf_write(sc, RAL_RF1, 0x08808);
|
|
ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
|
|
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
|
|
ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
|
|
break;
|
|
|
|
case RAL_RF_2526:
|
|
ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
|
|
ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
|
|
ural_rf_write(sc, RAL_RF1, 0x08804);
|
|
|
|
ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
|
|
ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
|
|
ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
|
|
break;
|
|
|
|
/* dual-band RF */
|
|
case RAL_RF_5222:
|
|
for (i = 0; i < ural_rf5222[i].chan != chan; i++);
|
|
|
|
ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
|
|
ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
|
|
ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
|
|
ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
|
|
break;
|
|
}
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR &&
|
|
ic->ic_state != IEEE80211_S_SCAN) {
|
|
/* set Japan filter bit for channel 14 */
|
|
tmp = ural_bbp_read(sc, 70);
|
|
|
|
tmp &= ~RAL_JAPAN_FILTER;
|
|
if (chan == 14)
|
|
tmp |= RAL_JAPAN_FILTER;
|
|
|
|
ural_bbp_write(sc, 70, tmp);
|
|
|
|
/* clear CRC errors */
|
|
ural_read(sc, RAL_STA_CSR0);
|
|
|
|
DELAY(10000);
|
|
ural_disable_rf_tune(sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disable RF auto-tuning.
|
|
*/
|
|
Static void
|
|
ural_disable_rf_tune(struct ural_softc *sc)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
if (sc->rf_rev != RAL_RF_2523) {
|
|
tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
|
|
ural_rf_write(sc, RAL_RF1, tmp);
|
|
}
|
|
|
|
tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
|
|
ural_rf_write(sc, RAL_RF3, tmp);
|
|
|
|
DPRINTFN(2, ("disabling RF autotune\n"));
|
|
}
|
|
|
|
/*
|
|
* Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
|
|
* synchronization.
|
|
*/
|
|
Static void
|
|
ural_enable_tsf_sync(struct ural_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint16_t logcwmin, preload, tmp;
|
|
|
|
/* first, disable TSF synchronization */
|
|
ural_write(sc, RAL_TXRX_CSR19, 0);
|
|
|
|
tmp = (16 * ic->ic_bss->ni_intval) << 4;
|
|
ural_write(sc, RAL_TXRX_CSR18, tmp);
|
|
|
|
logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
|
|
preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
|
|
tmp = logcwmin << 12 | preload;
|
|
ural_write(sc, RAL_TXRX_CSR20, tmp);
|
|
|
|
/* finally, enable TSF synchronization */
|
|
tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
|
|
if (ic->ic_opmode == IEEE80211_M_STA)
|
|
tmp |= RAL_ENABLE_TSF_SYNC(1);
|
|
else
|
|
tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
|
|
ural_write(sc, RAL_TXRX_CSR19, tmp);
|
|
|
|
DPRINTF(("enabling TSF synchronization\n"));
|
|
}
|
|
|
|
Static void
|
|
ural_update_slot(struct ifnet *ifp)
|
|
{
|
|
struct ural_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint16_t slottime, sifs, eifs;
|
|
|
|
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
|
|
|
|
/*
|
|
* These settings may sound a bit inconsistent but this is what the
|
|
* reference driver does.
|
|
*/
|
|
if (ic->ic_curmode == IEEE80211_MODE_11B) {
|
|
sifs = 16 - RAL_RXTX_TURNAROUND;
|
|
eifs = 364;
|
|
} else {
|
|
sifs = 10 - RAL_RXTX_TURNAROUND;
|
|
eifs = 64;
|
|
}
|
|
|
|
ural_write(sc, RAL_MAC_CSR10, slottime);
|
|
ural_write(sc, RAL_MAC_CSR11, sifs);
|
|
ural_write(sc, RAL_MAC_CSR12, eifs);
|
|
}
|
|
|
|
Static void
|
|
ural_set_txpreamble(struct ural_softc *sc)
|
|
{
|
|
uint16_t tmp;
|
|
|
|
tmp = ural_read(sc, RAL_TXRX_CSR10);
|
|
|
|
tmp &= ~RAL_SHORT_PREAMBLE;
|
|
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
|
|
tmp |= RAL_SHORT_PREAMBLE;
|
|
|
|
ural_write(sc, RAL_TXRX_CSR10, tmp);
|
|
}
|
|
|
|
Static void
|
|
ural_set_basicrates(struct ural_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
/* update basic rate set */
|
|
if (ic->ic_curmode == IEEE80211_MODE_11B) {
|
|
/* 11b basic rates: 1, 2Mbps */
|
|
ural_write(sc, RAL_TXRX_CSR11, 0x3);
|
|
} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
|
|
/* 11a basic rates: 6, 12, 24Mbps */
|
|
ural_write(sc, RAL_TXRX_CSR11, 0x150);
|
|
} else {
|
|
/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
|
|
ural_write(sc, RAL_TXRX_CSR11, 0x15f);
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
|
|
{
|
|
uint16_t tmp;
|
|
|
|
tmp = bssid[0] | bssid[1] << 8;
|
|
ural_write(sc, RAL_MAC_CSR5, tmp);
|
|
|
|
tmp = bssid[2] | bssid[3] << 8;
|
|
ural_write(sc, RAL_MAC_CSR6, tmp);
|
|
|
|
tmp = bssid[4] | bssid[5] << 8;
|
|
ural_write(sc, RAL_MAC_CSR7, tmp);
|
|
|
|
DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
|
|
}
|
|
|
|
Static void
|
|
ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
|
|
{
|
|
uint16_t tmp;
|
|
|
|
tmp = addr[0] | addr[1] << 8;
|
|
ural_write(sc, RAL_MAC_CSR2, tmp);
|
|
|
|
tmp = addr[2] | addr[3] << 8;
|
|
ural_write(sc, RAL_MAC_CSR3, tmp);
|
|
|
|
tmp = addr[4] | addr[5] << 8;
|
|
ural_write(sc, RAL_MAC_CSR4, tmp);
|
|
|
|
DPRINTF(("setting MAC address to %6D\n", addr, ":"));
|
|
}
|
|
|
|
Static void
|
|
ural_update_promisc(struct ural_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ic.ic_ifp;
|
|
uint32_t tmp;
|
|
|
|
tmp = ural_read(sc, RAL_TXRX_CSR2);
|
|
|
|
tmp &= ~RAL_DROP_NOT_TO_ME;
|
|
if (!(ifp->if_flags & IFF_PROMISC))
|
|
tmp |= RAL_DROP_NOT_TO_ME;
|
|
|
|
ural_write(sc, RAL_TXRX_CSR2, tmp);
|
|
|
|
DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
|
|
"entering" : "leaving"));
|
|
}
|
|
|
|
Static const char *
|
|
ural_get_rf(int rev)
|
|
{
|
|
switch (rev) {
|
|
case RAL_RF_2522: return "RT2522";
|
|
case RAL_RF_2523: return "RT2523";
|
|
case RAL_RF_2524: return "RT2524";
|
|
case RAL_RF_2525: return "RT2525";
|
|
case RAL_RF_2525E: return "RT2525e";
|
|
case RAL_RF_2526: return "RT2526";
|
|
case RAL_RF_5222: return "RT5222";
|
|
default: return "unknown";
|
|
}
|
|
}
|
|
|
|
Static void
|
|
ural_read_eeprom(struct ural_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
uint16_t val;
|
|
|
|
ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
|
|
val = le16toh(val);
|
|
sc->rf_rev = (val >> 11) & 0x7;
|
|
sc->hw_radio = (val >> 10) & 0x1;
|
|
sc->led_mode = (val >> 6) & 0x7;
|
|
sc->rx_ant = (val >> 4) & 0x3;
|
|
sc->tx_ant = (val >> 2) & 0x3;
|
|
sc->nb_ant = val & 0x3;
|
|
|
|
/* read MAC address */
|
|
ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
|
|
|
|
/* read default values for BBP registers */
|
|
ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
|
|
|
|
/* read Tx power for all b/g channels */
|
|
ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
|
|
}
|
|
|
|
Static int
|
|
ural_bbp_init(struct ural_softc *sc)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof ((a)[0]))
|
|
int i, ntries;
|
|
|
|
/* wait for BBP to be ready */
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (ntries == 100) {
|
|
device_printf(sc->sc_dev, "timeout waiting for BBP\n");
|
|
return EIO;
|
|
}
|
|
|
|
/* initialize BBP registers to default values */
|
|
for (i = 0; i < N(ural_def_bbp); i++)
|
|
ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
|
|
|
|
#if 0
|
|
/* initialize BBP registers to values stored in EEPROM */
|
|
for (i = 0; i < 16; i++) {
|
|
if (sc->bbp_prom[i].reg == 0xff)
|
|
continue;
|
|
ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
Static void
|
|
ural_set_txantenna(struct ural_softc *sc, int antenna)
|
|
{
|
|
uint16_t tmp;
|
|
uint8_t tx;
|
|
|
|
tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
|
|
if (antenna == 1)
|
|
tx |= RAL_BBP_ANTA;
|
|
else if (antenna == 2)
|
|
tx |= RAL_BBP_ANTB;
|
|
else
|
|
tx |= RAL_BBP_DIVERSITY;
|
|
|
|
/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
|
|
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
|
|
sc->rf_rev == RAL_RF_5222)
|
|
tx |= RAL_BBP_FLIPIQ;
|
|
|
|
ural_bbp_write(sc, RAL_BBP_TX, tx);
|
|
|
|
/* update values in PHY_CSR5 and PHY_CSR6 */
|
|
tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
|
|
ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
|
|
|
|
tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
|
|
ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
|
|
}
|
|
|
|
Static void
|
|
ural_set_rxantenna(struct ural_softc *sc, int antenna)
|
|
{
|
|
uint8_t rx;
|
|
|
|
rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
|
|
if (antenna == 1)
|
|
rx |= RAL_BBP_ANTA;
|
|
else if (antenna == 2)
|
|
rx |= RAL_BBP_ANTB;
|
|
else
|
|
rx |= RAL_BBP_DIVERSITY;
|
|
|
|
/* need to force no I/Q flip for RF 2525e and 2526 */
|
|
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
|
|
rx &= ~RAL_BBP_FLIPIQ;
|
|
|
|
ural_bbp_write(sc, RAL_BBP_RX, rx);
|
|
}
|
|
|
|
Static void
|
|
ural_init(void *priv)
|
|
{
|
|
#define N(a) (sizeof (a) / sizeof ((a)[0]))
|
|
struct ural_softc *sc = priv;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ieee80211_key *wk;
|
|
struct ural_rx_data *data;
|
|
uint16_t tmp;
|
|
usbd_status error;
|
|
int i, ntries;
|
|
|
|
ural_set_testmode(sc);
|
|
ural_write(sc, 0x308, 0x00f0); /* XXX magic */
|
|
|
|
ural_stop(sc);
|
|
|
|
/* initialize MAC registers to default values */
|
|
for (i = 0; i < N(ural_def_mac); i++)
|
|
ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
|
|
|
|
/* wait for BBP and RF to wake up (this can take a long time!) */
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
tmp = ural_read(sc, RAL_MAC_CSR17);
|
|
if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
|
|
(RAL_BBP_AWAKE | RAL_RF_AWAKE))
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (ntries == 100) {
|
|
printf("%s: timeout waiting for BBP/RF to wakeup\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
goto fail;
|
|
}
|
|
|
|
/* we're ready! */
|
|
ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
|
|
|
|
/* set basic rate set (will be updated later) */
|
|
ural_write(sc, RAL_TXRX_CSR11, 0x15f);
|
|
|
|
if (ural_bbp_init(sc) != 0)
|
|
goto fail;
|
|
|
|
/* set default BSS channel */
|
|
ural_set_chan(sc, ic->ic_curchan);
|
|
|
|
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
|
|
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
|
|
|
|
ural_set_txantenna(sc, sc->tx_ant);
|
|
ural_set_rxantenna(sc, sc->rx_ant);
|
|
|
|
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
|
|
ural_set_macaddr(sc, ic->ic_myaddr);
|
|
|
|
/*
|
|
* Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
|
|
*/
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
wk = &ic->ic_crypto.cs_nw_keys[i];
|
|
ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
|
|
RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Allocate xfer for AMRR statistics requests.
|
|
*/
|
|
sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
|
|
if (sc->amrr_xfer == NULL) {
|
|
printf("%s: could not allocate AMRR xfer\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Open Tx and Rx USB bulk pipes.
|
|
*/
|
|
error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
|
|
&sc->sc_tx_pipeh);
|
|
if (error != 0) {
|
|
printf("%s: could not open Tx pipe: %s\n",
|
|
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
|
|
goto fail;
|
|
}
|
|
|
|
error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
|
|
&sc->sc_rx_pipeh);
|
|
if (error != 0) {
|
|
printf("%s: could not open Rx pipe: %s\n",
|
|
USBDEVNAME(sc->sc_dev), usbd_errstr(error));
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate Tx and Rx xfer queues.
|
|
*/
|
|
error = ural_alloc_tx_list(sc);
|
|
if (error != 0) {
|
|
printf("%s: could not allocate Tx list\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
goto fail;
|
|
}
|
|
|
|
error = ural_alloc_rx_list(sc);
|
|
if (error != 0) {
|
|
printf("%s: could not allocate Rx list\n",
|
|
USBDEVNAME(sc->sc_dev));
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Start up the receive pipe.
|
|
*/
|
|
for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
|
|
data = &sc->rx_data[i];
|
|
|
|
usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
|
|
MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
|
|
usbd_transfer(data->xfer);
|
|
}
|
|
|
|
/* kick Rx */
|
|
tmp = RAL_DROP_PHY | RAL_DROP_CRC;
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION;
|
|
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
|
|
tmp |= RAL_DROP_TODS;
|
|
if (!(ifp->if_flags & IFF_PROMISC))
|
|
tmp |= RAL_DROP_NOT_TO_ME;
|
|
}
|
|
ural_write(sc, RAL_TXRX_CSR2, tmp);
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
|
|
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
|
} else
|
|
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
|
|
return;
|
|
|
|
fail: ural_stop(sc);
|
|
#undef N
|
|
}
|
|
|
|
Static void
|
|
ural_stop(void *priv)
|
|
{
|
|
struct ural_softc *sc = priv;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
|
|
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
|
|
|
|
sc->sc_tx_timer = 0;
|
|
ifp->if_timer = 0;
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
/* disable Rx */
|
|
ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
|
|
|
|
/* reset ASIC and BBP (but won't reset MAC registers!) */
|
|
ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
|
|
ural_write(sc, RAL_MAC_CSR1, 0);
|
|
|
|
if (sc->amrr_xfer != NULL) {
|
|
usbd_free_xfer(sc->amrr_xfer);
|
|
sc->amrr_xfer = NULL;
|
|
}
|
|
|
|
if (sc->sc_rx_pipeh != NULL) {
|
|
usbd_abort_pipe(sc->sc_rx_pipeh);
|
|
usbd_close_pipe(sc->sc_rx_pipeh);
|
|
sc->sc_rx_pipeh = NULL;
|
|
}
|
|
|
|
if (sc->sc_tx_pipeh != NULL) {
|
|
usbd_abort_pipe(sc->sc_tx_pipeh);
|
|
usbd_close_pipe(sc->sc_tx_pipeh);
|
|
sc->sc_tx_pipeh = NULL;
|
|
}
|
|
|
|
ural_free_rx_list(sc);
|
|
ural_free_tx_list(sc);
|
|
}
|
|
|
|
#define URAL_AMRR_MIN_SUCCESS_THRESHOLD 1
|
|
#define URAL_AMRR_MAX_SUCCESS_THRESHOLD 10
|
|
|
|
Static void
|
|
ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
|
|
{
|
|
struct ural_amrr *amrr = &sc->amrr;
|
|
int i;
|
|
|
|
/* clear statistic registers (STA_CSR0 to STA_CSR10) */
|
|
ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta);
|
|
|
|
amrr->success = 0;
|
|
amrr->recovery = 0;
|
|
amrr->txcnt = amrr->retrycnt = 0;
|
|
amrr->success_threshold = URAL_AMRR_MIN_SUCCESS_THRESHOLD;
|
|
|
|
/* set rate to some reasonable initial value */
|
|
for (i = ni->ni_rates.rs_nrates - 1;
|
|
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
|
|
i--);
|
|
|
|
ni->ni_txrate = i;
|
|
|
|
callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
|
|
}
|
|
|
|
Static void
|
|
ural_amrr_timeout(void *arg)
|
|
{
|
|
struct ural_softc *sc = (struct ural_softc *)arg;
|
|
usb_device_request_t req;
|
|
int s;
|
|
|
|
s = splusb();
|
|
|
|
/*
|
|
* Asynchronously read statistic registers (cleared by read).
|
|
*/
|
|
req.bmRequestType = UT_READ_VENDOR_DEVICE;
|
|
req.bRequest = RAL_READ_MULTI_MAC;
|
|
USETW(req.wValue, 0);
|
|
USETW(req.wIndex, RAL_STA_CSR0);
|
|
USETW(req.wLength, sizeof sc->sta);
|
|
|
|
usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
|
|
USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
|
|
ural_amrr_update);
|
|
(void)usbd_transfer(sc->amrr_xfer);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
Static void
|
|
ural_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
|
|
usbd_status status)
|
|
{
|
|
struct ural_softc *sc = (struct ural_softc *)priv;
|
|
struct ural_amrr *amrr = &sc->amrr;
|
|
|
|
if (status != USBD_NORMAL_COMPLETION)
|
|
return;
|
|
|
|
amrr->retrycnt =
|
|
sc->sta[7] + /* TX one-retry ok count */
|
|
sc->sta[8] + /* TX more-retry ok count */
|
|
sc->sta[9]; /* TX retry-fail count */
|
|
|
|
amrr->txcnt =
|
|
amrr->retrycnt +
|
|
sc->sta[6]; /* TX no-retry ok count */
|
|
|
|
ural_ratectl(amrr, sc->sc_ic.ic_bss);
|
|
|
|
callout_reset(&sc->amrr_ch, hz, ural_amrr_timeout, sc);
|
|
}
|
|
|
|
/*-
|
|
* Naive implementation of the Adaptive Multi Rate Retry algorithm:
|
|
* "IEEE 802.11 Rate Adaptation: A Practical Approach"
|
|
* Mathieu Lacage, Hossein Manshaei, Thierry Turletti
|
|
* INRIA Sophia - Projet Planete
|
|
* http://www-sop.inria.fr/rapports/sophia/RR-5208.html
|
|
*
|
|
* This algorithm is particularly well suited for ural since it does not
|
|
* require per-frame retry statistics. Note however that since h/w does
|
|
* not provide per-frame stats, we can't do per-node rate adaptation and
|
|
* thus automatic rate adaptation is only enabled in STA operating mode.
|
|
*/
|
|
#define is_success(amrr) \
|
|
((amrr)->retrycnt < (amrr)->txcnt / 10)
|
|
#define is_failure(amrr) \
|
|
((amrr)->retrycnt > (amrr)->txcnt / 3)
|
|
#define is_enough(amrr) \
|
|
((amrr)->txcnt > 10)
|
|
#define is_min_rate(ni) \
|
|
((ni)->ni_txrate == 0)
|
|
#define is_max_rate(ni) \
|
|
((ni)->ni_txrate == (ni)->ni_rates.rs_nrates - 1)
|
|
#define increase_rate(ni) \
|
|
((ni)->ni_txrate++)
|
|
#define decrease_rate(ni) \
|
|
((ni)->ni_txrate--)
|
|
#define reset_cnt(amrr) \
|
|
do { (amrr)->txcnt = (amrr)->retrycnt = 0; } while (0)
|
|
Static void
|
|
ural_ratectl(struct ural_amrr *amrr, struct ieee80211_node *ni)
|
|
{
|
|
int need_change = 0;
|
|
|
|
if (is_success(amrr) && is_enough(amrr)) {
|
|
amrr->success++;
|
|
if (amrr->success >= amrr->success_threshold &&
|
|
!is_max_rate(ni)) {
|
|
amrr->recovery = 1;
|
|
amrr->success = 0;
|
|
increase_rate(ni);
|
|
need_change = 1;
|
|
} else {
|
|
amrr->recovery = 0;
|
|
}
|
|
} else if (is_failure(amrr)) {
|
|
amrr->success = 0;
|
|
if (!is_min_rate(ni)) {
|
|
if (amrr->recovery) {
|
|
amrr->success_threshold *= 2;
|
|
if (amrr->success_threshold >
|
|
URAL_AMRR_MAX_SUCCESS_THRESHOLD)
|
|
amrr->success_threshold =
|
|
URAL_AMRR_MAX_SUCCESS_THRESHOLD;
|
|
} else {
|
|
amrr->success_threshold =
|
|
URAL_AMRR_MIN_SUCCESS_THRESHOLD;
|
|
}
|
|
decrease_rate(ni);
|
|
need_change = 1;
|
|
}
|
|
amrr->recovery = 0; /* original paper was incorrect */
|
|
}
|
|
|
|
if (is_enough(amrr) || need_change)
|
|
reset_cnt(amrr);
|
|
}
|
|
|
|
DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, usbd_driver_load, 0);
|