freebsd-nq/sys/vm/vm_contig.c
Alan Cox 65bae14d77 - Enable recursive acquisition of the mutex synchronizing access to the
free pages queue.  This is presently needed by contigmalloc1().
 - Move a sanity check against attempted double allocation of two pages
   to the same vm object offset from vm_page_alloc() to vm_page_insert().
   This provides better protection because double allocation could occur
   through a direct call to vm_page_insert(), such as that by
   vm_page_rename().
 - Modify contigmalloc1() to hold the mutex synchronizing access to the
   free pages queue while it scans vm_page_array in search of free pages.
 - Correct a potential leak of pages by contigmalloc1() that I introduced
   in revision 1.20: We must convert all cache queue pages to free pages
   before we begin removing free pages from the free queue.  Otherwise,
   if we have to restart the scan because we are unable to acquire the
   vm object lock that is necessary to convert a cache queue page to a
   free page, we leak those free pages already removed from the free queue.
2004-01-08 20:48:26 +00:00

328 lines
9.6 KiB
C

/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
*/
/*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
static int
vm_contig_launder(int queue)
{
vm_object_t object;
vm_page_t m, m_tmp, next;
struct vnode *vp;
for (m = TAILQ_FIRST(&vm_page_queues[queue].pl); m != NULL; m = next) {
next = TAILQ_NEXT(m, pageq);
KASSERT(m->queue == queue,
("vm_contig_launder: page %p's queue is not %d", m, queue));
if (!VM_OBJECT_TRYLOCK(m->object))
continue;
if (vm_page_sleep_if_busy(m, TRUE, "vpctw0")) {
VM_OBJECT_UNLOCK(m->object);
vm_page_lock_queues();
return (TRUE);
}
vm_page_test_dirty(m);
if (m->dirty) {
object = m->object;
if (object->type == OBJT_VNODE) {
vm_page_unlock_queues();
vp = object->handle;
VM_OBJECT_UNLOCK(object);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
VM_OBJECT_LOCK(object);
vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
VM_OBJECT_UNLOCK(object);
VOP_UNLOCK(vp, 0, curthread);
vm_page_lock_queues();
return (TRUE);
} else if (object->type == OBJT_SWAP ||
object->type == OBJT_DEFAULT) {
m_tmp = m;
vm_pageout_flush(&m_tmp, 1, 0);
VM_OBJECT_UNLOCK(object);
return (TRUE);
}
} else if (m->busy == 0 && m->hold_count == 0)
vm_page_cache(m);
VM_OBJECT_UNLOCK(m->object);
}
return (FALSE);
}
/*
* This interface is for merging with malloc() someday.
* Even if we never implement compaction so that contiguous allocation
* works after initialization time, malloc()'s data structures are good
* for statistics and for allocations of less than a page.
*/
static void *
contigmalloc1(
unsigned long size, /* should be size_t here and for malloc() */
struct malloc_type *type,
int flags,
vm_paddr_t low,
vm_paddr_t high,
unsigned long alignment,
unsigned long boundary,
vm_map_t map)
{
int i, s, start;
vm_paddr_t phys;
vm_object_t object;
vm_offset_t addr, tmp_addr;
int pass, pqtype;
vm_page_t pga = vm_page_array;
size = round_page(size);
if (size == 0)
panic("contigmalloc1: size must not be 0");
if ((alignment & (alignment - 1)) != 0)
panic("contigmalloc1: alignment must be a power of 2");
if ((boundary & (boundary - 1)) != 0)
panic("contigmalloc1: boundary must be a power of 2");
start = 0;
for (pass = 0; pass <= 1; pass++) {
s = splvm();
vm_page_lock_queues();
mtx_lock_spin(&vm_page_queue_free_mtx);
again:
/*
* Find first page in array that is free, within range,
* aligned, and such that the boundary won't be crossed.
*/
for (i = start; i < cnt.v_page_count; i++) {
phys = VM_PAGE_TO_PHYS(&pga[i]);
pqtype = pga[i].queue - pga[i].pc;
if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
(phys >= low) && (phys < high) &&
((phys & (alignment - 1)) == 0) &&
(((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
break;
}
/*
* If the above failed or we will exceed the upper bound, fail.
*/
if ((i == cnt.v_page_count) ||
((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
mtx_unlock_spin(&vm_page_queue_free_mtx);
again1:
if (vm_contig_launder(PQ_INACTIVE))
goto again1;
if (vm_contig_launder(PQ_ACTIVE))
goto again1;
vm_page_unlock_queues();
splx(s);
continue;
}
start = i;
/*
* Check successive pages for contiguous and free.
*/
for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
pqtype = pga[i].queue - pga[i].pc;
if ((VM_PAGE_TO_PHYS(&pga[i]) !=
(VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
start++;
goto again;
}
}
for (i = start; i < (start + size / PAGE_SIZE); i++) {
vm_page_t m = &pga[i];
if ((m->queue - m->pc) == PQ_CACHE) {
object = m->object;
if (!VM_OBJECT_TRYLOCK(object)) {
start++;
goto again;
}
vm_page_busy(m);
vm_page_free(m);
VM_OBJECT_UNLOCK(object);
}
}
for (i = start; i < (start + size / PAGE_SIZE); i++) {
vm_page_t m = &pga[i];
vm_pageq_remove_nowakeup(m);
m->valid = VM_PAGE_BITS_ALL;
if (m->flags & PG_ZERO)
vm_page_zero_count--;
/* Don't clear the PG_ZERO flag, we'll need it later. */
m->flags &= PG_ZERO;
KASSERT(m->dirty == 0,
("contigmalloc1: page %p was dirty", m));
m->wire_count = 0;
m->busy = 0;
m->object = NULL;
}
mtx_unlock_spin(&vm_page_queue_free_mtx);
vm_page_unlock_queues();
/*
* We've found a contiguous chunk that meets are requirements.
* Allocate kernel VM, unfree and assign the physical pages to
* it and return kernel VM pointer.
*/
vm_map_lock(map);
if (vm_map_findspace(map, vm_map_min(map), size, &addr) !=
KERN_SUCCESS) {
/*
* XXX We almost never run out of kernel virtual
* space, so we don't make the allocated memory
* above available.
*/
vm_map_unlock(map);
splx(s);
return (NULL);
}
vm_object_reference(kernel_object);
vm_map_insert(map, kernel_object, addr - VM_MIN_KERNEL_ADDRESS,
addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
vm_map_unlock(map);
tmp_addr = addr;
VM_OBJECT_LOCK(kernel_object);
for (i = start; i < (start + size / PAGE_SIZE); i++) {
vm_page_t m = &pga[i];
vm_page_insert(m, kernel_object,
OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
if ((flags & M_ZERO) && !(m->flags & PG_ZERO))
pmap_zero_page(m);
tmp_addr += PAGE_SIZE;
}
VM_OBJECT_UNLOCK(kernel_object);
vm_map_wire(map, addr, addr + size,
VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
splx(s);
return ((void *)addr);
}
return (NULL);
}
void *
contigmalloc(
unsigned long size, /* should be size_t here and for malloc() */
struct malloc_type *type,
int flags,
vm_paddr_t low,
vm_paddr_t high,
unsigned long alignment,
unsigned long boundary)
{
void * ret;
mtx_lock(&Giant);
ret = contigmalloc1(size, type, flags, low, high, alignment, boundary,
kernel_map);
mtx_unlock(&Giant);
return (ret);
}
void
contigfree(void *addr, unsigned long size, struct malloc_type *type)
{
GIANT_REQUIRED;
kmem_free(kernel_map, (vm_offset_t)addr, size);
}
vm_offset_t
vm_page_alloc_contig(
vm_offset_t size,
vm_paddr_t low,
vm_paddr_t high,
vm_offset_t alignment)
{
vm_offset_t ret;
GIANT_REQUIRED;
ret = ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
alignment, 0ul, kernel_map));
return (ret);
}