4049a04253
done by the same uid. Obtained from: OpenBSD
905 lines
22 KiB
C
905 lines
22 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
|
|
* $Id: uipc_socket2.c,v 1.30 1997/09/07 16:53:48 bde Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
/*
|
|
* Primitive routines for operating on sockets and socket buffers
|
|
*/
|
|
|
|
u_long sb_max = SB_MAX; /* XXX should be static */
|
|
|
|
static u_long sb_efficiency = 8; /* parameter for sbreserve() */
|
|
|
|
/*
|
|
* Procedures to manipulate state flags of socket
|
|
* and do appropriate wakeups. Normal sequence from the
|
|
* active (originating) side is that soisconnecting() is
|
|
* called during processing of connect() call,
|
|
* resulting in an eventual call to soisconnected() if/when the
|
|
* connection is established. When the connection is torn down
|
|
* soisdisconnecting() is called during processing of disconnect() call,
|
|
* and soisdisconnected() is called when the connection to the peer
|
|
* is totally severed. The semantics of these routines are such that
|
|
* connectionless protocols can call soisconnected() and soisdisconnected()
|
|
* only, bypassing the in-progress calls when setting up a ``connection''
|
|
* takes no time.
|
|
*
|
|
* From the passive side, a socket is created with
|
|
* two queues of sockets: so_q0 for connections in progress
|
|
* and so_q for connections already made and awaiting user acceptance.
|
|
* As a protocol is preparing incoming connections, it creates a socket
|
|
* structure queued on so_q0 by calling sonewconn(). When the connection
|
|
* is established, soisconnected() is called, and transfers the
|
|
* socket structure to so_q, making it available to accept().
|
|
*
|
|
* If a socket is closed with sockets on either
|
|
* so_q0 or so_q, these sockets are dropped.
|
|
*
|
|
* If higher level protocols are implemented in
|
|
* the kernel, the wakeups done here will sometimes
|
|
* cause software-interrupt process scheduling.
|
|
*/
|
|
|
|
void
|
|
soisconnecting(so)
|
|
register struct socket *so;
|
|
{
|
|
|
|
so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
|
|
so->so_state |= SS_ISCONNECTING;
|
|
}
|
|
|
|
void
|
|
soisconnected(so)
|
|
register struct socket *so;
|
|
{
|
|
register struct socket *head = so->so_head;
|
|
|
|
so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
|
|
so->so_state |= SS_ISCONNECTED;
|
|
if (head && (so->so_state & SS_INCOMP)) {
|
|
TAILQ_REMOVE(&head->so_incomp, so, so_list);
|
|
head->so_incqlen--;
|
|
so->so_state &= ~SS_INCOMP;
|
|
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
|
|
so->so_state |= SS_COMP;
|
|
sorwakeup(head);
|
|
wakeup_one(&head->so_timeo);
|
|
} else {
|
|
wakeup(&so->so_timeo);
|
|
sorwakeup(so);
|
|
sowwakeup(so);
|
|
}
|
|
}
|
|
|
|
void
|
|
soisdisconnecting(so)
|
|
register struct socket *so;
|
|
{
|
|
|
|
so->so_state &= ~SS_ISCONNECTING;
|
|
so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
|
|
wakeup((caddr_t)&so->so_timeo);
|
|
sowwakeup(so);
|
|
sorwakeup(so);
|
|
}
|
|
|
|
void
|
|
soisdisconnected(so)
|
|
register struct socket *so;
|
|
{
|
|
|
|
so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
|
|
so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
|
|
wakeup((caddr_t)&so->so_timeo);
|
|
sowwakeup(so);
|
|
sorwakeup(so);
|
|
}
|
|
|
|
/*
|
|
* Return a random connection that hasn't been serviced yet and
|
|
* is eligible for discard. There is a one in qlen chance that
|
|
* we will return a null, saying that there are no dropable
|
|
* requests. In this case, the protocol specific code should drop
|
|
* the new request. This insures fairness.
|
|
*
|
|
* This may be used in conjunction with protocol specific queue
|
|
* congestion routines.
|
|
*/
|
|
struct socket *
|
|
sodropablereq(head)
|
|
register struct socket *head;
|
|
{
|
|
register struct socket *so;
|
|
unsigned int i, j, qlen;
|
|
|
|
static int rnd;
|
|
static long old_mono_secs;
|
|
static unsigned int cur_cnt, old_cnt;
|
|
|
|
if ((i = (mono_time.tv_sec - old_mono_secs)) != 0) {
|
|
old_mono_secs = mono_time.tv_sec;
|
|
old_cnt = cur_cnt / i;
|
|
cur_cnt = 0;
|
|
}
|
|
|
|
so = TAILQ_FIRST(&head->so_incomp);
|
|
if (!so)
|
|
return (so);
|
|
|
|
qlen = head->so_incqlen;
|
|
if (++cur_cnt > qlen || old_cnt > qlen) {
|
|
rnd = (314159 * rnd + 66329) & 0xffff;
|
|
j = ((qlen + 1) * rnd) >> 16;
|
|
|
|
while (j-- && so)
|
|
so = TAILQ_NEXT(so, so_list);
|
|
}
|
|
|
|
return (so);
|
|
}
|
|
|
|
/*
|
|
* When an attempt at a new connection is noted on a socket
|
|
* which accepts connections, sonewconn is called. If the
|
|
* connection is possible (subject to space constraints, etc.)
|
|
* then we allocate a new structure, propoerly linked into the
|
|
* data structure of the original socket, and return this.
|
|
* Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
|
|
*/
|
|
struct socket *
|
|
sonewconn(head, connstatus)
|
|
register struct socket *head;
|
|
int connstatus;
|
|
{
|
|
register struct socket *so;
|
|
|
|
if (head->so_qlen > 3 * head->so_qlimit / 2)
|
|
return ((struct socket *)0);
|
|
MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
|
|
if (so == NULL)
|
|
return ((struct socket *)0);
|
|
bzero((caddr_t)so, sizeof(*so));
|
|
so->so_head = head;
|
|
so->so_type = head->so_type;
|
|
so->so_options = head->so_options &~ SO_ACCEPTCONN;
|
|
so->so_linger = head->so_linger;
|
|
so->so_state = head->so_state | SS_NOFDREF;
|
|
so->so_proto = head->so_proto;
|
|
so->so_timeo = head->so_timeo;
|
|
so->so_pgid = head->so_pgid;
|
|
so->so_uid = head->so_uid;
|
|
(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
|
|
|
|
if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
|
|
(void) free((caddr_t)so, M_SOCKET);
|
|
return ((struct socket *)0);
|
|
}
|
|
|
|
if (connstatus) {
|
|
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
|
|
so->so_state |= SS_COMP;
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
|
|
so->so_state |= SS_INCOMP;
|
|
head->so_incqlen++;
|
|
}
|
|
head->so_qlen++;
|
|
if (connstatus) {
|
|
sorwakeup(head);
|
|
wakeup((caddr_t)&head->so_timeo);
|
|
so->so_state |= connstatus;
|
|
}
|
|
return (so);
|
|
}
|
|
|
|
/*
|
|
* Socantsendmore indicates that no more data will be sent on the
|
|
* socket; it would normally be applied to a socket when the user
|
|
* informs the system that no more data is to be sent, by the protocol
|
|
* code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
|
|
* will be received, and will normally be applied to the socket by a
|
|
* protocol when it detects that the peer will send no more data.
|
|
* Data queued for reading in the socket may yet be read.
|
|
*/
|
|
|
|
void
|
|
socantsendmore(so)
|
|
struct socket *so;
|
|
{
|
|
|
|
so->so_state |= SS_CANTSENDMORE;
|
|
sowwakeup(so);
|
|
}
|
|
|
|
void
|
|
socantrcvmore(so)
|
|
struct socket *so;
|
|
{
|
|
|
|
so->so_state |= SS_CANTRCVMORE;
|
|
sorwakeup(so);
|
|
}
|
|
|
|
/*
|
|
* Wait for data to arrive at/drain from a socket buffer.
|
|
*/
|
|
int
|
|
sbwait(sb)
|
|
struct sockbuf *sb;
|
|
{
|
|
|
|
sb->sb_flags |= SB_WAIT;
|
|
return (tsleep((caddr_t)&sb->sb_cc,
|
|
(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
|
|
sb->sb_timeo));
|
|
}
|
|
|
|
/*
|
|
* Lock a sockbuf already known to be locked;
|
|
* return any error returned from sleep (EINTR).
|
|
*/
|
|
int
|
|
sb_lock(sb)
|
|
register struct sockbuf *sb;
|
|
{
|
|
int error;
|
|
|
|
while (sb->sb_flags & SB_LOCK) {
|
|
sb->sb_flags |= SB_WANT;
|
|
error = tsleep((caddr_t)&sb->sb_flags,
|
|
(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
|
|
"sblock", 0);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
sb->sb_flags |= SB_LOCK;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Wakeup processes waiting on a socket buffer.
|
|
* Do asynchronous notification via SIGIO
|
|
* if the socket has the SS_ASYNC flag set.
|
|
*/
|
|
void
|
|
sowakeup(so, sb)
|
|
register struct socket *so;
|
|
register struct sockbuf *sb;
|
|
{
|
|
struct proc *p;
|
|
|
|
selwakeup(&sb->sb_sel);
|
|
sb->sb_flags &= ~SB_SEL;
|
|
if (sb->sb_flags & SB_WAIT) {
|
|
sb->sb_flags &= ~SB_WAIT;
|
|
wakeup((caddr_t)&sb->sb_cc);
|
|
}
|
|
if (so->so_state & SS_ASYNC) {
|
|
if (so->so_pgid < 0)
|
|
gsignal(-so->so_pgid, SIGIO);
|
|
else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
|
|
psignal(p, SIGIO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Socket buffer (struct sockbuf) utility routines.
|
|
*
|
|
* Each socket contains two socket buffers: one for sending data and
|
|
* one for receiving data. Each buffer contains a queue of mbufs,
|
|
* information about the number of mbufs and amount of data in the
|
|
* queue, and other fields allowing select() statements and notification
|
|
* on data availability to be implemented.
|
|
*
|
|
* Data stored in a socket buffer is maintained as a list of records.
|
|
* Each record is a list of mbufs chained together with the m_next
|
|
* field. Records are chained together with the m_nextpkt field. The upper
|
|
* level routine soreceive() expects the following conventions to be
|
|
* observed when placing information in the receive buffer:
|
|
*
|
|
* 1. If the protocol requires each message be preceded by the sender's
|
|
* name, then a record containing that name must be present before
|
|
* any associated data (mbuf's must be of type MT_SONAME).
|
|
* 2. If the protocol supports the exchange of ``access rights'' (really
|
|
* just additional data associated with the message), and there are
|
|
* ``rights'' to be received, then a record containing this data
|
|
* should be present (mbuf's must be of type MT_RIGHTS).
|
|
* 3. If a name or rights record exists, then it must be followed by
|
|
* a data record, perhaps of zero length.
|
|
*
|
|
* Before using a new socket structure it is first necessary to reserve
|
|
* buffer space to the socket, by calling sbreserve(). This should commit
|
|
* some of the available buffer space in the system buffer pool for the
|
|
* socket (currently, it does nothing but enforce limits). The space
|
|
* should be released by calling sbrelease() when the socket is destroyed.
|
|
*/
|
|
|
|
int
|
|
soreserve(so, sndcc, rcvcc)
|
|
register struct socket *so;
|
|
u_long sndcc, rcvcc;
|
|
{
|
|
|
|
if (sbreserve(&so->so_snd, sndcc) == 0)
|
|
goto bad;
|
|
if (sbreserve(&so->so_rcv, rcvcc) == 0)
|
|
goto bad2;
|
|
if (so->so_rcv.sb_lowat == 0)
|
|
so->so_rcv.sb_lowat = 1;
|
|
if (so->so_snd.sb_lowat == 0)
|
|
so->so_snd.sb_lowat = MCLBYTES;
|
|
if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
|
|
so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
|
|
return (0);
|
|
bad2:
|
|
sbrelease(&so->so_snd);
|
|
bad:
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/*
|
|
* Allot mbufs to a sockbuf.
|
|
* Attempt to scale mbmax so that mbcnt doesn't become limiting
|
|
* if buffering efficiency is near the normal case.
|
|
*/
|
|
int
|
|
sbreserve(sb, cc)
|
|
struct sockbuf *sb;
|
|
u_long cc;
|
|
{
|
|
if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
|
|
return (0);
|
|
sb->sb_hiwat = cc;
|
|
sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
|
|
if (sb->sb_lowat > sb->sb_hiwat)
|
|
sb->sb_lowat = sb->sb_hiwat;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Free mbufs held by a socket, and reserved mbuf space.
|
|
*/
|
|
void
|
|
sbrelease(sb)
|
|
struct sockbuf *sb;
|
|
{
|
|
|
|
sbflush(sb);
|
|
sb->sb_hiwat = sb->sb_mbmax = 0;
|
|
}
|
|
|
|
/*
|
|
* Routines to add and remove
|
|
* data from an mbuf queue.
|
|
*
|
|
* The routines sbappend() or sbappendrecord() are normally called to
|
|
* append new mbufs to a socket buffer, after checking that adequate
|
|
* space is available, comparing the function sbspace() with the amount
|
|
* of data to be added. sbappendrecord() differs from sbappend() in
|
|
* that data supplied is treated as the beginning of a new record.
|
|
* To place a sender's address, optional access rights, and data in a
|
|
* socket receive buffer, sbappendaddr() should be used. To place
|
|
* access rights and data in a socket receive buffer, sbappendrights()
|
|
* should be used. In either case, the new data begins a new record.
|
|
* Note that unlike sbappend() and sbappendrecord(), these routines check
|
|
* for the caller that there will be enough space to store the data.
|
|
* Each fails if there is not enough space, or if it cannot find mbufs
|
|
* to store additional information in.
|
|
*
|
|
* Reliable protocols may use the socket send buffer to hold data
|
|
* awaiting acknowledgement. Data is normally copied from a socket
|
|
* send buffer in a protocol with m_copy for output to a peer,
|
|
* and then removing the data from the socket buffer with sbdrop()
|
|
* or sbdroprecord() when the data is acknowledged by the peer.
|
|
*/
|
|
|
|
/*
|
|
* Append mbuf chain m to the last record in the
|
|
* socket buffer sb. The additional space associated
|
|
* the mbuf chain is recorded in sb. Empty mbufs are
|
|
* discarded and mbufs are compacted where possible.
|
|
*/
|
|
void
|
|
sbappend(sb, m)
|
|
struct sockbuf *sb;
|
|
struct mbuf *m;
|
|
{
|
|
register struct mbuf *n;
|
|
|
|
if (m == 0)
|
|
return;
|
|
n = sb->sb_mb;
|
|
if (n) {
|
|
while (n->m_nextpkt)
|
|
n = n->m_nextpkt;
|
|
do {
|
|
if (n->m_flags & M_EOR) {
|
|
sbappendrecord(sb, m); /* XXXXXX!!!! */
|
|
return;
|
|
}
|
|
} while (n->m_next && (n = n->m_next));
|
|
}
|
|
sbcompress(sb, m, n);
|
|
}
|
|
|
|
#ifdef SOCKBUF_DEBUG
|
|
void
|
|
sbcheck(sb)
|
|
register struct sockbuf *sb;
|
|
{
|
|
register struct mbuf *m;
|
|
register int len = 0, mbcnt = 0;
|
|
|
|
for (m = sb->sb_mb; m; m = m->m_next) {
|
|
len += m->m_len;
|
|
mbcnt += MSIZE;
|
|
if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
|
|
mbcnt += m->m_ext.ext_size;
|
|
if (m->m_nextpkt)
|
|
panic("sbcheck nextpkt");
|
|
}
|
|
if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
|
|
printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
|
|
mbcnt, sb->sb_mbcnt);
|
|
panic("sbcheck");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* As above, except the mbuf chain
|
|
* begins a new record.
|
|
*/
|
|
void
|
|
sbappendrecord(sb, m0)
|
|
register struct sockbuf *sb;
|
|
register struct mbuf *m0;
|
|
{
|
|
register struct mbuf *m;
|
|
|
|
if (m0 == 0)
|
|
return;
|
|
m = sb->sb_mb;
|
|
if (m)
|
|
while (m->m_nextpkt)
|
|
m = m->m_nextpkt;
|
|
/*
|
|
* Put the first mbuf on the queue.
|
|
* Note this permits zero length records.
|
|
*/
|
|
sballoc(sb, m0);
|
|
if (m)
|
|
m->m_nextpkt = m0;
|
|
else
|
|
sb->sb_mb = m0;
|
|
m = m0->m_next;
|
|
m0->m_next = 0;
|
|
if (m && (m0->m_flags & M_EOR)) {
|
|
m0->m_flags &= ~M_EOR;
|
|
m->m_flags |= M_EOR;
|
|
}
|
|
sbcompress(sb, m, m0);
|
|
}
|
|
|
|
/*
|
|
* As above except that OOB data
|
|
* is inserted at the beginning of the sockbuf,
|
|
* but after any other OOB data.
|
|
*/
|
|
void
|
|
sbinsertoob(sb, m0)
|
|
register struct sockbuf *sb;
|
|
register struct mbuf *m0;
|
|
{
|
|
register struct mbuf *m;
|
|
register struct mbuf **mp;
|
|
|
|
if (m0 == 0)
|
|
return;
|
|
for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
|
|
m = *mp;
|
|
again:
|
|
switch (m->m_type) {
|
|
|
|
case MT_OOBDATA:
|
|
continue; /* WANT next train */
|
|
|
|
case MT_CONTROL:
|
|
m = m->m_next;
|
|
if (m)
|
|
goto again; /* inspect THIS train further */
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* Put the first mbuf on the queue.
|
|
* Note this permits zero length records.
|
|
*/
|
|
sballoc(sb, m0);
|
|
m0->m_nextpkt = *mp;
|
|
*mp = m0;
|
|
m = m0->m_next;
|
|
m0->m_next = 0;
|
|
if (m && (m0->m_flags & M_EOR)) {
|
|
m0->m_flags &= ~M_EOR;
|
|
m->m_flags |= M_EOR;
|
|
}
|
|
sbcompress(sb, m, m0);
|
|
}
|
|
|
|
/*
|
|
* Append address and data, and optionally, control (ancillary) data
|
|
* to the receive queue of a socket. If present,
|
|
* m0 must include a packet header with total length.
|
|
* Returns 0 if no space in sockbuf or insufficient mbufs.
|
|
*/
|
|
int
|
|
sbappendaddr(sb, asa, m0, control)
|
|
register struct sockbuf *sb;
|
|
struct sockaddr *asa;
|
|
struct mbuf *m0, *control;
|
|
{
|
|
register struct mbuf *m, *n;
|
|
int space = asa->sa_len;
|
|
|
|
if (m0 && (m0->m_flags & M_PKTHDR) == 0)
|
|
panic("sbappendaddr");
|
|
if (m0)
|
|
space += m0->m_pkthdr.len;
|
|
for (n = control; n; n = n->m_next) {
|
|
space += n->m_len;
|
|
if (n->m_next == 0) /* keep pointer to last control buf */
|
|
break;
|
|
}
|
|
if (space > sbspace(sb))
|
|
return (0);
|
|
if (asa->sa_len > MLEN)
|
|
return (0);
|
|
MGET(m, M_DONTWAIT, MT_SONAME);
|
|
if (m == 0)
|
|
return (0);
|
|
m->m_len = asa->sa_len;
|
|
bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
|
|
if (n)
|
|
n->m_next = m0; /* concatenate data to control */
|
|
else
|
|
control = m0;
|
|
m->m_next = control;
|
|
for (n = m; n; n = n->m_next)
|
|
sballoc(sb, n);
|
|
n = sb->sb_mb;
|
|
if (n) {
|
|
while (n->m_nextpkt)
|
|
n = n->m_nextpkt;
|
|
n->m_nextpkt = m;
|
|
} else
|
|
sb->sb_mb = m;
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
sbappendcontrol(sb, m0, control)
|
|
struct sockbuf *sb;
|
|
struct mbuf *control, *m0;
|
|
{
|
|
register struct mbuf *m, *n;
|
|
int space = 0;
|
|
|
|
if (control == 0)
|
|
panic("sbappendcontrol");
|
|
for (m = control; ; m = m->m_next) {
|
|
space += m->m_len;
|
|
if (m->m_next == 0)
|
|
break;
|
|
}
|
|
n = m; /* save pointer to last control buffer */
|
|
for (m = m0; m; m = m->m_next)
|
|
space += m->m_len;
|
|
if (space > sbspace(sb))
|
|
return (0);
|
|
n->m_next = m0; /* concatenate data to control */
|
|
for (m = control; m; m = m->m_next)
|
|
sballoc(sb, m);
|
|
n = sb->sb_mb;
|
|
if (n) {
|
|
while (n->m_nextpkt)
|
|
n = n->m_nextpkt;
|
|
n->m_nextpkt = control;
|
|
} else
|
|
sb->sb_mb = control;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Compress mbuf chain m into the socket
|
|
* buffer sb following mbuf n. If n
|
|
* is null, the buffer is presumed empty.
|
|
*/
|
|
void
|
|
sbcompress(sb, m, n)
|
|
register struct sockbuf *sb;
|
|
register struct mbuf *m, *n;
|
|
{
|
|
register int eor = 0;
|
|
register struct mbuf *o;
|
|
|
|
while (m) {
|
|
eor |= m->m_flags & M_EOR;
|
|
if (m->m_len == 0 &&
|
|
(eor == 0 ||
|
|
(((o = m->m_next) || (o = n)) &&
|
|
o->m_type == m->m_type))) {
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
|
|
(n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
|
|
n->m_type == m->m_type) {
|
|
bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
|
|
(unsigned)m->m_len);
|
|
n->m_len += m->m_len;
|
|
sb->sb_cc += m->m_len;
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
if (n)
|
|
n->m_next = m;
|
|
else
|
|
sb->sb_mb = m;
|
|
sballoc(sb, m);
|
|
n = m;
|
|
m->m_flags &= ~M_EOR;
|
|
m = m->m_next;
|
|
n->m_next = 0;
|
|
}
|
|
if (eor) {
|
|
if (n)
|
|
n->m_flags |= eor;
|
|
else
|
|
printf("semi-panic: sbcompress\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free all mbufs in a sockbuf.
|
|
* Check that all resources are reclaimed.
|
|
*/
|
|
void
|
|
sbflush(sb)
|
|
register struct sockbuf *sb;
|
|
{
|
|
|
|
if (sb->sb_flags & SB_LOCK)
|
|
panic("sbflush");
|
|
while (sb->sb_mbcnt)
|
|
sbdrop(sb, (int)sb->sb_cc);
|
|
if (sb->sb_cc || sb->sb_mb)
|
|
panic("sbflush 2");
|
|
}
|
|
|
|
/*
|
|
* Drop data from (the front of) a sockbuf.
|
|
*/
|
|
void
|
|
sbdrop(sb, len)
|
|
register struct sockbuf *sb;
|
|
register int len;
|
|
{
|
|
register struct mbuf *m, *mn;
|
|
struct mbuf *next;
|
|
|
|
next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
|
|
while (len > 0) {
|
|
if (m == 0) {
|
|
if (next == 0)
|
|
panic("sbdrop");
|
|
m = next;
|
|
next = m->m_nextpkt;
|
|
continue;
|
|
}
|
|
if (m->m_len > len) {
|
|
m->m_len -= len;
|
|
m->m_data += len;
|
|
sb->sb_cc -= len;
|
|
break;
|
|
}
|
|
len -= m->m_len;
|
|
sbfree(sb, m);
|
|
MFREE(m, mn);
|
|
m = mn;
|
|
}
|
|
while (m && m->m_len == 0) {
|
|
sbfree(sb, m);
|
|
MFREE(m, mn);
|
|
m = mn;
|
|
}
|
|
if (m) {
|
|
sb->sb_mb = m;
|
|
m->m_nextpkt = next;
|
|
} else
|
|
sb->sb_mb = next;
|
|
}
|
|
|
|
/*
|
|
* Drop a record off the front of a sockbuf
|
|
* and move the next record to the front.
|
|
*/
|
|
void
|
|
sbdroprecord(sb)
|
|
register struct sockbuf *sb;
|
|
{
|
|
register struct mbuf *m, *mn;
|
|
|
|
m = sb->sb_mb;
|
|
if (m) {
|
|
sb->sb_mb = m->m_nextpkt;
|
|
do {
|
|
sbfree(sb, m);
|
|
MFREE(m, mn);
|
|
m = mn;
|
|
} while (m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a "control" mbuf containing the specified data
|
|
* with the specified type for presentation on a socket buffer.
|
|
*/
|
|
struct mbuf *
|
|
sbcreatecontrol(p, size, type, level)
|
|
caddr_t p;
|
|
register int size;
|
|
int type, level;
|
|
{
|
|
register struct cmsghdr *cp;
|
|
struct mbuf *m;
|
|
|
|
if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
|
|
return ((struct mbuf *) NULL);
|
|
cp = mtod(m, struct cmsghdr *);
|
|
/* XXX check size? */
|
|
(void)memcpy(CMSG_DATA(cp), p, size);
|
|
size += sizeof(*cp);
|
|
m->m_len = size;
|
|
cp->cmsg_len = size;
|
|
cp->cmsg_level = level;
|
|
cp->cmsg_type = type;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Some routines that return EOPNOTSUPP for entry points that are not
|
|
* supported by a protocol. Fill in as needed.
|
|
*/
|
|
int
|
|
pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
|
|
{
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_connect2_notsupp(struct socket *so1, struct socket *so2)
|
|
{
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_control_notsupp(struct socket *so, int cmd, caddr_t data,
|
|
struct ifnet *ifp, struct proc *p)
|
|
{
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_listen_notsupp(struct socket *so, struct proc *p)
|
|
{
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_rcvd_notsupp(struct socket *so, int flags)
|
|
{
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
|
|
{
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* This isn't really a ``null'' operation, but it's the default one
|
|
* and doesn't do anything destructive.
|
|
*/
|
|
int
|
|
pru_sense_null(struct socket *so, struct stat *sb)
|
|
{
|
|
sb->st_blksize = so->so_snd.sb_hiwat;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
|
|
*/
|
|
struct sockaddr *
|
|
dup_sockaddr(sa, canwait)
|
|
struct sockaddr *sa;
|
|
int canwait;
|
|
{
|
|
struct sockaddr *sa2;
|
|
|
|
MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
|
|
canwait ? M_WAITOK : M_NOWAIT);
|
|
if (sa2)
|
|
bcopy(sa, sa2, sa->sa_len);
|
|
return sa2;
|
|
}
|
|
|
|
/*
|
|
* Here is the definition of some of the basic objects in the kern.ipc
|
|
* branch of the MIB.
|
|
*/
|
|
SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
|
|
|
|
/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
|
|
static int dummy;
|
|
SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
|
|
|
|
SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "");
|
|
SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
|
|
&sb_efficiency, 0, "");
|
|
|