freebsd-nq/contrib/apr/locks/unix/thread_mutex.c
Dimitry Andric b081c245fd Update apr to 1.7.0. See contrib/apr/CHANGES for a summary of changes.
MFC after:	2 weeks
X-MFC-With:	r361677
2020-05-31 22:12:56 +00:00

335 lines
7.7 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr_arch_thread_mutex.h"
#define APR_WANT_MEMFUNC
#include "apr_want.h"
#if APR_HAS_THREADS
static apr_status_t thread_mutex_cleanup(void *data)
{
apr_thread_mutex_t *mutex = data;
apr_status_t rv;
rv = pthread_mutex_destroy(&mutex->mutex);
#ifdef HAVE_ZOS_PTHREADS
if (rv) {
rv = errno;
}
#endif
return rv;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_create(apr_thread_mutex_t **mutex,
unsigned int flags,
apr_pool_t *pool)
{
apr_thread_mutex_t *new_mutex;
apr_status_t rv;
#ifndef HAVE_PTHREAD_MUTEX_RECURSIVE
if (flags & APR_THREAD_MUTEX_NESTED) {
return APR_ENOTIMPL;
}
#endif
new_mutex = apr_pcalloc(pool, sizeof(apr_thread_mutex_t));
new_mutex->pool = pool;
#ifdef HAVE_PTHREAD_MUTEX_RECURSIVE
if (flags & APR_THREAD_MUTEX_NESTED) {
pthread_mutexattr_t mattr;
rv = pthread_mutexattr_init(&mattr);
if (rv) return rv;
rv = pthread_mutexattr_settype(&mattr, PTHREAD_MUTEX_RECURSIVE);
if (rv) {
pthread_mutexattr_destroy(&mattr);
return rv;
}
rv = pthread_mutex_init(&new_mutex->mutex, &mattr);
pthread_mutexattr_destroy(&mattr);
} else
#endif
rv = pthread_mutex_init(&new_mutex->mutex, NULL);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
return rv;
}
#ifndef HAVE_PTHREAD_MUTEX_TIMEDLOCK
if (flags & APR_THREAD_MUTEX_TIMED) {
rv = apr_thread_cond_create(&new_mutex->cond, pool);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
pthread_mutex_destroy(&new_mutex->mutex);
return rv;
}
}
#endif
apr_pool_cleanup_register(new_mutex->pool,
new_mutex, thread_mutex_cleanup,
apr_pool_cleanup_null);
*mutex = new_mutex;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_lock(apr_thread_mutex_t *mutex)
{
apr_status_t rv;
if (mutex->cond) {
apr_status_t rv2;
rv = pthread_mutex_lock(&mutex->mutex);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
return rv;
}
if (mutex->locked) {
mutex->num_waiters++;
rv = apr_thread_cond_wait(mutex->cond, mutex);
mutex->num_waiters--;
}
else {
mutex->locked = 1;
}
rv2 = pthread_mutex_unlock(&mutex->mutex);
if (rv2 && !rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#else
rv = rv2;
#endif
}
return rv;
}
rv = pthread_mutex_lock(&mutex->mutex);
#ifdef HAVE_ZOS_PTHREADS
if (rv) {
rv = errno;
}
#endif
return rv;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_trylock(apr_thread_mutex_t *mutex)
{
apr_status_t rv;
if (mutex->cond) {
apr_status_t rv2;
rv = pthread_mutex_lock(&mutex->mutex);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
return rv;
}
if (mutex->locked) {
rv = APR_EBUSY;
}
else {
mutex->locked = 1;
}
rv2 = pthread_mutex_unlock(&mutex->mutex);
if (rv2) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#else
rv = rv2;
#endif
}
return rv;
}
rv = pthread_mutex_trylock(&mutex->mutex);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
return (rv == EBUSY) ? APR_EBUSY : rv;
}
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_timedlock(apr_thread_mutex_t *mutex,
apr_interval_time_t timeout)
{
apr_status_t rv = APR_ENOTIMPL;
#if APR_HAS_TIMEDLOCKS
#ifdef HAVE_PTHREAD_MUTEX_TIMEDLOCK
if (timeout <= 0) {
rv = pthread_mutex_trylock(&mutex->mutex);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
if (rv == EBUSY) {
rv = APR_TIMEUP;
}
}
}
else {
struct timespec abstime;
timeout += apr_time_now();
abstime.tv_sec = apr_time_sec(timeout);
abstime.tv_nsec = apr_time_usec(timeout) * 1000; /* nanoseconds */
rv = pthread_mutex_timedlock(&mutex->mutex, &abstime);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
if (rv == ETIMEDOUT) {
rv = APR_TIMEUP;
}
}
}
#else /* HAVE_PTHREAD_MUTEX_TIMEDLOCK */
if (mutex->cond) {
rv = pthread_mutex_lock(&mutex->mutex);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
return rv;
}
if (mutex->locked) {
if (timeout <= 0) {
rv = APR_TIMEUP;
}
else {
mutex->num_waiters++;
do {
rv = apr_thread_cond_timedwait(mutex->cond, mutex,
timeout);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
break;
}
} while (mutex->locked);
mutex->num_waiters--;
}
if (rv) {
pthread_mutex_unlock(&mutex->mutex);
return rv;
}
}
mutex->locked = 1;
rv = pthread_mutex_unlock(&mutex->mutex);
if (rv) {
#ifdef HAVE_ZOS_PTHREADS
rv = errno;
#endif
return rv;
}
}
#endif /* HAVE_PTHREAD_MUTEX_TIMEDLOCK */
#endif /* APR_HAS_TIMEDLOCKS */
return rv;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_unlock(apr_thread_mutex_t *mutex)
{
apr_status_t status;
if (mutex->cond) {
status = pthread_mutex_lock(&mutex->mutex);
if (status) {
#ifdef HAVE_ZOS_PTHREADS
status = errno;
#endif
return status;
}
if (!mutex->locked) {
status = APR_EINVAL;
}
else if (mutex->num_waiters) {
status = apr_thread_cond_signal(mutex->cond);
}
if (status) {
pthread_mutex_unlock(&mutex->mutex);
return status;
}
mutex->locked = 0;
}
status = pthread_mutex_unlock(&mutex->mutex);
#ifdef HAVE_ZOS_PTHREADS
if (status) {
status = errno;
}
#endif
return status;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_destroy(apr_thread_mutex_t *mutex)
{
apr_status_t rv, rv2 = APR_SUCCESS;
if (mutex->cond) {
rv2 = apr_thread_cond_destroy(mutex->cond);
}
rv = apr_pool_cleanup_run(mutex->pool, mutex, thread_mutex_cleanup);
if (rv == APR_SUCCESS) {
rv = rv2;
}
return rv;
}
APR_POOL_IMPLEMENT_ACCESSOR(thread_mutex)
#endif /* APR_HAS_THREADS */