44d0efb215
Reviewed by: hselasky, kib, markj Discussed with: jeff Differential Revision: https://reviews.freebsd.org/D16799
4457 lines
102 KiB
C
4457 lines
102 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
*
|
|
* Copyright (c) 2003
|
|
* Bill Paul <wpaul@windriver.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/ctype.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
|
|
#include <sys/callout.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/module.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/atomic.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/stdarg.h>
|
|
#include <machine/resource.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/uma.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <compat/ndis/pe_var.h>
|
|
#include <compat/ndis/cfg_var.h>
|
|
#include <compat/ndis/resource_var.h>
|
|
#include <compat/ndis/ntoskrnl_var.h>
|
|
#include <compat/ndis/hal_var.h>
|
|
#include <compat/ndis/ndis_var.h>
|
|
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
static int sysctl_show_timers(SYSCTL_HANDLER_ARGS);
|
|
|
|
SYSCTL_PROC(_debug, OID_AUTO, ntoskrnl_timers, CTLTYPE_INT | CTLFLAG_RW,
|
|
NULL, 0, sysctl_show_timers, "I",
|
|
"Show ntoskrnl timer stats");
|
|
#endif
|
|
|
|
struct kdpc_queue {
|
|
list_entry kq_disp;
|
|
struct thread *kq_td;
|
|
int kq_cpu;
|
|
int kq_exit;
|
|
int kq_running;
|
|
kspin_lock kq_lock;
|
|
nt_kevent kq_proc;
|
|
nt_kevent kq_done;
|
|
};
|
|
|
|
typedef struct kdpc_queue kdpc_queue;
|
|
|
|
struct wb_ext {
|
|
struct cv we_cv;
|
|
struct thread *we_td;
|
|
};
|
|
|
|
typedef struct wb_ext wb_ext;
|
|
|
|
#define NTOSKRNL_TIMEOUTS 256
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
static uint64_t ntoskrnl_timer_fires;
|
|
static uint64_t ntoskrnl_timer_sets;
|
|
static uint64_t ntoskrnl_timer_reloads;
|
|
static uint64_t ntoskrnl_timer_cancels;
|
|
#endif
|
|
|
|
struct callout_entry {
|
|
struct callout ce_callout;
|
|
list_entry ce_list;
|
|
};
|
|
|
|
typedef struct callout_entry callout_entry;
|
|
|
|
static struct list_entry ntoskrnl_calllist;
|
|
static struct mtx ntoskrnl_calllock;
|
|
struct kuser_shared_data kuser_shared_data;
|
|
|
|
static struct list_entry ntoskrnl_intlist;
|
|
static kspin_lock ntoskrnl_intlock;
|
|
|
|
static uint8_t RtlEqualUnicodeString(unicode_string *,
|
|
unicode_string *, uint8_t);
|
|
static void RtlCopyString(ansi_string *, const ansi_string *);
|
|
static void RtlCopyUnicodeString(unicode_string *,
|
|
unicode_string *);
|
|
static irp *IoBuildSynchronousFsdRequest(uint32_t, device_object *,
|
|
void *, uint32_t, uint64_t *, nt_kevent *, io_status_block *);
|
|
static irp *IoBuildAsynchronousFsdRequest(uint32_t,
|
|
device_object *, void *, uint32_t, uint64_t *, io_status_block *);
|
|
static irp *IoBuildDeviceIoControlRequest(uint32_t,
|
|
device_object *, void *, uint32_t, void *, uint32_t,
|
|
uint8_t, nt_kevent *, io_status_block *);
|
|
static irp *IoAllocateIrp(uint8_t, uint8_t);
|
|
static void IoReuseIrp(irp *, uint32_t);
|
|
static void IoFreeIrp(irp *);
|
|
static void IoInitializeIrp(irp *, uint16_t, uint8_t);
|
|
static irp *IoMakeAssociatedIrp(irp *, uint8_t);
|
|
static uint32_t KeWaitForMultipleObjects(uint32_t,
|
|
nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t,
|
|
int64_t *, wait_block *);
|
|
static void ntoskrnl_waittest(nt_dispatch_header *, uint32_t);
|
|
static void ntoskrnl_satisfy_wait(nt_dispatch_header *, struct thread *);
|
|
static void ntoskrnl_satisfy_multiple_waits(wait_block *);
|
|
static int ntoskrnl_is_signalled(nt_dispatch_header *, struct thread *);
|
|
static void ntoskrnl_insert_timer(ktimer *, int);
|
|
static void ntoskrnl_remove_timer(ktimer *);
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
static void ntoskrnl_show_timers(void);
|
|
#endif
|
|
static void ntoskrnl_timercall(void *);
|
|
static void ntoskrnl_dpc_thread(void *);
|
|
static void ntoskrnl_destroy_dpc_threads(void);
|
|
static void ntoskrnl_destroy_workitem_threads(void);
|
|
static void ntoskrnl_workitem_thread(void *);
|
|
static void ntoskrnl_workitem(device_object *, void *);
|
|
static void ntoskrnl_unicode_to_ascii(uint16_t *, char *, int);
|
|
static void ntoskrnl_ascii_to_unicode(char *, uint16_t *, int);
|
|
static uint8_t ntoskrnl_insert_dpc(list_entry *, kdpc *);
|
|
static void WRITE_REGISTER_USHORT(uint16_t *, uint16_t);
|
|
static uint16_t READ_REGISTER_USHORT(uint16_t *);
|
|
static void WRITE_REGISTER_ULONG(uint32_t *, uint32_t);
|
|
static uint32_t READ_REGISTER_ULONG(uint32_t *);
|
|
static void WRITE_REGISTER_UCHAR(uint8_t *, uint8_t);
|
|
static uint8_t READ_REGISTER_UCHAR(uint8_t *);
|
|
static int64_t _allmul(int64_t, int64_t);
|
|
static int64_t _alldiv(int64_t, int64_t);
|
|
static int64_t _allrem(int64_t, int64_t);
|
|
static int64_t _allshr(int64_t, uint8_t);
|
|
static int64_t _allshl(int64_t, uint8_t);
|
|
static uint64_t _aullmul(uint64_t, uint64_t);
|
|
static uint64_t _aulldiv(uint64_t, uint64_t);
|
|
static uint64_t _aullrem(uint64_t, uint64_t);
|
|
static uint64_t _aullshr(uint64_t, uint8_t);
|
|
static uint64_t _aullshl(uint64_t, uint8_t);
|
|
static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *);
|
|
static void InitializeSListHead(slist_header *);
|
|
static slist_entry *ntoskrnl_popsl(slist_header *);
|
|
static void ExFreePoolWithTag(void *, uint32_t);
|
|
static void ExInitializePagedLookasideList(paged_lookaside_list *,
|
|
lookaside_alloc_func *, lookaside_free_func *,
|
|
uint32_t, size_t, uint32_t, uint16_t);
|
|
static void ExDeletePagedLookasideList(paged_lookaside_list *);
|
|
static void ExInitializeNPagedLookasideList(npaged_lookaside_list *,
|
|
lookaside_alloc_func *, lookaside_free_func *,
|
|
uint32_t, size_t, uint32_t, uint16_t);
|
|
static void ExDeleteNPagedLookasideList(npaged_lookaside_list *);
|
|
static slist_entry
|
|
*ExInterlockedPushEntrySList(slist_header *,
|
|
slist_entry *, kspin_lock *);
|
|
static slist_entry
|
|
*ExInterlockedPopEntrySList(slist_header *, kspin_lock *);
|
|
static uint32_t InterlockedIncrement(volatile uint32_t *);
|
|
static uint32_t InterlockedDecrement(volatile uint32_t *);
|
|
static void ExInterlockedAddLargeStatistic(uint64_t *, uint32_t);
|
|
static void *MmAllocateContiguousMemory(uint32_t, uint64_t);
|
|
static void *MmAllocateContiguousMemorySpecifyCache(uint32_t,
|
|
uint64_t, uint64_t, uint64_t, enum nt_caching_type);
|
|
static void MmFreeContiguousMemory(void *);
|
|
static void MmFreeContiguousMemorySpecifyCache(void *, uint32_t,
|
|
enum nt_caching_type);
|
|
static uint32_t MmSizeOfMdl(void *, size_t);
|
|
static void *MmMapLockedPages(mdl *, uint8_t);
|
|
static void *MmMapLockedPagesSpecifyCache(mdl *,
|
|
uint8_t, uint32_t, void *, uint32_t, uint32_t);
|
|
static void MmUnmapLockedPages(void *, mdl *);
|
|
static device_t ntoskrnl_finddev(device_t, uint64_t, struct resource **);
|
|
static void RtlZeroMemory(void *, size_t);
|
|
static void RtlSecureZeroMemory(void *, size_t);
|
|
static void RtlFillMemory(void *, size_t, uint8_t);
|
|
static void RtlMoveMemory(void *, const void *, size_t);
|
|
static ndis_status RtlCharToInteger(const char *, uint32_t, uint32_t *);
|
|
static void RtlCopyMemory(void *, const void *, size_t);
|
|
static size_t RtlCompareMemory(const void *, const void *, size_t);
|
|
static ndis_status RtlUnicodeStringToInteger(unicode_string *,
|
|
uint32_t, uint32_t *);
|
|
static int atoi (const char *);
|
|
static long atol (const char *);
|
|
static int rand(void);
|
|
static void srand(unsigned int);
|
|
static void KeQuerySystemTime(uint64_t *);
|
|
static uint32_t KeTickCount(void);
|
|
static uint8_t IoIsWdmVersionAvailable(uint8_t, uint8_t);
|
|
static int32_t IoOpenDeviceRegistryKey(struct device_object *, uint32_t,
|
|
uint32_t, void **);
|
|
static void ntoskrnl_thrfunc(void *);
|
|
static ndis_status PsCreateSystemThread(ndis_handle *,
|
|
uint32_t, void *, ndis_handle, void *, void *, void *);
|
|
static ndis_status PsTerminateSystemThread(ndis_status);
|
|
static ndis_status IoGetDeviceObjectPointer(unicode_string *,
|
|
uint32_t, void *, device_object *);
|
|
static ndis_status IoGetDeviceProperty(device_object *, uint32_t,
|
|
uint32_t, void *, uint32_t *);
|
|
static void KeInitializeMutex(kmutant *, uint32_t);
|
|
static uint32_t KeReleaseMutex(kmutant *, uint8_t);
|
|
static uint32_t KeReadStateMutex(kmutant *);
|
|
static ndis_status ObReferenceObjectByHandle(ndis_handle,
|
|
uint32_t, void *, uint8_t, void **, void **);
|
|
static void ObfDereferenceObject(void *);
|
|
static uint32_t ZwClose(ndis_handle);
|
|
static uint32_t WmiQueryTraceInformation(uint32_t, void *, uint32_t,
|
|
uint32_t, void *);
|
|
static uint32_t WmiTraceMessage(uint64_t, uint32_t, void *, uint16_t, ...);
|
|
static uint32_t IoWMIRegistrationControl(device_object *, uint32_t);
|
|
static void *ntoskrnl_memset(void *, int, size_t);
|
|
static void *ntoskrnl_memmove(void *, void *, size_t);
|
|
static void *ntoskrnl_memchr(void *, unsigned char, size_t);
|
|
static char *ntoskrnl_strstr(char *, char *);
|
|
static char *ntoskrnl_strncat(char *, char *, size_t);
|
|
static int ntoskrnl_toupper(int);
|
|
static int ntoskrnl_tolower(int);
|
|
static funcptr ntoskrnl_findwrap(funcptr);
|
|
static uint32_t DbgPrint(char *, ...);
|
|
static void DbgBreakPoint(void);
|
|
static void KeBugCheckEx(uint32_t, u_long, u_long, u_long, u_long);
|
|
static int32_t KeDelayExecutionThread(uint8_t, uint8_t, int64_t *);
|
|
static int32_t KeSetPriorityThread(struct thread *, int32_t);
|
|
static void dummy(void);
|
|
|
|
static struct mtx ntoskrnl_dispatchlock;
|
|
static struct mtx ntoskrnl_interlock;
|
|
static kspin_lock ntoskrnl_cancellock;
|
|
static int ntoskrnl_kth = 0;
|
|
static struct nt_objref_head ntoskrnl_reflist;
|
|
static uma_zone_t mdl_zone;
|
|
static uma_zone_t iw_zone;
|
|
static struct kdpc_queue *kq_queues;
|
|
static struct kdpc_queue *wq_queues;
|
|
static int wq_idx = 0;
|
|
|
|
int
|
|
ntoskrnl_libinit()
|
|
{
|
|
image_patch_table *patch;
|
|
int error;
|
|
struct proc *p;
|
|
kdpc_queue *kq;
|
|
callout_entry *e;
|
|
int i;
|
|
|
|
mtx_init(&ntoskrnl_dispatchlock,
|
|
"ntoskrnl dispatch lock", MTX_NDIS_LOCK, MTX_DEF|MTX_RECURSE);
|
|
mtx_init(&ntoskrnl_interlock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
|
|
KeInitializeSpinLock(&ntoskrnl_cancellock);
|
|
KeInitializeSpinLock(&ntoskrnl_intlock);
|
|
TAILQ_INIT(&ntoskrnl_reflist);
|
|
|
|
InitializeListHead(&ntoskrnl_calllist);
|
|
InitializeListHead(&ntoskrnl_intlist);
|
|
mtx_init(&ntoskrnl_calllock, MTX_NTOSKRNL_SPIN_LOCK, NULL, MTX_SPIN);
|
|
|
|
kq_queues = ExAllocatePoolWithTag(NonPagedPool,
|
|
#ifdef NTOSKRNL_MULTIPLE_DPCS
|
|
sizeof(kdpc_queue) * mp_ncpus, 0);
|
|
#else
|
|
sizeof(kdpc_queue), 0);
|
|
#endif
|
|
|
|
if (kq_queues == NULL)
|
|
return (ENOMEM);
|
|
|
|
wq_queues = ExAllocatePoolWithTag(NonPagedPool,
|
|
sizeof(kdpc_queue) * WORKITEM_THREADS, 0);
|
|
|
|
if (wq_queues == NULL)
|
|
return (ENOMEM);
|
|
|
|
#ifdef NTOSKRNL_MULTIPLE_DPCS
|
|
bzero((char *)kq_queues, sizeof(kdpc_queue) * mp_ncpus);
|
|
#else
|
|
bzero((char *)kq_queues, sizeof(kdpc_queue));
|
|
#endif
|
|
bzero((char *)wq_queues, sizeof(kdpc_queue) * WORKITEM_THREADS);
|
|
|
|
/*
|
|
* Launch the DPC threads.
|
|
*/
|
|
|
|
#ifdef NTOSKRNL_MULTIPLE_DPCS
|
|
for (i = 0; i < mp_ncpus; i++) {
|
|
#else
|
|
for (i = 0; i < 1; i++) {
|
|
#endif
|
|
kq = kq_queues + i;
|
|
kq->kq_cpu = i;
|
|
error = kproc_create(ntoskrnl_dpc_thread, kq, &p,
|
|
RFHIGHPID, NDIS_KSTACK_PAGES, "Windows DPC %d", i);
|
|
if (error)
|
|
panic("failed to launch DPC thread");
|
|
}
|
|
|
|
/*
|
|
* Launch the workitem threads.
|
|
*/
|
|
|
|
for (i = 0; i < WORKITEM_THREADS; i++) {
|
|
kq = wq_queues + i;
|
|
error = kproc_create(ntoskrnl_workitem_thread, kq, &p,
|
|
RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Workitem %d", i);
|
|
if (error)
|
|
panic("failed to launch workitem thread");
|
|
}
|
|
|
|
patch = ntoskrnl_functbl;
|
|
while (patch->ipt_func != NULL) {
|
|
windrv_wrap((funcptr)patch->ipt_func,
|
|
(funcptr *)&patch->ipt_wrap,
|
|
patch->ipt_argcnt, patch->ipt_ftype);
|
|
patch++;
|
|
}
|
|
|
|
for (i = 0; i < NTOSKRNL_TIMEOUTS; i++) {
|
|
e = ExAllocatePoolWithTag(NonPagedPool,
|
|
sizeof(callout_entry), 0);
|
|
if (e == NULL)
|
|
panic("failed to allocate timeouts");
|
|
mtx_lock_spin(&ntoskrnl_calllock);
|
|
InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
|
|
mtx_unlock_spin(&ntoskrnl_calllock);
|
|
}
|
|
|
|
/*
|
|
* MDLs are supposed to be variable size (they describe
|
|
* buffers containing some number of pages, but we don't
|
|
* know ahead of time how many pages that will be). But
|
|
* always allocating them off the heap is very slow. As
|
|
* a compromise, we create an MDL UMA zone big enough to
|
|
* handle any buffer requiring up to 16 pages, and we
|
|
* use those for any MDLs for buffers of 16 pages or less
|
|
* in size. For buffers larger than that (which we assume
|
|
* will be few and far between, we allocate the MDLs off
|
|
* the heap.
|
|
*/
|
|
|
|
mdl_zone = uma_zcreate("Windows MDL", MDL_ZONE_SIZE,
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
|
|
iw_zone = uma_zcreate("Windows WorkItem", sizeof(io_workitem),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ntoskrnl_libfini()
|
|
{
|
|
image_patch_table *patch;
|
|
callout_entry *e;
|
|
list_entry *l;
|
|
|
|
patch = ntoskrnl_functbl;
|
|
while (patch->ipt_func != NULL) {
|
|
windrv_unwrap(patch->ipt_wrap);
|
|
patch++;
|
|
}
|
|
|
|
/* Stop the workitem queues. */
|
|
ntoskrnl_destroy_workitem_threads();
|
|
/* Stop the DPC queues. */
|
|
ntoskrnl_destroy_dpc_threads();
|
|
|
|
ExFreePool(kq_queues);
|
|
ExFreePool(wq_queues);
|
|
|
|
uma_zdestroy(mdl_zone);
|
|
uma_zdestroy(iw_zone);
|
|
|
|
mtx_lock_spin(&ntoskrnl_calllock);
|
|
while(!IsListEmpty(&ntoskrnl_calllist)) {
|
|
l = RemoveHeadList(&ntoskrnl_calllist);
|
|
e = CONTAINING_RECORD(l, callout_entry, ce_list);
|
|
mtx_unlock_spin(&ntoskrnl_calllock);
|
|
ExFreePool(e);
|
|
mtx_lock_spin(&ntoskrnl_calllock);
|
|
}
|
|
mtx_unlock_spin(&ntoskrnl_calllock);
|
|
|
|
mtx_destroy(&ntoskrnl_dispatchlock);
|
|
mtx_destroy(&ntoskrnl_interlock);
|
|
mtx_destroy(&ntoskrnl_calllock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* We need to be able to reference this externally from the wrapper;
|
|
* GCC only generates a local implementation of memset.
|
|
*/
|
|
static void *
|
|
ntoskrnl_memset(buf, ch, size)
|
|
void *buf;
|
|
int ch;
|
|
size_t size;
|
|
{
|
|
return (memset(buf, ch, size));
|
|
}
|
|
|
|
static void *
|
|
ntoskrnl_memmove(dst, src, size)
|
|
void *src;
|
|
void *dst;
|
|
size_t size;
|
|
{
|
|
bcopy(src, dst, size);
|
|
return (dst);
|
|
}
|
|
|
|
static void *
|
|
ntoskrnl_memchr(void *buf, unsigned char ch, size_t len)
|
|
{
|
|
if (len != 0) {
|
|
unsigned char *p = buf;
|
|
|
|
do {
|
|
if (*p++ == ch)
|
|
return (p - 1);
|
|
} while (--len != 0);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static char *
|
|
ntoskrnl_strstr(s, find)
|
|
char *s, *find;
|
|
{
|
|
char c, sc;
|
|
size_t len;
|
|
|
|
if ((c = *find++) != 0) {
|
|
len = strlen(find);
|
|
do {
|
|
do {
|
|
if ((sc = *s++) == 0)
|
|
return (NULL);
|
|
} while (sc != c);
|
|
} while (strncmp(s, find, len) != 0);
|
|
s--;
|
|
}
|
|
return ((char *)s);
|
|
}
|
|
|
|
/* Taken from libc */
|
|
static char *
|
|
ntoskrnl_strncat(dst, src, n)
|
|
char *dst;
|
|
char *src;
|
|
size_t n;
|
|
{
|
|
if (n != 0) {
|
|
char *d = dst;
|
|
const char *s = src;
|
|
|
|
while (*d != 0)
|
|
d++;
|
|
do {
|
|
if ((*d = *s++) == 0)
|
|
break;
|
|
d++;
|
|
} while (--n != 0);
|
|
*d = 0;
|
|
}
|
|
return (dst);
|
|
}
|
|
|
|
static int
|
|
ntoskrnl_toupper(c)
|
|
int c;
|
|
{
|
|
return (toupper(c));
|
|
}
|
|
|
|
static int
|
|
ntoskrnl_tolower(c)
|
|
int c;
|
|
{
|
|
return (tolower(c));
|
|
}
|
|
|
|
static uint8_t
|
|
RtlEqualUnicodeString(unicode_string *str1, unicode_string *str2,
|
|
uint8_t caseinsensitive)
|
|
{
|
|
int i;
|
|
|
|
if (str1->us_len != str2->us_len)
|
|
return (FALSE);
|
|
|
|
for (i = 0; i < str1->us_len; i++) {
|
|
if (caseinsensitive == TRUE) {
|
|
if (toupper((char)(str1->us_buf[i] & 0xFF)) !=
|
|
toupper((char)(str2->us_buf[i] & 0xFF)))
|
|
return (FALSE);
|
|
} else {
|
|
if (str1->us_buf[i] != str2->us_buf[i])
|
|
return (FALSE);
|
|
}
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static void
|
|
RtlCopyString(dst, src)
|
|
ansi_string *dst;
|
|
const ansi_string *src;
|
|
{
|
|
if (src != NULL && src->as_buf != NULL && dst->as_buf != NULL) {
|
|
dst->as_len = min(src->as_len, dst->as_maxlen);
|
|
memcpy(dst->as_buf, src->as_buf, dst->as_len);
|
|
if (dst->as_len < dst->as_maxlen)
|
|
dst->as_buf[dst->as_len] = 0;
|
|
} else
|
|
dst->as_len = 0;
|
|
}
|
|
|
|
static void
|
|
RtlCopyUnicodeString(dest, src)
|
|
unicode_string *dest;
|
|
unicode_string *src;
|
|
{
|
|
|
|
if (dest->us_maxlen >= src->us_len)
|
|
dest->us_len = src->us_len;
|
|
else
|
|
dest->us_len = dest->us_maxlen;
|
|
memcpy(dest->us_buf, src->us_buf, dest->us_len);
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_ascii_to_unicode(ascii, unicode, len)
|
|
char *ascii;
|
|
uint16_t *unicode;
|
|
int len;
|
|
{
|
|
int i;
|
|
uint16_t *ustr;
|
|
|
|
ustr = unicode;
|
|
for (i = 0; i < len; i++) {
|
|
*ustr = (uint16_t)ascii[i];
|
|
ustr++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_unicode_to_ascii(unicode, ascii, len)
|
|
uint16_t *unicode;
|
|
char *ascii;
|
|
int len;
|
|
{
|
|
int i;
|
|
uint8_t *astr;
|
|
|
|
astr = ascii;
|
|
for (i = 0; i < len / 2; i++) {
|
|
*astr = (uint8_t)unicode[i];
|
|
astr++;
|
|
}
|
|
}
|
|
|
|
uint32_t
|
|
RtlUnicodeStringToAnsiString(ansi_string *dest, unicode_string *src, uint8_t allocate)
|
|
{
|
|
if (dest == NULL || src == NULL)
|
|
return (STATUS_INVALID_PARAMETER);
|
|
|
|
dest->as_len = src->us_len / 2;
|
|
if (dest->as_maxlen < dest->as_len)
|
|
dest->as_len = dest->as_maxlen;
|
|
|
|
if (allocate == TRUE) {
|
|
dest->as_buf = ExAllocatePoolWithTag(NonPagedPool,
|
|
(src->us_len / 2) + 1, 0);
|
|
if (dest->as_buf == NULL)
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
dest->as_len = dest->as_maxlen = src->us_len / 2;
|
|
} else {
|
|
dest->as_len = src->us_len / 2; /* XXX */
|
|
if (dest->as_maxlen < dest->as_len)
|
|
dest->as_len = dest->as_maxlen;
|
|
}
|
|
|
|
ntoskrnl_unicode_to_ascii(src->us_buf, dest->as_buf,
|
|
dest->as_len * 2);
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
uint32_t
|
|
RtlAnsiStringToUnicodeString(unicode_string *dest, ansi_string *src,
|
|
uint8_t allocate)
|
|
{
|
|
if (dest == NULL || src == NULL)
|
|
return (STATUS_INVALID_PARAMETER);
|
|
|
|
if (allocate == TRUE) {
|
|
dest->us_buf = ExAllocatePoolWithTag(NonPagedPool,
|
|
src->as_len * 2, 0);
|
|
if (dest->us_buf == NULL)
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
dest->us_len = dest->us_maxlen = strlen(src->as_buf) * 2;
|
|
} else {
|
|
dest->us_len = src->as_len * 2; /* XXX */
|
|
if (dest->us_maxlen < dest->us_len)
|
|
dest->us_len = dest->us_maxlen;
|
|
}
|
|
|
|
ntoskrnl_ascii_to_unicode(src->as_buf, dest->us_buf,
|
|
dest->us_len / 2);
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
void *
|
|
ExAllocatePoolWithTag(pooltype, len, tag)
|
|
uint32_t pooltype;
|
|
size_t len;
|
|
uint32_t tag;
|
|
{
|
|
void *buf;
|
|
|
|
buf = malloc(len, M_DEVBUF, M_NOWAIT|M_ZERO);
|
|
if (buf == NULL)
|
|
return (NULL);
|
|
|
|
return (buf);
|
|
}
|
|
|
|
static void
|
|
ExFreePoolWithTag(buf, tag)
|
|
void *buf;
|
|
uint32_t tag;
|
|
{
|
|
ExFreePool(buf);
|
|
}
|
|
|
|
void
|
|
ExFreePool(buf)
|
|
void *buf;
|
|
{
|
|
free(buf, M_DEVBUF);
|
|
}
|
|
|
|
uint32_t
|
|
IoAllocateDriverObjectExtension(drv, clid, extlen, ext)
|
|
driver_object *drv;
|
|
void *clid;
|
|
uint32_t extlen;
|
|
void **ext;
|
|
{
|
|
custom_extension *ce;
|
|
|
|
ce = ExAllocatePoolWithTag(NonPagedPool, sizeof(custom_extension)
|
|
+ extlen, 0);
|
|
|
|
if (ce == NULL)
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
|
|
ce->ce_clid = clid;
|
|
InsertTailList((&drv->dro_driverext->dre_usrext), (&ce->ce_list));
|
|
|
|
*ext = (void *)(ce + 1);
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
void *
|
|
IoGetDriverObjectExtension(drv, clid)
|
|
driver_object *drv;
|
|
void *clid;
|
|
{
|
|
list_entry *e;
|
|
custom_extension *ce;
|
|
|
|
/*
|
|
* Sanity check. Our dummy bus drivers don't have
|
|
* any driver extensions.
|
|
*/
|
|
|
|
if (drv->dro_driverext == NULL)
|
|
return (NULL);
|
|
|
|
e = drv->dro_driverext->dre_usrext.nle_flink;
|
|
while (e != &drv->dro_driverext->dre_usrext) {
|
|
ce = (custom_extension *)e;
|
|
if (ce->ce_clid == clid)
|
|
return ((void *)(ce + 1));
|
|
e = e->nle_flink;
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
uint32_t
|
|
IoCreateDevice(driver_object *drv, uint32_t devextlen, unicode_string *devname,
|
|
uint32_t devtype, uint32_t devchars, uint8_t exclusive,
|
|
device_object **newdev)
|
|
{
|
|
device_object *dev;
|
|
|
|
dev = ExAllocatePoolWithTag(NonPagedPool, sizeof(device_object), 0);
|
|
if (dev == NULL)
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
|
|
dev->do_type = devtype;
|
|
dev->do_drvobj = drv;
|
|
dev->do_currirp = NULL;
|
|
dev->do_flags = 0;
|
|
|
|
if (devextlen) {
|
|
dev->do_devext = ExAllocatePoolWithTag(NonPagedPool,
|
|
devextlen, 0);
|
|
|
|
if (dev->do_devext == NULL) {
|
|
ExFreePool(dev);
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
}
|
|
|
|
bzero(dev->do_devext, devextlen);
|
|
} else
|
|
dev->do_devext = NULL;
|
|
|
|
dev->do_size = sizeof(device_object) + devextlen;
|
|
dev->do_refcnt = 1;
|
|
dev->do_attacheddev = NULL;
|
|
dev->do_nextdev = NULL;
|
|
dev->do_devtype = devtype;
|
|
dev->do_stacksize = 1;
|
|
dev->do_alignreq = 1;
|
|
dev->do_characteristics = devchars;
|
|
dev->do_iotimer = NULL;
|
|
KeInitializeEvent(&dev->do_devlock, EVENT_TYPE_SYNC, TRUE);
|
|
|
|
/*
|
|
* Vpd is used for disk/tape devices,
|
|
* but we don't support those. (Yet.)
|
|
*/
|
|
dev->do_vpb = NULL;
|
|
|
|
dev->do_devobj_ext = ExAllocatePoolWithTag(NonPagedPool,
|
|
sizeof(devobj_extension), 0);
|
|
|
|
if (dev->do_devobj_ext == NULL) {
|
|
if (dev->do_devext != NULL)
|
|
ExFreePool(dev->do_devext);
|
|
ExFreePool(dev);
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
}
|
|
|
|
dev->do_devobj_ext->dve_type = 0;
|
|
dev->do_devobj_ext->dve_size = sizeof(devobj_extension);
|
|
dev->do_devobj_ext->dve_devobj = dev;
|
|
|
|
/*
|
|
* Attach this device to the driver object's list
|
|
* of devices. Note: this is not the same as attaching
|
|
* the device to the device stack. The driver's AddDevice
|
|
* routine must explicitly call IoAddDeviceToDeviceStack()
|
|
* to do that.
|
|
*/
|
|
|
|
if (drv->dro_devobj == NULL) {
|
|
drv->dro_devobj = dev;
|
|
dev->do_nextdev = NULL;
|
|
} else {
|
|
dev->do_nextdev = drv->dro_devobj;
|
|
drv->dro_devobj = dev;
|
|
}
|
|
|
|
*newdev = dev;
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
void
|
|
IoDeleteDevice(dev)
|
|
device_object *dev;
|
|
{
|
|
device_object *prev;
|
|
|
|
if (dev == NULL)
|
|
return;
|
|
|
|
if (dev->do_devobj_ext != NULL)
|
|
ExFreePool(dev->do_devobj_ext);
|
|
|
|
if (dev->do_devext != NULL)
|
|
ExFreePool(dev->do_devext);
|
|
|
|
/* Unlink the device from the driver's device list. */
|
|
|
|
prev = dev->do_drvobj->dro_devobj;
|
|
if (prev == dev)
|
|
dev->do_drvobj->dro_devobj = dev->do_nextdev;
|
|
else {
|
|
while (prev->do_nextdev != dev)
|
|
prev = prev->do_nextdev;
|
|
prev->do_nextdev = dev->do_nextdev;
|
|
}
|
|
|
|
ExFreePool(dev);
|
|
}
|
|
|
|
device_object *
|
|
IoGetAttachedDevice(dev)
|
|
device_object *dev;
|
|
{
|
|
device_object *d;
|
|
|
|
if (dev == NULL)
|
|
return (NULL);
|
|
|
|
d = dev;
|
|
|
|
while (d->do_attacheddev != NULL)
|
|
d = d->do_attacheddev;
|
|
|
|
return (d);
|
|
}
|
|
|
|
static irp *
|
|
IoBuildSynchronousFsdRequest(func, dobj, buf, len, off, event, status)
|
|
uint32_t func;
|
|
device_object *dobj;
|
|
void *buf;
|
|
uint32_t len;
|
|
uint64_t *off;
|
|
nt_kevent *event;
|
|
io_status_block *status;
|
|
{
|
|
irp *ip;
|
|
|
|
ip = IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status);
|
|
if (ip == NULL)
|
|
return (NULL);
|
|
ip->irp_usrevent = event;
|
|
|
|
return (ip);
|
|
}
|
|
|
|
static irp *
|
|
IoBuildAsynchronousFsdRequest(func, dobj, buf, len, off, status)
|
|
uint32_t func;
|
|
device_object *dobj;
|
|
void *buf;
|
|
uint32_t len;
|
|
uint64_t *off;
|
|
io_status_block *status;
|
|
{
|
|
irp *ip;
|
|
io_stack_location *sl;
|
|
|
|
ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
|
|
if (ip == NULL)
|
|
return (NULL);
|
|
|
|
ip->irp_usriostat = status;
|
|
ip->irp_tail.irp_overlay.irp_thread = NULL;
|
|
|
|
sl = IoGetNextIrpStackLocation(ip);
|
|
sl->isl_major = func;
|
|
sl->isl_minor = 0;
|
|
sl->isl_flags = 0;
|
|
sl->isl_ctl = 0;
|
|
sl->isl_devobj = dobj;
|
|
sl->isl_fileobj = NULL;
|
|
sl->isl_completionfunc = NULL;
|
|
|
|
ip->irp_userbuf = buf;
|
|
|
|
if (dobj->do_flags & DO_BUFFERED_IO) {
|
|
ip->irp_assoc.irp_sysbuf =
|
|
ExAllocatePoolWithTag(NonPagedPool, len, 0);
|
|
if (ip->irp_assoc.irp_sysbuf == NULL) {
|
|
IoFreeIrp(ip);
|
|
return (NULL);
|
|
}
|
|
bcopy(buf, ip->irp_assoc.irp_sysbuf, len);
|
|
}
|
|
|
|
if (dobj->do_flags & DO_DIRECT_IO) {
|
|
ip->irp_mdl = IoAllocateMdl(buf, len, FALSE, FALSE, ip);
|
|
if (ip->irp_mdl == NULL) {
|
|
if (ip->irp_assoc.irp_sysbuf != NULL)
|
|
ExFreePool(ip->irp_assoc.irp_sysbuf);
|
|
IoFreeIrp(ip);
|
|
return (NULL);
|
|
}
|
|
ip->irp_userbuf = NULL;
|
|
ip->irp_assoc.irp_sysbuf = NULL;
|
|
}
|
|
|
|
if (func == IRP_MJ_READ) {
|
|
sl->isl_parameters.isl_read.isl_len = len;
|
|
if (off != NULL)
|
|
sl->isl_parameters.isl_read.isl_byteoff = *off;
|
|
else
|
|
sl->isl_parameters.isl_read.isl_byteoff = 0;
|
|
}
|
|
|
|
if (func == IRP_MJ_WRITE) {
|
|
sl->isl_parameters.isl_write.isl_len = len;
|
|
if (off != NULL)
|
|
sl->isl_parameters.isl_write.isl_byteoff = *off;
|
|
else
|
|
sl->isl_parameters.isl_write.isl_byteoff = 0;
|
|
}
|
|
|
|
return (ip);
|
|
}
|
|
|
|
static irp *
|
|
IoBuildDeviceIoControlRequest(uint32_t iocode, device_object *dobj, void *ibuf,
|
|
uint32_t ilen, void *obuf, uint32_t olen, uint8_t isinternal,
|
|
nt_kevent *event, io_status_block *status)
|
|
{
|
|
irp *ip;
|
|
io_stack_location *sl;
|
|
uint32_t buflen;
|
|
|
|
ip = IoAllocateIrp(dobj->do_stacksize, TRUE);
|
|
if (ip == NULL)
|
|
return (NULL);
|
|
ip->irp_usrevent = event;
|
|
ip->irp_usriostat = status;
|
|
ip->irp_tail.irp_overlay.irp_thread = NULL;
|
|
|
|
sl = IoGetNextIrpStackLocation(ip);
|
|
sl->isl_major = isinternal == TRUE ?
|
|
IRP_MJ_INTERNAL_DEVICE_CONTROL : IRP_MJ_DEVICE_CONTROL;
|
|
sl->isl_minor = 0;
|
|
sl->isl_flags = 0;
|
|
sl->isl_ctl = 0;
|
|
sl->isl_devobj = dobj;
|
|
sl->isl_fileobj = NULL;
|
|
sl->isl_completionfunc = NULL;
|
|
sl->isl_parameters.isl_ioctl.isl_iocode = iocode;
|
|
sl->isl_parameters.isl_ioctl.isl_ibuflen = ilen;
|
|
sl->isl_parameters.isl_ioctl.isl_obuflen = olen;
|
|
|
|
switch(IO_METHOD(iocode)) {
|
|
case METHOD_BUFFERED:
|
|
if (ilen > olen)
|
|
buflen = ilen;
|
|
else
|
|
buflen = olen;
|
|
if (buflen) {
|
|
ip->irp_assoc.irp_sysbuf =
|
|
ExAllocatePoolWithTag(NonPagedPool, buflen, 0);
|
|
if (ip->irp_assoc.irp_sysbuf == NULL) {
|
|
IoFreeIrp(ip);
|
|
return (NULL);
|
|
}
|
|
}
|
|
if (ilen && ibuf != NULL) {
|
|
bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
|
|
bzero((char *)ip->irp_assoc.irp_sysbuf + ilen,
|
|
buflen - ilen);
|
|
} else
|
|
bzero(ip->irp_assoc.irp_sysbuf, ilen);
|
|
ip->irp_userbuf = obuf;
|
|
break;
|
|
case METHOD_IN_DIRECT:
|
|
case METHOD_OUT_DIRECT:
|
|
if (ilen && ibuf != NULL) {
|
|
ip->irp_assoc.irp_sysbuf =
|
|
ExAllocatePoolWithTag(NonPagedPool, ilen, 0);
|
|
if (ip->irp_assoc.irp_sysbuf == NULL) {
|
|
IoFreeIrp(ip);
|
|
return (NULL);
|
|
}
|
|
bcopy(ibuf, ip->irp_assoc.irp_sysbuf, ilen);
|
|
}
|
|
if (olen && obuf != NULL) {
|
|
ip->irp_mdl = IoAllocateMdl(obuf, olen,
|
|
FALSE, FALSE, ip);
|
|
/*
|
|
* Normally we would MmProbeAndLockPages()
|
|
* here, but we don't have to in our
|
|
* imlementation.
|
|
*/
|
|
}
|
|
break;
|
|
case METHOD_NEITHER:
|
|
ip->irp_userbuf = obuf;
|
|
sl->isl_parameters.isl_ioctl.isl_type3ibuf = ibuf;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ideally, we should associate this IRP with the calling
|
|
* thread here.
|
|
*/
|
|
|
|
return (ip);
|
|
}
|
|
|
|
static irp *
|
|
IoAllocateIrp(uint8_t stsize, uint8_t chargequota)
|
|
{
|
|
irp *i;
|
|
|
|
i = ExAllocatePoolWithTag(NonPagedPool, IoSizeOfIrp(stsize), 0);
|
|
if (i == NULL)
|
|
return (NULL);
|
|
|
|
IoInitializeIrp(i, IoSizeOfIrp(stsize), stsize);
|
|
|
|
return (i);
|
|
}
|
|
|
|
static irp *
|
|
IoMakeAssociatedIrp(irp *ip, uint8_t stsize)
|
|
{
|
|
irp *associrp;
|
|
|
|
associrp = IoAllocateIrp(stsize, FALSE);
|
|
if (associrp == NULL)
|
|
return (NULL);
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
associrp->irp_flags |= IRP_ASSOCIATED_IRP;
|
|
associrp->irp_tail.irp_overlay.irp_thread =
|
|
ip->irp_tail.irp_overlay.irp_thread;
|
|
associrp->irp_assoc.irp_master = ip;
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (associrp);
|
|
}
|
|
|
|
static void
|
|
IoFreeIrp(ip)
|
|
irp *ip;
|
|
{
|
|
ExFreePool(ip);
|
|
}
|
|
|
|
static void
|
|
IoInitializeIrp(irp *io, uint16_t psize, uint8_t ssize)
|
|
{
|
|
bzero((char *)io, IoSizeOfIrp(ssize));
|
|
io->irp_size = psize;
|
|
io->irp_stackcnt = ssize;
|
|
io->irp_currentstackloc = ssize;
|
|
InitializeListHead(&io->irp_thlist);
|
|
io->irp_tail.irp_overlay.irp_csl =
|
|
(io_stack_location *)(io + 1) + ssize;
|
|
}
|
|
|
|
static void
|
|
IoReuseIrp(ip, status)
|
|
irp *ip;
|
|
uint32_t status;
|
|
{
|
|
uint8_t allocflags;
|
|
|
|
allocflags = ip->irp_allocflags;
|
|
IoInitializeIrp(ip, ip->irp_size, ip->irp_stackcnt);
|
|
ip->irp_iostat.isb_status = status;
|
|
ip->irp_allocflags = allocflags;
|
|
}
|
|
|
|
void
|
|
IoAcquireCancelSpinLock(uint8_t *irql)
|
|
{
|
|
KeAcquireSpinLock(&ntoskrnl_cancellock, irql);
|
|
}
|
|
|
|
void
|
|
IoReleaseCancelSpinLock(uint8_t irql)
|
|
{
|
|
KeReleaseSpinLock(&ntoskrnl_cancellock, irql);
|
|
}
|
|
|
|
uint8_t
|
|
IoCancelIrp(irp *ip)
|
|
{
|
|
cancel_func cfunc;
|
|
uint8_t cancelirql;
|
|
|
|
IoAcquireCancelSpinLock(&cancelirql);
|
|
cfunc = IoSetCancelRoutine(ip, NULL);
|
|
ip->irp_cancel = TRUE;
|
|
if (cfunc == NULL) {
|
|
IoReleaseCancelSpinLock(cancelirql);
|
|
return (FALSE);
|
|
}
|
|
ip->irp_cancelirql = cancelirql;
|
|
MSCALL2(cfunc, IoGetCurrentIrpStackLocation(ip)->isl_devobj, ip);
|
|
return (uint8_t)IoSetCancelValue(ip, TRUE);
|
|
}
|
|
|
|
uint32_t
|
|
IofCallDriver(dobj, ip)
|
|
device_object *dobj;
|
|
irp *ip;
|
|
{
|
|
driver_object *drvobj;
|
|
io_stack_location *sl;
|
|
uint32_t status;
|
|
driver_dispatch disp;
|
|
|
|
drvobj = dobj->do_drvobj;
|
|
|
|
if (ip->irp_currentstackloc <= 0)
|
|
panic("IoCallDriver(): out of stack locations");
|
|
|
|
IoSetNextIrpStackLocation(ip);
|
|
sl = IoGetCurrentIrpStackLocation(ip);
|
|
|
|
sl->isl_devobj = dobj;
|
|
|
|
disp = drvobj->dro_dispatch[sl->isl_major];
|
|
status = MSCALL2(disp, dobj, ip);
|
|
|
|
return (status);
|
|
}
|
|
|
|
void
|
|
IofCompleteRequest(irp *ip, uint8_t prioboost)
|
|
{
|
|
uint32_t status;
|
|
device_object *dobj;
|
|
io_stack_location *sl;
|
|
completion_func cf;
|
|
|
|
KASSERT(ip->irp_iostat.isb_status != STATUS_PENDING,
|
|
("incorrect IRP(%p) status (STATUS_PENDING)", ip));
|
|
|
|
sl = IoGetCurrentIrpStackLocation(ip);
|
|
IoSkipCurrentIrpStackLocation(ip);
|
|
|
|
do {
|
|
if (sl->isl_ctl & SL_PENDING_RETURNED)
|
|
ip->irp_pendingreturned = TRUE;
|
|
|
|
if (ip->irp_currentstackloc != (ip->irp_stackcnt + 1))
|
|
dobj = IoGetCurrentIrpStackLocation(ip)->isl_devobj;
|
|
else
|
|
dobj = NULL;
|
|
|
|
if (sl->isl_completionfunc != NULL &&
|
|
((ip->irp_iostat.isb_status == STATUS_SUCCESS &&
|
|
sl->isl_ctl & SL_INVOKE_ON_SUCCESS) ||
|
|
(ip->irp_iostat.isb_status != STATUS_SUCCESS &&
|
|
sl->isl_ctl & SL_INVOKE_ON_ERROR) ||
|
|
(ip->irp_cancel == TRUE &&
|
|
sl->isl_ctl & SL_INVOKE_ON_CANCEL))) {
|
|
cf = sl->isl_completionfunc;
|
|
status = MSCALL3(cf, dobj, ip, sl->isl_completionctx);
|
|
if (status == STATUS_MORE_PROCESSING_REQUIRED)
|
|
return;
|
|
} else {
|
|
if ((ip->irp_currentstackloc <= ip->irp_stackcnt) &&
|
|
(ip->irp_pendingreturned == TRUE))
|
|
IoMarkIrpPending(ip);
|
|
}
|
|
|
|
/* move to the next. */
|
|
IoSkipCurrentIrpStackLocation(ip);
|
|
sl++;
|
|
} while (ip->irp_currentstackloc <= (ip->irp_stackcnt + 1));
|
|
|
|
if (ip->irp_usriostat != NULL)
|
|
*ip->irp_usriostat = ip->irp_iostat;
|
|
if (ip->irp_usrevent != NULL)
|
|
KeSetEvent(ip->irp_usrevent, prioboost, FALSE);
|
|
|
|
/* Handle any associated IRPs. */
|
|
|
|
if (ip->irp_flags & IRP_ASSOCIATED_IRP) {
|
|
uint32_t masterirpcnt;
|
|
irp *masterirp;
|
|
mdl *m;
|
|
|
|
masterirp = ip->irp_assoc.irp_master;
|
|
masterirpcnt =
|
|
InterlockedDecrement(&masterirp->irp_assoc.irp_irpcnt);
|
|
|
|
while ((m = ip->irp_mdl) != NULL) {
|
|
ip->irp_mdl = m->mdl_next;
|
|
IoFreeMdl(m);
|
|
}
|
|
IoFreeIrp(ip);
|
|
if (masterirpcnt == 0)
|
|
IoCompleteRequest(masterirp, IO_NO_INCREMENT);
|
|
return;
|
|
}
|
|
|
|
/* With any luck, these conditions will never arise. */
|
|
|
|
if (ip->irp_flags & IRP_PAGING_IO) {
|
|
if (ip->irp_mdl != NULL)
|
|
IoFreeMdl(ip->irp_mdl);
|
|
IoFreeIrp(ip);
|
|
}
|
|
}
|
|
|
|
void
|
|
ntoskrnl_intr(arg)
|
|
void *arg;
|
|
{
|
|
kinterrupt *iobj;
|
|
uint8_t irql;
|
|
uint8_t claimed;
|
|
list_entry *l;
|
|
|
|
KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
|
|
l = ntoskrnl_intlist.nle_flink;
|
|
while (l != &ntoskrnl_intlist) {
|
|
iobj = CONTAINING_RECORD(l, kinterrupt, ki_list);
|
|
claimed = MSCALL2(iobj->ki_svcfunc, iobj, iobj->ki_svcctx);
|
|
if (claimed == TRUE)
|
|
break;
|
|
l = l->nle_flink;
|
|
}
|
|
KeReleaseSpinLock(&ntoskrnl_intlock, irql);
|
|
}
|
|
|
|
uint8_t
|
|
KeAcquireInterruptSpinLock(iobj)
|
|
kinterrupt *iobj;
|
|
{
|
|
uint8_t irql;
|
|
KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
|
|
return (irql);
|
|
}
|
|
|
|
void
|
|
KeReleaseInterruptSpinLock(kinterrupt *iobj, uint8_t irql)
|
|
{
|
|
KeReleaseSpinLock(&ntoskrnl_intlock, irql);
|
|
}
|
|
|
|
uint8_t
|
|
KeSynchronizeExecution(iobj, syncfunc, syncctx)
|
|
kinterrupt *iobj;
|
|
void *syncfunc;
|
|
void *syncctx;
|
|
{
|
|
uint8_t irql;
|
|
|
|
KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
|
|
MSCALL1(syncfunc, syncctx);
|
|
KeReleaseSpinLock(&ntoskrnl_intlock, irql);
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
* IoConnectInterrupt() is passed only the interrupt vector and
|
|
* irql that a device wants to use, but no device-specific tag
|
|
* of any kind. This conflicts rather badly with FreeBSD's
|
|
* bus_setup_intr(), which needs the device_t for the device
|
|
* requesting interrupt delivery. In order to bypass this
|
|
* inconsistency, we implement a second level of interrupt
|
|
* dispatching on top of bus_setup_intr(). All devices use
|
|
* ntoskrnl_intr() as their ISR, and any device requesting
|
|
* interrupts will be registered with ntoskrnl_intr()'s interrupt
|
|
* dispatch list. When an interrupt arrives, we walk the list
|
|
* and invoke all the registered ISRs. This effectively makes all
|
|
* interrupts shared, but it's the only way to duplicate the
|
|
* semantics of IoConnectInterrupt() and IoDisconnectInterrupt() properly.
|
|
*/
|
|
|
|
uint32_t
|
|
IoConnectInterrupt(kinterrupt **iobj, void *svcfunc, void *svcctx,
|
|
kspin_lock *lock, uint32_t vector, uint8_t irql, uint8_t syncirql,
|
|
uint8_t imode, uint8_t shared, uint32_t affinity, uint8_t savefloat)
|
|
{
|
|
uint8_t curirql;
|
|
|
|
*iobj = ExAllocatePoolWithTag(NonPagedPool, sizeof(kinterrupt), 0);
|
|
if (*iobj == NULL)
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
|
|
(*iobj)->ki_svcfunc = svcfunc;
|
|
(*iobj)->ki_svcctx = svcctx;
|
|
|
|
if (lock == NULL) {
|
|
KeInitializeSpinLock(&(*iobj)->ki_lock_priv);
|
|
(*iobj)->ki_lock = &(*iobj)->ki_lock_priv;
|
|
} else
|
|
(*iobj)->ki_lock = lock;
|
|
|
|
KeAcquireSpinLock(&ntoskrnl_intlock, &curirql);
|
|
InsertHeadList((&ntoskrnl_intlist), (&(*iobj)->ki_list));
|
|
KeReleaseSpinLock(&ntoskrnl_intlock, curirql);
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
void
|
|
IoDisconnectInterrupt(iobj)
|
|
kinterrupt *iobj;
|
|
{
|
|
uint8_t irql;
|
|
|
|
if (iobj == NULL)
|
|
return;
|
|
|
|
KeAcquireSpinLock(&ntoskrnl_intlock, &irql);
|
|
RemoveEntryList((&iobj->ki_list));
|
|
KeReleaseSpinLock(&ntoskrnl_intlock, irql);
|
|
|
|
ExFreePool(iobj);
|
|
}
|
|
|
|
device_object *
|
|
IoAttachDeviceToDeviceStack(src, dst)
|
|
device_object *src;
|
|
device_object *dst;
|
|
{
|
|
device_object *attached;
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
attached = IoGetAttachedDevice(dst);
|
|
attached->do_attacheddev = src;
|
|
src->do_attacheddev = NULL;
|
|
src->do_stacksize = attached->do_stacksize + 1;
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (attached);
|
|
}
|
|
|
|
void
|
|
IoDetachDevice(topdev)
|
|
device_object *topdev;
|
|
{
|
|
device_object *tail;
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
|
|
/* First, break the chain. */
|
|
tail = topdev->do_attacheddev;
|
|
if (tail == NULL) {
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
return;
|
|
}
|
|
topdev->do_attacheddev = tail->do_attacheddev;
|
|
topdev->do_refcnt--;
|
|
|
|
/* Now reduce the stacksize count for the takm_il objects. */
|
|
|
|
tail = topdev->do_attacheddev;
|
|
while (tail != NULL) {
|
|
tail->do_stacksize--;
|
|
tail = tail->do_attacheddev;
|
|
}
|
|
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
}
|
|
|
|
/*
|
|
* For the most part, an object is considered signalled if
|
|
* dh_sigstate == TRUE. The exception is for mutant objects
|
|
* (mutexes), where the logic works like this:
|
|
*
|
|
* - If the thread already owns the object and sigstate is
|
|
* less than or equal to 0, then the object is considered
|
|
* signalled (recursive acquisition).
|
|
* - If dh_sigstate == 1, the object is also considered
|
|
* signalled.
|
|
*/
|
|
|
|
static int
|
|
ntoskrnl_is_signalled(obj, td)
|
|
nt_dispatch_header *obj;
|
|
struct thread *td;
|
|
{
|
|
kmutant *km;
|
|
|
|
if (obj->dh_type == DISP_TYPE_MUTANT) {
|
|
km = (kmutant *)obj;
|
|
if ((obj->dh_sigstate <= 0 && km->km_ownerthread == td) ||
|
|
obj->dh_sigstate == 1)
|
|
return (TRUE);
|
|
return (FALSE);
|
|
}
|
|
|
|
if (obj->dh_sigstate > 0)
|
|
return (TRUE);
|
|
return (FALSE);
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_satisfy_wait(obj, td)
|
|
nt_dispatch_header *obj;
|
|
struct thread *td;
|
|
{
|
|
kmutant *km;
|
|
|
|
switch (obj->dh_type) {
|
|
case DISP_TYPE_MUTANT:
|
|
km = (struct kmutant *)obj;
|
|
obj->dh_sigstate--;
|
|
/*
|
|
* If sigstate reaches 0, the mutex is now
|
|
* non-signalled (the new thread owns it).
|
|
*/
|
|
if (obj->dh_sigstate == 0) {
|
|
km->km_ownerthread = td;
|
|
if (km->km_abandoned == TRUE)
|
|
km->km_abandoned = FALSE;
|
|
}
|
|
break;
|
|
/* Synchronization objects get reset to unsignalled. */
|
|
case DISP_TYPE_SYNCHRONIZATION_EVENT:
|
|
case DISP_TYPE_SYNCHRONIZATION_TIMER:
|
|
obj->dh_sigstate = 0;
|
|
break;
|
|
case DISP_TYPE_SEMAPHORE:
|
|
obj->dh_sigstate--;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_satisfy_multiple_waits(wb)
|
|
wait_block *wb;
|
|
{
|
|
wait_block *cur;
|
|
struct thread *td;
|
|
|
|
cur = wb;
|
|
td = wb->wb_kthread;
|
|
|
|
do {
|
|
ntoskrnl_satisfy_wait(wb->wb_object, td);
|
|
cur->wb_awakened = TRUE;
|
|
cur = cur->wb_next;
|
|
} while (cur != wb);
|
|
}
|
|
|
|
/* Always called with dispatcher lock held. */
|
|
static void
|
|
ntoskrnl_waittest(obj, increment)
|
|
nt_dispatch_header *obj;
|
|
uint32_t increment;
|
|
{
|
|
wait_block *w, *next;
|
|
list_entry *e;
|
|
struct thread *td;
|
|
wb_ext *we;
|
|
int satisfied;
|
|
|
|
/*
|
|
* Once an object has been signalled, we walk its list of
|
|
* wait blocks. If a wait block can be awakened, then satisfy
|
|
* waits as necessary and wake the thread.
|
|
*
|
|
* The rules work like this:
|
|
*
|
|
* If a wait block is marked as WAITTYPE_ANY, then
|
|
* we can satisfy the wait conditions on the current
|
|
* object and wake the thread right away. Satisfying
|
|
* the wait also has the effect of breaking us out
|
|
* of the search loop.
|
|
*
|
|
* If the object is marked as WAITTYLE_ALL, then the
|
|
* wait block will be part of a circularly linked
|
|
* list of wait blocks belonging to a waiting thread
|
|
* that's sleeping in KeWaitForMultipleObjects(). In
|
|
* order to wake the thread, all the objects in the
|
|
* wait list must be in the signalled state. If they
|
|
* are, we then satisfy all of them and wake the
|
|
* thread.
|
|
*
|
|
*/
|
|
|
|
e = obj->dh_waitlisthead.nle_flink;
|
|
|
|
while (e != &obj->dh_waitlisthead && obj->dh_sigstate > 0) {
|
|
w = CONTAINING_RECORD(e, wait_block, wb_waitlist);
|
|
we = w->wb_ext;
|
|
td = we->we_td;
|
|
satisfied = FALSE;
|
|
if (w->wb_waittype == WAITTYPE_ANY) {
|
|
/*
|
|
* Thread can be awakened if
|
|
* any wait is satisfied.
|
|
*/
|
|
ntoskrnl_satisfy_wait(obj, td);
|
|
satisfied = TRUE;
|
|
w->wb_awakened = TRUE;
|
|
} else {
|
|
/*
|
|
* Thread can only be woken up
|
|
* if all waits are satisfied.
|
|
* If the thread is waiting on multiple
|
|
* objects, they should all be linked
|
|
* through the wb_next pointers in the
|
|
* wait blocks.
|
|
*/
|
|
satisfied = TRUE;
|
|
next = w->wb_next;
|
|
while (next != w) {
|
|
if (ntoskrnl_is_signalled(obj, td) == FALSE) {
|
|
satisfied = FALSE;
|
|
break;
|
|
}
|
|
next = next->wb_next;
|
|
}
|
|
ntoskrnl_satisfy_multiple_waits(w);
|
|
}
|
|
|
|
if (satisfied == TRUE)
|
|
cv_broadcastpri(&we->we_cv,
|
|
(w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
|
|
w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
|
|
|
|
e = e->nle_flink;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the number of 100 nanosecond intervals since
|
|
* January 1, 1601. (?!?!)
|
|
*/
|
|
void
|
|
ntoskrnl_time(tval)
|
|
uint64_t *tval;
|
|
{
|
|
struct timespec ts;
|
|
|
|
nanotime(&ts);
|
|
*tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
|
|
11644473600 * 10000000; /* 100ns ticks from 1601 to 1970 */
|
|
}
|
|
|
|
static void
|
|
KeQuerySystemTime(current_time)
|
|
uint64_t *current_time;
|
|
{
|
|
ntoskrnl_time(current_time);
|
|
}
|
|
|
|
static uint32_t
|
|
KeTickCount(void)
|
|
{
|
|
struct timeval tv;
|
|
getmicrouptime(&tv);
|
|
return tvtohz(&tv);
|
|
}
|
|
|
|
|
|
/*
|
|
* KeWaitForSingleObject() is a tricky beast, because it can be used
|
|
* with several different object types: semaphores, timers, events,
|
|
* mutexes and threads. Semaphores don't appear very often, but the
|
|
* other object types are quite common. KeWaitForSingleObject() is
|
|
* what's normally used to acquire a mutex, and it can be used to
|
|
* wait for a thread termination.
|
|
*
|
|
* The Windows NDIS API is implemented in terms of Windows kernel
|
|
* primitives, and some of the object manipulation is duplicated in
|
|
* NDIS. For example, NDIS has timers and events, which are actually
|
|
* Windows kevents and ktimers. Now, you're supposed to only use the
|
|
* NDIS variants of these objects within the confines of the NDIS API,
|
|
* but there are some naughty developers out there who will use
|
|
* KeWaitForSingleObject() on NDIS timer and event objects, so we
|
|
* have to support that as well. Conseqently, our NDIS timer and event
|
|
* code has to be closely tied into our ntoskrnl timer and event code,
|
|
* just as it is in Windows.
|
|
*
|
|
* KeWaitForSingleObject() may do different things for different kinds
|
|
* of objects:
|
|
*
|
|
* - For events, we check if the event has been signalled. If the
|
|
* event is already in the signalled state, we just return immediately,
|
|
* otherwise we wait for it to be set to the signalled state by someone
|
|
* else calling KeSetEvent(). Events can be either synchronization or
|
|
* notification events.
|
|
*
|
|
* - For timers, if the timer has already fired and the timer is in
|
|
* the signalled state, we just return, otherwise we wait on the
|
|
* timer. Unlike an event, timers get signalled automatically when
|
|
* they expire rather than someone having to trip them manually.
|
|
* Timers initialized with KeInitializeTimer() are always notification
|
|
* events: KeInitializeTimerEx() lets you initialize a timer as
|
|
* either a notification or synchronization event.
|
|
*
|
|
* - For mutexes, we try to acquire the mutex and if we can't, we wait
|
|
* on the mutex until it's available and then grab it. When a mutex is
|
|
* released, it enters the signalled state, which wakes up one of the
|
|
* threads waiting to acquire it. Mutexes are always synchronization
|
|
* events.
|
|
*
|
|
* - For threads, the only thing we do is wait until the thread object
|
|
* enters a signalled state, which occurs when the thread terminates.
|
|
* Threads are always notification events.
|
|
*
|
|
* A notification event wakes up all threads waiting on an object. A
|
|
* synchronization event wakes up just one. Also, a synchronization event
|
|
* is auto-clearing, which means we automatically set the event back to
|
|
* the non-signalled state once the wakeup is done.
|
|
*/
|
|
|
|
uint32_t
|
|
KeWaitForSingleObject(void *arg, uint32_t reason, uint32_t mode,
|
|
uint8_t alertable, int64_t *duetime)
|
|
{
|
|
wait_block w;
|
|
struct thread *td = curthread;
|
|
struct timeval tv;
|
|
int error = 0;
|
|
uint64_t curtime;
|
|
wb_ext we;
|
|
nt_dispatch_header *obj;
|
|
|
|
obj = arg;
|
|
|
|
if (obj == NULL)
|
|
return (STATUS_INVALID_PARAMETER);
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
|
|
cv_init(&we.we_cv, "KeWFS");
|
|
we.we_td = td;
|
|
|
|
/*
|
|
* Check to see if this object is already signalled,
|
|
* and just return without waiting if it is.
|
|
*/
|
|
if (ntoskrnl_is_signalled(obj, td) == TRUE) {
|
|
/* Sanity check the signal state value. */
|
|
if (obj->dh_sigstate != INT32_MIN) {
|
|
ntoskrnl_satisfy_wait(obj, curthread);
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
return (STATUS_SUCCESS);
|
|
} else {
|
|
/*
|
|
* There's a limit to how many times we can
|
|
* recursively acquire a mutant. If we hit
|
|
* the limit, something is very wrong.
|
|
*/
|
|
if (obj->dh_type == DISP_TYPE_MUTANT) {
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
panic("mutant limit exceeded");
|
|
}
|
|
}
|
|
}
|
|
|
|
bzero((char *)&w, sizeof(wait_block));
|
|
w.wb_object = obj;
|
|
w.wb_ext = &we;
|
|
w.wb_waittype = WAITTYPE_ANY;
|
|
w.wb_next = &w;
|
|
w.wb_waitkey = 0;
|
|
w.wb_awakened = FALSE;
|
|
w.wb_oldpri = td->td_priority;
|
|
|
|
InsertTailList((&obj->dh_waitlisthead), (&w.wb_waitlist));
|
|
|
|
/*
|
|
* The timeout value is specified in 100 nanosecond units
|
|
* and can be a positive or negative number. If it's positive,
|
|
* then the duetime is absolute, and we need to convert it
|
|
* to an absolute offset relative to now in order to use it.
|
|
* If it's negative, then the duetime is relative and we
|
|
* just have to convert the units.
|
|
*/
|
|
|
|
if (duetime != NULL) {
|
|
if (*duetime < 0) {
|
|
tv.tv_sec = - (*duetime) / 10000000;
|
|
tv.tv_usec = (- (*duetime) / 10) -
|
|
(tv.tv_sec * 1000000);
|
|
} else {
|
|
ntoskrnl_time(&curtime);
|
|
if (*duetime < curtime)
|
|
tv.tv_sec = tv.tv_usec = 0;
|
|
else {
|
|
tv.tv_sec = ((*duetime) - curtime) / 10000000;
|
|
tv.tv_usec = ((*duetime) - curtime) / 10 -
|
|
(tv.tv_sec * 1000000);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (duetime == NULL)
|
|
cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
|
|
else
|
|
error = cv_timedwait(&we.we_cv,
|
|
&ntoskrnl_dispatchlock, tvtohz(&tv));
|
|
|
|
RemoveEntryList(&w.wb_waitlist);
|
|
|
|
cv_destroy(&we.we_cv);
|
|
|
|
/* We timed out. Leave the object alone and return status. */
|
|
|
|
if (error == EWOULDBLOCK) {
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
return (STATUS_TIMEOUT);
|
|
}
|
|
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (STATUS_SUCCESS);
|
|
/*
|
|
return (KeWaitForMultipleObjects(1, &obj, WAITTYPE_ALL, reason,
|
|
mode, alertable, duetime, &w));
|
|
*/
|
|
}
|
|
|
|
static uint32_t
|
|
KeWaitForMultipleObjects(uint32_t cnt, nt_dispatch_header *obj[], uint32_t wtype,
|
|
uint32_t reason, uint32_t mode, uint8_t alertable, int64_t *duetime,
|
|
wait_block *wb_array)
|
|
{
|
|
struct thread *td = curthread;
|
|
wait_block *whead, *w;
|
|
wait_block _wb_array[MAX_WAIT_OBJECTS];
|
|
nt_dispatch_header *cur;
|
|
struct timeval tv;
|
|
int i, wcnt = 0, error = 0;
|
|
uint64_t curtime;
|
|
struct timespec t1, t2;
|
|
uint32_t status = STATUS_SUCCESS;
|
|
wb_ext we;
|
|
|
|
if (cnt > MAX_WAIT_OBJECTS)
|
|
return (STATUS_INVALID_PARAMETER);
|
|
if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL)
|
|
return (STATUS_INVALID_PARAMETER);
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
|
|
cv_init(&we.we_cv, "KeWFM");
|
|
we.we_td = td;
|
|
|
|
if (wb_array == NULL)
|
|
whead = _wb_array;
|
|
else
|
|
whead = wb_array;
|
|
|
|
bzero((char *)whead, sizeof(wait_block) * cnt);
|
|
|
|
/* First pass: see if we can satisfy any waits immediately. */
|
|
|
|
wcnt = 0;
|
|
w = whead;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
InsertTailList((&obj[i]->dh_waitlisthead),
|
|
(&w->wb_waitlist));
|
|
w->wb_ext = &we;
|
|
w->wb_object = obj[i];
|
|
w->wb_waittype = wtype;
|
|
w->wb_waitkey = i;
|
|
w->wb_awakened = FALSE;
|
|
w->wb_oldpri = td->td_priority;
|
|
w->wb_next = w + 1;
|
|
w++;
|
|
wcnt++;
|
|
if (ntoskrnl_is_signalled(obj[i], td)) {
|
|
/*
|
|
* There's a limit to how many times
|
|
* we can recursively acquire a mutant.
|
|
* If we hit the limit, something
|
|
* is very wrong.
|
|
*/
|
|
if (obj[i]->dh_sigstate == INT32_MIN &&
|
|
obj[i]->dh_type == DISP_TYPE_MUTANT) {
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
panic("mutant limit exceeded");
|
|
}
|
|
|
|
/*
|
|
* If this is a WAITTYPE_ANY wait, then
|
|
* satisfy the waited object and exit
|
|
* right now.
|
|
*/
|
|
|
|
if (wtype == WAITTYPE_ANY) {
|
|
ntoskrnl_satisfy_wait(obj[i], td);
|
|
status = STATUS_WAIT_0 + i;
|
|
goto wait_done;
|
|
} else {
|
|
w--;
|
|
wcnt--;
|
|
w->wb_object = NULL;
|
|
RemoveEntryList(&w->wb_waitlist);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a WAITTYPE_ALL wait and all objects are
|
|
* already signalled, satisfy the waits and exit now.
|
|
*/
|
|
|
|
if (wtype == WAITTYPE_ALL && wcnt == 0) {
|
|
for (i = 0; i < cnt; i++)
|
|
ntoskrnl_satisfy_wait(obj[i], td);
|
|
status = STATUS_SUCCESS;
|
|
goto wait_done;
|
|
}
|
|
|
|
/*
|
|
* Create a circular waitblock list. The waitcount
|
|
* must always be non-zero when we get here.
|
|
*/
|
|
|
|
(w - 1)->wb_next = whead;
|
|
|
|
/* Wait on any objects that aren't yet signalled. */
|
|
|
|
/* Calculate timeout, if any. */
|
|
|
|
if (duetime != NULL) {
|
|
if (*duetime < 0) {
|
|
tv.tv_sec = - (*duetime) / 10000000;
|
|
tv.tv_usec = (- (*duetime) / 10) -
|
|
(tv.tv_sec * 1000000);
|
|
} else {
|
|
ntoskrnl_time(&curtime);
|
|
if (*duetime < curtime)
|
|
tv.tv_sec = tv.tv_usec = 0;
|
|
else {
|
|
tv.tv_sec = ((*duetime) - curtime) / 10000000;
|
|
tv.tv_usec = ((*duetime) - curtime) / 10 -
|
|
(tv.tv_sec * 1000000);
|
|
}
|
|
}
|
|
}
|
|
|
|
while (wcnt) {
|
|
nanotime(&t1);
|
|
|
|
if (duetime == NULL)
|
|
cv_wait(&we.we_cv, &ntoskrnl_dispatchlock);
|
|
else
|
|
error = cv_timedwait(&we.we_cv,
|
|
&ntoskrnl_dispatchlock, tvtohz(&tv));
|
|
|
|
/* Wait with timeout expired. */
|
|
|
|
if (error) {
|
|
status = STATUS_TIMEOUT;
|
|
goto wait_done;
|
|
}
|
|
|
|
nanotime(&t2);
|
|
|
|
/* See what's been signalled. */
|
|
|
|
w = whead;
|
|
do {
|
|
cur = w->wb_object;
|
|
if (ntoskrnl_is_signalled(cur, td) == TRUE ||
|
|
w->wb_awakened == TRUE) {
|
|
/* Sanity check the signal state value. */
|
|
if (cur->dh_sigstate == INT32_MIN &&
|
|
cur->dh_type == DISP_TYPE_MUTANT) {
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
panic("mutant limit exceeded");
|
|
}
|
|
wcnt--;
|
|
if (wtype == WAITTYPE_ANY) {
|
|
status = w->wb_waitkey &
|
|
STATUS_WAIT_0;
|
|
goto wait_done;
|
|
}
|
|
}
|
|
w = w->wb_next;
|
|
} while (w != whead);
|
|
|
|
/*
|
|
* If all objects have been signalled, or if this
|
|
* is a WAITTYPE_ANY wait and we were woke up by
|
|
* someone, we can bail.
|
|
*/
|
|
|
|
if (wcnt == 0) {
|
|
status = STATUS_SUCCESS;
|
|
goto wait_done;
|
|
}
|
|
|
|
/*
|
|
* If this is WAITTYPE_ALL wait, and there's still
|
|
* objects that haven't been signalled, deduct the
|
|
* time that's elapsed so far from the timeout and
|
|
* wait again (or continue waiting indefinitely if
|
|
* there's no timeout).
|
|
*/
|
|
|
|
if (duetime != NULL) {
|
|
tv.tv_sec -= (t2.tv_sec - t1.tv_sec);
|
|
tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000;
|
|
}
|
|
}
|
|
|
|
|
|
wait_done:
|
|
|
|
cv_destroy(&we.we_cv);
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
if (whead[i].wb_object != NULL)
|
|
RemoveEntryList(&whead[i].wb_waitlist);
|
|
|
|
}
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (status);
|
|
}
|
|
|
|
static void
|
|
WRITE_REGISTER_USHORT(uint16_t *reg, uint16_t val)
|
|
{
|
|
bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
|
|
}
|
|
|
|
static uint16_t
|
|
READ_REGISTER_USHORT(reg)
|
|
uint16_t *reg;
|
|
{
|
|
return (bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
|
|
}
|
|
|
|
static void
|
|
WRITE_REGISTER_ULONG(reg, val)
|
|
uint32_t *reg;
|
|
uint32_t val;
|
|
{
|
|
bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
|
|
}
|
|
|
|
static uint32_t
|
|
READ_REGISTER_ULONG(reg)
|
|
uint32_t *reg;
|
|
{
|
|
return (bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
|
|
}
|
|
|
|
static uint8_t
|
|
READ_REGISTER_UCHAR(uint8_t *reg)
|
|
{
|
|
return (bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
|
|
}
|
|
|
|
static void
|
|
WRITE_REGISTER_UCHAR(uint8_t *reg, uint8_t val)
|
|
{
|
|
bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
|
|
}
|
|
|
|
static int64_t
|
|
_allmul(a, b)
|
|
int64_t a;
|
|
int64_t b;
|
|
{
|
|
return (a * b);
|
|
}
|
|
|
|
static int64_t
|
|
_alldiv(a, b)
|
|
int64_t a;
|
|
int64_t b;
|
|
{
|
|
return (a / b);
|
|
}
|
|
|
|
static int64_t
|
|
_allrem(a, b)
|
|
int64_t a;
|
|
int64_t b;
|
|
{
|
|
return (a % b);
|
|
}
|
|
|
|
static uint64_t
|
|
_aullmul(a, b)
|
|
uint64_t a;
|
|
uint64_t b;
|
|
{
|
|
return (a * b);
|
|
}
|
|
|
|
static uint64_t
|
|
_aulldiv(a, b)
|
|
uint64_t a;
|
|
uint64_t b;
|
|
{
|
|
return (a / b);
|
|
}
|
|
|
|
static uint64_t
|
|
_aullrem(a, b)
|
|
uint64_t a;
|
|
uint64_t b;
|
|
{
|
|
return (a % b);
|
|
}
|
|
|
|
static int64_t
|
|
_allshl(int64_t a, uint8_t b)
|
|
{
|
|
return (a << b);
|
|
}
|
|
|
|
static uint64_t
|
|
_aullshl(uint64_t a, uint8_t b)
|
|
{
|
|
return (a << b);
|
|
}
|
|
|
|
static int64_t
|
|
_allshr(int64_t a, uint8_t b)
|
|
{
|
|
return (a >> b);
|
|
}
|
|
|
|
static uint64_t
|
|
_aullshr(uint64_t a, uint8_t b)
|
|
{
|
|
return (a >> b);
|
|
}
|
|
|
|
static slist_entry *
|
|
ntoskrnl_pushsl(head, entry)
|
|
slist_header *head;
|
|
slist_entry *entry;
|
|
{
|
|
slist_entry *oldhead;
|
|
|
|
oldhead = head->slh_list.slh_next;
|
|
entry->sl_next = head->slh_list.slh_next;
|
|
head->slh_list.slh_next = entry;
|
|
head->slh_list.slh_depth++;
|
|
head->slh_list.slh_seq++;
|
|
|
|
return (oldhead);
|
|
}
|
|
|
|
static void
|
|
InitializeSListHead(head)
|
|
slist_header *head;
|
|
{
|
|
memset(head, 0, sizeof(*head));
|
|
}
|
|
|
|
static slist_entry *
|
|
ntoskrnl_popsl(head)
|
|
slist_header *head;
|
|
{
|
|
slist_entry *first;
|
|
|
|
first = head->slh_list.slh_next;
|
|
if (first != NULL) {
|
|
head->slh_list.slh_next = first->sl_next;
|
|
head->slh_list.slh_depth--;
|
|
head->slh_list.slh_seq++;
|
|
}
|
|
|
|
return (first);
|
|
}
|
|
|
|
/*
|
|
* We need this to make lookaside lists work for amd64.
|
|
* We pass a pointer to ExAllocatePoolWithTag() the lookaside
|
|
* list structure. For amd64 to work right, this has to be a
|
|
* pointer to the wrapped version of the routine, not the
|
|
* original. Letting the Windows driver invoke the original
|
|
* function directly will result in a convention calling
|
|
* mismatch and a pretty crash. On x86, this effectively
|
|
* becomes a no-op since ipt_func and ipt_wrap are the same.
|
|
*/
|
|
|
|
static funcptr
|
|
ntoskrnl_findwrap(func)
|
|
funcptr func;
|
|
{
|
|
image_patch_table *patch;
|
|
|
|
patch = ntoskrnl_functbl;
|
|
while (patch->ipt_func != NULL) {
|
|
if ((funcptr)patch->ipt_func == func)
|
|
return ((funcptr)patch->ipt_wrap);
|
|
patch++;
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
ExInitializePagedLookasideList(paged_lookaside_list *lookaside,
|
|
lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
|
|
uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
|
|
{
|
|
bzero((char *)lookaside, sizeof(paged_lookaside_list));
|
|
|
|
if (size < sizeof(slist_entry))
|
|
lookaside->nll_l.gl_size = sizeof(slist_entry);
|
|
else
|
|
lookaside->nll_l.gl_size = size;
|
|
lookaside->nll_l.gl_tag = tag;
|
|
if (allocfunc == NULL)
|
|
lookaside->nll_l.gl_allocfunc =
|
|
ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
|
|
else
|
|
lookaside->nll_l.gl_allocfunc = allocfunc;
|
|
|
|
if (freefunc == NULL)
|
|
lookaside->nll_l.gl_freefunc =
|
|
ntoskrnl_findwrap((funcptr)ExFreePool);
|
|
else
|
|
lookaside->nll_l.gl_freefunc = freefunc;
|
|
|
|
#ifdef __i386__
|
|
KeInitializeSpinLock(&lookaside->nll_obsoletelock);
|
|
#endif
|
|
|
|
lookaside->nll_l.gl_type = NonPagedPool;
|
|
lookaside->nll_l.gl_depth = depth;
|
|
lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
|
|
}
|
|
|
|
static void
|
|
ExDeletePagedLookasideList(lookaside)
|
|
paged_lookaside_list *lookaside;
|
|
{
|
|
void *buf;
|
|
void (*freefunc)(void *);
|
|
|
|
freefunc = lookaside->nll_l.gl_freefunc;
|
|
while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
|
|
MSCALL1(freefunc, buf);
|
|
}
|
|
|
|
static void
|
|
ExInitializeNPagedLookasideList(npaged_lookaside_list *lookaside,
|
|
lookaside_alloc_func *allocfunc, lookaside_free_func *freefunc,
|
|
uint32_t flags, size_t size, uint32_t tag, uint16_t depth)
|
|
{
|
|
bzero((char *)lookaside, sizeof(npaged_lookaside_list));
|
|
|
|
if (size < sizeof(slist_entry))
|
|
lookaside->nll_l.gl_size = sizeof(slist_entry);
|
|
else
|
|
lookaside->nll_l.gl_size = size;
|
|
lookaside->nll_l.gl_tag = tag;
|
|
if (allocfunc == NULL)
|
|
lookaside->nll_l.gl_allocfunc =
|
|
ntoskrnl_findwrap((funcptr)ExAllocatePoolWithTag);
|
|
else
|
|
lookaside->nll_l.gl_allocfunc = allocfunc;
|
|
|
|
if (freefunc == NULL)
|
|
lookaside->nll_l.gl_freefunc =
|
|
ntoskrnl_findwrap((funcptr)ExFreePool);
|
|
else
|
|
lookaside->nll_l.gl_freefunc = freefunc;
|
|
|
|
#ifdef __i386__
|
|
KeInitializeSpinLock(&lookaside->nll_obsoletelock);
|
|
#endif
|
|
|
|
lookaside->nll_l.gl_type = NonPagedPool;
|
|
lookaside->nll_l.gl_depth = depth;
|
|
lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
|
|
}
|
|
|
|
static void
|
|
ExDeleteNPagedLookasideList(lookaside)
|
|
npaged_lookaside_list *lookaside;
|
|
{
|
|
void *buf;
|
|
void (*freefunc)(void *);
|
|
|
|
freefunc = lookaside->nll_l.gl_freefunc;
|
|
while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
|
|
MSCALL1(freefunc, buf);
|
|
}
|
|
|
|
slist_entry *
|
|
InterlockedPushEntrySList(head, entry)
|
|
slist_header *head;
|
|
slist_entry *entry;
|
|
{
|
|
slist_entry *oldhead;
|
|
|
|
mtx_lock_spin(&ntoskrnl_interlock);
|
|
oldhead = ntoskrnl_pushsl(head, entry);
|
|
mtx_unlock_spin(&ntoskrnl_interlock);
|
|
|
|
return (oldhead);
|
|
}
|
|
|
|
slist_entry *
|
|
InterlockedPopEntrySList(head)
|
|
slist_header *head;
|
|
{
|
|
slist_entry *first;
|
|
|
|
mtx_lock_spin(&ntoskrnl_interlock);
|
|
first = ntoskrnl_popsl(head);
|
|
mtx_unlock_spin(&ntoskrnl_interlock);
|
|
|
|
return (first);
|
|
}
|
|
|
|
static slist_entry *
|
|
ExInterlockedPushEntrySList(head, entry, lock)
|
|
slist_header *head;
|
|
slist_entry *entry;
|
|
kspin_lock *lock;
|
|
{
|
|
return (InterlockedPushEntrySList(head, entry));
|
|
}
|
|
|
|
static slist_entry *
|
|
ExInterlockedPopEntrySList(head, lock)
|
|
slist_header *head;
|
|
kspin_lock *lock;
|
|
{
|
|
return (InterlockedPopEntrySList(head));
|
|
}
|
|
|
|
uint16_t
|
|
ExQueryDepthSList(head)
|
|
slist_header *head;
|
|
{
|
|
uint16_t depth;
|
|
|
|
mtx_lock_spin(&ntoskrnl_interlock);
|
|
depth = head->slh_list.slh_depth;
|
|
mtx_unlock_spin(&ntoskrnl_interlock);
|
|
|
|
return (depth);
|
|
}
|
|
|
|
void
|
|
KeInitializeSpinLock(lock)
|
|
kspin_lock *lock;
|
|
{
|
|
*lock = 0;
|
|
}
|
|
|
|
#ifdef __i386__
|
|
void
|
|
KefAcquireSpinLockAtDpcLevel(lock)
|
|
kspin_lock *lock;
|
|
{
|
|
#ifdef NTOSKRNL_DEBUG_SPINLOCKS
|
|
int i = 0;
|
|
#endif
|
|
|
|
while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0) {
|
|
/* sit and spin */;
|
|
#ifdef NTOSKRNL_DEBUG_SPINLOCKS
|
|
i++;
|
|
if (i > 200000000)
|
|
panic("DEADLOCK!");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
KefReleaseSpinLockFromDpcLevel(lock)
|
|
kspin_lock *lock;
|
|
{
|
|
atomic_store_rel_int((volatile u_int *)lock, 0);
|
|
}
|
|
|
|
uint8_t
|
|
KeAcquireSpinLockRaiseToDpc(kspin_lock *lock)
|
|
{
|
|
uint8_t oldirql;
|
|
|
|
if (KeGetCurrentIrql() > DISPATCH_LEVEL)
|
|
panic("IRQL_NOT_LESS_THAN_OR_EQUAL");
|
|
|
|
KeRaiseIrql(DISPATCH_LEVEL, &oldirql);
|
|
KeAcquireSpinLockAtDpcLevel(lock);
|
|
|
|
return (oldirql);
|
|
}
|
|
#else
|
|
void
|
|
KeAcquireSpinLockAtDpcLevel(kspin_lock *lock)
|
|
{
|
|
while (atomic_cmpset_acq_int((volatile u_int *)lock, 0, 1) == 0)
|
|
/* sit and spin */;
|
|
}
|
|
|
|
void
|
|
KeReleaseSpinLockFromDpcLevel(kspin_lock *lock)
|
|
{
|
|
atomic_store_rel_int((volatile u_int *)lock, 0);
|
|
}
|
|
#endif /* __i386__ */
|
|
|
|
uintptr_t
|
|
InterlockedExchange(dst, val)
|
|
volatile uint32_t *dst;
|
|
uintptr_t val;
|
|
{
|
|
uintptr_t r;
|
|
|
|
mtx_lock_spin(&ntoskrnl_interlock);
|
|
r = *dst;
|
|
*dst = val;
|
|
mtx_unlock_spin(&ntoskrnl_interlock);
|
|
|
|
return (r);
|
|
}
|
|
|
|
static uint32_t
|
|
InterlockedIncrement(addend)
|
|
volatile uint32_t *addend;
|
|
{
|
|
atomic_add_long((volatile u_long *)addend, 1);
|
|
return (*addend);
|
|
}
|
|
|
|
static uint32_t
|
|
InterlockedDecrement(addend)
|
|
volatile uint32_t *addend;
|
|
{
|
|
atomic_subtract_long((volatile u_long *)addend, 1);
|
|
return (*addend);
|
|
}
|
|
|
|
static void
|
|
ExInterlockedAddLargeStatistic(addend, inc)
|
|
uint64_t *addend;
|
|
uint32_t inc;
|
|
{
|
|
mtx_lock_spin(&ntoskrnl_interlock);
|
|
*addend += inc;
|
|
mtx_unlock_spin(&ntoskrnl_interlock);
|
|
};
|
|
|
|
mdl *
|
|
IoAllocateMdl(void *vaddr, uint32_t len, uint8_t secondarybuf,
|
|
uint8_t chargequota, irp *iopkt)
|
|
{
|
|
mdl *m;
|
|
int zone = 0;
|
|
|
|
if (MmSizeOfMdl(vaddr, len) > MDL_ZONE_SIZE)
|
|
m = ExAllocatePoolWithTag(NonPagedPool,
|
|
MmSizeOfMdl(vaddr, len), 0);
|
|
else {
|
|
m = uma_zalloc(mdl_zone, M_NOWAIT | M_ZERO);
|
|
zone++;
|
|
}
|
|
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
MmInitializeMdl(m, vaddr, len);
|
|
|
|
/*
|
|
* MmInitializMdl() clears the flags field, so we
|
|
* have to set this here. If the MDL came from the
|
|
* MDL UMA zone, tag it so we can release it to
|
|
* the right place later.
|
|
*/
|
|
if (zone)
|
|
m->mdl_flags = MDL_ZONE_ALLOCED;
|
|
|
|
if (iopkt != NULL) {
|
|
if (secondarybuf == TRUE) {
|
|
mdl *last;
|
|
last = iopkt->irp_mdl;
|
|
while (last->mdl_next != NULL)
|
|
last = last->mdl_next;
|
|
last->mdl_next = m;
|
|
} else {
|
|
if (iopkt->irp_mdl != NULL)
|
|
panic("leaking an MDL in IoAllocateMdl()");
|
|
iopkt->irp_mdl = m;
|
|
}
|
|
}
|
|
|
|
return (m);
|
|
}
|
|
|
|
void
|
|
IoFreeMdl(m)
|
|
mdl *m;
|
|
{
|
|
if (m == NULL)
|
|
return;
|
|
|
|
if (m->mdl_flags & MDL_ZONE_ALLOCED)
|
|
uma_zfree(mdl_zone, m);
|
|
else
|
|
ExFreePool(m);
|
|
}
|
|
|
|
static void *
|
|
MmAllocateContiguousMemory(size, highest)
|
|
uint32_t size;
|
|
uint64_t highest;
|
|
{
|
|
void *addr;
|
|
size_t pagelength = roundup(size, PAGE_SIZE);
|
|
|
|
addr = ExAllocatePoolWithTag(NonPagedPool, pagelength, 0);
|
|
|
|
return (addr);
|
|
}
|
|
|
|
static void *
|
|
MmAllocateContiguousMemorySpecifyCache(size, lowest, highest,
|
|
boundary, cachetype)
|
|
uint32_t size;
|
|
uint64_t lowest;
|
|
uint64_t highest;
|
|
uint64_t boundary;
|
|
enum nt_caching_type cachetype;
|
|
{
|
|
vm_memattr_t memattr;
|
|
void *ret;
|
|
|
|
switch (cachetype) {
|
|
case MmNonCached:
|
|
memattr = VM_MEMATTR_UNCACHEABLE;
|
|
break;
|
|
case MmWriteCombined:
|
|
memattr = VM_MEMATTR_WRITE_COMBINING;
|
|
break;
|
|
case MmNonCachedUnordered:
|
|
memattr = VM_MEMATTR_UNCACHEABLE;
|
|
break;
|
|
case MmCached:
|
|
case MmHardwareCoherentCached:
|
|
case MmUSWCCached:
|
|
default:
|
|
memattr = VM_MEMATTR_DEFAULT;
|
|
break;
|
|
}
|
|
|
|
ret = (void *)kmem_alloc_contig(size, M_ZERO | M_NOWAIT, lowest,
|
|
highest, PAGE_SIZE, boundary, memattr);
|
|
if (ret != NULL)
|
|
malloc_type_allocated(M_DEVBUF, round_page(size));
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
MmFreeContiguousMemory(base)
|
|
void *base;
|
|
{
|
|
ExFreePool(base);
|
|
}
|
|
|
|
static void
|
|
MmFreeContiguousMemorySpecifyCache(base, size, cachetype)
|
|
void *base;
|
|
uint32_t size;
|
|
enum nt_caching_type cachetype;
|
|
{
|
|
contigfree(base, size, M_DEVBUF);
|
|
}
|
|
|
|
static uint32_t
|
|
MmSizeOfMdl(vaddr, len)
|
|
void *vaddr;
|
|
size_t len;
|
|
{
|
|
uint32_t l;
|
|
|
|
l = sizeof(struct mdl) +
|
|
(sizeof(vm_offset_t *) * SPAN_PAGES(vaddr, len));
|
|
|
|
return (l);
|
|
}
|
|
|
|
/*
|
|
* The Microsoft documentation says this routine fills in the
|
|
* page array of an MDL with the _physical_ page addresses that
|
|
* comprise the buffer, but we don't really want to do that here.
|
|
* Instead, we just fill in the page array with the kernel virtual
|
|
* addresses of the buffers.
|
|
*/
|
|
void
|
|
MmBuildMdlForNonPagedPool(m)
|
|
mdl *m;
|
|
{
|
|
vm_offset_t *mdl_pages;
|
|
int pagecnt, i;
|
|
|
|
pagecnt = SPAN_PAGES(m->mdl_byteoffset, m->mdl_bytecount);
|
|
|
|
if (pagecnt > (m->mdl_size - sizeof(mdl)) / sizeof(vm_offset_t *))
|
|
panic("not enough pages in MDL to describe buffer");
|
|
|
|
mdl_pages = MmGetMdlPfnArray(m);
|
|
|
|
for (i = 0; i < pagecnt; i++)
|
|
*mdl_pages = (vm_offset_t)m->mdl_startva + (i * PAGE_SIZE);
|
|
|
|
m->mdl_flags |= MDL_SOURCE_IS_NONPAGED_POOL;
|
|
m->mdl_mappedsystemva = MmGetMdlVirtualAddress(m);
|
|
}
|
|
|
|
static void *
|
|
MmMapLockedPages(mdl *buf, uint8_t accessmode)
|
|
{
|
|
buf->mdl_flags |= MDL_MAPPED_TO_SYSTEM_VA;
|
|
return (MmGetMdlVirtualAddress(buf));
|
|
}
|
|
|
|
static void *
|
|
MmMapLockedPagesSpecifyCache(mdl *buf, uint8_t accessmode, uint32_t cachetype,
|
|
void *vaddr, uint32_t bugcheck, uint32_t prio)
|
|
{
|
|
return (MmMapLockedPages(buf, accessmode));
|
|
}
|
|
|
|
static void
|
|
MmUnmapLockedPages(vaddr, buf)
|
|
void *vaddr;
|
|
mdl *buf;
|
|
{
|
|
buf->mdl_flags &= ~MDL_MAPPED_TO_SYSTEM_VA;
|
|
}
|
|
|
|
/*
|
|
* This function has a problem in that it will break if you
|
|
* compile this module without PAE and try to use it on a PAE
|
|
* kernel. Unfortunately, there's no way around this at the
|
|
* moment. It's slightly less broken that using pmap_kextract().
|
|
* You'd think the virtual memory subsystem would help us out
|
|
* here, but it doesn't.
|
|
*/
|
|
|
|
static uint64_t
|
|
MmGetPhysicalAddress(void *base)
|
|
{
|
|
return (pmap_extract(kernel_map->pmap, (vm_offset_t)base));
|
|
}
|
|
|
|
void *
|
|
MmGetSystemRoutineAddress(ustr)
|
|
unicode_string *ustr;
|
|
{
|
|
ansi_string astr;
|
|
|
|
if (RtlUnicodeStringToAnsiString(&astr, ustr, TRUE))
|
|
return (NULL);
|
|
return (ndis_get_routine_address(ntoskrnl_functbl, astr.as_buf));
|
|
}
|
|
|
|
uint8_t
|
|
MmIsAddressValid(vaddr)
|
|
void *vaddr;
|
|
{
|
|
if (pmap_extract(kernel_map->pmap, (vm_offset_t)vaddr))
|
|
return (TRUE);
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
void *
|
|
MmMapIoSpace(paddr, len, cachetype)
|
|
uint64_t paddr;
|
|
uint32_t len;
|
|
uint32_t cachetype;
|
|
{
|
|
devclass_t nexus_class;
|
|
device_t *nexus_devs, devp;
|
|
int nexus_count = 0;
|
|
device_t matching_dev = NULL;
|
|
struct resource *res;
|
|
int i;
|
|
vm_offset_t v;
|
|
|
|
/* There will always be at least one nexus. */
|
|
|
|
nexus_class = devclass_find("nexus");
|
|
devclass_get_devices(nexus_class, &nexus_devs, &nexus_count);
|
|
|
|
for (i = 0; i < nexus_count; i++) {
|
|
devp = nexus_devs[i];
|
|
matching_dev = ntoskrnl_finddev(devp, paddr, &res);
|
|
if (matching_dev)
|
|
break;
|
|
}
|
|
|
|
free(nexus_devs, M_TEMP);
|
|
|
|
if (matching_dev == NULL)
|
|
return (NULL);
|
|
|
|
v = (vm_offset_t)rman_get_virtual(res);
|
|
if (paddr > rman_get_start(res))
|
|
v += paddr - rman_get_start(res);
|
|
|
|
return ((void *)v);
|
|
}
|
|
|
|
void
|
|
MmUnmapIoSpace(vaddr, len)
|
|
void *vaddr;
|
|
size_t len;
|
|
{
|
|
}
|
|
|
|
|
|
static device_t
|
|
ntoskrnl_finddev(dev, paddr, res)
|
|
device_t dev;
|
|
uint64_t paddr;
|
|
struct resource **res;
|
|
{
|
|
device_t *children = NULL;
|
|
device_t matching_dev;
|
|
int childcnt;
|
|
struct resource *r;
|
|
struct resource_list *rl;
|
|
struct resource_list_entry *rle;
|
|
uint32_t flags;
|
|
int i;
|
|
|
|
/* We only want devices that have been successfully probed. */
|
|
|
|
if (device_is_alive(dev) == FALSE)
|
|
return (NULL);
|
|
|
|
rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
|
|
if (rl != NULL) {
|
|
STAILQ_FOREACH(rle, rl, link) {
|
|
r = rle->res;
|
|
|
|
if (r == NULL)
|
|
continue;
|
|
|
|
flags = rman_get_flags(r);
|
|
|
|
if (rle->type == SYS_RES_MEMORY &&
|
|
paddr >= rman_get_start(r) &&
|
|
paddr <= rman_get_end(r)) {
|
|
if (!(flags & RF_ACTIVE))
|
|
bus_activate_resource(dev,
|
|
SYS_RES_MEMORY, 0, r);
|
|
*res = r;
|
|
return (dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this device has children, do another
|
|
* level of recursion to inspect them.
|
|
*/
|
|
|
|
device_get_children(dev, &children, &childcnt);
|
|
|
|
for (i = 0; i < childcnt; i++) {
|
|
matching_dev = ntoskrnl_finddev(children[i], paddr, res);
|
|
if (matching_dev != NULL) {
|
|
free(children, M_TEMP);
|
|
return (matching_dev);
|
|
}
|
|
}
|
|
|
|
|
|
/* Won't somebody please think of the children! */
|
|
|
|
if (children != NULL)
|
|
free(children, M_TEMP);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Workitems are unlike DPCs, in that they run in a user-mode thread
|
|
* context rather than at DISPATCH_LEVEL in kernel context. In our
|
|
* case we run them in kernel context anyway.
|
|
*/
|
|
static void
|
|
ntoskrnl_workitem_thread(arg)
|
|
void *arg;
|
|
{
|
|
kdpc_queue *kq;
|
|
list_entry *l;
|
|
io_workitem *iw;
|
|
uint8_t irql;
|
|
|
|
kq = arg;
|
|
|
|
InitializeListHead(&kq->kq_disp);
|
|
kq->kq_td = curthread;
|
|
kq->kq_exit = 0;
|
|
KeInitializeSpinLock(&kq->kq_lock);
|
|
KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
|
|
|
|
while (1) {
|
|
KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
|
|
|
|
KeAcquireSpinLock(&kq->kq_lock, &irql);
|
|
|
|
if (kq->kq_exit) {
|
|
kq->kq_exit = 0;
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
break;
|
|
}
|
|
|
|
while (!IsListEmpty(&kq->kq_disp)) {
|
|
l = RemoveHeadList(&kq->kq_disp);
|
|
iw = CONTAINING_RECORD(l,
|
|
io_workitem, iw_listentry);
|
|
InitializeListHead((&iw->iw_listentry));
|
|
if (iw->iw_func == NULL)
|
|
continue;
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
MSCALL2(iw->iw_func, iw->iw_dobj, iw->iw_ctx);
|
|
KeAcquireSpinLock(&kq->kq_lock, &irql);
|
|
}
|
|
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
}
|
|
|
|
kproc_exit(0);
|
|
return; /* notreached */
|
|
}
|
|
|
|
static ndis_status
|
|
RtlCharToInteger(src, base, val)
|
|
const char *src;
|
|
uint32_t base;
|
|
uint32_t *val;
|
|
{
|
|
int negative = 0;
|
|
uint32_t res;
|
|
|
|
if (!src || !val)
|
|
return (STATUS_ACCESS_VIOLATION);
|
|
while (*src != '\0' && *src <= ' ')
|
|
src++;
|
|
if (*src == '+')
|
|
src++;
|
|
else if (*src == '-') {
|
|
src++;
|
|
negative = 1;
|
|
}
|
|
if (base == 0) {
|
|
base = 10;
|
|
if (*src == '0') {
|
|
src++;
|
|
if (*src == 'b') {
|
|
base = 2;
|
|
src++;
|
|
} else if (*src == 'o') {
|
|
base = 8;
|
|
src++;
|
|
} else if (*src == 'x') {
|
|
base = 16;
|
|
src++;
|
|
}
|
|
}
|
|
} else if (!(base == 2 || base == 8 || base == 10 || base == 16))
|
|
return (STATUS_INVALID_PARAMETER);
|
|
|
|
for (res = 0; *src; src++) {
|
|
int v;
|
|
if (isdigit(*src))
|
|
v = *src - '0';
|
|
else if (isxdigit(*src))
|
|
v = tolower(*src) - 'a' + 10;
|
|
else
|
|
v = base;
|
|
if (v >= base)
|
|
return (STATUS_INVALID_PARAMETER);
|
|
res = res * base + v;
|
|
}
|
|
*val = negative ? -res : res;
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_destroy_workitem_threads(void)
|
|
{
|
|
kdpc_queue *kq;
|
|
int i;
|
|
|
|
for (i = 0; i < WORKITEM_THREADS; i++) {
|
|
kq = wq_queues + i;
|
|
kq->kq_exit = 1;
|
|
KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
|
|
while (kq->kq_exit)
|
|
tsleep(kq->kq_td->td_proc, PWAIT, "waitiw", hz/10);
|
|
}
|
|
}
|
|
|
|
io_workitem *
|
|
IoAllocateWorkItem(dobj)
|
|
device_object *dobj;
|
|
{
|
|
io_workitem *iw;
|
|
|
|
iw = uma_zalloc(iw_zone, M_NOWAIT);
|
|
if (iw == NULL)
|
|
return (NULL);
|
|
|
|
InitializeListHead(&iw->iw_listentry);
|
|
iw->iw_dobj = dobj;
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
iw->iw_idx = wq_idx;
|
|
WORKIDX_INC(wq_idx);
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (iw);
|
|
}
|
|
|
|
void
|
|
IoFreeWorkItem(iw)
|
|
io_workitem *iw;
|
|
{
|
|
uma_zfree(iw_zone, iw);
|
|
}
|
|
|
|
void
|
|
IoQueueWorkItem(iw, iw_func, qtype, ctx)
|
|
io_workitem *iw;
|
|
io_workitem_func iw_func;
|
|
uint32_t qtype;
|
|
void *ctx;
|
|
{
|
|
kdpc_queue *kq;
|
|
list_entry *l;
|
|
io_workitem *cur;
|
|
uint8_t irql;
|
|
|
|
kq = wq_queues + iw->iw_idx;
|
|
|
|
KeAcquireSpinLock(&kq->kq_lock, &irql);
|
|
|
|
/*
|
|
* Traverse the list and make sure this workitem hasn't
|
|
* already been inserted. Queuing the same workitem
|
|
* twice will hose the list but good.
|
|
*/
|
|
|
|
l = kq->kq_disp.nle_flink;
|
|
while (l != &kq->kq_disp) {
|
|
cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
|
|
if (cur == iw) {
|
|
/* Already queued -- do nothing. */
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
return;
|
|
}
|
|
l = l->nle_flink;
|
|
}
|
|
|
|
iw->iw_func = iw_func;
|
|
iw->iw_ctx = ctx;
|
|
|
|
InsertTailList((&kq->kq_disp), (&iw->iw_listentry));
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
|
|
KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_workitem(dobj, arg)
|
|
device_object *dobj;
|
|
void *arg;
|
|
{
|
|
io_workitem *iw;
|
|
work_queue_item *w;
|
|
work_item_func f;
|
|
|
|
iw = arg;
|
|
w = (work_queue_item *)dobj;
|
|
f = (work_item_func)w->wqi_func;
|
|
uma_zfree(iw_zone, iw);
|
|
MSCALL2(f, w, w->wqi_ctx);
|
|
}
|
|
|
|
/*
|
|
* The ExQueueWorkItem() API is deprecated in Windows XP. Microsoft
|
|
* warns that it's unsafe and to use IoQueueWorkItem() instead. The
|
|
* problem with ExQueueWorkItem() is that it can't guard against
|
|
* the condition where a driver submits a job to the work queue and
|
|
* is then unloaded before the job is able to run. IoQueueWorkItem()
|
|
* acquires a reference to the device's device_object via the
|
|
* object manager and retains it until after the job has completed,
|
|
* which prevents the driver from being unloaded before the job
|
|
* runs. (We don't currently support this behavior, though hopefully
|
|
* that will change once the object manager API is fleshed out a bit.)
|
|
*
|
|
* Having said all that, the ExQueueWorkItem() API remains, because
|
|
* there are still other parts of Windows that use it, including
|
|
* NDIS itself: NdisScheduleWorkItem() calls ExQueueWorkItem().
|
|
* We fake up the ExQueueWorkItem() API on top of our implementation
|
|
* of IoQueueWorkItem(). Workitem thread #3 is reserved exclusively
|
|
* for ExQueueWorkItem() jobs, and we pass a pointer to the work
|
|
* queue item (provided by the caller) in to IoAllocateWorkItem()
|
|
* instead of the device_object. We need to save this pointer so
|
|
* we can apply a sanity check: as with the DPC queue and other
|
|
* workitem queues, we can't allow the same work queue item to
|
|
* be queued twice. If it's already pending, we silently return
|
|
*/
|
|
|
|
void
|
|
ExQueueWorkItem(w, qtype)
|
|
work_queue_item *w;
|
|
uint32_t qtype;
|
|
{
|
|
io_workitem *iw;
|
|
io_workitem_func iwf;
|
|
kdpc_queue *kq;
|
|
list_entry *l;
|
|
io_workitem *cur;
|
|
uint8_t irql;
|
|
|
|
|
|
/*
|
|
* We need to do a special sanity test to make sure
|
|
* the ExQueueWorkItem() API isn't used to queue
|
|
* the same workitem twice. Rather than checking the
|
|
* io_workitem pointer itself, we test the attached
|
|
* device object, which is really a pointer to the
|
|
* legacy work queue item structure.
|
|
*/
|
|
|
|
kq = wq_queues + WORKITEM_LEGACY_THREAD;
|
|
KeAcquireSpinLock(&kq->kq_lock, &irql);
|
|
l = kq->kq_disp.nle_flink;
|
|
while (l != &kq->kq_disp) {
|
|
cur = CONTAINING_RECORD(l, io_workitem, iw_listentry);
|
|
if (cur->iw_dobj == (device_object *)w) {
|
|
/* Already queued -- do nothing. */
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
return;
|
|
}
|
|
l = l->nle_flink;
|
|
}
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
|
|
iw = IoAllocateWorkItem((device_object *)w);
|
|
if (iw == NULL)
|
|
return;
|
|
|
|
iw->iw_idx = WORKITEM_LEGACY_THREAD;
|
|
iwf = (io_workitem_func)ntoskrnl_findwrap((funcptr)ntoskrnl_workitem);
|
|
IoQueueWorkItem(iw, iwf, qtype, iw);
|
|
}
|
|
|
|
static void
|
|
RtlZeroMemory(dst, len)
|
|
void *dst;
|
|
size_t len;
|
|
{
|
|
bzero(dst, len);
|
|
}
|
|
|
|
static void
|
|
RtlSecureZeroMemory(dst, len)
|
|
void *dst;
|
|
size_t len;
|
|
{
|
|
memset(dst, 0, len);
|
|
}
|
|
|
|
static void
|
|
RtlFillMemory(void *dst, size_t len, uint8_t c)
|
|
{
|
|
memset(dst, c, len);
|
|
}
|
|
|
|
static void
|
|
RtlMoveMemory(dst, src, len)
|
|
void *dst;
|
|
const void *src;
|
|
size_t len;
|
|
{
|
|
memmove(dst, src, len);
|
|
}
|
|
|
|
static void
|
|
RtlCopyMemory(dst, src, len)
|
|
void *dst;
|
|
const void *src;
|
|
size_t len;
|
|
{
|
|
bcopy(src, dst, len);
|
|
}
|
|
|
|
static size_t
|
|
RtlCompareMemory(s1, s2, len)
|
|
const void *s1;
|
|
const void *s2;
|
|
size_t len;
|
|
{
|
|
size_t i;
|
|
uint8_t *m1, *m2;
|
|
|
|
m1 = __DECONST(char *, s1);
|
|
m2 = __DECONST(char *, s2);
|
|
|
|
for (i = 0; i < len && m1[i] == m2[i]; i++);
|
|
return (i);
|
|
}
|
|
|
|
void
|
|
RtlInitAnsiString(dst, src)
|
|
ansi_string *dst;
|
|
char *src;
|
|
{
|
|
ansi_string *a;
|
|
|
|
a = dst;
|
|
if (a == NULL)
|
|
return;
|
|
if (src == NULL) {
|
|
a->as_len = a->as_maxlen = 0;
|
|
a->as_buf = NULL;
|
|
} else {
|
|
a->as_buf = src;
|
|
a->as_len = a->as_maxlen = strlen(src);
|
|
}
|
|
}
|
|
|
|
void
|
|
RtlInitUnicodeString(dst, src)
|
|
unicode_string *dst;
|
|
uint16_t *src;
|
|
{
|
|
unicode_string *u;
|
|
int i;
|
|
|
|
u = dst;
|
|
if (u == NULL)
|
|
return;
|
|
if (src == NULL) {
|
|
u->us_len = u->us_maxlen = 0;
|
|
u->us_buf = NULL;
|
|
} else {
|
|
i = 0;
|
|
while(src[i] != 0)
|
|
i++;
|
|
u->us_buf = src;
|
|
u->us_len = u->us_maxlen = i * 2;
|
|
}
|
|
}
|
|
|
|
ndis_status
|
|
RtlUnicodeStringToInteger(ustr, base, val)
|
|
unicode_string *ustr;
|
|
uint32_t base;
|
|
uint32_t *val;
|
|
{
|
|
uint16_t *uchr;
|
|
int len, neg = 0;
|
|
char abuf[64];
|
|
char *astr;
|
|
|
|
uchr = ustr->us_buf;
|
|
len = ustr->us_len;
|
|
bzero(abuf, sizeof(abuf));
|
|
|
|
if ((char)((*uchr) & 0xFF) == '-') {
|
|
neg = 1;
|
|
uchr++;
|
|
len -= 2;
|
|
} else if ((char)((*uchr) & 0xFF) == '+') {
|
|
neg = 0;
|
|
uchr++;
|
|
len -= 2;
|
|
}
|
|
|
|
if (base == 0) {
|
|
if ((char)((*uchr) & 0xFF) == 'b') {
|
|
base = 2;
|
|
uchr++;
|
|
len -= 2;
|
|
} else if ((char)((*uchr) & 0xFF) == 'o') {
|
|
base = 8;
|
|
uchr++;
|
|
len -= 2;
|
|
} else if ((char)((*uchr) & 0xFF) == 'x') {
|
|
base = 16;
|
|
uchr++;
|
|
len -= 2;
|
|
} else
|
|
base = 10;
|
|
}
|
|
|
|
astr = abuf;
|
|
if (neg) {
|
|
strcpy(astr, "-");
|
|
astr++;
|
|
}
|
|
|
|
ntoskrnl_unicode_to_ascii(uchr, astr, len);
|
|
*val = strtoul(abuf, NULL, base);
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
void
|
|
RtlFreeUnicodeString(ustr)
|
|
unicode_string *ustr;
|
|
{
|
|
if (ustr->us_buf == NULL)
|
|
return;
|
|
ExFreePool(ustr->us_buf);
|
|
ustr->us_buf = NULL;
|
|
}
|
|
|
|
void
|
|
RtlFreeAnsiString(astr)
|
|
ansi_string *astr;
|
|
{
|
|
if (astr->as_buf == NULL)
|
|
return;
|
|
ExFreePool(astr->as_buf);
|
|
astr->as_buf = NULL;
|
|
}
|
|
|
|
static int
|
|
atoi(str)
|
|
const char *str;
|
|
{
|
|
return (int)strtol(str, (char **)NULL, 10);
|
|
}
|
|
|
|
static long
|
|
atol(str)
|
|
const char *str;
|
|
{
|
|
return strtol(str, (char **)NULL, 10);
|
|
}
|
|
|
|
static int
|
|
rand(void)
|
|
{
|
|
|
|
return (random());
|
|
}
|
|
|
|
static void
|
|
srand(unsigned int seed)
|
|
{
|
|
|
|
srandom(seed);
|
|
}
|
|
|
|
static uint8_t
|
|
IoIsWdmVersionAvailable(uint8_t major, uint8_t minor)
|
|
{
|
|
if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP)
|
|
return (TRUE);
|
|
return (FALSE);
|
|
}
|
|
|
|
static int32_t
|
|
IoOpenDeviceRegistryKey(struct device_object *devobj, uint32_t type,
|
|
uint32_t mask, void **key)
|
|
{
|
|
return (NDIS_STATUS_INVALID_DEVICE_REQUEST);
|
|
}
|
|
|
|
static ndis_status
|
|
IoGetDeviceObjectPointer(name, reqaccess, fileobj, devobj)
|
|
unicode_string *name;
|
|
uint32_t reqaccess;
|
|
void *fileobj;
|
|
device_object *devobj;
|
|
{
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
static ndis_status
|
|
IoGetDeviceProperty(devobj, regprop, buflen, prop, reslen)
|
|
device_object *devobj;
|
|
uint32_t regprop;
|
|
uint32_t buflen;
|
|
void *prop;
|
|
uint32_t *reslen;
|
|
{
|
|
driver_object *drv;
|
|
uint16_t **name;
|
|
|
|
drv = devobj->do_drvobj;
|
|
|
|
switch (regprop) {
|
|
case DEVPROP_DRIVER_KEYNAME:
|
|
name = prop;
|
|
*name = drv->dro_drivername.us_buf;
|
|
*reslen = drv->dro_drivername.us_len;
|
|
break;
|
|
default:
|
|
return (STATUS_INVALID_PARAMETER_2);
|
|
break;
|
|
}
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
static void
|
|
KeInitializeMutex(kmutex, level)
|
|
kmutant *kmutex;
|
|
uint32_t level;
|
|
{
|
|
InitializeListHead((&kmutex->km_header.dh_waitlisthead));
|
|
kmutex->km_abandoned = FALSE;
|
|
kmutex->km_apcdisable = 1;
|
|
kmutex->km_header.dh_sigstate = 1;
|
|
kmutex->km_header.dh_type = DISP_TYPE_MUTANT;
|
|
kmutex->km_header.dh_size = sizeof(kmutant) / sizeof(uint32_t);
|
|
kmutex->km_ownerthread = NULL;
|
|
}
|
|
|
|
static uint32_t
|
|
KeReleaseMutex(kmutant *kmutex, uint8_t kwait)
|
|
{
|
|
uint32_t prevstate;
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
prevstate = kmutex->km_header.dh_sigstate;
|
|
if (kmutex->km_ownerthread != curthread) {
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
return (STATUS_MUTANT_NOT_OWNED);
|
|
}
|
|
|
|
kmutex->km_header.dh_sigstate++;
|
|
kmutex->km_abandoned = FALSE;
|
|
|
|
if (kmutex->km_header.dh_sigstate == 1) {
|
|
kmutex->km_ownerthread = NULL;
|
|
ntoskrnl_waittest(&kmutex->km_header, IO_NO_INCREMENT);
|
|
}
|
|
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (prevstate);
|
|
}
|
|
|
|
static uint32_t
|
|
KeReadStateMutex(kmutex)
|
|
kmutant *kmutex;
|
|
{
|
|
return (kmutex->km_header.dh_sigstate);
|
|
}
|
|
|
|
void
|
|
KeInitializeEvent(nt_kevent *kevent, uint32_t type, uint8_t state)
|
|
{
|
|
InitializeListHead((&kevent->k_header.dh_waitlisthead));
|
|
kevent->k_header.dh_sigstate = state;
|
|
if (type == EVENT_TYPE_NOTIFY)
|
|
kevent->k_header.dh_type = DISP_TYPE_NOTIFICATION_EVENT;
|
|
else
|
|
kevent->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_EVENT;
|
|
kevent->k_header.dh_size = sizeof(nt_kevent) / sizeof(uint32_t);
|
|
}
|
|
|
|
uint32_t
|
|
KeResetEvent(kevent)
|
|
nt_kevent *kevent;
|
|
{
|
|
uint32_t prevstate;
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
prevstate = kevent->k_header.dh_sigstate;
|
|
kevent->k_header.dh_sigstate = FALSE;
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (prevstate);
|
|
}
|
|
|
|
uint32_t
|
|
KeSetEvent(nt_kevent *kevent, uint32_t increment, uint8_t kwait)
|
|
{
|
|
uint32_t prevstate;
|
|
wait_block *w;
|
|
nt_dispatch_header *dh;
|
|
struct thread *td;
|
|
wb_ext *we;
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
prevstate = kevent->k_header.dh_sigstate;
|
|
dh = &kevent->k_header;
|
|
|
|
if (IsListEmpty(&dh->dh_waitlisthead))
|
|
/*
|
|
* If there's nobody in the waitlist, just set
|
|
* the state to signalled.
|
|
*/
|
|
dh->dh_sigstate = 1;
|
|
else {
|
|
/*
|
|
* Get the first waiter. If this is a synchronization
|
|
* event, just wake up that one thread (don't bother
|
|
* setting the state to signalled since we're supposed
|
|
* to automatically clear synchronization events anyway).
|
|
*
|
|
* If it's a notification event, or the first
|
|
* waiter is doing a WAITTYPE_ALL wait, go through
|
|
* the full wait satisfaction process.
|
|
*/
|
|
w = CONTAINING_RECORD(dh->dh_waitlisthead.nle_flink,
|
|
wait_block, wb_waitlist);
|
|
we = w->wb_ext;
|
|
td = we->we_td;
|
|
if (kevent->k_header.dh_type == DISP_TYPE_NOTIFICATION_EVENT ||
|
|
w->wb_waittype == WAITTYPE_ALL) {
|
|
if (prevstate == 0) {
|
|
dh->dh_sigstate = 1;
|
|
ntoskrnl_waittest(dh, increment);
|
|
}
|
|
} else {
|
|
w->wb_awakened |= TRUE;
|
|
cv_broadcastpri(&we->we_cv,
|
|
(w->wb_oldpri - (increment * 4)) > PRI_MIN_KERN ?
|
|
w->wb_oldpri - (increment * 4) : PRI_MIN_KERN);
|
|
}
|
|
}
|
|
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (prevstate);
|
|
}
|
|
|
|
void
|
|
KeClearEvent(kevent)
|
|
nt_kevent *kevent;
|
|
{
|
|
kevent->k_header.dh_sigstate = FALSE;
|
|
}
|
|
|
|
uint32_t
|
|
KeReadStateEvent(kevent)
|
|
nt_kevent *kevent;
|
|
{
|
|
return (kevent->k_header.dh_sigstate);
|
|
}
|
|
|
|
/*
|
|
* The object manager in Windows is responsible for managing
|
|
* references and access to various types of objects, including
|
|
* device_objects, events, threads, timers and so on. However,
|
|
* there's a difference in the way objects are handled in user
|
|
* mode versus kernel mode.
|
|
*
|
|
* In user mode (i.e. Win32 applications), all objects are
|
|
* managed by the object manager. For example, when you create
|
|
* a timer or event object, you actually end up with an
|
|
* object_header (for the object manager's bookkeeping
|
|
* purposes) and an object body (which contains the actual object
|
|
* structure, e.g. ktimer, kevent, etc...). This allows Windows
|
|
* to manage resource quotas and to enforce access restrictions
|
|
* on basically every kind of system object handled by the kernel.
|
|
*
|
|
* However, in kernel mode, you only end up using the object
|
|
* manager some of the time. For example, in a driver, you create
|
|
* a timer object by simply allocating the memory for a ktimer
|
|
* structure and initializing it with KeInitializeTimer(). Hence,
|
|
* the timer has no object_header and no reference counting or
|
|
* security/resource checks are done on it. The assumption in
|
|
* this case is that if you're running in kernel mode, you know
|
|
* what you're doing, and you're already at an elevated privilege
|
|
* anyway.
|
|
*
|
|
* There are some exceptions to this. The two most important ones
|
|
* for our purposes are device_objects and threads. We need to use
|
|
* the object manager to do reference counting on device_objects,
|
|
* and for threads, you can only get a pointer to a thread's
|
|
* dispatch header by using ObReferenceObjectByHandle() on the
|
|
* handle returned by PsCreateSystemThread().
|
|
*/
|
|
|
|
static ndis_status
|
|
ObReferenceObjectByHandle(ndis_handle handle, uint32_t reqaccess, void *otype,
|
|
uint8_t accessmode, void **object, void **handleinfo)
|
|
{
|
|
nt_objref *nr;
|
|
|
|
nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO);
|
|
if (nr == NULL)
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
|
|
InitializeListHead((&nr->no_dh.dh_waitlisthead));
|
|
nr->no_obj = handle;
|
|
nr->no_dh.dh_type = DISP_TYPE_THREAD;
|
|
nr->no_dh.dh_sigstate = 0;
|
|
nr->no_dh.dh_size = (uint8_t)(sizeof(struct thread) /
|
|
sizeof(uint32_t));
|
|
TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link);
|
|
*object = nr;
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
static void
|
|
ObfDereferenceObject(object)
|
|
void *object;
|
|
{
|
|
nt_objref *nr;
|
|
|
|
nr = object;
|
|
TAILQ_REMOVE(&ntoskrnl_reflist, nr, link);
|
|
free(nr, M_DEVBUF);
|
|
}
|
|
|
|
static uint32_t
|
|
ZwClose(handle)
|
|
ndis_handle handle;
|
|
{
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
static uint32_t
|
|
WmiQueryTraceInformation(traceclass, traceinfo, infolen, reqlen, buf)
|
|
uint32_t traceclass;
|
|
void *traceinfo;
|
|
uint32_t infolen;
|
|
uint32_t reqlen;
|
|
void *buf;
|
|
{
|
|
return (STATUS_NOT_FOUND);
|
|
}
|
|
|
|
static uint32_t
|
|
WmiTraceMessage(uint64_t loghandle, uint32_t messageflags,
|
|
void *guid, uint16_t messagenum, ...)
|
|
{
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
static uint32_t
|
|
IoWMIRegistrationControl(dobj, action)
|
|
device_object *dobj;
|
|
uint32_t action;
|
|
{
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* This is here just in case the thread returns without calling
|
|
* PsTerminateSystemThread().
|
|
*/
|
|
static void
|
|
ntoskrnl_thrfunc(arg)
|
|
void *arg;
|
|
{
|
|
thread_context *thrctx;
|
|
uint32_t (*tfunc)(void *);
|
|
void *tctx;
|
|
uint32_t rval;
|
|
|
|
thrctx = arg;
|
|
tfunc = thrctx->tc_thrfunc;
|
|
tctx = thrctx->tc_thrctx;
|
|
free(thrctx, M_TEMP);
|
|
|
|
rval = MSCALL1(tfunc, tctx);
|
|
|
|
PsTerminateSystemThread(rval);
|
|
return; /* notreached */
|
|
}
|
|
|
|
static ndis_status
|
|
PsCreateSystemThread(handle, reqaccess, objattrs, phandle,
|
|
clientid, thrfunc, thrctx)
|
|
ndis_handle *handle;
|
|
uint32_t reqaccess;
|
|
void *objattrs;
|
|
ndis_handle phandle;
|
|
void *clientid;
|
|
void *thrfunc;
|
|
void *thrctx;
|
|
{
|
|
int error;
|
|
thread_context *tc;
|
|
struct proc *p;
|
|
|
|
tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT);
|
|
if (tc == NULL)
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
|
|
tc->tc_thrctx = thrctx;
|
|
tc->tc_thrfunc = thrfunc;
|
|
|
|
error = kproc_create(ntoskrnl_thrfunc, tc, &p,
|
|
RFHIGHPID, NDIS_KSTACK_PAGES, "Windows Kthread %d", ntoskrnl_kth);
|
|
|
|
if (error) {
|
|
free(tc, M_TEMP);
|
|
return (STATUS_INSUFFICIENT_RESOURCES);
|
|
}
|
|
|
|
*handle = p;
|
|
ntoskrnl_kth++;
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* In Windows, the exit of a thread is an event that you're allowed
|
|
* to wait on, assuming you've obtained a reference to the thread using
|
|
* ObReferenceObjectByHandle(). Unfortunately, the only way we can
|
|
* simulate this behavior is to register each thread we create in a
|
|
* reference list, and if someone holds a reference to us, we poke
|
|
* them.
|
|
*/
|
|
static ndis_status
|
|
PsTerminateSystemThread(status)
|
|
ndis_status status;
|
|
{
|
|
struct nt_objref *nr;
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) {
|
|
if (nr->no_obj != curthread->td_proc)
|
|
continue;
|
|
nr->no_dh.dh_sigstate = 1;
|
|
ntoskrnl_waittest(&nr->no_dh, IO_NO_INCREMENT);
|
|
break;
|
|
}
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
ntoskrnl_kth--;
|
|
|
|
kproc_exit(0);
|
|
return (0); /* notreached */
|
|
}
|
|
|
|
static uint32_t
|
|
DbgPrint(char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
if (bootverbose) {
|
|
va_start(ap, fmt);
|
|
vprintf(fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
return (STATUS_SUCCESS);
|
|
}
|
|
|
|
static void
|
|
DbgBreakPoint(void)
|
|
{
|
|
|
|
kdb_enter(KDB_WHY_NDIS, "DbgBreakPoint(): breakpoint");
|
|
}
|
|
|
|
static void
|
|
KeBugCheckEx(code, param1, param2, param3, param4)
|
|
uint32_t code;
|
|
u_long param1;
|
|
u_long param2;
|
|
u_long param3;
|
|
u_long param4;
|
|
{
|
|
panic("KeBugCheckEx: STOP 0x%X", code);
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_timercall(arg)
|
|
void *arg;
|
|
{
|
|
ktimer *timer;
|
|
struct timeval tv;
|
|
kdpc *dpc;
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
|
|
timer = arg;
|
|
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
ntoskrnl_timer_fires++;
|
|
#endif
|
|
ntoskrnl_remove_timer(timer);
|
|
|
|
/*
|
|
* This should never happen, but complain
|
|
* if it does.
|
|
*/
|
|
|
|
if (timer->k_header.dh_inserted == FALSE) {
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
printf("NTOS: timer %p fired even though "
|
|
"it was canceled\n", timer);
|
|
return;
|
|
}
|
|
|
|
/* Mark the timer as no longer being on the timer queue. */
|
|
|
|
timer->k_header.dh_inserted = FALSE;
|
|
|
|
/* Now signal the object and satisfy any waits on it. */
|
|
|
|
timer->k_header.dh_sigstate = 1;
|
|
ntoskrnl_waittest(&timer->k_header, IO_NO_INCREMENT);
|
|
|
|
/*
|
|
* If this is a periodic timer, re-arm it
|
|
* so it will fire again. We do this before
|
|
* calling any deferred procedure calls because
|
|
* it's possible the DPC might cancel the timer,
|
|
* in which case it would be wrong for us to
|
|
* re-arm it again afterwards.
|
|
*/
|
|
|
|
if (timer->k_period) {
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = timer->k_period * 1000;
|
|
timer->k_header.dh_inserted = TRUE;
|
|
ntoskrnl_insert_timer(timer, tvtohz(&tv));
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
ntoskrnl_timer_reloads++;
|
|
#endif
|
|
}
|
|
|
|
dpc = timer->k_dpc;
|
|
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
/* If there's a DPC associated with the timer, queue it up. */
|
|
|
|
if (dpc != NULL)
|
|
KeInsertQueueDpc(dpc, NULL, NULL);
|
|
}
|
|
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
static int
|
|
sysctl_show_timers(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int ret;
|
|
|
|
ret = 0;
|
|
ntoskrnl_show_timers();
|
|
return (sysctl_handle_int(oidp, &ret, 0, req));
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_show_timers()
|
|
{
|
|
int i = 0;
|
|
list_entry *l;
|
|
|
|
mtx_lock_spin(&ntoskrnl_calllock);
|
|
l = ntoskrnl_calllist.nle_flink;
|
|
while(l != &ntoskrnl_calllist) {
|
|
i++;
|
|
l = l->nle_flink;
|
|
}
|
|
mtx_unlock_spin(&ntoskrnl_calllock);
|
|
|
|
printf("\n");
|
|
printf("%d timers available (out of %d)\n", i, NTOSKRNL_TIMEOUTS);
|
|
printf("timer sets: %qu\n", ntoskrnl_timer_sets);
|
|
printf("timer reloads: %qu\n", ntoskrnl_timer_reloads);
|
|
printf("timer cancels: %qu\n", ntoskrnl_timer_cancels);
|
|
printf("timer fires: %qu\n", ntoskrnl_timer_fires);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Must be called with dispatcher lock held.
|
|
*/
|
|
|
|
static void
|
|
ntoskrnl_insert_timer(timer, ticks)
|
|
ktimer *timer;
|
|
int ticks;
|
|
{
|
|
callout_entry *e;
|
|
list_entry *l;
|
|
struct callout *c;
|
|
|
|
/*
|
|
* Try and allocate a timer.
|
|
*/
|
|
mtx_lock_spin(&ntoskrnl_calllock);
|
|
if (IsListEmpty(&ntoskrnl_calllist)) {
|
|
mtx_unlock_spin(&ntoskrnl_calllock);
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
ntoskrnl_show_timers();
|
|
#endif
|
|
panic("out of timers!");
|
|
}
|
|
l = RemoveHeadList(&ntoskrnl_calllist);
|
|
mtx_unlock_spin(&ntoskrnl_calllock);
|
|
|
|
e = CONTAINING_RECORD(l, callout_entry, ce_list);
|
|
c = &e->ce_callout;
|
|
|
|
timer->k_callout = c;
|
|
|
|
callout_init(c, 1);
|
|
callout_reset(c, ticks, ntoskrnl_timercall, timer);
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_remove_timer(timer)
|
|
ktimer *timer;
|
|
{
|
|
callout_entry *e;
|
|
|
|
e = (callout_entry *)timer->k_callout;
|
|
callout_stop(timer->k_callout);
|
|
|
|
mtx_lock_spin(&ntoskrnl_calllock);
|
|
InsertHeadList((&ntoskrnl_calllist), (&e->ce_list));
|
|
mtx_unlock_spin(&ntoskrnl_calllock);
|
|
}
|
|
|
|
void
|
|
KeInitializeTimer(timer)
|
|
ktimer *timer;
|
|
{
|
|
if (timer == NULL)
|
|
return;
|
|
|
|
KeInitializeTimerEx(timer, EVENT_TYPE_NOTIFY);
|
|
}
|
|
|
|
void
|
|
KeInitializeTimerEx(timer, type)
|
|
ktimer *timer;
|
|
uint32_t type;
|
|
{
|
|
if (timer == NULL)
|
|
return;
|
|
|
|
bzero((char *)timer, sizeof(ktimer));
|
|
InitializeListHead((&timer->k_header.dh_waitlisthead));
|
|
timer->k_header.dh_sigstate = FALSE;
|
|
timer->k_header.dh_inserted = FALSE;
|
|
if (type == EVENT_TYPE_NOTIFY)
|
|
timer->k_header.dh_type = DISP_TYPE_NOTIFICATION_TIMER;
|
|
else
|
|
timer->k_header.dh_type = DISP_TYPE_SYNCHRONIZATION_TIMER;
|
|
timer->k_header.dh_size = sizeof(ktimer) / sizeof(uint32_t);
|
|
}
|
|
|
|
/*
|
|
* DPC subsystem. A Windows Defered Procedure Call has the following
|
|
* properties:
|
|
* - It runs at DISPATCH_LEVEL.
|
|
* - It can have one of 3 importance values that control when it
|
|
* runs relative to other DPCs in the queue.
|
|
* - On SMP systems, it can be set to run on a specific processor.
|
|
* In order to satisfy the last property, we create a DPC thread for
|
|
* each CPU in the system and bind it to that CPU. Each thread
|
|
* maintains three queues with different importance levels, which
|
|
* will be processed in order from lowest to highest.
|
|
*
|
|
* In Windows, interrupt handlers run as DPCs. (Not to be confused
|
|
* with ISRs, which run in interrupt context and can preempt DPCs.)
|
|
* ISRs are given the highest importance so that they'll take
|
|
* precedence over timers and other things.
|
|
*/
|
|
|
|
static void
|
|
ntoskrnl_dpc_thread(arg)
|
|
void *arg;
|
|
{
|
|
kdpc_queue *kq;
|
|
kdpc *d;
|
|
list_entry *l;
|
|
uint8_t irql;
|
|
|
|
kq = arg;
|
|
|
|
InitializeListHead(&kq->kq_disp);
|
|
kq->kq_td = curthread;
|
|
kq->kq_exit = 0;
|
|
kq->kq_running = FALSE;
|
|
KeInitializeSpinLock(&kq->kq_lock);
|
|
KeInitializeEvent(&kq->kq_proc, EVENT_TYPE_SYNC, FALSE);
|
|
KeInitializeEvent(&kq->kq_done, EVENT_TYPE_SYNC, FALSE);
|
|
|
|
/*
|
|
* Elevate our priority. DPCs are used to run interrupt
|
|
* handlers, and they should trigger as soon as possible
|
|
* once scheduled by an ISR.
|
|
*/
|
|
|
|
thread_lock(curthread);
|
|
#ifdef NTOSKRNL_MULTIPLE_DPCS
|
|
sched_bind(curthread, kq->kq_cpu);
|
|
#endif
|
|
sched_prio(curthread, PRI_MIN_KERN);
|
|
thread_unlock(curthread);
|
|
|
|
while (1) {
|
|
KeWaitForSingleObject(&kq->kq_proc, 0, 0, TRUE, NULL);
|
|
|
|
KeAcquireSpinLock(&kq->kq_lock, &irql);
|
|
|
|
if (kq->kq_exit) {
|
|
kq->kq_exit = 0;
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
break;
|
|
}
|
|
|
|
kq->kq_running = TRUE;
|
|
|
|
while (!IsListEmpty(&kq->kq_disp)) {
|
|
l = RemoveHeadList((&kq->kq_disp));
|
|
d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
|
|
InitializeListHead((&d->k_dpclistentry));
|
|
KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
|
|
MSCALL4(d->k_deferedfunc, d, d->k_deferredctx,
|
|
d->k_sysarg1, d->k_sysarg2);
|
|
KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
|
|
}
|
|
|
|
kq->kq_running = FALSE;
|
|
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
|
|
KeSetEvent(&kq->kq_done, IO_NO_INCREMENT, FALSE);
|
|
}
|
|
|
|
kproc_exit(0);
|
|
return; /* notreached */
|
|
}
|
|
|
|
static void
|
|
ntoskrnl_destroy_dpc_threads(void)
|
|
{
|
|
kdpc_queue *kq;
|
|
kdpc dpc;
|
|
int i;
|
|
|
|
kq = kq_queues;
|
|
#ifdef NTOSKRNL_MULTIPLE_DPCS
|
|
for (i = 0; i < mp_ncpus; i++) {
|
|
#else
|
|
for (i = 0; i < 1; i++) {
|
|
#endif
|
|
kq += i;
|
|
|
|
kq->kq_exit = 1;
|
|
KeInitializeDpc(&dpc, NULL, NULL);
|
|
KeSetTargetProcessorDpc(&dpc, i);
|
|
KeInsertQueueDpc(&dpc, NULL, NULL);
|
|
while (kq->kq_exit)
|
|
tsleep(kq->kq_td->td_proc, PWAIT, "dpcw", hz/10);
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
ntoskrnl_insert_dpc(head, dpc)
|
|
list_entry *head;
|
|
kdpc *dpc;
|
|
{
|
|
list_entry *l;
|
|
kdpc *d;
|
|
|
|
l = head->nle_flink;
|
|
while (l != head) {
|
|
d = CONTAINING_RECORD(l, kdpc, k_dpclistentry);
|
|
if (d == dpc)
|
|
return (FALSE);
|
|
l = l->nle_flink;
|
|
}
|
|
|
|
if (dpc->k_importance == KDPC_IMPORTANCE_LOW)
|
|
InsertTailList((head), (&dpc->k_dpclistentry));
|
|
else
|
|
InsertHeadList((head), (&dpc->k_dpclistentry));
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
void
|
|
KeInitializeDpc(dpc, dpcfunc, dpcctx)
|
|
kdpc *dpc;
|
|
void *dpcfunc;
|
|
void *dpcctx;
|
|
{
|
|
|
|
if (dpc == NULL)
|
|
return;
|
|
|
|
dpc->k_deferedfunc = dpcfunc;
|
|
dpc->k_deferredctx = dpcctx;
|
|
dpc->k_num = KDPC_CPU_DEFAULT;
|
|
dpc->k_importance = KDPC_IMPORTANCE_MEDIUM;
|
|
InitializeListHead((&dpc->k_dpclistentry));
|
|
}
|
|
|
|
uint8_t
|
|
KeInsertQueueDpc(dpc, sysarg1, sysarg2)
|
|
kdpc *dpc;
|
|
void *sysarg1;
|
|
void *sysarg2;
|
|
{
|
|
kdpc_queue *kq;
|
|
uint8_t r;
|
|
uint8_t irql;
|
|
|
|
if (dpc == NULL)
|
|
return (FALSE);
|
|
|
|
kq = kq_queues;
|
|
|
|
#ifdef NTOSKRNL_MULTIPLE_DPCS
|
|
KeRaiseIrql(DISPATCH_LEVEL, &irql);
|
|
|
|
/*
|
|
* By default, the DPC is queued to run on the same CPU
|
|
* that scheduled it.
|
|
*/
|
|
|
|
if (dpc->k_num == KDPC_CPU_DEFAULT)
|
|
kq += curthread->td_oncpu;
|
|
else
|
|
kq += dpc->k_num;
|
|
KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
|
|
#else
|
|
KeAcquireSpinLock(&kq->kq_lock, &irql);
|
|
#endif
|
|
|
|
r = ntoskrnl_insert_dpc(&kq->kq_disp, dpc);
|
|
if (r == TRUE) {
|
|
dpc->k_sysarg1 = sysarg1;
|
|
dpc->k_sysarg2 = sysarg2;
|
|
}
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
|
|
if (r == FALSE)
|
|
return (r);
|
|
|
|
KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
|
|
|
|
return (r);
|
|
}
|
|
|
|
uint8_t
|
|
KeRemoveQueueDpc(dpc)
|
|
kdpc *dpc;
|
|
{
|
|
kdpc_queue *kq;
|
|
uint8_t irql;
|
|
|
|
if (dpc == NULL)
|
|
return (FALSE);
|
|
|
|
#ifdef NTOSKRNL_MULTIPLE_DPCS
|
|
KeRaiseIrql(DISPATCH_LEVEL, &irql);
|
|
|
|
kq = kq_queues + dpc->k_num;
|
|
|
|
KeAcquireSpinLockAtDpcLevel(&kq->kq_lock);
|
|
#else
|
|
kq = kq_queues;
|
|
KeAcquireSpinLock(&kq->kq_lock, &irql);
|
|
#endif
|
|
|
|
if (dpc->k_dpclistentry.nle_flink == &dpc->k_dpclistentry) {
|
|
KeReleaseSpinLockFromDpcLevel(&kq->kq_lock);
|
|
KeLowerIrql(irql);
|
|
return (FALSE);
|
|
}
|
|
|
|
RemoveEntryList((&dpc->k_dpclistentry));
|
|
InitializeListHead((&dpc->k_dpclistentry));
|
|
|
|
KeReleaseSpinLock(&kq->kq_lock, irql);
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
void
|
|
KeSetImportanceDpc(dpc, imp)
|
|
kdpc *dpc;
|
|
uint32_t imp;
|
|
{
|
|
if (imp != KDPC_IMPORTANCE_LOW &&
|
|
imp != KDPC_IMPORTANCE_MEDIUM &&
|
|
imp != KDPC_IMPORTANCE_HIGH)
|
|
return;
|
|
|
|
dpc->k_importance = (uint8_t)imp;
|
|
}
|
|
|
|
void
|
|
KeSetTargetProcessorDpc(kdpc *dpc, uint8_t cpu)
|
|
{
|
|
if (cpu > mp_ncpus)
|
|
return;
|
|
|
|
dpc->k_num = cpu;
|
|
}
|
|
|
|
void
|
|
KeFlushQueuedDpcs(void)
|
|
{
|
|
kdpc_queue *kq;
|
|
int i;
|
|
|
|
/*
|
|
* Poke each DPC queue and wait
|
|
* for them to drain.
|
|
*/
|
|
|
|
#ifdef NTOSKRNL_MULTIPLE_DPCS
|
|
for (i = 0; i < mp_ncpus; i++) {
|
|
#else
|
|
for (i = 0; i < 1; i++) {
|
|
#endif
|
|
kq = kq_queues + i;
|
|
KeSetEvent(&kq->kq_proc, IO_NO_INCREMENT, FALSE);
|
|
KeWaitForSingleObject(&kq->kq_done, 0, 0, TRUE, NULL);
|
|
}
|
|
}
|
|
|
|
uint32_t
|
|
KeGetCurrentProcessorNumber(void)
|
|
{
|
|
return ((uint32_t)curthread->td_oncpu);
|
|
}
|
|
|
|
uint8_t
|
|
KeSetTimerEx(timer, duetime, period, dpc)
|
|
ktimer *timer;
|
|
int64_t duetime;
|
|
uint32_t period;
|
|
kdpc *dpc;
|
|
{
|
|
struct timeval tv;
|
|
uint64_t curtime;
|
|
uint8_t pending;
|
|
|
|
if (timer == NULL)
|
|
return (FALSE);
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
|
|
if (timer->k_header.dh_inserted == TRUE) {
|
|
ntoskrnl_remove_timer(timer);
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
ntoskrnl_timer_cancels++;
|
|
#endif
|
|
timer->k_header.dh_inserted = FALSE;
|
|
pending = TRUE;
|
|
} else
|
|
pending = FALSE;
|
|
|
|
timer->k_duetime = duetime;
|
|
timer->k_period = period;
|
|
timer->k_header.dh_sigstate = FALSE;
|
|
timer->k_dpc = dpc;
|
|
|
|
if (duetime < 0) {
|
|
tv.tv_sec = - (duetime) / 10000000;
|
|
tv.tv_usec = (- (duetime) / 10) -
|
|
(tv.tv_sec * 1000000);
|
|
} else {
|
|
ntoskrnl_time(&curtime);
|
|
if (duetime < curtime)
|
|
tv.tv_sec = tv.tv_usec = 0;
|
|
else {
|
|
tv.tv_sec = ((duetime) - curtime) / 10000000;
|
|
tv.tv_usec = ((duetime) - curtime) / 10 -
|
|
(tv.tv_sec * 1000000);
|
|
}
|
|
}
|
|
|
|
timer->k_header.dh_inserted = TRUE;
|
|
ntoskrnl_insert_timer(timer, tvtohz(&tv));
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
ntoskrnl_timer_sets++;
|
|
#endif
|
|
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (pending);
|
|
}
|
|
|
|
uint8_t
|
|
KeSetTimer(timer, duetime, dpc)
|
|
ktimer *timer;
|
|
int64_t duetime;
|
|
kdpc *dpc;
|
|
{
|
|
return (KeSetTimerEx(timer, duetime, 0, dpc));
|
|
}
|
|
|
|
/*
|
|
* The Windows DDK documentation seems to say that cancelling
|
|
* a timer that has a DPC will result in the DPC also being
|
|
* cancelled, but this isn't really the case.
|
|
*/
|
|
|
|
uint8_t
|
|
KeCancelTimer(timer)
|
|
ktimer *timer;
|
|
{
|
|
uint8_t pending;
|
|
|
|
if (timer == NULL)
|
|
return (FALSE);
|
|
|
|
mtx_lock(&ntoskrnl_dispatchlock);
|
|
|
|
pending = timer->k_header.dh_inserted;
|
|
|
|
if (timer->k_header.dh_inserted == TRUE) {
|
|
timer->k_header.dh_inserted = FALSE;
|
|
ntoskrnl_remove_timer(timer);
|
|
#ifdef NTOSKRNL_DEBUG_TIMERS
|
|
ntoskrnl_timer_cancels++;
|
|
#endif
|
|
}
|
|
|
|
mtx_unlock(&ntoskrnl_dispatchlock);
|
|
|
|
return (pending);
|
|
}
|
|
|
|
uint8_t
|
|
KeReadStateTimer(timer)
|
|
ktimer *timer;
|
|
{
|
|
return (timer->k_header.dh_sigstate);
|
|
}
|
|
|
|
static int32_t
|
|
KeDelayExecutionThread(uint8_t wait_mode, uint8_t alertable, int64_t *interval)
|
|
{
|
|
ktimer timer;
|
|
|
|
if (wait_mode != 0)
|
|
panic("invalid wait_mode %d", wait_mode);
|
|
|
|
KeInitializeTimer(&timer);
|
|
KeSetTimer(&timer, *interval, NULL);
|
|
KeWaitForSingleObject(&timer, 0, 0, alertable, NULL);
|
|
|
|
return STATUS_SUCCESS;
|
|
}
|
|
|
|
static uint64_t
|
|
KeQueryInterruptTime(void)
|
|
{
|
|
int ticks;
|
|
struct timeval tv;
|
|
|
|
getmicrouptime(&tv);
|
|
|
|
ticks = tvtohz(&tv);
|
|
|
|
return ticks * howmany(10000000, hz);
|
|
}
|
|
|
|
static struct thread *
|
|
KeGetCurrentThread(void)
|
|
{
|
|
|
|
return curthread;
|
|
}
|
|
|
|
static int32_t
|
|
KeSetPriorityThread(td, pri)
|
|
struct thread *td;
|
|
int32_t pri;
|
|
{
|
|
int32_t old;
|
|
|
|
if (td == NULL)
|
|
return LOW_REALTIME_PRIORITY;
|
|
|
|
if (td->td_priority <= PRI_MIN_KERN)
|
|
old = HIGH_PRIORITY;
|
|
else if (td->td_priority >= PRI_MAX_KERN)
|
|
old = LOW_PRIORITY;
|
|
else
|
|
old = LOW_REALTIME_PRIORITY;
|
|
|
|
thread_lock(td);
|
|
if (pri == HIGH_PRIORITY)
|
|
sched_prio(td, PRI_MIN_KERN);
|
|
if (pri == LOW_REALTIME_PRIORITY)
|
|
sched_prio(td, PRI_MIN_KERN + (PRI_MAX_KERN - PRI_MIN_KERN) / 2);
|
|
if (pri == LOW_PRIORITY)
|
|
sched_prio(td, PRI_MAX_KERN);
|
|
thread_unlock(td);
|
|
|
|
return old;
|
|
}
|
|
|
|
static void
|
|
dummy()
|
|
{
|
|
printf("ntoskrnl dummy called...\n");
|
|
}
|
|
|
|
|
|
image_patch_table ntoskrnl_functbl[] = {
|
|
IMPORT_SFUNC(RtlZeroMemory, 2),
|
|
IMPORT_SFUNC(RtlSecureZeroMemory, 2),
|
|
IMPORT_SFUNC(RtlFillMemory, 3),
|
|
IMPORT_SFUNC(RtlMoveMemory, 3),
|
|
IMPORT_SFUNC(RtlCharToInteger, 3),
|
|
IMPORT_SFUNC(RtlCopyMemory, 3),
|
|
IMPORT_SFUNC(RtlCopyString, 2),
|
|
IMPORT_SFUNC(RtlCompareMemory, 3),
|
|
IMPORT_SFUNC(RtlEqualUnicodeString, 3),
|
|
IMPORT_SFUNC(RtlCopyUnicodeString, 2),
|
|
IMPORT_SFUNC(RtlUnicodeStringToAnsiString, 3),
|
|
IMPORT_SFUNC(RtlAnsiStringToUnicodeString, 3),
|
|
IMPORT_SFUNC(RtlInitAnsiString, 2),
|
|
IMPORT_SFUNC_MAP(RtlInitString, RtlInitAnsiString, 2),
|
|
IMPORT_SFUNC(RtlInitUnicodeString, 2),
|
|
IMPORT_SFUNC(RtlFreeAnsiString, 1),
|
|
IMPORT_SFUNC(RtlFreeUnicodeString, 1),
|
|
IMPORT_SFUNC(RtlUnicodeStringToInteger, 3),
|
|
IMPORT_CFUNC(sprintf, 0),
|
|
IMPORT_CFUNC(vsprintf, 0),
|
|
IMPORT_CFUNC_MAP(_snprintf, snprintf, 0),
|
|
IMPORT_CFUNC_MAP(_vsnprintf, vsnprintf, 0),
|
|
IMPORT_CFUNC(DbgPrint, 0),
|
|
IMPORT_SFUNC(DbgBreakPoint, 0),
|
|
IMPORT_SFUNC(KeBugCheckEx, 5),
|
|
IMPORT_CFUNC(strncmp, 0),
|
|
IMPORT_CFUNC(strcmp, 0),
|
|
IMPORT_CFUNC_MAP(stricmp, strcasecmp, 0),
|
|
IMPORT_CFUNC(strncpy, 0),
|
|
IMPORT_CFUNC(strcpy, 0),
|
|
IMPORT_CFUNC(strlen, 0),
|
|
IMPORT_CFUNC_MAP(toupper, ntoskrnl_toupper, 0),
|
|
IMPORT_CFUNC_MAP(tolower, ntoskrnl_tolower, 0),
|
|
IMPORT_CFUNC_MAP(strstr, ntoskrnl_strstr, 0),
|
|
IMPORT_CFUNC_MAP(strncat, ntoskrnl_strncat, 0),
|
|
IMPORT_CFUNC_MAP(strchr, index, 0),
|
|
IMPORT_CFUNC_MAP(strrchr, rindex, 0),
|
|
IMPORT_CFUNC(memcpy, 0),
|
|
IMPORT_CFUNC_MAP(memmove, ntoskrnl_memmove, 0),
|
|
IMPORT_CFUNC_MAP(memset, ntoskrnl_memset, 0),
|
|
IMPORT_CFUNC_MAP(memchr, ntoskrnl_memchr, 0),
|
|
IMPORT_SFUNC(IoAllocateDriverObjectExtension, 4),
|
|
IMPORT_SFUNC(IoGetDriverObjectExtension, 2),
|
|
IMPORT_FFUNC(IofCallDriver, 2),
|
|
IMPORT_FFUNC(IofCompleteRequest, 2),
|
|
IMPORT_SFUNC(IoAcquireCancelSpinLock, 1),
|
|
IMPORT_SFUNC(IoReleaseCancelSpinLock, 1),
|
|
IMPORT_SFUNC(IoCancelIrp, 1),
|
|
IMPORT_SFUNC(IoConnectInterrupt, 11),
|
|
IMPORT_SFUNC(IoDisconnectInterrupt, 1),
|
|
IMPORT_SFUNC(IoCreateDevice, 7),
|
|
IMPORT_SFUNC(IoDeleteDevice, 1),
|
|
IMPORT_SFUNC(IoGetAttachedDevice, 1),
|
|
IMPORT_SFUNC(IoAttachDeviceToDeviceStack, 2),
|
|
IMPORT_SFUNC(IoDetachDevice, 1),
|
|
IMPORT_SFUNC(IoBuildSynchronousFsdRequest, 7),
|
|
IMPORT_SFUNC(IoBuildAsynchronousFsdRequest, 6),
|
|
IMPORT_SFUNC(IoBuildDeviceIoControlRequest, 9),
|
|
IMPORT_SFUNC(IoAllocateIrp, 2),
|
|
IMPORT_SFUNC(IoReuseIrp, 2),
|
|
IMPORT_SFUNC(IoMakeAssociatedIrp, 2),
|
|
IMPORT_SFUNC(IoFreeIrp, 1),
|
|
IMPORT_SFUNC(IoInitializeIrp, 3),
|
|
IMPORT_SFUNC(KeAcquireInterruptSpinLock, 1),
|
|
IMPORT_SFUNC(KeReleaseInterruptSpinLock, 2),
|
|
IMPORT_SFUNC(KeSynchronizeExecution, 3),
|
|
IMPORT_SFUNC(KeWaitForSingleObject, 5),
|
|
IMPORT_SFUNC(KeWaitForMultipleObjects, 8),
|
|
IMPORT_SFUNC(_allmul, 4),
|
|
IMPORT_SFUNC(_alldiv, 4),
|
|
IMPORT_SFUNC(_allrem, 4),
|
|
IMPORT_RFUNC(_allshr, 0),
|
|
IMPORT_RFUNC(_allshl, 0),
|
|
IMPORT_SFUNC(_aullmul, 4),
|
|
IMPORT_SFUNC(_aulldiv, 4),
|
|
IMPORT_SFUNC(_aullrem, 4),
|
|
IMPORT_RFUNC(_aullshr, 0),
|
|
IMPORT_RFUNC(_aullshl, 0),
|
|
IMPORT_CFUNC(atoi, 0),
|
|
IMPORT_CFUNC(atol, 0),
|
|
IMPORT_CFUNC(rand, 0),
|
|
IMPORT_CFUNC(srand, 0),
|
|
IMPORT_SFUNC(WRITE_REGISTER_USHORT, 2),
|
|
IMPORT_SFUNC(READ_REGISTER_USHORT, 1),
|
|
IMPORT_SFUNC(WRITE_REGISTER_ULONG, 2),
|
|
IMPORT_SFUNC(READ_REGISTER_ULONG, 1),
|
|
IMPORT_SFUNC(READ_REGISTER_UCHAR, 1),
|
|
IMPORT_SFUNC(WRITE_REGISTER_UCHAR, 2),
|
|
IMPORT_SFUNC(ExInitializePagedLookasideList, 7),
|
|
IMPORT_SFUNC(ExDeletePagedLookasideList, 1),
|
|
IMPORT_SFUNC(ExInitializeNPagedLookasideList, 7),
|
|
IMPORT_SFUNC(ExDeleteNPagedLookasideList, 1),
|
|
IMPORT_FFUNC(InterlockedPopEntrySList, 1),
|
|
IMPORT_FFUNC(InitializeSListHead, 1),
|
|
IMPORT_FFUNC(InterlockedPushEntrySList, 2),
|
|
IMPORT_SFUNC(ExQueryDepthSList, 1),
|
|
IMPORT_FFUNC_MAP(ExpInterlockedPopEntrySList,
|
|
InterlockedPopEntrySList, 1),
|
|
IMPORT_FFUNC_MAP(ExpInterlockedPushEntrySList,
|
|
InterlockedPushEntrySList, 2),
|
|
IMPORT_FFUNC(ExInterlockedPopEntrySList, 2),
|
|
IMPORT_FFUNC(ExInterlockedPushEntrySList, 3),
|
|
IMPORT_SFUNC(ExAllocatePoolWithTag, 3),
|
|
IMPORT_SFUNC(ExFreePoolWithTag, 2),
|
|
IMPORT_SFUNC(ExFreePool, 1),
|
|
#ifdef __i386__
|
|
IMPORT_FFUNC(KefAcquireSpinLockAtDpcLevel, 1),
|
|
IMPORT_FFUNC(KefReleaseSpinLockFromDpcLevel,1),
|
|
IMPORT_FFUNC(KeAcquireSpinLockRaiseToDpc, 1),
|
|
#else
|
|
/*
|
|
* For AMD64, we can get away with just mapping
|
|
* KeAcquireSpinLockRaiseToDpc() directly to KfAcquireSpinLock()
|
|
* because the calling conventions end up being the same.
|
|
* On i386, we have to be careful because KfAcquireSpinLock()
|
|
* is _fastcall but KeAcquireSpinLockRaiseToDpc() isn't.
|
|
*/
|
|
IMPORT_SFUNC(KeAcquireSpinLockAtDpcLevel, 1),
|
|
IMPORT_SFUNC(KeReleaseSpinLockFromDpcLevel, 1),
|
|
IMPORT_SFUNC_MAP(KeAcquireSpinLockRaiseToDpc, KfAcquireSpinLock, 1),
|
|
#endif
|
|
IMPORT_SFUNC_MAP(KeReleaseSpinLock, KfReleaseSpinLock, 1),
|
|
IMPORT_FFUNC(InterlockedIncrement, 1),
|
|
IMPORT_FFUNC(InterlockedDecrement, 1),
|
|
IMPORT_FFUNC(InterlockedExchange, 2),
|
|
IMPORT_FFUNC(ExInterlockedAddLargeStatistic, 2),
|
|
IMPORT_SFUNC(IoAllocateMdl, 5),
|
|
IMPORT_SFUNC(IoFreeMdl, 1),
|
|
IMPORT_SFUNC(MmAllocateContiguousMemory, 2 + 1),
|
|
IMPORT_SFUNC(MmAllocateContiguousMemorySpecifyCache, 5 + 3),
|
|
IMPORT_SFUNC(MmFreeContiguousMemory, 1),
|
|
IMPORT_SFUNC(MmFreeContiguousMemorySpecifyCache, 3),
|
|
IMPORT_SFUNC(MmSizeOfMdl, 1),
|
|
IMPORT_SFUNC(MmMapLockedPages, 2),
|
|
IMPORT_SFUNC(MmMapLockedPagesSpecifyCache, 6),
|
|
IMPORT_SFUNC(MmUnmapLockedPages, 2),
|
|
IMPORT_SFUNC(MmBuildMdlForNonPagedPool, 1),
|
|
IMPORT_SFUNC(MmGetPhysicalAddress, 1),
|
|
IMPORT_SFUNC(MmGetSystemRoutineAddress, 1),
|
|
IMPORT_SFUNC(MmIsAddressValid, 1),
|
|
IMPORT_SFUNC(MmMapIoSpace, 3 + 1),
|
|
IMPORT_SFUNC(MmUnmapIoSpace, 2),
|
|
IMPORT_SFUNC(KeInitializeSpinLock, 1),
|
|
IMPORT_SFUNC(IoIsWdmVersionAvailable, 2),
|
|
IMPORT_SFUNC(IoOpenDeviceRegistryKey, 4),
|
|
IMPORT_SFUNC(IoGetDeviceObjectPointer, 4),
|
|
IMPORT_SFUNC(IoGetDeviceProperty, 5),
|
|
IMPORT_SFUNC(IoAllocateWorkItem, 1),
|
|
IMPORT_SFUNC(IoFreeWorkItem, 1),
|
|
IMPORT_SFUNC(IoQueueWorkItem, 4),
|
|
IMPORT_SFUNC(ExQueueWorkItem, 2),
|
|
IMPORT_SFUNC(ntoskrnl_workitem, 2),
|
|
IMPORT_SFUNC(KeInitializeMutex, 2),
|
|
IMPORT_SFUNC(KeReleaseMutex, 2),
|
|
IMPORT_SFUNC(KeReadStateMutex, 1),
|
|
IMPORT_SFUNC(KeInitializeEvent, 3),
|
|
IMPORT_SFUNC(KeSetEvent, 3),
|
|
IMPORT_SFUNC(KeResetEvent, 1),
|
|
IMPORT_SFUNC(KeClearEvent, 1),
|
|
IMPORT_SFUNC(KeReadStateEvent, 1),
|
|
IMPORT_SFUNC(KeInitializeTimer, 1),
|
|
IMPORT_SFUNC(KeInitializeTimerEx, 2),
|
|
IMPORT_SFUNC(KeSetTimer, 3),
|
|
IMPORT_SFUNC(KeSetTimerEx, 4),
|
|
IMPORT_SFUNC(KeCancelTimer, 1),
|
|
IMPORT_SFUNC(KeReadStateTimer, 1),
|
|
IMPORT_SFUNC(KeInitializeDpc, 3),
|
|
IMPORT_SFUNC(KeInsertQueueDpc, 3),
|
|
IMPORT_SFUNC(KeRemoveQueueDpc, 1),
|
|
IMPORT_SFUNC(KeSetImportanceDpc, 2),
|
|
IMPORT_SFUNC(KeSetTargetProcessorDpc, 2),
|
|
IMPORT_SFUNC(KeFlushQueuedDpcs, 0),
|
|
IMPORT_SFUNC(KeGetCurrentProcessorNumber, 1),
|
|
IMPORT_SFUNC(ObReferenceObjectByHandle, 6),
|
|
IMPORT_FFUNC(ObfDereferenceObject, 1),
|
|
IMPORT_SFUNC(ZwClose, 1),
|
|
IMPORT_SFUNC(PsCreateSystemThread, 7),
|
|
IMPORT_SFUNC(PsTerminateSystemThread, 1),
|
|
IMPORT_SFUNC(IoWMIRegistrationControl, 2),
|
|
IMPORT_SFUNC(WmiQueryTraceInformation, 5),
|
|
IMPORT_CFUNC(WmiTraceMessage, 0),
|
|
IMPORT_SFUNC(KeQuerySystemTime, 1),
|
|
IMPORT_CFUNC(KeTickCount, 0),
|
|
IMPORT_SFUNC(KeDelayExecutionThread, 3),
|
|
IMPORT_SFUNC(KeQueryInterruptTime, 0),
|
|
IMPORT_SFUNC(KeGetCurrentThread, 0),
|
|
IMPORT_SFUNC(KeSetPriorityThread, 2),
|
|
|
|
/*
|
|
* This last entry is a catch-all for any function we haven't
|
|
* implemented yet. The PE import list patching routine will
|
|
* use it for any function that doesn't have an explicit match
|
|
* in this table.
|
|
*/
|
|
|
|
{ NULL, (FUNC)dummy, NULL, 0, WINDRV_WRAP_STDCALL },
|
|
|
|
/* End of list. */
|
|
|
|
{ NULL, NULL, NULL }
|
|
};
|