Mike Smith 926328c406 Initial import of the Intel-maintained ACPI Component Architecture. This
is Intel's reference implementation of the core operating-system ACPI
support.  (This import is on the vendor branch.)
2000-10-28 05:01:06 +00:00

826 lines
25 KiB
C

/*******************************************************************************
*
* Module Name: hwregs - Read/write access functions for the various ACPI
* control and status registers.
* $Revision: 71 $
*
******************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999, Intel Corp. All rights
* reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#define __HWREGS_C__
#include "acpi.h"
#include "achware.h"
#include "acnamesp.h"
#define _COMPONENT HARDWARE
MODULE_NAME ("hwregs")
/* This matches the #defines in actypes.h. */
NATIVE_CHAR *SleepStateTable[] = {"\\_S0_","\\_S1_","\\_S2_","\\_S3_",
"\\_S4_","\\_S4B","\\_S5_"};
/*******************************************************************************
*
* FUNCTION: AcpiHwGetBitShift
*
* PARAMETERS: Mask - Input mask to determine bit shift from.
* Must have at least 1 bit set.
*
* RETURN: Bit location of the lsb of the mask
*
* DESCRIPTION: Returns the bit number for the low order bit that's set.
*
******************************************************************************/
UINT32
AcpiHwGetBitShift (
UINT32 Mask)
{
UINT32 Shift;
FUNCTION_TRACE ("HwGetBitShift");
for (Shift = 0; ((Mask >> Shift) & 1) == 0; Shift++)
{ ; }
return_VALUE (Shift);
}
/*******************************************************************************
*
* FUNCTION: AcpiHwClearAcpiStatus
*
* PARAMETERS: none
*
* RETURN: none
*
* DESCRIPTION: Clears all fixed and general purpose status bits
*
******************************************************************************/
void
AcpiHwClearAcpiStatus (void)
{
UINT16 GpeLength;
UINT16 Index;
FUNCTION_TRACE ("HwClearAcpiStatus");
DEBUG_PRINT (TRACE_IO, ("About to write %04X to %04X\n",
ALL_FIXED_STS_BITS, (UINT16) AcpiGbl_FACP->Pm1aEvtBlk));
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
AcpiOsOut16 (AcpiGbl_FACP->Pm1aEvtBlk, (UINT16) ALL_FIXED_STS_BITS);
if (AcpiGbl_FACP->Pm1bEvtBlk)
{
AcpiOsOut16 ((UINT16) AcpiGbl_FACP->Pm1bEvtBlk,
(UINT16) ALL_FIXED_STS_BITS);
}
/* now clear the GPE Bits */
if (AcpiGbl_FACP->Gpe0BlkLen)
{
GpeLength = (UINT16) DIV_2 (AcpiGbl_FACP->Gpe0BlkLen);
for (Index = 0; Index < GpeLength; Index++)
{
AcpiOsOut8 ((AcpiGbl_FACP->Gpe0Blk + Index), (UINT8) 0xff);
}
}
if (AcpiGbl_FACP->Gpe1BlkLen)
{
GpeLength = (UINT16) DIV_2 (AcpiGbl_FACP->Gpe1BlkLen);
for (Index = 0; Index < GpeLength; Index++)
{
AcpiOsOut8 ((AcpiGbl_FACP->Gpe1Blk + Index), (UINT8) 0xff);
}
}
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
return_VOID;
}
/*******************************************************************************
*
* FUNCTION: AcpiHwObtainSleepTypeRegisterData
*
* PARAMETERS: SleepState - Numeric state requested
* *Slp_TypA - Pointer to byte to receive SLP_TYPa value
* *Slp_TypB - Pointer to byte to receive SLP_TYPb value
*
* RETURN: Status - ACPI status
*
* DESCRIPTION: AcpiHwObtainSleepTypeRegisterData() obtains the SLP_TYP and
* SLP_TYPb values for the sleep state requested.
*
******************************************************************************/
ACPI_STATUS
AcpiHwObtainSleepTypeRegisterData (
UINT8 SleepState,
UINT8 *Slp_TypA,
UINT8 *Slp_TypB)
{
ACPI_STATUS Status = AE_OK;
ACPI_OPERAND_OBJECT *ObjDesc;
FUNCTION_TRACE ("HwObtainSleepTypeRegisterData");
/*
* Validate parameters
*/
if ((SleepState > ACPI_S_STATES_MAX) ||
!Slp_TypA || !Slp_TypB)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
/*
* AcpiEvaluate the namespace object containing the values for this state
*/
Status = AcpiNsEvaluateByName (SleepStateTable[SleepState], NULL, &ObjDesc);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
if (!ObjDesc)
{
REPORT_ERROR (("Missing Sleep State object\n"));
return_ACPI_STATUS (AE_NOT_EXIST);
}
/*
* We got something, now ensure it is correct. The object must
* be a package and must have at least 2 numeric values as the
* two elements
*/
Status = AcpiCmResolvePackageReferences(ObjDesc);
if (ObjDesc->Package.Count < 2)
{
/* Must have at least two elements */
REPORT_ERROR (("Sleep State package does not have at least two elements\n"));
Status = AE_ERROR;
}
else if (((ObjDesc->Package.Elements[0])->Common.Type !=
ACPI_TYPE_NUMBER) ||
((ObjDesc->Package.Elements[1])->Common.Type !=
ACPI_TYPE_NUMBER))
{
/* Must have two */
REPORT_ERROR (("Sleep State package elements are not both of type Number\n"));
Status = AE_ERROR;
}
else
{
/*
* Valid _Sx_ package size, type, and value
*/
*Slp_TypA = (UINT8) (ObjDesc->Package.Elements[0])->Number.Value;
*Slp_TypB = (UINT8) (ObjDesc->Package.Elements[1])->Number.Value;
}
if (ACPI_FAILURE (Status))
{
DEBUG_PRINT (ACPI_ERROR,
("SleepTypeRegisterData: Bad Sleep object %p type %X\n",
ObjDesc, ObjDesc->Common.Type));
}
AcpiCmRemoveReference (ObjDesc);
return_ACPI_STATUS (Status);
}
/*******************************************************************************
*
* FUNCTION: AcpiHwRegisterAccess
*
* PARAMETERS: ReadWrite - Either ACPI_READ or ACPI_WRITE.
* UseLock - Lock the hardware
* RegisterId - index of ACPI register to access
* Value - (only used on write) value to write to the
* register. Shifted all the way right.
*
* RETURN: Value written to or read from specified register. This value
* is shifted all the way right.
*
* DESCRIPTION: Generic ACPI register read/write function.
*
******************************************************************************/
UINT32
AcpiHwRegisterAccess (
NATIVE_UINT ReadWrite,
BOOLEAN UseLock,
UINT32 RegisterId,
...) /* Value (only used on write) */
{
UINT32 RegisterValue = 0;
UINT32 Mask = 0;
UINT32 Value = 0;
ACPI_IO_ADDRESS GpeReg = 0;
FUNCTION_TRACE ("HwRegisterIO");
if (ReadWrite == ACPI_WRITE)
{
va_list marker;
va_start (marker, RegisterId);
Value = va_arg (marker, UINT32);
va_end (marker);
}
/*
* TBD: [Restructure] May want to split the AcpiEvent code and the
* Control code
*/
/*
* Decode the Register ID
*/
switch (RegisterId & REGISTER_BLOCK_MASK)
{
case PM1_EVT:
if (RegisterId < TMR_EN)
{
/* status register */
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
}
RegisterValue = (UINT32) AcpiOsIn16 (AcpiGbl_FACP->Pm1aEvtBlk);
DEBUG_PRINT (TRACE_IO, ("PM1a status: Read 0x%X from 0x%X\n",
RegisterValue, AcpiGbl_FACP->Pm1aEvtBlk));
if (AcpiGbl_FACP->Pm1bEvtBlk)
{
RegisterValue |= (UINT32) AcpiOsIn16 (AcpiGbl_FACP->Pm1bEvtBlk);
DEBUG_PRINT (TRACE_IO, ("PM1b status: Read 0x%X from 0x%X\n",
RegisterValue, AcpiGbl_FACP->Pm1bEvtBlk));
}
switch (RegisterId)
{
case TMR_STS:
Mask = TMR_STS_MASK;
break;
case BM_STS:
Mask = BM_STS_MASK;
break;
case GBL_STS:
Mask = GBL_STS_MASK;
break;
case PWRBTN_STS:
Mask = PWRBTN_STS_MASK;
break;
case SLPBTN_STS:
Mask = SLPBTN_STS_MASK;
break;
case RTC_STS:
Mask = RTC_STS_MASK;
break;
case WAK_STS:
Mask = WAK_STS_MASK;
break;
default:
Mask = 0;
break;
}
if (ReadWrite == ACPI_WRITE)
{
/*
* Status registers are different from the rest. Clear by
* writing 1, writing 0 has no effect. So, the only relevent
* information is the single bit we're interested in, all
* others should be written as 0 so they will be left
* unchanged
*/
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
if (Value)
{
DEBUG_PRINT (TRACE_IO,
("About to write 0x%X to 0x%X\n", Value,
AcpiGbl_FACP->Pm1aEvtBlk));
AcpiOsOut16 (AcpiGbl_FACP->Pm1aEvtBlk, (UINT16) Value);
if (AcpiGbl_FACP->Pm1bEvtBlk)
{
AcpiOsOut16 (AcpiGbl_FACP->Pm1bEvtBlk, (UINT16) Value);
}
RegisterValue = 0;
}
}
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
}
}
else
{
/* enable register */
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
}
RegisterValue = (UINT32) AcpiOsIn16 (AcpiGbl_FACP->Pm1aEvtBlk +
DIV_2 (AcpiGbl_FACP->Pm1EvtLen));
DEBUG_PRINT (TRACE_IO, ("PM1a enable: Read 0x%X from 0x%X\n",
RegisterValue, (AcpiGbl_FACP->Pm1aEvtBlk +
DIV_2 (AcpiGbl_FACP->Pm1EvtLen))));
if (AcpiGbl_FACP->Pm1bEvtBlk)
{
RegisterValue |= (UINT32) AcpiOsIn16 (AcpiGbl_FACP->Pm1bEvtBlk +
DIV_2 (AcpiGbl_FACP->Pm1EvtLen));
DEBUG_PRINT (TRACE_IO, ("PM1b enable: Read 0x%X from 0x%X\n",
RegisterValue, (AcpiGbl_FACP->Pm1bEvtBlk +
DIV_2 (AcpiGbl_FACP->Pm1EvtLen))));
}
switch (RegisterId)
{
case TMR_EN:
Mask = TMR_EN_MASK;
break;
case GBL_EN:
Mask = GBL_EN_MASK;
break;
case PWRBTN_EN:
Mask = PWRBTN_EN_MASK;
break;
case SLPBTN_EN:
Mask = SLPBTN_EN_MASK;
break;
case RTC_EN:
Mask = RTC_EN_MASK;
break;
default:
Mask = 0;
break;
}
if (ReadWrite == ACPI_WRITE)
{
RegisterValue &= ~Mask;
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
RegisterValue |= Value;
DEBUG_PRINT (TRACE_IO,
("About to write %04X to %04X\n", RegisterValue,
(AcpiGbl_FACP->Pm1aEvtBlk +
DIV_2 (AcpiGbl_FACP->Pm1EvtLen))));
AcpiOsOut16 ((AcpiGbl_FACP->Pm1aEvtBlk +
DIV_2 (AcpiGbl_FACP->Pm1EvtLen)),
(UINT16) RegisterValue);
if (AcpiGbl_FACP->Pm1bEvtBlk)
{
AcpiOsOut16 ((AcpiGbl_FACP->Pm1bEvtBlk +
DIV_2 (AcpiGbl_FACP->Pm1EvtLen)),
(UINT16) RegisterValue);
}
}
if(ACPI_MTX_LOCK == UseLock)
{
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
}
}
break;
case PM1_CONTROL:
RegisterValue = 0;
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
}
if (RegisterId != SLP_TYPE_B)
{
/*
* SLP_TYPx registers are written differently
* than any other control registers with
* respect to A and B registers. The value
* for A may be different than the value for B
*/
RegisterValue = (UINT32) AcpiOsIn16 (AcpiGbl_FACP->Pm1aCntBlk);
DEBUG_PRINT (TRACE_IO, ("PM1a control: Read 0x%X from 0x%X\n",
RegisterValue, AcpiGbl_FACP->Pm1aCntBlk));
}
if (AcpiGbl_FACP->Pm1bCntBlk && RegisterId != (UINT32) SLP_TYPE_A)
{
RegisterValue |= (UINT32) AcpiOsIn16 (AcpiGbl_FACP->Pm1bCntBlk);
DEBUG_PRINT (TRACE_IO, ("PM1b control: Read 0x%X from 0x%X\n",
RegisterValue, AcpiGbl_FACP->Pm1bCntBlk));
}
switch (RegisterId)
{
case SCI_EN:
Mask = SCI_EN_MASK;
break;
case BM_RLD:
Mask = BM_RLD_MASK;
break;
case GBL_RLS:
Mask = GBL_RLS_MASK;
break;
case SLP_TYPE_A:
case SLP_TYPE_B:
Mask = SLP_TYPE_X_MASK;
break;
case SLP_EN:
Mask = SLP_EN_MASK;
break;
default:
Mask = 0;
break;
}
if (ReadWrite == ACPI_WRITE)
{
RegisterValue &= ~Mask;
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
RegisterValue |= Value;
/*
* SLP_TYPE_x registers are written differently
* than any other control registers with
* respect to A and B registers. The value
* for A may be different than the value for B
*/
if (RegisterId != SLP_TYPE_B)
{
if (Mask == SLP_EN_MASK)
{
disable(); /* disable interrupts */
}
AcpiOsOut16 (AcpiGbl_FACP->Pm1aCntBlk, (UINT16) RegisterValue);
if (Mask == SLP_EN_MASK)
{
/*
* Enable interrupts, the SCI handler is likely going to
* be invoked as soon as interrupts are enabled, since gpe's
* and most fixed resume events also generate SCI's.
*/
enable();
}
}
if (AcpiGbl_FACP->Pm1bCntBlk && RegisterId != (UINT32) SLP_TYPE_A)
{
AcpiOsOut16 (AcpiGbl_FACP->Pm1bCntBlk, (UINT16) RegisterValue);
}
}
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
}
break;
case PM2_CONTROL:
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
}
RegisterValue = (UINT32) AcpiOsIn16 (AcpiGbl_FACP->Pm2CntBlk);
DEBUG_PRINT (TRACE_IO, ("PM2 control: Read 0x%X from 0x%X\n",
RegisterValue, AcpiGbl_FACP->Pm2CntBlk));
switch (RegisterId)
{
case ARB_DIS:
Mask = ARB_DIS_MASK;
break;
default:
Mask = 0;
break;
}
if (ReadWrite == ACPI_WRITE)
{
RegisterValue &= ~Mask;
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
RegisterValue |= Value;
DEBUG_PRINT (TRACE_IO,
("About to write %04X to %04X\n", RegisterValue,
AcpiGbl_FACP->Pm2CntBlk));
AcpiOsOut16 (AcpiGbl_FACP->Pm2CntBlk, (UINT16) RegisterValue);
}
if (ACPI_MTX_LOCK == UseLock)
{
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
}
break;
case PM_TIMER:
RegisterValue = AcpiOsIn32 (AcpiGbl_FACP->PmTmrBlk);
DEBUG_PRINT (TRACE_IO, ("PM_TIMER: Read 0x%X from 0x%X\n",
RegisterValue, AcpiGbl_FACP->PmTmrBlk));
Mask = ACPI_UINT32_MAX;
break;
case GPE1_EN_BLOCK:
GpeReg = (AcpiGbl_FACP->Gpe1Blk + AcpiGbl_FACP->Gpe1Base) +
(GpeReg + (DIV_2 (AcpiGbl_FACP->Gpe1BlkLen)));
case GPE1_STS_BLOCK:
if (!GpeReg)
{
GpeReg = (AcpiGbl_FACP->Gpe1Blk + AcpiGbl_FACP->Gpe1Base);
}
case GPE0_EN_BLOCK:
if (!GpeReg)
{
GpeReg = AcpiGbl_FACP->Gpe0Blk + DIV_2 (AcpiGbl_FACP->Gpe0BlkLen);
}
case GPE0_STS_BLOCK:
if (!GpeReg)
{
GpeReg = AcpiGbl_FACP->Gpe0Blk;
}
/* Determine the bit to be accessed */
Mask = (((UINT32) RegisterId) & BIT_IN_REGISTER_MASK);
Mask = 1 << (Mask-1);
/*
* The base address of the GPE 0 Register Block
* Plus 1/2 the length of the GPE 0 Register Block
* The enable register is the register following the Status Register
* and each register is defined as 1/2 of the total Register Block
*/
/*
* This sets the bit within EnableBit that needs to be written to
* the register indicated in Mask to a 1, all others are 0
*/
if (Mask > LOW_BYTE)
{
/* Shift the value 1 byte to the right and add 1 to the register */
Mask >>= ONE_BYTE;
GpeReg++;
}
/* Now get the current Enable Bits in the selected Reg */
if(ACPI_MTX_LOCK == UseLock)
{
AcpiCmAcquireMutex (ACPI_MTX_HARDWARE);
}
RegisterValue = (UINT32) AcpiOsIn8 (GpeReg);
DEBUG_PRINT (TRACE_IO, ("GPE Enable bits: Read 0x%X from 0x%X\n",
RegisterValue, GpeReg));
if (ReadWrite == ACPI_WRITE)
{
RegisterValue &= ~Mask;
Value <<= AcpiHwGetBitShift (Mask);
Value &= Mask;
RegisterValue |= Value;
/* This write will put the Action state into the General Purpose */
/* Enable Register indexed by the value in Mask */
DEBUG_PRINT (TRACE_IO, ("About to write %04X to %04X\n",
RegisterValue, GpeReg));
AcpiOsOut8 (GpeReg, (UINT8) RegisterValue);
RegisterValue = (UINT32) AcpiOsIn8 (GpeReg);
}
if(ACPI_MTX_LOCK == UseLock)
{
AcpiCmReleaseMutex (ACPI_MTX_HARDWARE);
}
break;
case PROCESSOR_BLOCK:
default:
Mask = 0;
break;
}
RegisterValue &= Mask;
RegisterValue >>= AcpiHwGetBitShift (Mask);
DEBUG_PRINT (TRACE_IO, ("Register I/O: returning 0x%X\n", RegisterValue));
return_VALUE (RegisterValue);
}