freebsd-nq/sys/dev/netmap/if_ptnet.c

2327 lines
59 KiB
C

/*-
* Copyright (c) 2016, Vincenzo Maffione
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/* Driver for ptnet paravirtualized network device. */
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/taskqueue.h>
#include <sys/smp.h>
#include <sys/time.h>
#include <machine/smp.h>
#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <netinet/sctp.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/selinfo.h>
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#include <net/netmap_virt.h>
#include <dev/netmap/netmap_mem2.h>
#include <dev/virtio/network/virtio_net.h>
#ifndef INET
#error "INET not defined, cannot support offloadings"
#endif
#if __FreeBSD_version >= 1100000
static uint64_t ptnet_get_counter(if_t, ift_counter);
#else
typedef struct ifnet *if_t;
#define if_getsoftc(_ifp) (_ifp)->if_softc
#endif
//#define PTNETMAP_STATS
//#define DEBUG
#ifdef DEBUG
#define DBG(x) x
#else /* !DEBUG */
#define DBG(x)
#endif /* !DEBUG */
extern int ptnet_vnet_hdr; /* Tunable parameter */
struct ptnet_softc;
struct ptnet_queue_stats {
uint64_t packets; /* if_[io]packets */
uint64_t bytes; /* if_[io]bytes */
uint64_t errors; /* if_[io]errors */
uint64_t iqdrops; /* if_iqdrops */
uint64_t mcasts; /* if_[io]mcasts */
#ifdef PTNETMAP_STATS
uint64_t intrs;
uint64_t kicks;
#endif /* PTNETMAP_STATS */
};
struct ptnet_queue {
struct ptnet_softc *sc;
struct resource *irq;
void *cookie;
int kring_id;
struct ptnet_csb_gh *ptgh;
struct ptnet_csb_hg *pthg;
unsigned int kick;
struct mtx lock;
struct buf_ring *bufring; /* for TX queues */
struct ptnet_queue_stats stats;
#ifdef PTNETMAP_STATS
struct ptnet_queue_stats last_stats;
#endif /* PTNETMAP_STATS */
struct taskqueue *taskq;
struct task task;
char lock_name[16];
};
#define PTNET_Q_LOCK(_pq) mtx_lock(&(_pq)->lock)
#define PTNET_Q_TRYLOCK(_pq) mtx_trylock(&(_pq)->lock)
#define PTNET_Q_UNLOCK(_pq) mtx_unlock(&(_pq)->lock)
struct ptnet_softc {
device_t dev;
if_t ifp;
struct ifmedia media;
struct mtx lock;
char lock_name[16];
char hwaddr[ETHER_ADDR_LEN];
/* Mirror of PTFEAT register. */
uint32_t ptfeatures;
unsigned int vnet_hdr_len;
/* PCI BARs support. */
struct resource *iomem;
struct resource *msix_mem;
unsigned int num_rings;
unsigned int num_tx_rings;
struct ptnet_queue *queues;
struct ptnet_queue *rxqueues;
struct ptnet_csb_gh *csb_gh;
struct ptnet_csb_hg *csb_hg;
unsigned int min_tx_space;
struct netmap_pt_guest_adapter *ptna;
struct callout tick;
#ifdef PTNETMAP_STATS
struct timeval last_ts;
#endif /* PTNETMAP_STATS */
};
#define PTNET_CORE_LOCK(_sc) mtx_lock(&(_sc)->lock)
#define PTNET_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->lock)
static int ptnet_probe(device_t);
static int ptnet_attach(device_t);
static int ptnet_detach(device_t);
static int ptnet_suspend(device_t);
static int ptnet_resume(device_t);
static int ptnet_shutdown(device_t);
static void ptnet_init(void *opaque);
static int ptnet_ioctl(if_t ifp, u_long cmd, caddr_t data);
static int ptnet_init_locked(struct ptnet_softc *sc);
static int ptnet_stop(struct ptnet_softc *sc);
static int ptnet_transmit(if_t ifp, struct mbuf *m);
static int ptnet_drain_transmit_queue(struct ptnet_queue *pq,
unsigned int budget,
bool may_resched);
static void ptnet_qflush(if_t ifp);
static void ptnet_tx_task(void *context, int pending);
static int ptnet_media_change(if_t ifp);
static void ptnet_media_status(if_t ifp, struct ifmediareq *ifmr);
#ifdef PTNETMAP_STATS
static void ptnet_tick(void *opaque);
#endif
static int ptnet_irqs_init(struct ptnet_softc *sc);
static void ptnet_irqs_fini(struct ptnet_softc *sc);
static uint32_t ptnet_nm_ptctl(if_t ifp, uint32_t cmd);
static int ptnet_nm_config(struct netmap_adapter *na,
struct nm_config_info *info);
static void ptnet_update_vnet_hdr(struct ptnet_softc *sc);
static int ptnet_nm_register(struct netmap_adapter *na, int onoff);
static int ptnet_nm_txsync(struct netmap_kring *kring, int flags);
static int ptnet_nm_rxsync(struct netmap_kring *kring, int flags);
static void ptnet_nm_intr(struct netmap_adapter *na, int onoff);
static void ptnet_tx_intr(void *opaque);
static void ptnet_rx_intr(void *opaque);
static unsigned ptnet_rx_discard(struct netmap_kring *kring,
unsigned int head);
static int ptnet_rx_eof(struct ptnet_queue *pq, unsigned int budget,
bool may_resched);
static void ptnet_rx_task(void *context, int pending);
#ifdef DEVICE_POLLING
static poll_handler_t ptnet_poll;
#endif
static device_method_t ptnet_methods[] = {
DEVMETHOD(device_probe, ptnet_probe),
DEVMETHOD(device_attach, ptnet_attach),
DEVMETHOD(device_detach, ptnet_detach),
DEVMETHOD(device_suspend, ptnet_suspend),
DEVMETHOD(device_resume, ptnet_resume),
DEVMETHOD(device_shutdown, ptnet_shutdown),
DEVMETHOD_END
};
static driver_t ptnet_driver = {
"ptnet",
ptnet_methods,
sizeof(struct ptnet_softc)
};
/* We use (SI_ORDER_MIDDLE+2) here, see DEV_MODULE_ORDERED() invocation. */
static devclass_t ptnet_devclass;
DRIVER_MODULE_ORDERED(ptnet, pci, ptnet_driver, ptnet_devclass,
NULL, NULL, SI_ORDER_MIDDLE + 2);
static int
ptnet_probe(device_t dev)
{
if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID ||
pci_get_device(dev) != PTNETMAP_PCI_NETIF_ID) {
return (ENXIO);
}
device_set_desc(dev, "ptnet network adapter");
return (BUS_PROBE_DEFAULT);
}
static inline void ptnet_kick(struct ptnet_queue *pq)
{
#ifdef PTNETMAP_STATS
pq->stats.kicks ++;
#endif /* PTNETMAP_STATS */
bus_write_4(pq->sc->iomem, pq->kick, 0);
}
#define PTNET_BUF_RING_SIZE 4096
#define PTNET_RX_BUDGET 512
#define PTNET_RX_BATCH 1
#define PTNET_TX_BUDGET 512
#define PTNET_TX_BATCH 64
#define PTNET_HDR_SIZE sizeof(struct virtio_net_hdr_mrg_rxbuf)
#define PTNET_MAX_PKT_SIZE 65536
#define PTNET_CSUM_OFFLOAD (CSUM_TCP | CSUM_UDP | CSUM_SCTP)
#define PTNET_CSUM_OFFLOAD_IPV6 (CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |\
CSUM_SCTP_IPV6)
#define PTNET_ALL_OFFLOAD (CSUM_TSO | PTNET_CSUM_OFFLOAD |\
PTNET_CSUM_OFFLOAD_IPV6)
static int
ptnet_attach(device_t dev)
{
uint32_t ptfeatures = 0;
unsigned int num_rx_rings, num_tx_rings;
struct netmap_adapter na_arg;
unsigned int nifp_offset;
struct ptnet_softc *sc;
if_t ifp;
uint32_t macreg;
int err, rid;
int i;
sc = device_get_softc(dev);
sc->dev = dev;
/* Setup PCI resources. */
pci_enable_busmaster(dev);
rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
sc->iomem = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
RF_ACTIVE);
if (sc->iomem == NULL) {
device_printf(dev, "Failed to map I/O BAR\n");
return (ENXIO);
}
/* Negotiate features with the hypervisor. */
if (ptnet_vnet_hdr) {
ptfeatures |= PTNETMAP_F_VNET_HDR;
}
bus_write_4(sc->iomem, PTNET_IO_PTFEAT, ptfeatures); /* wanted */
ptfeatures = bus_read_4(sc->iomem, PTNET_IO_PTFEAT); /* acked */
sc->ptfeatures = ptfeatures;
num_tx_rings = bus_read_4(sc->iomem, PTNET_IO_NUM_TX_RINGS);
num_rx_rings = bus_read_4(sc->iomem, PTNET_IO_NUM_RX_RINGS);
sc->num_rings = num_tx_rings + num_rx_rings;
sc->num_tx_rings = num_tx_rings;
if (sc->num_rings * sizeof(struct ptnet_csb_gh) > PAGE_SIZE) {
device_printf(dev, "CSB cannot handle that many rings (%u)\n",
sc->num_rings);
err = ENOMEM;
goto err_path;
}
/* Allocate CSB and carry out CSB allocation protocol. */
sc->csb_gh = contigmalloc(2*PAGE_SIZE, M_DEVBUF, M_NOWAIT | M_ZERO,
(size_t)0, -1UL, PAGE_SIZE, 0);
if (sc->csb_gh == NULL) {
device_printf(dev, "Failed to allocate CSB\n");
err = ENOMEM;
goto err_path;
}
sc->csb_hg = (struct ptnet_csb_hg *)(((char *)sc->csb_gh) + PAGE_SIZE);
{
/*
* We use uint64_t rather than vm_paddr_t since we
* need 64 bit addresses even on 32 bit platforms.
*/
uint64_t paddr = vtophys(sc->csb_gh);
/* CSB allocation protocol: write to BAH first, then
* to BAL (for both GH and HG sections). */
bus_write_4(sc->iomem, PTNET_IO_CSB_GH_BAH,
(paddr >> 32) & 0xffffffff);
bus_write_4(sc->iomem, PTNET_IO_CSB_GH_BAL,
paddr & 0xffffffff);
paddr = vtophys(sc->csb_hg);
bus_write_4(sc->iomem, PTNET_IO_CSB_HG_BAH,
(paddr >> 32) & 0xffffffff);
bus_write_4(sc->iomem, PTNET_IO_CSB_HG_BAL,
paddr & 0xffffffff);
}
/* Allocate and initialize per-queue data structures. */
sc->queues = malloc(sizeof(struct ptnet_queue) * sc->num_rings,
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->queues == NULL) {
err = ENOMEM;
goto err_path;
}
sc->rxqueues = sc->queues + num_tx_rings;
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_queue *pq = sc->queues + i;
pq->sc = sc;
pq->kring_id = i;
pq->kick = PTNET_IO_KICK_BASE + 4 * i;
pq->ptgh = sc->csb_gh + i;
pq->pthg = sc->csb_hg + i;
snprintf(pq->lock_name, sizeof(pq->lock_name), "%s-%d",
device_get_nameunit(dev), i);
mtx_init(&pq->lock, pq->lock_name, NULL, MTX_DEF);
if (i >= num_tx_rings) {
/* RX queue: fix kring_id. */
pq->kring_id -= num_tx_rings;
} else {
/* TX queue: allocate buf_ring. */
pq->bufring = buf_ring_alloc(PTNET_BUF_RING_SIZE,
M_DEVBUF, M_NOWAIT, &pq->lock);
if (pq->bufring == NULL) {
err = ENOMEM;
goto err_path;
}
}
}
sc->min_tx_space = 64; /* Safe initial value. */
err = ptnet_irqs_init(sc);
if (err) {
goto err_path;
}
/* Setup Ethernet interface. */
sc->ifp = ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "Failed to allocate ifnet\n");
err = ENOMEM;
goto err_path;
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_baudrate = IF_Gbps(10);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX;
ifp->if_init = ptnet_init;
ifp->if_ioctl = ptnet_ioctl;
#if __FreeBSD_version >= 1100000
ifp->if_get_counter = ptnet_get_counter;
#endif
ifp->if_transmit = ptnet_transmit;
ifp->if_qflush = ptnet_qflush;
ifmedia_init(&sc->media, IFM_IMASK, ptnet_media_change,
ptnet_media_status);
ifmedia_add(&sc->media, IFM_ETHER | IFM_10G_T | IFM_FDX, 0, NULL);
ifmedia_set(&sc->media, IFM_ETHER | IFM_10G_T | IFM_FDX);
macreg = bus_read_4(sc->iomem, PTNET_IO_MAC_HI);
sc->hwaddr[0] = (macreg >> 8) & 0xff;
sc->hwaddr[1] = macreg & 0xff;
macreg = bus_read_4(sc->iomem, PTNET_IO_MAC_LO);
sc->hwaddr[2] = (macreg >> 24) & 0xff;
sc->hwaddr[3] = (macreg >> 16) & 0xff;
sc->hwaddr[4] = (macreg >> 8) & 0xff;
sc->hwaddr[5] = macreg & 0xff;
ether_ifattach(ifp, sc->hwaddr);
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU;
if (sc->ptfeatures & PTNETMAP_F_VNET_HDR) {
/* Similarly to what the vtnet driver does, we can emulate
* VLAN offloadings by inserting and removing the 802.1Q
* header during transmit and receive. We are then able
* to do checksum offloading of VLAN frames. */
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6
| IFCAP_VLAN_HWCSUM
| IFCAP_TSO | IFCAP_LRO
| IFCAP_VLAN_HWTSO
| IFCAP_VLAN_HWTAGGING;
}
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
/* Don't enable polling by default. */
ifp->if_capabilities |= IFCAP_POLLING;
#endif
snprintf(sc->lock_name, sizeof(sc->lock_name),
"%s", device_get_nameunit(dev));
mtx_init(&sc->lock, sc->lock_name, "ptnet core lock", MTX_DEF);
callout_init_mtx(&sc->tick, &sc->lock, 0);
/* Prepare a netmap_adapter struct instance to do netmap_attach(). */
nifp_offset = bus_read_4(sc->iomem, PTNET_IO_NIFP_OFS);
memset(&na_arg, 0, sizeof(na_arg));
na_arg.ifp = ifp;
na_arg.num_tx_desc = bus_read_4(sc->iomem, PTNET_IO_NUM_TX_SLOTS);
na_arg.num_rx_desc = bus_read_4(sc->iomem, PTNET_IO_NUM_RX_SLOTS);
na_arg.num_tx_rings = num_tx_rings;
na_arg.num_rx_rings = num_rx_rings;
na_arg.nm_config = ptnet_nm_config;
na_arg.nm_krings_create = ptnet_nm_krings_create;
na_arg.nm_krings_delete = ptnet_nm_krings_delete;
na_arg.nm_dtor = ptnet_nm_dtor;
na_arg.nm_intr = ptnet_nm_intr;
na_arg.nm_register = ptnet_nm_register;
na_arg.nm_txsync = ptnet_nm_txsync;
na_arg.nm_rxsync = ptnet_nm_rxsync;
netmap_pt_guest_attach(&na_arg, nifp_offset,
bus_read_4(sc->iomem, PTNET_IO_HOSTMEMID));
/* Now a netmap adapter for this ifp has been allocated, and it
* can be accessed through NA(ifp). We also have to initialize the CSB
* pointer. */
sc->ptna = (struct netmap_pt_guest_adapter *)NA(ifp);
/* If virtio-net header was negotiated, set the virt_hdr_len field in
* the netmap adapter, to inform users that this netmap adapter requires
* the application to deal with the headers. */
ptnet_update_vnet_hdr(sc);
device_printf(dev, "%s() completed\n", __func__);
return (0);
err_path:
ptnet_detach(dev);
return err;
}
static int
ptnet_detach(device_t dev)
{
struct ptnet_softc *sc = device_get_softc(dev);
int i;
#ifdef DEVICE_POLLING
if (sc->ifp->if_capenable & IFCAP_POLLING) {
ether_poll_deregister(sc->ifp);
}
#endif
callout_drain(&sc->tick);
if (sc->queues) {
/* Drain taskqueues before calling if_detach. */
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_queue *pq = sc->queues + i;
if (pq->taskq) {
taskqueue_drain(pq->taskq, &pq->task);
}
}
}
if (sc->ifp) {
ether_ifdetach(sc->ifp);
/* Uninitialize netmap adapters for this device. */
netmap_detach(sc->ifp);
ifmedia_removeall(&sc->media);
if_free(sc->ifp);
sc->ifp = NULL;
}
ptnet_irqs_fini(sc);
if (sc->csb_gh) {
bus_write_4(sc->iomem, PTNET_IO_CSB_GH_BAH, 0);
bus_write_4(sc->iomem, PTNET_IO_CSB_GH_BAL, 0);
bus_write_4(sc->iomem, PTNET_IO_CSB_HG_BAH, 0);
bus_write_4(sc->iomem, PTNET_IO_CSB_HG_BAL, 0);
contigfree(sc->csb_gh, 2*PAGE_SIZE, M_DEVBUF);
sc->csb_gh = NULL;
sc->csb_hg = NULL;
}
if (sc->queues) {
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_queue *pq = sc->queues + i;
if (mtx_initialized(&pq->lock)) {
mtx_destroy(&pq->lock);
}
if (pq->bufring != NULL) {
buf_ring_free(pq->bufring, M_DEVBUF);
}
}
free(sc->queues, M_DEVBUF);
sc->queues = NULL;
}
if (sc->iomem) {
bus_release_resource(dev, SYS_RES_IOPORT,
PCIR_BAR(PTNETMAP_IO_PCI_BAR), sc->iomem);
sc->iomem = NULL;
}
mtx_destroy(&sc->lock);
device_printf(dev, "%s() completed\n", __func__);
return (0);
}
static int
ptnet_suspend(device_t dev)
{
struct ptnet_softc *sc;
sc = device_get_softc(dev);
(void)sc;
return (0);
}
static int
ptnet_resume(device_t dev)
{
struct ptnet_softc *sc;
sc = device_get_softc(dev);
(void)sc;
return (0);
}
static int
ptnet_shutdown(device_t dev)
{
/*
* Suspend already does all of what we need to
* do here; we just never expect to be resumed.
*/
return (ptnet_suspend(dev));
}
static int
ptnet_irqs_init(struct ptnet_softc *sc)
{
int rid = PCIR_BAR(PTNETMAP_MSIX_PCI_BAR);
int nvecs = sc->num_rings;
device_t dev = sc->dev;
int err = ENOSPC;
int cpu_cur;
int i;
if (pci_find_cap(dev, PCIY_MSIX, NULL) != 0) {
device_printf(dev, "Could not find MSI-X capability\n");
return (ENXIO);
}
sc->msix_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (sc->msix_mem == NULL) {
device_printf(dev, "Failed to allocate MSIX PCI BAR\n");
return (ENXIO);
}
if (pci_msix_count(dev) < nvecs) {
device_printf(dev, "Not enough MSI-X vectors\n");
goto err_path;
}
err = pci_alloc_msix(dev, &nvecs);
if (err) {
device_printf(dev, "Failed to allocate MSI-X vectors\n");
goto err_path;
}
for (i = 0; i < nvecs; i++) {
struct ptnet_queue *pq = sc->queues + i;
rid = i + 1;
pq->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (pq->irq == NULL) {
device_printf(dev, "Failed to allocate interrupt "
"for queue #%d\n", i);
err = ENOSPC;
goto err_path;
}
}
cpu_cur = CPU_FIRST();
for (i = 0; i < nvecs; i++) {
struct ptnet_queue *pq = sc->queues + i;
void (*handler)(void *) = ptnet_tx_intr;
if (i >= sc->num_tx_rings) {
handler = ptnet_rx_intr;
}
err = bus_setup_intr(dev, pq->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL /* intr_filter */, handler,
pq, &pq->cookie);
if (err) {
device_printf(dev, "Failed to register intr handler "
"for queue #%d\n", i);
goto err_path;
}
bus_describe_intr(dev, pq->irq, pq->cookie, "q%d", i);
#if 0
bus_bind_intr(sc->dev, pq->irq, cpu_cur);
#endif
cpu_cur = CPU_NEXT(cpu_cur);
}
device_printf(dev, "Allocated %d MSI-X vectors\n", nvecs);
cpu_cur = CPU_FIRST();
for (i = 0; i < nvecs; i++) {
struct ptnet_queue *pq = sc->queues + i;
static void (*handler)(void *context, int pending);
handler = (i < sc->num_tx_rings) ? ptnet_tx_task : ptnet_rx_task;
TASK_INIT(&pq->task, 0, handler, pq);
pq->taskq = taskqueue_create_fast("ptnet_queue", M_NOWAIT,
taskqueue_thread_enqueue, &pq->taskq);
taskqueue_start_threads(&pq->taskq, 1, PI_NET, "%s-pq-%d",
device_get_nameunit(sc->dev), cpu_cur);
cpu_cur = CPU_NEXT(cpu_cur);
}
return 0;
err_path:
ptnet_irqs_fini(sc);
return err;
}
static void
ptnet_irqs_fini(struct ptnet_softc *sc)
{
device_t dev = sc->dev;
int i;
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_queue *pq = sc->queues + i;
if (pq->taskq) {
taskqueue_free(pq->taskq);
pq->taskq = NULL;
}
if (pq->cookie) {
bus_teardown_intr(dev, pq->irq, pq->cookie);
pq->cookie = NULL;
}
if (pq->irq) {
bus_release_resource(dev, SYS_RES_IRQ, i + 1, pq->irq);
pq->irq = NULL;
}
}
if (sc->msix_mem) {
pci_release_msi(dev);
bus_release_resource(dev, SYS_RES_MEMORY,
PCIR_BAR(PTNETMAP_MSIX_PCI_BAR),
sc->msix_mem);
sc->msix_mem = NULL;
}
}
static void
ptnet_init(void *opaque)
{
struct ptnet_softc *sc = opaque;
PTNET_CORE_LOCK(sc);
ptnet_init_locked(sc);
PTNET_CORE_UNLOCK(sc);
}
static int
ptnet_ioctl(if_t ifp, u_long cmd, caddr_t data)
{
struct ptnet_softc *sc = if_getsoftc(ifp);
device_t dev = sc->dev;
struct ifreq *ifr = (struct ifreq *)data;
int mask __unused, err = 0;
switch (cmd) {
case SIOCSIFFLAGS:
device_printf(dev, "SIOCSIFFLAGS %x\n", ifp->if_flags);
PTNET_CORE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
/* Network stack wants the iff to be up. */
err = ptnet_init_locked(sc);
} else {
/* Network stack wants the iff to be down. */
err = ptnet_stop(sc);
}
/* We don't need to do nothing to support IFF_PROMISC,
* since that is managed by the backend port. */
PTNET_CORE_UNLOCK(sc);
break;
case SIOCSIFCAP:
device_printf(dev, "SIOCSIFCAP %x %x\n",
ifr->ifr_reqcap, ifp->if_capenable);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
struct ptnet_queue *pq;
int i;
if (ifr->ifr_reqcap & IFCAP_POLLING) {
err = ether_poll_register(ptnet_poll, ifp);
if (err) {
break;
}
/* Stop queues and sync with taskqueues. */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
for (i = 0; i < sc->num_rings; i++) {
pq = sc-> queues + i;
/* Make sure the worker sees the
* IFF_DRV_RUNNING down. */
PTNET_Q_LOCK(pq);
pq->ptgh->guest_need_kick = 0;
PTNET_Q_UNLOCK(pq);
/* Wait for rescheduling to finish. */
if (pq->taskq) {
taskqueue_drain(pq->taskq,
&pq->task);
}
}
ifp->if_drv_flags |= IFF_DRV_RUNNING;
} else {
err = ether_poll_deregister(ifp);
for (i = 0; i < sc->num_rings; i++) {
pq = sc-> queues + i;
PTNET_Q_LOCK(pq);
pq->ptgh->guest_need_kick = 1;
PTNET_Q_UNLOCK(pq);
}
}
}
#endif /* DEVICE_POLLING */
ifp->if_capenable = ifr->ifr_reqcap;
break;
case SIOCSIFMTU:
/* We support any reasonable MTU. */
if (ifr->ifr_mtu < ETHERMIN ||
ifr->ifr_mtu > PTNET_MAX_PKT_SIZE) {
err = EINVAL;
} else {
PTNET_CORE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
PTNET_CORE_UNLOCK(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
err = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
break;
default:
err = ether_ioctl(ifp, cmd, data);
break;
}
return err;
}
static int
ptnet_init_locked(struct ptnet_softc *sc)
{
if_t ifp = sc->ifp;
struct netmap_adapter *na_dr = &sc->ptna->dr.up;
struct netmap_adapter *na_nm = &sc->ptna->hwup.up;
unsigned int nm_buf_size;
int ret;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
return 0; /* nothing to do */
}
device_printf(sc->dev, "%s\n", __func__);
/* Translate offload capabilities according to if_capenable. */
ifp->if_hwassist = 0;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist |= PTNET_CSUM_OFFLOAD;
if (ifp->if_capenable & IFCAP_TXCSUM_IPV6)
ifp->if_hwassist |= PTNET_CSUM_OFFLOAD_IPV6;
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= CSUM_IP_TSO;
if (ifp->if_capenable & IFCAP_TSO6)
ifp->if_hwassist |= CSUM_IP6_TSO;
/*
* Prepare the interface for netmap mode access.
*/
netmap_update_config(na_dr);
ret = netmap_mem_finalize(na_dr->nm_mem, na_dr);
if (ret) {
device_printf(sc->dev, "netmap_mem_finalize() failed\n");
return ret;
}
if (sc->ptna->backend_regifs == 0) {
ret = ptnet_nm_krings_create(na_nm);
if (ret) {
device_printf(sc->dev, "ptnet_nm_krings_create() "
"failed\n");
goto err_mem_finalize;
}
ret = netmap_mem_rings_create(na_dr);
if (ret) {
device_printf(sc->dev, "netmap_mem_rings_create() "
"failed\n");
goto err_rings_create;
}
ret = netmap_mem_get_lut(na_dr->nm_mem, &na_dr->na_lut);
if (ret) {
device_printf(sc->dev, "netmap_mem_get_lut() "
"failed\n");
goto err_get_lut;
}
}
ret = ptnet_nm_register(na_dr, 1 /* on */);
if (ret) {
goto err_register;
}
nm_buf_size = NETMAP_BUF_SIZE(na_dr);
KASSERT(nm_buf_size > 0, ("Invalid netmap buffer size"));
sc->min_tx_space = PTNET_MAX_PKT_SIZE / nm_buf_size + 2;
device_printf(sc->dev, "%s: min_tx_space = %u\n", __func__,
sc->min_tx_space);
#ifdef PTNETMAP_STATS
callout_reset(&sc->tick, hz, ptnet_tick, sc);
#endif
ifp->if_drv_flags |= IFF_DRV_RUNNING;
return 0;
err_register:
memset(&na_dr->na_lut, 0, sizeof(na_dr->na_lut));
err_get_lut:
netmap_mem_rings_delete(na_dr);
err_rings_create:
ptnet_nm_krings_delete(na_nm);
err_mem_finalize:
netmap_mem_deref(na_dr->nm_mem, na_dr);
return ret;
}
/* To be called under core lock. */
static int
ptnet_stop(struct ptnet_softc *sc)
{
if_t ifp = sc->ifp;
struct netmap_adapter *na_dr = &sc->ptna->dr.up;
struct netmap_adapter *na_nm = &sc->ptna->hwup.up;
int i;
device_printf(sc->dev, "%s\n", __func__);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
return 0; /* nothing to do */
}
/* Clear the driver-ready flag, and synchronize with all the queues,
* so that after this loop we are sure nobody is working anymore with
* the device. This scheme is taken from the vtnet driver. */
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
callout_stop(&sc->tick);
for (i = 0; i < sc->num_rings; i++) {
PTNET_Q_LOCK(sc->queues + i);
PTNET_Q_UNLOCK(sc->queues + i);
}
ptnet_nm_register(na_dr, 0 /* off */);
if (sc->ptna->backend_regifs == 0) {
netmap_mem_rings_delete(na_dr);
ptnet_nm_krings_delete(na_nm);
}
netmap_mem_deref(na_dr->nm_mem, na_dr);
return 0;
}
static void
ptnet_qflush(if_t ifp)
{
struct ptnet_softc *sc = if_getsoftc(ifp);
int i;
/* Flush all the bufrings and do the interface flush. */
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_queue *pq = sc->queues + i;
struct mbuf *m;
PTNET_Q_LOCK(pq);
if (pq->bufring) {
while ((m = buf_ring_dequeue_sc(pq->bufring))) {
m_freem(m);
}
}
PTNET_Q_UNLOCK(pq);
}
if_qflush(ifp);
}
static int
ptnet_media_change(if_t ifp)
{
struct ptnet_softc *sc = if_getsoftc(ifp);
struct ifmedia *ifm = &sc->media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
return EINVAL;
}
return 0;
}
#if __FreeBSD_version >= 1100000
static uint64_t
ptnet_get_counter(if_t ifp, ift_counter cnt)
{
struct ptnet_softc *sc = if_getsoftc(ifp);
struct ptnet_queue_stats stats[2];
int i;
/* Accumulate statistics over the queues. */
memset(stats, 0, sizeof(stats));
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_queue *pq = sc->queues + i;
int idx = (i < sc->num_tx_rings) ? 0 : 1;
stats[idx].packets += pq->stats.packets;
stats[idx].bytes += pq->stats.bytes;
stats[idx].errors += pq->stats.errors;
stats[idx].iqdrops += pq->stats.iqdrops;
stats[idx].mcasts += pq->stats.mcasts;
}
switch (cnt) {
case IFCOUNTER_IPACKETS:
return (stats[1].packets);
case IFCOUNTER_IQDROPS:
return (stats[1].iqdrops);
case IFCOUNTER_IERRORS:
return (stats[1].errors);
case IFCOUNTER_OPACKETS:
return (stats[0].packets);
case IFCOUNTER_OBYTES:
return (stats[0].bytes);
case IFCOUNTER_OMCASTS:
return (stats[0].mcasts);
default:
return (if_get_counter_default(ifp, cnt));
}
}
#endif
#ifdef PTNETMAP_STATS
/* Called under core lock. */
static void
ptnet_tick(void *opaque)
{
struct ptnet_softc *sc = opaque;
int i;
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_queue *pq = sc->queues + i;
struct ptnet_queue_stats cur = pq->stats;
struct timeval now;
unsigned int delta;
microtime(&now);
delta = now.tv_usec - sc->last_ts.tv_usec +
(now.tv_sec - sc->last_ts.tv_sec) * 1000000;
delta /= 1000; /* in milliseconds */
if (delta == 0)
continue;
device_printf(sc->dev, "#%d[%u ms]:pkts %lu, kicks %lu, "
"intr %lu\n", i, delta,
(cur.packets - pq->last_stats.packets),
(cur.kicks - pq->last_stats.kicks),
(cur.intrs - pq->last_stats.intrs));
pq->last_stats = cur;
}
microtime(&sc->last_ts);
callout_schedule(&sc->tick, hz);
}
#endif /* PTNETMAP_STATS */
static void
ptnet_media_status(if_t ifp, struct ifmediareq *ifmr)
{
/* We are always active, as the backend netmap port is
* always open in netmap mode. */
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
ifmr->ifm_active = IFM_ETHER | IFM_10G_T | IFM_FDX;
}
static uint32_t
ptnet_nm_ptctl(if_t ifp, uint32_t cmd)
{
struct ptnet_softc *sc = if_getsoftc(ifp);
/*
* Write a command and read back error status,
* with zero meaning success.
*/
bus_write_4(sc->iomem, PTNET_IO_PTCTL, cmd);
return bus_read_4(sc->iomem, PTNET_IO_PTCTL);
}
static int
ptnet_nm_config(struct netmap_adapter *na, struct nm_config_info *info)
{
struct ptnet_softc *sc = if_getsoftc(na->ifp);
info->num_tx_rings = bus_read_4(sc->iomem, PTNET_IO_NUM_TX_RINGS);
info->num_rx_rings = bus_read_4(sc->iomem, PTNET_IO_NUM_RX_RINGS);
info->num_tx_descs = bus_read_4(sc->iomem, PTNET_IO_NUM_TX_SLOTS);
info->num_rx_descs = bus_read_4(sc->iomem, PTNET_IO_NUM_RX_SLOTS);
info->rx_buf_maxsize = NETMAP_BUF_SIZE(na);
device_printf(sc->dev, "txr %u, rxr %u, txd %u, rxd %u, rxbufsz %u\n",
info->num_tx_rings, info->num_rx_rings,
info->num_tx_descs, info->num_rx_descs,
info->rx_buf_maxsize);
return 0;
}
static void
ptnet_sync_from_csb(struct ptnet_softc *sc, struct netmap_adapter *na)
{
int i;
/* Sync krings from the host, reading from
* CSB. */
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_csb_gh *ptgh = sc->queues[i].ptgh;
struct ptnet_csb_hg *pthg = sc->queues[i].pthg;
struct netmap_kring *kring;
if (i < na->num_tx_rings) {
kring = na->tx_rings[i];
} else {
kring = na->rx_rings[i - na->num_tx_rings];
}
kring->rhead = kring->ring->head = ptgh->head;
kring->rcur = kring->ring->cur = ptgh->cur;
kring->nr_hwcur = pthg->hwcur;
kring->nr_hwtail = kring->rtail =
kring->ring->tail = pthg->hwtail;
ND("%d,%d: csb {hc %u h %u c %u ht %u}", t, i,
pthg->hwcur, ptgh->head, ptgh->cur,
pthg->hwtail);
ND("%d,%d: kring {hc %u rh %u rc %u h %u c %u ht %u rt %u t %u}",
t, i, kring->nr_hwcur, kring->rhead, kring->rcur,
kring->ring->head, kring->ring->cur, kring->nr_hwtail,
kring->rtail, kring->ring->tail);
}
}
static void
ptnet_update_vnet_hdr(struct ptnet_softc *sc)
{
unsigned int wanted_hdr_len = ptnet_vnet_hdr ? PTNET_HDR_SIZE : 0;
bus_write_4(sc->iomem, PTNET_IO_VNET_HDR_LEN, wanted_hdr_len);
sc->vnet_hdr_len = bus_read_4(sc->iomem, PTNET_IO_VNET_HDR_LEN);
sc->ptna->hwup.up.virt_hdr_len = sc->vnet_hdr_len;
}
static int
ptnet_nm_register(struct netmap_adapter *na, int onoff)
{
/* device-specific */
if_t ifp = na->ifp;
struct ptnet_softc *sc = if_getsoftc(ifp);
int native = (na == &sc->ptna->hwup.up);
struct ptnet_queue *pq;
enum txrx t;
int ret = 0;
int i;
if (!onoff) {
sc->ptna->backend_regifs--;
}
/* If this is the last netmap client, guest interrupt enable flags may
* be in arbitrary state. Since these flags are going to be used also
* by the netdevice driver, we have to make sure to start with
* notifications enabled. Also, schedule NAPI to flush pending packets
* in the RX rings, since we will not receive further interrupts
* until these will be processed. */
if (native && !onoff && na->active_fds == 0) {
D("Exit netmap mode, re-enable interrupts");
for (i = 0; i < sc->num_rings; i++) {
pq = sc->queues + i;
pq->ptgh->guest_need_kick = 1;
}
}
if (onoff) {
if (sc->ptna->backend_regifs == 0) {
/* Initialize notification enable fields in the CSB. */
for (i = 0; i < sc->num_rings; i++) {
pq = sc->queues + i;
pq->pthg->host_need_kick = 1;
pq->ptgh->guest_need_kick =
(!(ifp->if_capenable & IFCAP_POLLING)
&& i >= sc->num_tx_rings);
}
/* Set the virtio-net header length. */
ptnet_update_vnet_hdr(sc);
/* Make sure the host adapter passed through is ready
* for txsync/rxsync. */
ret = ptnet_nm_ptctl(ifp, PTNETMAP_PTCTL_CREATE);
if (ret) {
return ret;
}
}
/* Sync from CSB must be done after REGIF PTCTL. Skip this
* step only if this is a netmap client and it is not the
* first one. */
if ((!native && sc->ptna->backend_regifs == 0) ||
(native && na->active_fds == 0)) {
ptnet_sync_from_csb(sc, na);
}
/* If not native, don't call nm_set_native_flags, since we don't want
* to replace if_transmit method, nor set NAF_NETMAP_ON */
if (native) {
for_rx_tx(t) {
for (i = 0; i <= nma_get_nrings(na, t); i++) {
struct netmap_kring *kring = NMR(na, t)[i];
if (nm_kring_pending_on(kring)) {
kring->nr_mode = NKR_NETMAP_ON;
}
}
}
nm_set_native_flags(na);
}
} else {
if (native) {
nm_clear_native_flags(na);
for_rx_tx(t) {
for (i = 0; i <= nma_get_nrings(na, t); i++) {
struct netmap_kring *kring = NMR(na, t)[i];
if (nm_kring_pending_off(kring)) {
kring->nr_mode = NKR_NETMAP_OFF;
}
}
}
}
/* Sync from CSB must be done before UNREGIF PTCTL, on the last
* netmap client. */
if (native && na->active_fds == 0) {
ptnet_sync_from_csb(sc, na);
}
if (sc->ptna->backend_regifs == 0) {
ret = ptnet_nm_ptctl(ifp, PTNETMAP_PTCTL_DELETE);
}
}
if (onoff) {
sc->ptna->backend_regifs++;
}
return ret;
}
static int
ptnet_nm_txsync(struct netmap_kring *kring, int flags)
{
struct ptnet_softc *sc = if_getsoftc(kring->na->ifp);
struct ptnet_queue *pq = sc->queues + kring->ring_id;
bool notify;
notify = netmap_pt_guest_txsync(pq->ptgh, pq->pthg, kring, flags);
if (notify) {
ptnet_kick(pq);
}
return 0;
}
static int
ptnet_nm_rxsync(struct netmap_kring *kring, int flags)
{
struct ptnet_softc *sc = if_getsoftc(kring->na->ifp);
struct ptnet_queue *pq = sc->rxqueues + kring->ring_id;
bool notify;
notify = netmap_pt_guest_rxsync(pq->ptgh, pq->pthg, kring, flags);
if (notify) {
ptnet_kick(pq);
}
return 0;
}
static void
ptnet_nm_intr(struct netmap_adapter *na, int onoff)
{
struct ptnet_softc *sc = if_getsoftc(na->ifp);
int i;
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_queue *pq = sc->queues + i;
pq->ptgh->guest_need_kick = onoff;
}
}
static void
ptnet_tx_intr(void *opaque)
{
struct ptnet_queue *pq = opaque;
struct ptnet_softc *sc = pq->sc;
DBG(device_printf(sc->dev, "Tx interrupt #%d\n", pq->kring_id));
#ifdef PTNETMAP_STATS
pq->stats.intrs ++;
#endif /* PTNETMAP_STATS */
if (netmap_tx_irq(sc->ifp, pq->kring_id) != NM_IRQ_PASS) {
return;
}
/* Schedule the tasqueue to flush process transmissions requests.
* However, vtnet, if_em and if_igb just call ptnet_transmit() here,
* at least when using MSI-X interrupts. The if_em driver, instead
* schedule taskqueue when using legacy interrupts. */
taskqueue_enqueue(pq->taskq, &pq->task);
}
static void
ptnet_rx_intr(void *opaque)
{
struct ptnet_queue *pq = opaque;
struct ptnet_softc *sc = pq->sc;
unsigned int unused;
DBG(device_printf(sc->dev, "Rx interrupt #%d\n", pq->kring_id));
#ifdef PTNETMAP_STATS
pq->stats.intrs ++;
#endif /* PTNETMAP_STATS */
if (netmap_rx_irq(sc->ifp, pq->kring_id, &unused) != NM_IRQ_PASS) {
return;
}
/* Like vtnet, if_igb and if_em drivers when using MSI-X interrupts,
* receive-side processing is executed directly in the interrupt
* service routine. Alternatively, we may schedule the taskqueue. */
ptnet_rx_eof(pq, PTNET_RX_BUDGET, true);
}
/* The following offloadings-related functions are taken from the vtnet
* driver, but the same functionality is required for the ptnet driver.
* As a temporary solution, I copied this code from vtnet and I started
* to generalize it (taking away driver-specific statistic accounting),
* making as little modifications as possible.
* In the future we need to share these functions between vtnet and ptnet.
*/
static int
ptnet_tx_offload_ctx(struct mbuf *m, int *etype, int *proto, int *start)
{
struct ether_vlan_header *evh;
int offset;
evh = mtod(m, struct ether_vlan_header *);
if (evh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
/* BMV: We should handle nested VLAN tags too. */
*etype = ntohs(evh->evl_proto);
offset = sizeof(struct ether_vlan_header);
} else {
*etype = ntohs(evh->evl_encap_proto);
offset = sizeof(struct ether_header);
}
switch (*etype) {
#if defined(INET)
case ETHERTYPE_IP: {
struct ip *ip, iphdr;
if (__predict_false(m->m_len < offset + sizeof(struct ip))) {
m_copydata(m, offset, sizeof(struct ip),
(caddr_t) &iphdr);
ip = &iphdr;
} else
ip = (struct ip *)(m->m_data + offset);
*proto = ip->ip_p;
*start = offset + (ip->ip_hl << 2);
break;
}
#endif
#if defined(INET6)
case ETHERTYPE_IPV6:
*proto = -1;
*start = ip6_lasthdr(m, offset, IPPROTO_IPV6, proto);
/* Assert the network stack sent us a valid packet. */
KASSERT(*start > offset,
("%s: mbuf %p start %d offset %d proto %d", __func__, m,
*start, offset, *proto));
break;
#endif
default:
/* Here we should increment the tx_csum_bad_ethtype counter. */
return (EINVAL);
}
return (0);
}
static int
ptnet_tx_offload_tso(if_t ifp, struct mbuf *m, int eth_type,
int offset, bool allow_ecn, struct virtio_net_hdr *hdr)
{
static struct timeval lastecn;
static int curecn;
struct tcphdr *tcp, tcphdr;
if (__predict_false(m->m_len < offset + sizeof(struct tcphdr))) {
m_copydata(m, offset, sizeof(struct tcphdr), (caddr_t) &tcphdr);
tcp = &tcphdr;
} else
tcp = (struct tcphdr *)(m->m_data + offset);
hdr->hdr_len = offset + (tcp->th_off << 2);
hdr->gso_size = m->m_pkthdr.tso_segsz;
hdr->gso_type = eth_type == ETHERTYPE_IP ? VIRTIO_NET_HDR_GSO_TCPV4 :
VIRTIO_NET_HDR_GSO_TCPV6;
if (tcp->th_flags & TH_CWR) {
/*
* Drop if VIRTIO_NET_F_HOST_ECN was not negotiated. In FreeBSD,
* ECN support is not on a per-interface basis, but globally via
* the net.inet.tcp.ecn.enable sysctl knob. The default is off.
*/
if (!allow_ecn) {
if (ppsratecheck(&lastecn, &curecn, 1))
if_printf(ifp,
"TSO with ECN not negotiated with host\n");
return (ENOTSUP);
}
hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN;
}
/* Here we should increment tx_tso counter. */
return (0);
}
static struct mbuf *
ptnet_tx_offload(if_t ifp, struct mbuf *m, bool allow_ecn,
struct virtio_net_hdr *hdr)
{
int flags, etype, csum_start, proto, error;
flags = m->m_pkthdr.csum_flags;
error = ptnet_tx_offload_ctx(m, &etype, &proto, &csum_start);
if (error)
goto drop;
if ((etype == ETHERTYPE_IP && flags & PTNET_CSUM_OFFLOAD) ||
(etype == ETHERTYPE_IPV6 && flags & PTNET_CSUM_OFFLOAD_IPV6)) {
/*
* We could compare the IP protocol vs the CSUM_ flag too,
* but that really should not be necessary.
*/
hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM;
hdr->csum_start = csum_start;
hdr->csum_offset = m->m_pkthdr.csum_data;
/* Here we should increment the tx_csum counter. */
}
if (flags & CSUM_TSO) {
if (__predict_false(proto != IPPROTO_TCP)) {
/* Likely failed to correctly parse the mbuf.
* Here we should increment the tx_tso_not_tcp
* counter. */
goto drop;
}
KASSERT(hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM,
("%s: mbuf %p TSO without checksum offload %#x",
__func__, m, flags));
error = ptnet_tx_offload_tso(ifp, m, etype, csum_start,
allow_ecn, hdr);
if (error)
goto drop;
}
return (m);
drop:
m_freem(m);
return (NULL);
}
static void
ptnet_vlan_tag_remove(struct mbuf *m)
{
struct ether_vlan_header *evh;
evh = mtod(m, struct ether_vlan_header *);
m->m_pkthdr.ether_vtag = ntohs(evh->evl_tag);
m->m_flags |= M_VLANTAG;
/* Strip the 802.1Q header. */
bcopy((char *) evh, (char *) evh + ETHER_VLAN_ENCAP_LEN,
ETHER_HDR_LEN - ETHER_TYPE_LEN);
m_adj(m, ETHER_VLAN_ENCAP_LEN);
}
/*
* Use the checksum offset in the VirtIO header to set the
* correct CSUM_* flags.
*/
static int
ptnet_rx_csum_by_offset(struct mbuf *m, uint16_t eth_type, int ip_start,
struct virtio_net_hdr *hdr)
{
#if defined(INET) || defined(INET6)
int offset = hdr->csum_start + hdr->csum_offset;
#endif
/* Only do a basic sanity check on the offset. */
switch (eth_type) {
#if defined(INET)
case ETHERTYPE_IP:
if (__predict_false(offset < ip_start + sizeof(struct ip)))
return (1);
break;
#endif
#if defined(INET6)
case ETHERTYPE_IPV6:
if (__predict_false(offset < ip_start + sizeof(struct ip6_hdr)))
return (1);
break;
#endif
default:
/* Here we should increment the rx_csum_bad_ethtype counter. */
return (1);
}
/*
* Use the offset to determine the appropriate CSUM_* flags. This is
* a bit dirty, but we can get by with it since the checksum offsets
* happen to be different. We assume the host host does not do IPv4
* header checksum offloading.
*/
switch (hdr->csum_offset) {
case offsetof(struct udphdr, uh_sum):
case offsetof(struct tcphdr, th_sum):
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
break;
case offsetof(struct sctphdr, checksum):
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
break;
default:
/* Here we should increment the rx_csum_bad_offset counter. */
return (1);
}
return (0);
}
static int
ptnet_rx_csum_by_parse(struct mbuf *m, uint16_t eth_type, int ip_start,
struct virtio_net_hdr *hdr)
{
int offset, proto;
switch (eth_type) {
#if defined(INET)
case ETHERTYPE_IP: {
struct ip *ip;
if (__predict_false(m->m_len < ip_start + sizeof(struct ip)))
return (1);
ip = (struct ip *)(m->m_data + ip_start);
proto = ip->ip_p;
offset = ip_start + (ip->ip_hl << 2);
break;
}
#endif
#if defined(INET6)
case ETHERTYPE_IPV6:
if (__predict_false(m->m_len < ip_start +
sizeof(struct ip6_hdr)))
return (1);
offset = ip6_lasthdr(m, ip_start, IPPROTO_IPV6, &proto);
if (__predict_false(offset < 0))
return (1);
break;
#endif
default:
/* Here we should increment the rx_csum_bad_ethtype counter. */
return (1);
}
switch (proto) {
case IPPROTO_TCP:
if (__predict_false(m->m_len < offset + sizeof(struct tcphdr)))
return (1);
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
break;
case IPPROTO_UDP:
if (__predict_false(m->m_len < offset + sizeof(struct udphdr)))
return (1);
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
break;
case IPPROTO_SCTP:
if (__predict_false(m->m_len < offset + sizeof(struct sctphdr)))
return (1);
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
break;
default:
/*
* For the remaining protocols, FreeBSD does not support
* checksum offloading, so the checksum will be recomputed.
*/
#if 0
if_printf(ifp, "cksum offload of unsupported "
"protocol eth_type=%#x proto=%d csum_start=%d "
"csum_offset=%d\n", __func__, eth_type, proto,
hdr->csum_start, hdr->csum_offset);
#endif
break;
}
return (0);
}
/*
* Set the appropriate CSUM_* flags. Unfortunately, the information
* provided is not directly useful to us. The VirtIO header gives the
* offset of the checksum, which is all Linux needs, but this is not
* how FreeBSD does things. We are forced to peek inside the packet
* a bit.
*
* It would be nice if VirtIO gave us the L4 protocol or if FreeBSD
* could accept the offsets and let the stack figure it out.
*/
static int
ptnet_rx_csum(struct mbuf *m, struct virtio_net_hdr *hdr)
{
struct ether_header *eh;
struct ether_vlan_header *evh;
uint16_t eth_type;
int offset, error;
eh = mtod(m, struct ether_header *);
eth_type = ntohs(eh->ether_type);
if (eth_type == ETHERTYPE_VLAN) {
/* BMV: We should handle nested VLAN tags too. */
evh = mtod(m, struct ether_vlan_header *);
eth_type = ntohs(evh->evl_proto);
offset = sizeof(struct ether_vlan_header);
} else
offset = sizeof(struct ether_header);
if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)
error = ptnet_rx_csum_by_offset(m, eth_type, offset, hdr);
else
error = ptnet_rx_csum_by_parse(m, eth_type, offset, hdr);
return (error);
}
/* End of offloading-related functions to be shared with vtnet. */
static inline void
ptnet_sync_tail(struct ptnet_csb_hg *pthg, struct netmap_kring *kring)
{
struct netmap_ring *ring = kring->ring;
/* Update hwcur and hwtail as known by the host. */
ptnetmap_guest_read_kring_csb(pthg, kring);
/* nm_sync_finalize */
ring->tail = kring->rtail = kring->nr_hwtail;
}
static void
ptnet_ring_update(struct ptnet_queue *pq, struct netmap_kring *kring,
unsigned int head, unsigned int sync_flags)
{
struct netmap_ring *ring = kring->ring;
struct ptnet_csb_gh *ptgh = pq->ptgh;
struct ptnet_csb_hg *pthg = pq->pthg;
/* Some packets have been pushed to the netmap ring. We have
* to tell the host to process the new packets, updating cur
* and head in the CSB. */
ring->head = ring->cur = head;
/* Mimic nm_txsync_prologue/nm_rxsync_prologue. */
kring->rcur = kring->rhead = head;
ptnetmap_guest_write_kring_csb(ptgh, kring->rcur, kring->rhead);
/* Kick the host if needed. */
if (NM_ACCESS_ONCE(pthg->host_need_kick)) {
ptgh->sync_flags = sync_flags;
ptnet_kick(pq);
}
}
#define PTNET_TX_NOSPACE(_h, _k, _min) \
((((_h) < (_k)->rtail) ? 0 : (_k)->nkr_num_slots) + \
(_k)->rtail - (_h)) < (_min)
/* This function may be called by the network stack, or by
* by the taskqueue thread. */
static int
ptnet_drain_transmit_queue(struct ptnet_queue *pq, unsigned int budget,
bool may_resched)
{
struct ptnet_softc *sc = pq->sc;
bool have_vnet_hdr = sc->vnet_hdr_len;
struct netmap_adapter *na = &sc->ptna->dr.up;
if_t ifp = sc->ifp;
unsigned int batch_count = 0;
struct ptnet_csb_gh *ptgh;
struct ptnet_csb_hg *pthg;
struct netmap_kring *kring;
struct netmap_ring *ring;
struct netmap_slot *slot;
unsigned int count = 0;
unsigned int minspace;
unsigned int head;
unsigned int lim;
struct mbuf *mhead;
struct mbuf *mf;
int nmbuf_bytes;
uint8_t *nmbuf;
if (!PTNET_Q_TRYLOCK(pq)) {
/* We failed to acquire the lock, schedule the taskqueue. */
RD(1, "Deferring TX work");
if (may_resched) {
taskqueue_enqueue(pq->taskq, &pq->task);
}
return 0;
}
if (unlikely(!(ifp->if_drv_flags & IFF_DRV_RUNNING))) {
PTNET_Q_UNLOCK(pq);
RD(1, "Interface is down");
return ENETDOWN;
}
ptgh = pq->ptgh;
pthg = pq->pthg;
kring = na->tx_rings[pq->kring_id];
ring = kring->ring;
lim = kring->nkr_num_slots - 1;
head = ring->head;
minspace = sc->min_tx_space;
while (count < budget) {
if (PTNET_TX_NOSPACE(head, kring, minspace)) {
/* We ran out of slot, let's see if the host has
* freed up some, by reading hwcur and hwtail from
* the CSB. */
ptnet_sync_tail(pthg, kring);
if (PTNET_TX_NOSPACE(head, kring, minspace)) {
/* Still no slots available. Reactivate the
* interrupts so that we can be notified
* when some free slots are made available by
* the host. */
ptgh->guest_need_kick = 1;
/* Double-check. */
ptnet_sync_tail(pthg, kring);
if (likely(PTNET_TX_NOSPACE(head, kring,
minspace))) {
break;
}
RD(1, "Found more slots by doublecheck");
/* More slots were freed before reactivating
* the interrupts. */
ptgh->guest_need_kick = 0;
}
}
mhead = drbr_peek(ifp, pq->bufring);
if (!mhead) {
break;
}
/* Initialize transmission state variables. */
slot = ring->slot + head;
nmbuf = NMB(na, slot);
nmbuf_bytes = 0;
/* If needed, prepare the virtio-net header at the beginning
* of the first slot. */
if (have_vnet_hdr) {
struct virtio_net_hdr *vh =
(struct virtio_net_hdr *)nmbuf;
/* For performance, we could replace this memset() with
* two 8-bytes-wide writes. */
memset(nmbuf, 0, PTNET_HDR_SIZE);
if (mhead->m_pkthdr.csum_flags & PTNET_ALL_OFFLOAD) {
mhead = ptnet_tx_offload(ifp, mhead, false,
vh);
if (unlikely(!mhead)) {
/* Packet dropped because errors
* occurred while preparing the vnet
* header. Let's go ahead with the next
* packet. */
pq->stats.errors ++;
drbr_advance(ifp, pq->bufring);
continue;
}
}
ND(1, "%s: [csum_flags %lX] vnet hdr: flags %x "
"csum_start %u csum_ofs %u hdr_len = %u "
"gso_size %u gso_type %x", __func__,
mhead->m_pkthdr.csum_flags, vh->flags,
vh->csum_start, vh->csum_offset, vh->hdr_len,
vh->gso_size, vh->gso_type);
nmbuf += PTNET_HDR_SIZE;
nmbuf_bytes += PTNET_HDR_SIZE;
}
for (mf = mhead; mf; mf = mf->m_next) {
uint8_t *mdata = mf->m_data;
int mlen = mf->m_len;
for (;;) {
int copy = NETMAP_BUF_SIZE(na) - nmbuf_bytes;
if (mlen < copy) {
copy = mlen;
}
memcpy(nmbuf, mdata, copy);
mdata += copy;
mlen -= copy;
nmbuf += copy;
nmbuf_bytes += copy;
if (!mlen) {
break;
}
slot->len = nmbuf_bytes;
slot->flags = NS_MOREFRAG;
head = nm_next(head, lim);
KASSERT(head != ring->tail,
("Unexpectedly run out of TX space"));
slot = ring->slot + head;
nmbuf = NMB(na, slot);
nmbuf_bytes = 0;
}
}
/* Complete last slot and update head. */
slot->len = nmbuf_bytes;
slot->flags = 0;
head = nm_next(head, lim);
/* Consume the packet just processed. */
drbr_advance(ifp, pq->bufring);
/* Copy the packet to listeners. */
ETHER_BPF_MTAP(ifp, mhead);
pq->stats.packets ++;
pq->stats.bytes += mhead->m_pkthdr.len;
if (mhead->m_flags & M_MCAST) {
pq->stats.mcasts ++;
}
m_freem(mhead);
count ++;
if (++batch_count == PTNET_TX_BATCH) {
ptnet_ring_update(pq, kring, head, NAF_FORCE_RECLAIM);
batch_count = 0;
}
}
if (batch_count) {
ptnet_ring_update(pq, kring, head, NAF_FORCE_RECLAIM);
}
if (count >= budget && may_resched) {
DBG(RD(1, "out of budget: resched, %d mbufs pending\n",
drbr_inuse(ifp, pq->bufring)));
taskqueue_enqueue(pq->taskq, &pq->task);
}
PTNET_Q_UNLOCK(pq);
return count;
}
static int
ptnet_transmit(if_t ifp, struct mbuf *m)
{
struct ptnet_softc *sc = if_getsoftc(ifp);
struct ptnet_queue *pq;
unsigned int queue_idx;
int err;
DBG(device_printf(sc->dev, "transmit %p\n", m));
/* Insert 802.1Q header if needed. */
if (m->m_flags & M_VLANTAG) {
m = ether_vlanencap(m, m->m_pkthdr.ether_vtag);
if (m == NULL) {
return ENOBUFS;
}
m->m_flags &= ~M_VLANTAG;
}
/* Get the flow-id if available. */
queue_idx = (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) ?
m->m_pkthdr.flowid : curcpu;
if (unlikely(queue_idx >= sc->num_tx_rings)) {
queue_idx %= sc->num_tx_rings;
}
pq = sc->queues + queue_idx;
err = drbr_enqueue(ifp, pq->bufring, m);
if (err) {
/* ENOBUFS when the bufring is full */
RD(1, "%s: drbr_enqueue() failed %d\n",
__func__, err);
pq->stats.errors ++;
return err;
}
if (ifp->if_capenable & IFCAP_POLLING) {
/* If polling is on, the transmit queues will be
* drained by the poller. */
return 0;
}
err = ptnet_drain_transmit_queue(pq, PTNET_TX_BUDGET, true);
return (err < 0) ? err : 0;
}
static unsigned int
ptnet_rx_discard(struct netmap_kring *kring, unsigned int head)
{
struct netmap_ring *ring = kring->ring;
struct netmap_slot *slot = ring->slot + head;
for (;;) {
head = nm_next(head, kring->nkr_num_slots - 1);
if (!(slot->flags & NS_MOREFRAG) || head == ring->tail) {
break;
}
slot = ring->slot + head;
}
return head;
}
static inline struct mbuf *
ptnet_rx_slot(struct mbuf *mtail, uint8_t *nmbuf, unsigned int nmbuf_len)
{
uint8_t *mdata = mtod(mtail, uint8_t *) + mtail->m_len;
do {
unsigned int copy;
if (mtail->m_len == MCLBYTES) {
struct mbuf *mf;
mf = m_getcl(M_NOWAIT, MT_DATA, 0);
if (unlikely(!mf)) {
return NULL;
}
mtail->m_next = mf;
mtail = mf;
mdata = mtod(mtail, uint8_t *);
mtail->m_len = 0;
}
copy = MCLBYTES - mtail->m_len;
if (nmbuf_len < copy) {
copy = nmbuf_len;
}
memcpy(mdata, nmbuf, copy);
nmbuf += copy;
nmbuf_len -= copy;
mdata += copy;
mtail->m_len += copy;
} while (nmbuf_len);
return mtail;
}
static int
ptnet_rx_eof(struct ptnet_queue *pq, unsigned int budget, bool may_resched)
{
struct ptnet_softc *sc = pq->sc;
bool have_vnet_hdr = sc->vnet_hdr_len;
struct ptnet_csb_gh *ptgh = pq->ptgh;
struct ptnet_csb_hg *pthg = pq->pthg;
struct netmap_adapter *na = &sc->ptna->dr.up;
struct netmap_kring *kring = na->rx_rings[pq->kring_id];
struct netmap_ring *ring = kring->ring;
unsigned int const lim = kring->nkr_num_slots - 1;
unsigned int batch_count = 0;
if_t ifp = sc->ifp;
unsigned int count = 0;
uint32_t head;
PTNET_Q_LOCK(pq);
if (unlikely(!(ifp->if_drv_flags & IFF_DRV_RUNNING))) {
goto unlock;
}
kring->nr_kflags &= ~NKR_PENDINTR;
head = ring->head;
while (count < budget) {
uint32_t prev_head = head;
struct mbuf *mhead, *mtail;
struct virtio_net_hdr *vh;
struct netmap_slot *slot;
unsigned int nmbuf_len;
uint8_t *nmbuf;
int deliver = 1; /* the mbuf to the network stack. */
host_sync:
if (head == ring->tail) {
/* We ran out of slot, let's see if the host has
* added some, by reading hwcur and hwtail from
* the CSB. */
ptnet_sync_tail(pthg, kring);
if (head == ring->tail) {
/* Still no slots available. Reactivate
* interrupts as they were disabled by the
* host thread right before issuing the
* last interrupt. */
ptgh->guest_need_kick = 1;
/* Double-check. */
ptnet_sync_tail(pthg, kring);
if (likely(head == ring->tail)) {
break;
}
ptgh->guest_need_kick = 0;
}
}
/* Initialize ring state variables, possibly grabbing the
* virtio-net header. */
slot = ring->slot + head;
nmbuf = NMB(na, slot);
nmbuf_len = slot->len;
vh = (struct virtio_net_hdr *)nmbuf;
if (have_vnet_hdr) {
if (unlikely(nmbuf_len < PTNET_HDR_SIZE)) {
/* There is no good reason why host should
* put the header in multiple netmap slots.
* If this is the case, discard. */
RD(1, "Fragmented vnet-hdr: dropping");
head = ptnet_rx_discard(kring, head);
pq->stats.iqdrops ++;
deliver = 0;
goto skip;
}
ND(1, "%s: vnet hdr: flags %x csum_start %u "
"csum_ofs %u hdr_len = %u gso_size %u "
"gso_type %x", __func__, vh->flags,
vh->csum_start, vh->csum_offset, vh->hdr_len,
vh->gso_size, vh->gso_type);
nmbuf += PTNET_HDR_SIZE;
nmbuf_len -= PTNET_HDR_SIZE;
}
/* Allocate the head of a new mbuf chain.
* We use m_getcl() to allocate an mbuf with standard cluster
* size (MCLBYTES). In the future we could use m_getjcl()
* to choose different sizes. */
mhead = mtail = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (unlikely(mhead == NULL)) {
device_printf(sc->dev, "%s: failed to allocate mbuf "
"head\n", __func__);
pq->stats.errors ++;
break;
}
/* Initialize the mbuf state variables. */
mhead->m_pkthdr.len = nmbuf_len;
mtail->m_len = 0;
/* Scan all the netmap slots containing the current packet. */
for (;;) {
DBG(device_printf(sc->dev, "%s: h %u t %u rcv frag "
"len %u, flags %u\n", __func__,
head, ring->tail, slot->len,
slot->flags));
mtail = ptnet_rx_slot(mtail, nmbuf, nmbuf_len);
if (unlikely(!mtail)) {
/* Ouch. We ran out of memory while processing
* a packet. We have to restore the previous
* head position, free the mbuf chain, and
* schedule the taskqueue to give the packet
* another chance. */
device_printf(sc->dev, "%s: failed to allocate"
" mbuf frag, reset head %u --> %u\n",
__func__, head, prev_head);
head = prev_head;
m_freem(mhead);
pq->stats.errors ++;
if (may_resched) {
taskqueue_enqueue(pq->taskq,
&pq->task);
}
goto escape;
}
/* We have to increment head irrespective of the
* NS_MOREFRAG being set or not. */
head = nm_next(head, lim);
if (!(slot->flags & NS_MOREFRAG)) {
break;
}
if (unlikely(head == ring->tail)) {
/* The very last slot prepared by the host has
* the NS_MOREFRAG set. Drop it and continue
* the outer cycle (to do the double-check). */
RD(1, "Incomplete packet: dropping");
m_freem(mhead);
pq->stats.iqdrops ++;
goto host_sync;
}
slot = ring->slot + head;
nmbuf = NMB(na, slot);
nmbuf_len = slot->len;
mhead->m_pkthdr.len += nmbuf_len;
}
mhead->m_pkthdr.rcvif = ifp;
mhead->m_pkthdr.csum_flags = 0;
/* Store the queue idx in the packet header. */
mhead->m_pkthdr.flowid = pq->kring_id;
M_HASHTYPE_SET(mhead, M_HASHTYPE_OPAQUE);
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
struct ether_header *eh;
eh = mtod(mhead, struct ether_header *);
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ptnet_vlan_tag_remove(mhead);
/*
* With the 802.1Q header removed, update the
* checksum starting location accordingly.
*/
if (vh->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)
vh->csum_start -= ETHER_VLAN_ENCAP_LEN;
}
}
if (have_vnet_hdr && (vh->flags & (VIRTIO_NET_HDR_F_NEEDS_CSUM
| VIRTIO_NET_HDR_F_DATA_VALID))) {
if (unlikely(ptnet_rx_csum(mhead, vh))) {
m_freem(mhead);
RD(1, "Csum offload error: dropping");
pq->stats.iqdrops ++;
deliver = 0;
}
}
skip:
count ++;
if (++batch_count >= PTNET_RX_BATCH) {
/* Some packets have been (or will be) pushed to the network
* stack. We need to update the CSB to tell the host about
* the new ring->cur and ring->head (RX buffer refill). */
ptnet_ring_update(pq, kring, head, NAF_FORCE_READ);
batch_count = 0;
}
if (likely(deliver)) {
pq->stats.packets ++;
pq->stats.bytes += mhead->m_pkthdr.len;
PTNET_Q_UNLOCK(pq);
(*ifp->if_input)(ifp, mhead);
PTNET_Q_LOCK(pq);
/* The ring->head index (and related indices) are
* updated under pq lock by ptnet_ring_update().
* Since we dropped the lock to call if_input(), we
* must reload ring->head and restart processing the
* ring from there. */
head = ring->head;
if (unlikely(!(ifp->if_drv_flags & IFF_DRV_RUNNING))) {
/* The interface has gone down while we didn't
* have the lock. Stop any processing and exit. */
goto unlock;
}
}
}
escape:
if (batch_count) {
ptnet_ring_update(pq, kring, head, NAF_FORCE_READ);
}
if (count >= budget && may_resched) {
/* If we ran out of budget or the double-check found new
* slots to process, schedule the taskqueue. */
DBG(RD(1, "out of budget: resched h %u t %u\n",
head, ring->tail));
taskqueue_enqueue(pq->taskq, &pq->task);
}
unlock:
PTNET_Q_UNLOCK(pq);
return count;
}
static void
ptnet_rx_task(void *context, int pending)
{
struct ptnet_queue *pq = context;
DBG(RD(1, "%s: pq #%u\n", __func__, pq->kring_id));
ptnet_rx_eof(pq, PTNET_RX_BUDGET, true);
}
static void
ptnet_tx_task(void *context, int pending)
{
struct ptnet_queue *pq = context;
DBG(RD(1, "%s: pq #%u\n", __func__, pq->kring_id));
ptnet_drain_transmit_queue(pq, PTNET_TX_BUDGET, true);
}
#ifdef DEVICE_POLLING
/* We don't need to handle differently POLL_AND_CHECK_STATUS and
* POLL_ONLY, since we don't have an Interrupt Status Register. */
static int
ptnet_poll(if_t ifp, enum poll_cmd cmd, int budget)
{
struct ptnet_softc *sc = if_getsoftc(ifp);
unsigned int queue_budget;
unsigned int count = 0;
bool borrow = false;
int i;
KASSERT(sc->num_rings > 0, ("Found no queues in while polling ptnet"));
queue_budget = MAX(budget / sc->num_rings, 1);
RD(1, "Per-queue budget is %d", queue_budget);
while (budget) {
unsigned int rcnt = 0;
for (i = 0; i < sc->num_rings; i++) {
struct ptnet_queue *pq = sc->queues + i;
if (borrow) {
queue_budget = MIN(queue_budget, budget);
if (queue_budget == 0) {
break;
}
}
if (i < sc->num_tx_rings) {
rcnt += ptnet_drain_transmit_queue(pq,
queue_budget, false);
} else {
rcnt += ptnet_rx_eof(pq, queue_budget,
false);
}
}
if (!rcnt) {
/* A scan of the queues gave no result, we can
* stop here. */
break;
}
if (rcnt > budget) {
/* This may happen when initial budget < sc->num_rings,
* since one packet budget is given to each queue
* anyway. Just pretend we didn't eat "so much". */
rcnt = budget;
}
count += rcnt;
budget -= rcnt;
borrow = true;
}
return count;
}
#endif /* DEVICE_POLLING */