444b91868b
The newbus lock is responsible for protecting newbus internIal structures, device states and devclass flags. It is necessary to hold it when all such datas are accessed. For the other operations, softc locking should ensure enough protection to avoid races. Newbus lock is automatically held when virtual operations on the device and bus are invoked when loading the driver or when the suspend/resume take place. For other 'spourious' operations trying to access/modify the newbus topology, newbus lock needs to be automatically acquired and dropped. For the moment Giant is also acquired in some key point (modules subsystem) in order to avoid problems before the 8.0 release as module handlers could make assumptions about it. This Giant locking should go just after the release happens. Please keep in mind that the public interface can be expanded in order to provide more support, if there are really necessities at some point and also some bugs could arise as long as the patch needs a bit of further testing. Bump __FreeBSD_version in order to reflect the newbus lock introduction. Reviewed by: ed, hps, jhb, imp, mav, scottl No answer by: ariff, thompsa, yongari Tested by: pho, G. Trematerra <giovanni dot trematerra at gmail dot com>, Brandon Gooch <jamesbrandongooch at gmail dot com> Sponsored by: Yahoo! Incorporated Approved by: re (ksmith)
1592 lines
46 KiB
C
1592 lines
46 KiB
C
/*-
|
|
* Copyright (c) 2002-2004 M. Warner Losh.
|
|
* Copyright (c) 2000-2001 Jonathan Chen.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1998, 1999 and 2000
|
|
* HAYAKAWA Koichi. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by HAYAKAWA Koichi.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Driver for PCI to CardBus Bridge chips
|
|
* and PCI to PCMCIA Bridge chips
|
|
* and ISA to PCMCIA host adapters
|
|
* and C Bus to PCMCIA host adapters
|
|
*
|
|
* References:
|
|
* TI Datasheets:
|
|
* http://www-s.ti.com/cgi-bin/sc/generic2.cgi?family=PCI+CARDBUS+CONTROLLERS
|
|
*
|
|
* Written by Jonathan Chen <jon@freebsd.org>
|
|
* The author would like to acknowledge:
|
|
* * HAYAKAWA Koichi: Author of the NetBSD code for the same thing
|
|
* * Warner Losh: Newbus/newcard guru and author of the pccard side of things
|
|
* * YAMAMOTO Shigeru: Author of another FreeBSD cardbus driver
|
|
* * David Cross: Author of the initial ugly hack for a specific cardbus card
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/pccard/pccardreg.h>
|
|
#include <dev/pccard/pccardvar.h>
|
|
|
|
#include <dev/exca/excareg.h>
|
|
#include <dev/exca/excavar.h>
|
|
|
|
#include <dev/pccbb/pccbbreg.h>
|
|
#include <dev/pccbb/pccbbvar.h>
|
|
|
|
#include "power_if.h"
|
|
#include "card_if.h"
|
|
#include "pcib_if.h"
|
|
|
|
#define DPRINTF(x) do { if (cbb_debug) printf x; } while (0)
|
|
#define DEVPRINTF(x) do { if (cbb_debug) device_printf x; } while (0)
|
|
|
|
#define PCI_MASK_CONFIG(DEV,REG,MASK,SIZE) \
|
|
pci_write_config(DEV, REG, pci_read_config(DEV, REG, SIZE) MASK, SIZE)
|
|
#define PCI_MASK2_CONFIG(DEV,REG,MASK1,MASK2,SIZE) \
|
|
pci_write_config(DEV, REG, ( \
|
|
pci_read_config(DEV, REG, SIZE) MASK1) MASK2, SIZE)
|
|
|
|
#define CBB_CARD_PRESENT(s) ((s & CBB_STATE_CD) == 0)
|
|
|
|
#define CBB_START_MEM 0x88000000
|
|
#define CBB_START_32_IO 0x1000
|
|
#define CBB_START_16_IO 0x100
|
|
|
|
devclass_t cbb_devclass;
|
|
|
|
/* sysctl vars */
|
|
SYSCTL_NODE(_hw, OID_AUTO, cbb, CTLFLAG_RD, 0, "CBB parameters");
|
|
|
|
/* There's no way to say TUNEABLE_LONG to get the right types */
|
|
u_long cbb_start_mem = CBB_START_MEM;
|
|
TUNABLE_ULONG("hw.cbb.start_memory", &cbb_start_mem);
|
|
SYSCTL_ULONG(_hw_cbb, OID_AUTO, start_memory, CTLFLAG_RW,
|
|
&cbb_start_mem, CBB_START_MEM,
|
|
"Starting address for memory allocations");
|
|
|
|
u_long cbb_start_16_io = CBB_START_16_IO;
|
|
TUNABLE_ULONG("hw.cbb.start_16_io", &cbb_start_16_io);
|
|
SYSCTL_ULONG(_hw_cbb, OID_AUTO, start_16_io, CTLFLAG_RW,
|
|
&cbb_start_16_io, CBB_START_16_IO,
|
|
"Starting ioport for 16-bit cards");
|
|
|
|
u_long cbb_start_32_io = CBB_START_32_IO;
|
|
TUNABLE_ULONG("hw.cbb.start_32_io", &cbb_start_32_io);
|
|
SYSCTL_ULONG(_hw_cbb, OID_AUTO, start_32_io, CTLFLAG_RW,
|
|
&cbb_start_32_io, CBB_START_32_IO,
|
|
"Starting ioport for 32-bit cards");
|
|
|
|
int cbb_debug = 0;
|
|
TUNABLE_INT("hw.cbb.debug", &cbb_debug);
|
|
SYSCTL_ULONG(_hw_cbb, OID_AUTO, debug, CTLFLAG_RW, &cbb_debug, 0,
|
|
"Verbose cardbus bridge debugging");
|
|
|
|
static void cbb_insert(struct cbb_softc *sc);
|
|
static void cbb_removal(struct cbb_softc *sc);
|
|
static uint32_t cbb_detect_voltage(device_t brdev);
|
|
static void cbb_cardbus_reset_power(device_t brdev, device_t child, int on);
|
|
static int cbb_cardbus_io_open(device_t brdev, int win, uint32_t start,
|
|
uint32_t end);
|
|
static int cbb_cardbus_mem_open(device_t brdev, int win,
|
|
uint32_t start, uint32_t end);
|
|
static void cbb_cardbus_auto_open(struct cbb_softc *sc, int type);
|
|
static int cbb_cardbus_activate_resource(device_t brdev, device_t child,
|
|
int type, int rid, struct resource *res);
|
|
static int cbb_cardbus_deactivate_resource(device_t brdev,
|
|
device_t child, int type, int rid, struct resource *res);
|
|
static struct resource *cbb_cardbus_alloc_resource(device_t brdev,
|
|
device_t child, int type, int *rid, u_long start,
|
|
u_long end, u_long count, u_int flags);
|
|
static int cbb_cardbus_release_resource(device_t brdev, device_t child,
|
|
int type, int rid, struct resource *res);
|
|
static int cbb_cardbus_power_enable_socket(device_t brdev,
|
|
device_t child);
|
|
static int cbb_cardbus_power_disable_socket(device_t brdev,
|
|
device_t child);
|
|
static int cbb_func_filt(void *arg);
|
|
static void cbb_func_intr(void *arg);
|
|
|
|
static void
|
|
cbb_remove_res(struct cbb_softc *sc, struct resource *res)
|
|
{
|
|
struct cbb_reslist *rle;
|
|
|
|
SLIST_FOREACH(rle, &sc->rl, link) {
|
|
if (rle->res == res) {
|
|
SLIST_REMOVE(&sc->rl, rle, cbb_reslist, link);
|
|
free(rle, M_DEVBUF);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct resource *
|
|
cbb_find_res(struct cbb_softc *sc, int type, int rid)
|
|
{
|
|
struct cbb_reslist *rle;
|
|
|
|
SLIST_FOREACH(rle, &sc->rl, link)
|
|
if (SYS_RES_MEMORY == rle->type && rid == rle->rid)
|
|
return (rle->res);
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
cbb_insert_res(struct cbb_softc *sc, struct resource *res, int type,
|
|
int rid)
|
|
{
|
|
struct cbb_reslist *rle;
|
|
|
|
/*
|
|
* Need to record allocated resource so we can iterate through
|
|
* it later.
|
|
*/
|
|
rle = malloc(sizeof(struct cbb_reslist), M_DEVBUF, M_NOWAIT);
|
|
if (rle == NULL)
|
|
panic("cbb_cardbus_alloc_resource: can't record entry!");
|
|
rle->res = res;
|
|
rle->type = type;
|
|
rle->rid = rid;
|
|
SLIST_INSERT_HEAD(&sc->rl, rle, link);
|
|
}
|
|
|
|
static void
|
|
cbb_destroy_res(struct cbb_softc *sc)
|
|
{
|
|
struct cbb_reslist *rle;
|
|
|
|
while ((rle = SLIST_FIRST(&sc->rl)) != NULL) {
|
|
device_printf(sc->dev, "Danger Will Robinson: Resource "
|
|
"left allocated! This is a bug... "
|
|
"(rid=%x, type=%d, addr=%lx)\n", rle->rid, rle->type,
|
|
rman_get_start(rle->res));
|
|
SLIST_REMOVE_HEAD(&sc->rl, link);
|
|
free(rle, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disable function interrupts by telling the bridge to generate IRQ1
|
|
* interrupts. These interrupts aren't really generated by the chip, since
|
|
* IRQ1 is reserved. Some chipsets assert INTA# inappropriately during
|
|
* initialization, so this helps to work around the problem.
|
|
*
|
|
* XXX We can't do this workaround for all chipsets, because this
|
|
* XXX causes interference with the keyboard because somechipsets will
|
|
* XXX actually signal IRQ1 over their serial interrupt connections to
|
|
* XXX the south bridge. Disable it it for now.
|
|
*/
|
|
void
|
|
cbb_disable_func_intr(struct cbb_softc *sc)
|
|
{
|
|
#if 0
|
|
uint8_t reg;
|
|
|
|
reg = (exca_getb(&sc->exca[0], EXCA_INTR) & ~EXCA_INTR_IRQ_MASK) |
|
|
EXCA_INTR_IRQ_RESERVED1;
|
|
exca_putb(&sc->exca[0], EXCA_INTR, reg);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Enable function interrupts. We turn on function interrupts when the card
|
|
* requests an interrupt. The PCMCIA standard says that we should set
|
|
* the lower 4 bits to 0 to route via PCI. Note: we call this for both
|
|
* CardBus and R2 (PC Card) cases, but it should have no effect on CardBus
|
|
* cards.
|
|
*/
|
|
static void
|
|
cbb_enable_func_intr(struct cbb_softc *sc)
|
|
{
|
|
uint8_t reg;
|
|
|
|
reg = (exca_getb(&sc->exca[0], EXCA_INTR) & ~EXCA_INTR_IRQ_MASK) |
|
|
EXCA_INTR_IRQ_NONE;
|
|
exca_putb(&sc->exca[0], EXCA_INTR, reg);
|
|
}
|
|
|
|
int
|
|
cbb_detach(device_t brdev)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
device_t *devlist;
|
|
int tmp, tries, error, numdevs;
|
|
|
|
/*
|
|
* Before we delete the children (which we have to do because
|
|
* attach doesn't check for children busses correctly), we have
|
|
* to detach the children. Even if we didn't need to delete the
|
|
* children, we have to detach them.
|
|
*/
|
|
error = bus_generic_detach(brdev);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Since the attach routine doesn't search for children before it
|
|
* attaches them to this device, we must delete them here in order
|
|
* for the kldload/unload case to work. If we failed to do that, then
|
|
* we'd get duplicate devices when cbb.ko was reloaded.
|
|
*/
|
|
tries = 10;
|
|
do {
|
|
error = device_get_children(brdev, &devlist, &numdevs);
|
|
if (error == 0)
|
|
break;
|
|
/*
|
|
* Try hard to cope with low memory.
|
|
*/
|
|
if (error == ENOMEM) {
|
|
pause("cbbnomem", 1);
|
|
continue;
|
|
}
|
|
} while (tries-- > 0);
|
|
for (tmp = 0; tmp < numdevs; tmp++)
|
|
device_delete_child(brdev, devlist[tmp]);
|
|
free(devlist, M_TEMP);
|
|
|
|
/* Turn off the interrupts */
|
|
cbb_set(sc, CBB_SOCKET_MASK, 0);
|
|
|
|
/* reset 16-bit pcmcia bus */
|
|
exca_clrb(&sc->exca[0], EXCA_INTR, EXCA_INTR_RESET);
|
|
|
|
/* turn off power */
|
|
cbb_power(brdev, CARD_OFF);
|
|
|
|
/* Ack the interrupt */
|
|
cbb_set(sc, CBB_SOCKET_EVENT, 0xffffffff);
|
|
|
|
/*
|
|
* Wait for the thread to die. kproc_exit will do a wakeup
|
|
* on the event thread's struct thread * so that we know it is
|
|
* safe to proceed. IF the thread is running, set the please
|
|
* die flag and wait for it to comply. Since the wakeup on
|
|
* the event thread happens only in kproc_exit, we don't
|
|
* need to loop here.
|
|
*/
|
|
bus_teardown_intr(brdev, sc->irq_res, sc->intrhand);
|
|
mtx_lock(&sc->mtx);
|
|
sc->flags |= CBB_KTHREAD_DONE;
|
|
while (sc->flags & CBB_KTHREAD_RUNNING) {
|
|
DEVPRINTF((sc->dev, "Waiting for thread to die\n"));
|
|
wakeup(&sc->intrhand);
|
|
msleep(sc->event_thread, &sc->mtx, PWAIT, "cbbun", 0);
|
|
}
|
|
mtx_unlock(&sc->mtx);
|
|
|
|
bus_release_resource(brdev, SYS_RES_IRQ, 0, sc->irq_res);
|
|
bus_release_resource(brdev, SYS_RES_MEMORY, CBBR_SOCKBASE,
|
|
sc->base_res);
|
|
mtx_destroy(&sc->mtx);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
cbb_setup_intr(device_t dev, device_t child, struct resource *irq,
|
|
int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg,
|
|
void **cookiep)
|
|
{
|
|
struct cbb_intrhand *ih;
|
|
struct cbb_softc *sc = device_get_softc(dev);
|
|
int err;
|
|
|
|
if (filt == NULL && intr == NULL)
|
|
return (EINVAL);
|
|
ih = malloc(sizeof(struct cbb_intrhand), M_DEVBUF, M_NOWAIT);
|
|
if (ih == NULL)
|
|
return (ENOMEM);
|
|
*cookiep = ih;
|
|
ih->filt = filt;
|
|
ih->intr = intr;
|
|
ih->arg = arg;
|
|
ih->sc = sc;
|
|
/*
|
|
* XXX need to turn on ISA interrupts, if we ever support them, but
|
|
* XXX for now that's all we need to do.
|
|
*/
|
|
err = BUS_SETUP_INTR(device_get_parent(dev), child, irq, flags,
|
|
filt ? cbb_func_filt : NULL, intr ? cbb_func_intr : NULL, ih,
|
|
&ih->cookie);
|
|
if (err != 0) {
|
|
free(ih, M_DEVBUF);
|
|
return (err);
|
|
}
|
|
cbb_enable_func_intr(sc);
|
|
sc->cardok = 1;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
cbb_teardown_intr(device_t dev, device_t child, struct resource *irq,
|
|
void *cookie)
|
|
{
|
|
struct cbb_intrhand *ih;
|
|
int err;
|
|
|
|
/* XXX Need to do different things for ISA interrupts. */
|
|
ih = (struct cbb_intrhand *) cookie;
|
|
err = BUS_TEARDOWN_INTR(device_get_parent(dev), child, irq,
|
|
ih->cookie);
|
|
if (err != 0)
|
|
return (err);
|
|
free(ih, M_DEVBUF);
|
|
return (0);
|
|
}
|
|
|
|
|
|
void
|
|
cbb_driver_added(device_t brdev, driver_t *driver)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
device_t *devlist;
|
|
device_t dev;
|
|
int tmp;
|
|
int numdevs;
|
|
int wake = 0;
|
|
|
|
DEVICE_IDENTIFY(driver, brdev);
|
|
tmp = device_get_children(brdev, &devlist, &numdevs);
|
|
if (tmp != 0) {
|
|
device_printf(brdev, "Cannot get children list, no reprobe\n");
|
|
return;
|
|
}
|
|
for (tmp = 0; tmp < numdevs; tmp++) {
|
|
dev = devlist[tmp];
|
|
if (device_get_state(dev) == DS_NOTPRESENT &&
|
|
device_probe_and_attach(dev) == 0)
|
|
wake++;
|
|
}
|
|
free(devlist, M_TEMP);
|
|
|
|
if (wake > 0)
|
|
wakeup(&sc->intrhand);
|
|
}
|
|
|
|
void
|
|
cbb_child_detached(device_t brdev, device_t child)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
|
|
/* I'm not sure we even need this */
|
|
if (child != sc->cbdev && child != sc->exca[0].pccarddev)
|
|
device_printf(brdev, "Unknown child detached: %s\n",
|
|
device_get_nameunit(child));
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Kthreads */
|
|
/************************************************************************/
|
|
|
|
void
|
|
cbb_event_thread(void *arg)
|
|
{
|
|
struct cbb_softc *sc = arg;
|
|
uint32_t status;
|
|
int err;
|
|
int not_a_card = 0;
|
|
|
|
mtx_lock(&sc->mtx);
|
|
sc->flags |= CBB_KTHREAD_RUNNING;
|
|
while ((sc->flags & CBB_KTHREAD_DONE) == 0) {
|
|
mtx_unlock(&sc->mtx);
|
|
newbus_xlock();
|
|
status = cbb_get(sc, CBB_SOCKET_STATE);
|
|
DPRINTF(("Status is 0x%x\n", status));
|
|
if (!CBB_CARD_PRESENT(status)) {
|
|
not_a_card = 0; /* We know card type */
|
|
cbb_removal(sc);
|
|
} else if (status & CBB_STATE_NOT_A_CARD) {
|
|
/*
|
|
* Up to 10 times, try to rescan the card when we see
|
|
* NOT_A_CARD. 10 is somehwat arbitrary. When this
|
|
* pathology hits, there's a ~40% chance each try will
|
|
* fail. 10 tries takes about 5s and results in a
|
|
* 99.99% certainty of the results.
|
|
*/
|
|
if (not_a_card++ < 10) {
|
|
DEVPRINTF((sc->dev,
|
|
"Not a card bit set, rescanning\n"));
|
|
cbb_setb(sc, CBB_SOCKET_FORCE, CBB_FORCE_CV_TEST);
|
|
} else {
|
|
device_printf(sc->dev,
|
|
"Can't determine card type\n");
|
|
}
|
|
} else {
|
|
not_a_card = 0; /* We know card type */
|
|
cbb_insert(sc);
|
|
}
|
|
newbus_xunlock();
|
|
|
|
/*
|
|
* First time through we need to tell mountroot that we're
|
|
* done.
|
|
*/
|
|
if (sc->sc_root_token) {
|
|
root_mount_rel(sc->sc_root_token);
|
|
sc->sc_root_token = NULL;
|
|
}
|
|
|
|
/*
|
|
* Wait until it has been 250ms since the last time we
|
|
* get an interrupt. We handle the rest of the interrupt
|
|
* at the top of the loop. Although we clear the bit in the
|
|
* ISR, we signal sc->cv from the detach path after we've
|
|
* set the CBB_KTHREAD_DONE bit, so we can't do a simple
|
|
* 250ms sleep here.
|
|
*
|
|
* In our ISR, we turn off the card changed interrupt. Turn
|
|
* them back on here before we wait for them to happen. We
|
|
* turn them on/off so that we can tolerate a large latency
|
|
* between the time we signal cbb_event_thread and it gets
|
|
* a chance to run.
|
|
*/
|
|
mtx_lock(&sc->mtx);
|
|
cbb_setb(sc, CBB_SOCKET_MASK, CBB_SOCKET_MASK_CD | CBB_SOCKET_MASK_CSTS);
|
|
msleep(&sc->intrhand, &sc->mtx, 0, "-", 0);
|
|
err = 0;
|
|
while (err != EWOULDBLOCK &&
|
|
(sc->flags & CBB_KTHREAD_DONE) == 0)
|
|
err = msleep(&sc->intrhand, &sc->mtx, 0, "-", hz / 5);
|
|
}
|
|
DEVPRINTF((sc->dev, "Thread terminating\n"));
|
|
sc->flags &= ~CBB_KTHREAD_RUNNING;
|
|
mtx_unlock(&sc->mtx);
|
|
kproc_exit(0);
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Insert/removal */
|
|
/************************************************************************/
|
|
|
|
static void
|
|
cbb_insert(struct cbb_softc *sc)
|
|
{
|
|
uint32_t sockevent, sockstate;
|
|
|
|
sockevent = cbb_get(sc, CBB_SOCKET_EVENT);
|
|
sockstate = cbb_get(sc, CBB_SOCKET_STATE);
|
|
|
|
DEVPRINTF((sc->dev, "card inserted: event=0x%08x, state=%08x\n",
|
|
sockevent, sockstate));
|
|
|
|
if (sockstate & CBB_STATE_R2_CARD) {
|
|
if (device_is_attached(sc->exca[0].pccarddev)) {
|
|
sc->flags |= CBB_16BIT_CARD;
|
|
exca_insert(&sc->exca[0]);
|
|
} else {
|
|
device_printf(sc->dev,
|
|
"16-bit card inserted, but no pccard bus.\n");
|
|
}
|
|
} else if (sockstate & CBB_STATE_CB_CARD) {
|
|
if (device_is_attached(sc->cbdev)) {
|
|
sc->flags &= ~CBB_16BIT_CARD;
|
|
CARD_ATTACH_CARD(sc->cbdev);
|
|
} else {
|
|
device_printf(sc->dev,
|
|
"CardBus card inserted, but no cardbus bus.\n");
|
|
}
|
|
} else {
|
|
/*
|
|
* We should power the card down, and try again a couple of
|
|
* times if this happens. XXX
|
|
*/
|
|
device_printf(sc->dev, "Unsupported card type detected\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
cbb_removal(struct cbb_softc *sc)
|
|
{
|
|
sc->cardok = 0;
|
|
if (sc->flags & CBB_16BIT_CARD) {
|
|
exca_removal(&sc->exca[0]);
|
|
} else {
|
|
if (device_is_attached(sc->cbdev))
|
|
CARD_DETACH_CARD(sc->cbdev);
|
|
}
|
|
cbb_destroy_res(sc);
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Interrupt Handler */
|
|
/************************************************************************/
|
|
|
|
static int
|
|
cbb_func_filt(void *arg)
|
|
{
|
|
struct cbb_intrhand *ih = (struct cbb_intrhand *)arg;
|
|
struct cbb_softc *sc = ih->sc;
|
|
|
|
/*
|
|
* Make sure that the card is really there.
|
|
*/
|
|
if (!sc->cardok)
|
|
return (FILTER_STRAY);
|
|
if (!CBB_CARD_PRESENT(cbb_get(sc, CBB_SOCKET_STATE))) {
|
|
sc->cardok = 0;
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
/*
|
|
* nb: don't have to check for giant or not, since that's done in the
|
|
* ISR dispatch and one can't hold Giant in a filter anyway...
|
|
*/
|
|
return ((*ih->filt)(ih->arg));
|
|
}
|
|
|
|
static void
|
|
cbb_func_intr(void *arg)
|
|
{
|
|
struct cbb_intrhand *ih = (struct cbb_intrhand *)arg;
|
|
struct cbb_softc *sc = ih->sc;
|
|
|
|
/*
|
|
* While this check may seem redundant, it helps close a race
|
|
* condition. If the card is ejected after the filter runs, but
|
|
* before this ISR can be scheduled, then we need to do the same
|
|
* filtering to prevent the card's ISR from being called. One could
|
|
* argue that the card's ISR should be able to cope, but experience
|
|
* has shown they can't always. This mitigates the problem by making
|
|
* the race quite a bit smaller. Properly written client ISRs should
|
|
* cope with the card going away in the middle of the ISR. We assume
|
|
* that drivers that are sophisticated enough to use filters don't
|
|
* need our protection. This also allows us to ensure they *ARE*
|
|
* called if their filter said they needed to be called.
|
|
*/
|
|
if (ih->filt == NULL) {
|
|
if (!sc->cardok)
|
|
return;
|
|
if (!CBB_CARD_PRESENT(cbb_get(sc, CBB_SOCKET_STATE))) {
|
|
sc->cardok = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Call the registered ithread interrupt handler. This entire routine
|
|
* will be called with Giant if this isn't an MP safe driver, or not
|
|
* if it is. Either way, we don't have to worry.
|
|
*/
|
|
ih->intr(ih->arg);
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Generic Power functions */
|
|
/************************************************************************/
|
|
|
|
static uint32_t
|
|
cbb_detect_voltage(device_t brdev)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
uint32_t psr;
|
|
uint32_t vol = CARD_UKN_CARD;
|
|
|
|
psr = cbb_get(sc, CBB_SOCKET_STATE);
|
|
|
|
if (psr & CBB_STATE_5VCARD && psr & CBB_STATE_5VSOCK)
|
|
vol |= CARD_5V_CARD;
|
|
if (psr & CBB_STATE_3VCARD && psr & CBB_STATE_3VSOCK)
|
|
vol |= CARD_3V_CARD;
|
|
if (psr & CBB_STATE_XVCARD && psr & CBB_STATE_XVSOCK)
|
|
vol |= CARD_XV_CARD;
|
|
if (psr & CBB_STATE_YVCARD && psr & CBB_STATE_YVSOCK)
|
|
vol |= CARD_YV_CARD;
|
|
|
|
return (vol);
|
|
}
|
|
|
|
static uint8_t
|
|
cbb_o2micro_power_hack(struct cbb_softc *sc)
|
|
{
|
|
uint8_t reg;
|
|
|
|
/*
|
|
* Issue #2: INT# not qualified with IRQ Routing Bit. An
|
|
* unexpected PCI INT# may be generated during PC Card
|
|
* initialization even with the IRQ Routing Bit Set with some
|
|
* PC Cards.
|
|
*
|
|
* This is a two part issue. The first part is that some of
|
|
* our older controllers have an issue in which the slot's PCI
|
|
* INT# is NOT qualified by the IRQ routing bit (PCI reg. 3Eh
|
|
* bit 7). Regardless of the IRQ routing bit, if NO ISA IRQ
|
|
* is selected (ExCA register 03h bits 3:0, of the slot, are
|
|
* cleared) we will generate INT# if IREQ# is asserted. The
|
|
* second part is because some PC Cards prematurally assert
|
|
* IREQ# before the ExCA registers are fully programmed. This
|
|
* in turn asserts INT# because ExCA register 03h bits 3:0
|
|
* (ISA IRQ Select) are not yet programmed.
|
|
*
|
|
* The fix for this issue, which will work for any controller
|
|
* (old or new), is to set ExCA register 03h bits 3:0 = 0001b
|
|
* (select IRQ1), of the slot, before turning on slot power.
|
|
* Selecting IRQ1 will result in INT# NOT being asserted
|
|
* (because IRQ1 is selected), and IRQ1 won't be asserted
|
|
* because our controllers don't generate IRQ1.
|
|
*
|
|
* Other, non O2Micro controllers will generate irq 1 in some
|
|
* situations, so we can't do this hack for everybody. Reports of
|
|
* keyboard controller's interrupts being suppressed occurred when
|
|
* we did this.
|
|
*/
|
|
reg = exca_getb(&sc->exca[0], EXCA_INTR);
|
|
exca_putb(&sc->exca[0], EXCA_INTR, (reg & 0xf0) | 1);
|
|
return (reg);
|
|
}
|
|
|
|
/*
|
|
* Restore the damage that cbb_o2micro_power_hack does to EXCA_INTR so
|
|
* we don't have an interrupt storm on power on. This has the efect of
|
|
* disabling card status change interrupts for the duration of poweron.
|
|
*/
|
|
static void
|
|
cbb_o2micro_power_hack2(struct cbb_softc *sc, uint8_t reg)
|
|
{
|
|
exca_putb(&sc->exca[0], EXCA_INTR, reg);
|
|
}
|
|
|
|
int
|
|
cbb_power(device_t brdev, int volts)
|
|
{
|
|
uint32_t status, sock_ctrl, reg_ctrl, mask;
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
int cnt, sane;
|
|
int retval = 0;
|
|
int on = 0;
|
|
uint8_t reg = 0;
|
|
|
|
sock_ctrl = cbb_get(sc, CBB_SOCKET_CONTROL);
|
|
|
|
sock_ctrl &= ~CBB_SOCKET_CTRL_VCCMASK;
|
|
switch (volts & CARD_VCCMASK) {
|
|
case 5:
|
|
sock_ctrl |= CBB_SOCKET_CTRL_VCC_5V;
|
|
on++;
|
|
break;
|
|
case 3:
|
|
sock_ctrl |= CBB_SOCKET_CTRL_VCC_3V;
|
|
on++;
|
|
break;
|
|
case XV:
|
|
sock_ctrl |= CBB_SOCKET_CTRL_VCC_XV;
|
|
on++;
|
|
break;
|
|
case YV:
|
|
sock_ctrl |= CBB_SOCKET_CTRL_VCC_YV;
|
|
on++;
|
|
break;
|
|
case 0:
|
|
break;
|
|
default:
|
|
return (0); /* power NEVER changed */
|
|
}
|
|
|
|
/* VPP == VCC */
|
|
sock_ctrl &= ~CBB_SOCKET_CTRL_VPPMASK;
|
|
sock_ctrl |= ((sock_ctrl >> 4) & 0x07);
|
|
|
|
if (cbb_get(sc, CBB_SOCKET_CONTROL) == sock_ctrl)
|
|
return (1); /* no change necessary */
|
|
DEVPRINTF((sc->dev, "cbb_power: %dV\n", volts));
|
|
if (volts != 0 && sc->chipset == CB_O2MICRO)
|
|
reg = cbb_o2micro_power_hack(sc);
|
|
|
|
/*
|
|
* We have to mask the card change detect interrupt while we're
|
|
* messing with the power. It is allowed to bounce while we're
|
|
* messing with power as things settle down. In addition, we mask off
|
|
* the card's function interrupt by routing it via the ISA bus. This
|
|
* bit generally only affects 16-bit cards. Some bridges allow one to
|
|
* set another bit to have it also affect 32-bit cards. Since 32-bit
|
|
* cards are required to be better behaved, we don't bother to get
|
|
* into those bridge specific features.
|
|
*
|
|
* XXX I wonder if we need to enable the READY bit interrupt in the
|
|
* EXCA CSC register for 16-bit cards, and disable the CD bit?
|
|
*/
|
|
mask = cbb_get(sc, CBB_SOCKET_MASK);
|
|
mask |= CBB_SOCKET_MASK_POWER;
|
|
mask &= ~CBB_SOCKET_MASK_CD;
|
|
cbb_set(sc, CBB_SOCKET_MASK, mask);
|
|
PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL,
|
|
|CBBM_BRIDGECTRL_INTR_IREQ_ISA_EN, 2);
|
|
cbb_set(sc, CBB_SOCKET_CONTROL, sock_ctrl);
|
|
if (on) {
|
|
mtx_lock(&sc->mtx);
|
|
cnt = sc->powerintr;
|
|
/*
|
|
* We have a shortish timeout of 500ms here. Some bridges do
|
|
* not generate a POWER_CYCLE event for 16-bit cards. In
|
|
* those cases, we have to cope the best we can, and having
|
|
* only a short delay is better than the alternatives.
|
|
*/
|
|
sane = 10;
|
|
while (!(cbb_get(sc, CBB_SOCKET_STATE) & CBB_STATE_POWER_CYCLE) &&
|
|
cnt == sc->powerintr && sane-- > 0)
|
|
msleep(&sc->powerintr, &sc->mtx, 0, "-", hz / 20);
|
|
mtx_unlock(&sc->mtx);
|
|
/*
|
|
* The TOPIC95B requires a little bit extra time to get its
|
|
* act together, so delay for an additional 100ms. Also as
|
|
* documented below, it doesn't seem to set the POWER_CYCLE
|
|
* bit, so don't whine if it never came on.
|
|
*/
|
|
if (sc->chipset == CB_TOPIC95) {
|
|
pause("cbb95B", hz / 10);
|
|
} else if (sane <= 0) {
|
|
device_printf(sc->dev, "power timeout, doom?\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After the power is good, we can turn off the power interrupt.
|
|
* However, the PC Card standard says that we must delay turning the
|
|
* CD bit back on for a bit to allow for bouncyness on power down
|
|
* (recall that we don't wait above for a power down, since we don't
|
|
* get an interrupt for that). We're called either from the suspend
|
|
* code in which case we don't want to turn card change on again, or
|
|
* we're called from the card insertion code, in which case the cbb
|
|
* thread will turn it on for us before it waits to be woken by a
|
|
* change event.
|
|
*
|
|
* NB: Topic95B doesn't set the power cycle bit. we assume that
|
|
* both it and the TOPIC95 behave the same.
|
|
*/
|
|
cbb_clrb(sc, CBB_SOCKET_MASK, CBB_SOCKET_MASK_POWER);
|
|
status = cbb_get(sc, CBB_SOCKET_STATE);
|
|
if (on && sc->chipset != CB_TOPIC95) {
|
|
if ((status & CBB_STATE_POWER_CYCLE) == 0)
|
|
device_printf(sc->dev, "Power not on?\n");
|
|
}
|
|
if (status & CBB_STATE_BAD_VCC_REQ) {
|
|
device_printf(sc->dev, "Bad Vcc requested\n");
|
|
/*
|
|
* Turn off the power, and try again. Retrigger other
|
|
* active interrupts via force register. From NetBSD
|
|
* PR 36652, coded by me to description there.
|
|
*/
|
|
sock_ctrl &= ~CBB_SOCKET_CTRL_VCCMASK;
|
|
sock_ctrl &= ~CBB_SOCKET_CTRL_VPPMASK;
|
|
cbb_set(sc, CBB_SOCKET_CONTROL, sock_ctrl);
|
|
status &= ~CBB_STATE_BAD_VCC_REQ;
|
|
status &= ~CBB_STATE_DATA_LOST;
|
|
status |= CBB_FORCE_CV_TEST;
|
|
cbb_set(sc, CBB_SOCKET_FORCE, status);
|
|
goto done;
|
|
}
|
|
if (sc->chipset == CB_TOPIC97) {
|
|
reg_ctrl = pci_read_config(sc->dev, TOPIC_REG_CTRL, 4);
|
|
reg_ctrl &= ~TOPIC97_REG_CTRL_TESTMODE;
|
|
if (on)
|
|
reg_ctrl |= TOPIC97_REG_CTRL_CLKRUN_ENA;
|
|
else
|
|
reg_ctrl &= ~TOPIC97_REG_CTRL_CLKRUN_ENA;
|
|
pci_write_config(sc->dev, TOPIC_REG_CTRL, reg_ctrl, 4);
|
|
}
|
|
PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL,
|
|
& ~CBBM_BRIDGECTRL_INTR_IREQ_ISA_EN, 2);
|
|
retval = 1;
|
|
done:;
|
|
if (volts != 0 && sc->chipset == CB_O2MICRO)
|
|
cbb_o2micro_power_hack2(sc, reg);
|
|
return (retval);
|
|
}
|
|
|
|
static int
|
|
cbb_current_voltage(device_t brdev)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
uint32_t ctrl;
|
|
|
|
ctrl = cbb_get(sc, CBB_SOCKET_CONTROL);
|
|
switch (ctrl & CBB_SOCKET_CTRL_VCCMASK) {
|
|
case CBB_SOCKET_CTRL_VCC_5V:
|
|
return CARD_5V_CARD;
|
|
case CBB_SOCKET_CTRL_VCC_3V:
|
|
return CARD_3V_CARD;
|
|
case CBB_SOCKET_CTRL_VCC_XV:
|
|
return CARD_XV_CARD;
|
|
case CBB_SOCKET_CTRL_VCC_YV:
|
|
return CARD_YV_CARD;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* detect the voltage for the card, and set it. Since the power
|
|
* used is the square of the voltage, lower voltages is a big win
|
|
* and what Windows does (and what Microsoft prefers). The MS paper
|
|
* also talks about preferring the CIS entry as well, but that has
|
|
* to be done elsewhere. We also optimize power sequencing here
|
|
* and don't change things if we're already powered up at a supported
|
|
* voltage.
|
|
*
|
|
* In addition, we power up with OE disabled. We'll set it later
|
|
* in the power up sequence.
|
|
*/
|
|
static int
|
|
cbb_do_power(device_t brdev)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
uint32_t voltage, curpwr;
|
|
uint32_t status;
|
|
|
|
/* Don't enable OE (output enable) until power stable */
|
|
exca_clrb(&sc->exca[0], EXCA_PWRCTL, EXCA_PWRCTL_OE);
|
|
|
|
voltage = cbb_detect_voltage(brdev);
|
|
curpwr = cbb_current_voltage(brdev);
|
|
status = cbb_get(sc, CBB_SOCKET_STATE);
|
|
if ((status & CBB_STATE_POWER_CYCLE) && (voltage & curpwr))
|
|
return 0;
|
|
/* Prefer lowest voltage supported */
|
|
cbb_power(brdev, CARD_OFF);
|
|
if (voltage & CARD_YV_CARD)
|
|
cbb_power(brdev, CARD_VCC(YV));
|
|
else if (voltage & CARD_XV_CARD)
|
|
cbb_power(brdev, CARD_VCC(XV));
|
|
else if (voltage & CARD_3V_CARD)
|
|
cbb_power(brdev, CARD_VCC(3));
|
|
else if (voltage & CARD_5V_CARD)
|
|
cbb_power(brdev, CARD_VCC(5));
|
|
else {
|
|
device_printf(brdev, "Unknown card voltage\n");
|
|
return (ENXIO);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* CardBus power functions */
|
|
/************************************************************************/
|
|
|
|
static void
|
|
cbb_cardbus_reset_power(device_t brdev, device_t child, int on)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
uint32_t b;
|
|
int delay, count;
|
|
|
|
/*
|
|
* Asserting reset for 20ms is necessary for most bridges. For some
|
|
* reason, the Ricoh RF5C47x bridges need it asserted for 400ms. The
|
|
* root cause of this is unknown, and NetBSD does the same thing.
|
|
*/
|
|
delay = sc->chipset == CB_RF5C47X ? 400 : 20;
|
|
PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL, |CBBM_BRIDGECTRL_RESET, 2);
|
|
pause("cbbP3", hz * delay / 1000);
|
|
|
|
/*
|
|
* If a card exists and we're turning it on, take it out of reset.
|
|
* After clearing reset, wait up to 1.1s for the first configuration
|
|
* register (vendor/product) configuration register of device 0.0 to
|
|
* become != 0xffffffff. The PCMCIA PC Card Host System Specification
|
|
* says that when powering up the card, the PCI Spec v2.1 must be
|
|
* followed. In PCI spec v2.2 Table 4-6, Trhfa (Reset High to first
|
|
* Config Access) is at most 2^25 clocks, or just over 1s. Section
|
|
* 2.2.1 states any card not ready to participate in bus transactions
|
|
* must tristate its outputs. Therefore, any access to its
|
|
* configuration registers must be ignored. In that state, the config
|
|
* reg will read 0xffffffff. Section 6.2.1 states a vendor id of
|
|
* 0xffff is invalid, so this can never match a real card. Print a
|
|
* warning if it never returns a real id. The PCMCIA PC Card
|
|
* Electrical Spec Section 5.2.7.1 implies only device 0 is present on
|
|
* a cardbus bus, so that's the only register we check here.
|
|
*/
|
|
if (on && CBB_CARD_PRESENT(cbb_get(sc, CBB_SOCKET_STATE))) {
|
|
/*
|
|
*/
|
|
PCI_MASK_CONFIG(brdev, CBBR_BRIDGECTRL,
|
|
&~CBBM_BRIDGECTRL_RESET, 2);
|
|
b = pcib_get_bus(child);
|
|
count = 1100 / 20;
|
|
do {
|
|
pause("cbbP4", hz * 2 / 100);
|
|
} while (PCIB_READ_CONFIG(brdev, b, 0, 0, PCIR_DEVVENDOR, 4) ==
|
|
0xfffffffful && --count >= 0);
|
|
if (count < 0)
|
|
device_printf(brdev, "Warning: Bus reset timeout\n");
|
|
}
|
|
}
|
|
|
|
static int
|
|
cbb_cardbus_power_enable_socket(device_t brdev, device_t child)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
int err;
|
|
|
|
if (!CBB_CARD_PRESENT(cbb_get(sc, CBB_SOCKET_STATE)))
|
|
return (ENODEV);
|
|
|
|
err = cbb_do_power(brdev);
|
|
if (err)
|
|
return (err);
|
|
cbb_cardbus_reset_power(brdev, child, 1);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cbb_cardbus_power_disable_socket(device_t brdev, device_t child)
|
|
{
|
|
cbb_power(brdev, CARD_OFF);
|
|
cbb_cardbus_reset_power(brdev, child, 0);
|
|
return (0);
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* CardBus Resource */
|
|
/************************************************************************/
|
|
|
|
static int
|
|
cbb_cardbus_io_open(device_t brdev, int win, uint32_t start, uint32_t end)
|
|
{
|
|
int basereg;
|
|
int limitreg;
|
|
|
|
if ((win < 0) || (win > 1)) {
|
|
DEVPRINTF((brdev,
|
|
"cbb_cardbus_io_open: window out of range %d\n", win));
|
|
return (EINVAL);
|
|
}
|
|
|
|
basereg = win * 8 + CBBR_IOBASE0;
|
|
limitreg = win * 8 + CBBR_IOLIMIT0;
|
|
|
|
pci_write_config(brdev, basereg, start, 4);
|
|
pci_write_config(brdev, limitreg, end, 4);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cbb_cardbus_mem_open(device_t brdev, int win, uint32_t start, uint32_t end)
|
|
{
|
|
int basereg;
|
|
int limitreg;
|
|
|
|
if ((win < 0) || (win > 1)) {
|
|
DEVPRINTF((brdev,
|
|
"cbb_cardbus_mem_open: window out of range %d\n", win));
|
|
return (EINVAL);
|
|
}
|
|
|
|
basereg = win * 8 + CBBR_MEMBASE0;
|
|
limitreg = win * 8 + CBBR_MEMLIMIT0;
|
|
|
|
pci_write_config(brdev, basereg, start, 4);
|
|
pci_write_config(brdev, limitreg, end, 4);
|
|
return (0);
|
|
}
|
|
|
|
#define START_NONE 0xffffffff
|
|
#define END_NONE 0
|
|
|
|
static void
|
|
cbb_cardbus_auto_open(struct cbb_softc *sc, int type)
|
|
{
|
|
uint32_t starts[2];
|
|
uint32_t ends[2];
|
|
struct cbb_reslist *rle;
|
|
int align, i;
|
|
uint32_t reg;
|
|
|
|
starts[0] = starts[1] = START_NONE;
|
|
ends[0] = ends[1] = END_NONE;
|
|
|
|
if (type == SYS_RES_MEMORY)
|
|
align = CBB_MEMALIGN;
|
|
else if (type == SYS_RES_IOPORT)
|
|
align = CBB_IOALIGN;
|
|
else
|
|
align = 1;
|
|
|
|
SLIST_FOREACH(rle, &sc->rl, link) {
|
|
if (rle->type != type)
|
|
continue;
|
|
if (rle->res == NULL)
|
|
continue;
|
|
if (!(rman_get_flags(rle->res) & RF_ACTIVE))
|
|
continue;
|
|
if (rman_get_flags(rle->res) & RF_PREFETCHABLE)
|
|
i = 1;
|
|
else
|
|
i = 0;
|
|
if (rman_get_start(rle->res) < starts[i])
|
|
starts[i] = rman_get_start(rle->res);
|
|
if (rman_get_end(rle->res) > ends[i])
|
|
ends[i] = rman_get_end(rle->res);
|
|
}
|
|
for (i = 0; i < 2; i++) {
|
|
if (starts[i] == START_NONE)
|
|
continue;
|
|
starts[i] &= ~(align - 1);
|
|
ends[i] = ((ends[i] + align - 1) & ~(align - 1)) - 1;
|
|
}
|
|
if (starts[0] != START_NONE && starts[1] != START_NONE) {
|
|
if (starts[0] < starts[1]) {
|
|
if (ends[0] > starts[1]) {
|
|
device_printf(sc->dev, "Overlapping ranges"
|
|
" for prefetch and non-prefetch memory\n");
|
|
return;
|
|
}
|
|
} else {
|
|
if (ends[1] > starts[0]) {
|
|
device_printf(sc->dev, "Overlapping ranges"
|
|
" for prefetch and non-prefetch memory\n");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (type == SYS_RES_MEMORY) {
|
|
cbb_cardbus_mem_open(sc->dev, 0, starts[0], ends[0]);
|
|
cbb_cardbus_mem_open(sc->dev, 1, starts[1], ends[1]);
|
|
reg = pci_read_config(sc->dev, CBBR_BRIDGECTRL, 2);
|
|
reg &= ~(CBBM_BRIDGECTRL_PREFETCH_0 |
|
|
CBBM_BRIDGECTRL_PREFETCH_1);
|
|
if (starts[1] != START_NONE)
|
|
reg |= CBBM_BRIDGECTRL_PREFETCH_1;
|
|
pci_write_config(sc->dev, CBBR_BRIDGECTRL, reg, 2);
|
|
if (bootverbose) {
|
|
device_printf(sc->dev, "Opening memory:\n");
|
|
if (starts[0] != START_NONE)
|
|
device_printf(sc->dev, "Normal: %#x-%#x\n",
|
|
starts[0], ends[0]);
|
|
if (starts[1] != START_NONE)
|
|
device_printf(sc->dev, "Prefetch: %#x-%#x\n",
|
|
starts[1], ends[1]);
|
|
}
|
|
} else if (type == SYS_RES_IOPORT) {
|
|
cbb_cardbus_io_open(sc->dev, 0, starts[0], ends[0]);
|
|
cbb_cardbus_io_open(sc->dev, 1, starts[1], ends[1]);
|
|
if (bootverbose && starts[0] != START_NONE)
|
|
device_printf(sc->dev, "Opening I/O: %#x-%#x\n",
|
|
starts[0], ends[0]);
|
|
}
|
|
}
|
|
|
|
static int
|
|
cbb_cardbus_activate_resource(device_t brdev, device_t child, int type,
|
|
int rid, struct resource *res)
|
|
{
|
|
int ret;
|
|
|
|
ret = BUS_ACTIVATE_RESOURCE(device_get_parent(brdev), child,
|
|
type, rid, res);
|
|
if (ret != 0)
|
|
return (ret);
|
|
cbb_cardbus_auto_open(device_get_softc(brdev), type);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cbb_cardbus_deactivate_resource(device_t brdev, device_t child, int type,
|
|
int rid, struct resource *res)
|
|
{
|
|
int ret;
|
|
|
|
ret = BUS_DEACTIVATE_RESOURCE(device_get_parent(brdev), child,
|
|
type, rid, res);
|
|
if (ret != 0)
|
|
return (ret);
|
|
cbb_cardbus_auto_open(device_get_softc(brdev), type);
|
|
return (0);
|
|
}
|
|
|
|
static struct resource *
|
|
cbb_cardbus_alloc_resource(device_t brdev, device_t child, int type,
|
|
int *rid, u_long start, u_long end, u_long count, u_int flags)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
int tmp;
|
|
struct resource *res;
|
|
u_long align;
|
|
|
|
switch (type) {
|
|
case SYS_RES_IRQ:
|
|
tmp = rman_get_start(sc->irq_res);
|
|
if (start > tmp || end < tmp || count != 1) {
|
|
device_printf(child, "requested interrupt %ld-%ld,"
|
|
"count = %ld not supported by cbb\n",
|
|
start, end, count);
|
|
return (NULL);
|
|
}
|
|
start = end = tmp;
|
|
flags |= RF_SHAREABLE;
|
|
break;
|
|
case SYS_RES_IOPORT:
|
|
if (start <= cbb_start_32_io)
|
|
start = cbb_start_32_io;
|
|
if (end < start)
|
|
end = start;
|
|
if (count > (1 << RF_ALIGNMENT(flags)))
|
|
flags = (flags & ~RF_ALIGNMENT_MASK) |
|
|
rman_make_alignment_flags(count);
|
|
break;
|
|
case SYS_RES_MEMORY:
|
|
if (start <= cbb_start_mem)
|
|
start = cbb_start_mem;
|
|
if (end < start)
|
|
end = start;
|
|
if (count < CBB_MEMALIGN)
|
|
align = CBB_MEMALIGN;
|
|
else
|
|
align = count;
|
|
if (align > (1 << RF_ALIGNMENT(flags)))
|
|
flags = (flags & ~RF_ALIGNMENT_MASK) |
|
|
rman_make_alignment_flags(align);
|
|
break;
|
|
}
|
|
res = BUS_ALLOC_RESOURCE(device_get_parent(brdev), child, type, rid,
|
|
start, end, count, flags & ~RF_ACTIVE);
|
|
if (res == NULL) {
|
|
printf("cbb alloc res fail type %d rid %x\n", type, *rid);
|
|
return (NULL);
|
|
}
|
|
cbb_insert_res(sc, res, type, *rid);
|
|
if (flags & RF_ACTIVE)
|
|
if (bus_activate_resource(child, type, *rid, res) != 0) {
|
|
bus_release_resource(child, type, *rid, res);
|
|
return (NULL);
|
|
}
|
|
|
|
return (res);
|
|
}
|
|
|
|
static int
|
|
cbb_cardbus_release_resource(device_t brdev, device_t child, int type,
|
|
int rid, struct resource *res)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
int error;
|
|
|
|
if (rman_get_flags(res) & RF_ACTIVE) {
|
|
error = bus_deactivate_resource(child, type, rid, res);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
cbb_remove_res(sc, res);
|
|
return (BUS_RELEASE_RESOURCE(device_get_parent(brdev), child,
|
|
type, rid, res));
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* PC Card Power Functions */
|
|
/************************************************************************/
|
|
|
|
static int
|
|
cbb_pcic_power_enable_socket(device_t brdev, device_t child)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
int err;
|
|
|
|
DPRINTF(("cbb_pcic_socket_enable:\n"));
|
|
|
|
/* power down/up the socket to reset */
|
|
err = cbb_do_power(brdev);
|
|
if (err)
|
|
return (err);
|
|
exca_reset(&sc->exca[0], child);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
cbb_pcic_power_disable_socket(device_t brdev, device_t child)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
|
|
DPRINTF(("cbb_pcic_socket_disable\n"));
|
|
|
|
/* Turn off the card's interrupt and leave it in reset, wait 10ms */
|
|
exca_putb(&sc->exca[0], EXCA_INTR, 0);
|
|
pause("cbbP1", hz / 100);
|
|
|
|
/* power down the socket */
|
|
cbb_power(brdev, CARD_OFF);
|
|
exca_putb(&sc->exca[0], EXCA_PWRCTL, 0);
|
|
|
|
/* wait 300ms until power fails (Tpf). */
|
|
pause("cbbP2", hz * 300 / 1000);
|
|
|
|
/* enable CSC interrupts */
|
|
exca_putb(&sc->exca[0], EXCA_INTR, EXCA_INTR_ENABLE);
|
|
return (0);
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* POWER methods */
|
|
/************************************************************************/
|
|
|
|
int
|
|
cbb_power_enable_socket(device_t brdev, device_t child)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
|
|
if (sc->flags & CBB_16BIT_CARD)
|
|
return (cbb_pcic_power_enable_socket(brdev, child));
|
|
return (cbb_cardbus_power_enable_socket(brdev, child));
|
|
}
|
|
|
|
int
|
|
cbb_power_disable_socket(device_t brdev, device_t child)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
if (sc->flags & CBB_16BIT_CARD)
|
|
return (cbb_pcic_power_disable_socket(brdev, child));
|
|
return (cbb_cardbus_power_disable_socket(brdev, child));
|
|
}
|
|
|
|
static int
|
|
cbb_pcic_activate_resource(device_t brdev, device_t child, int type, int rid,
|
|
struct resource *res)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
return (exca_activate_resource(&sc->exca[0], child, type, rid, res));
|
|
}
|
|
|
|
static int
|
|
cbb_pcic_deactivate_resource(device_t brdev, device_t child, int type,
|
|
int rid, struct resource *res)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
return (exca_deactivate_resource(&sc->exca[0], child, type, rid, res));
|
|
}
|
|
|
|
static struct resource *
|
|
cbb_pcic_alloc_resource(device_t brdev, device_t child, int type, int *rid,
|
|
u_long start, u_long end, u_long count, u_int flags)
|
|
{
|
|
struct resource *res = NULL;
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
int align;
|
|
int tmp;
|
|
|
|
switch (type) {
|
|
case SYS_RES_MEMORY:
|
|
if (start < cbb_start_mem)
|
|
start = cbb_start_mem;
|
|
if (end < start)
|
|
end = start;
|
|
if (count < CBB_MEMALIGN)
|
|
align = CBB_MEMALIGN;
|
|
else
|
|
align = count;
|
|
if (align > (1 << RF_ALIGNMENT(flags)))
|
|
flags = (flags & ~RF_ALIGNMENT_MASK) |
|
|
rman_make_alignment_flags(align);
|
|
break;
|
|
case SYS_RES_IOPORT:
|
|
if (start < cbb_start_16_io)
|
|
start = cbb_start_16_io;
|
|
if (end < start)
|
|
end = start;
|
|
break;
|
|
case SYS_RES_IRQ:
|
|
tmp = rman_get_start(sc->irq_res);
|
|
if (start > tmp || end < tmp || count != 1) {
|
|
device_printf(child, "requested interrupt %ld-%ld,"
|
|
"count = %ld not supported by cbb\n",
|
|
start, end, count);
|
|
return (NULL);
|
|
}
|
|
flags |= RF_SHAREABLE;
|
|
start = end = rman_get_start(sc->irq_res);
|
|
break;
|
|
}
|
|
res = BUS_ALLOC_RESOURCE(device_get_parent(brdev), child, type, rid,
|
|
start, end, count, flags & ~RF_ACTIVE);
|
|
if (res == NULL)
|
|
return (NULL);
|
|
cbb_insert_res(sc, res, type, *rid);
|
|
if (flags & RF_ACTIVE) {
|
|
if (bus_activate_resource(child, type, *rid, res) != 0) {
|
|
bus_release_resource(child, type, *rid, res);
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
return (res);
|
|
}
|
|
|
|
static int
|
|
cbb_pcic_release_resource(device_t brdev, device_t child, int type,
|
|
int rid, struct resource *res)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
int error;
|
|
|
|
if (rman_get_flags(res) & RF_ACTIVE) {
|
|
error = bus_deactivate_resource(child, type, rid, res);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
cbb_remove_res(sc, res);
|
|
return (BUS_RELEASE_RESOURCE(device_get_parent(brdev), child,
|
|
type, rid, res));
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* PC Card methods */
|
|
/************************************************************************/
|
|
|
|
int
|
|
cbb_pcic_set_res_flags(device_t brdev, device_t child, int type, int rid,
|
|
u_long flags)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
struct resource *res;
|
|
|
|
if (type != SYS_RES_MEMORY)
|
|
return (EINVAL);
|
|
res = cbb_find_res(sc, type, rid);
|
|
if (res == NULL) {
|
|
device_printf(brdev,
|
|
"set_res_flags: specified rid not found\n");
|
|
return (ENOENT);
|
|
}
|
|
return (exca_mem_set_flags(&sc->exca[0], res, flags));
|
|
}
|
|
|
|
int
|
|
cbb_pcic_set_memory_offset(device_t brdev, device_t child, int rid,
|
|
uint32_t cardaddr, uint32_t *deltap)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
struct resource *res;
|
|
|
|
res = cbb_find_res(sc, SYS_RES_MEMORY, rid);
|
|
if (res == NULL) {
|
|
device_printf(brdev,
|
|
"set_memory_offset: specified rid not found\n");
|
|
return (ENOENT);
|
|
}
|
|
return (exca_mem_set_offset(&sc->exca[0], res, cardaddr, deltap));
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* BUS Methods */
|
|
/************************************************************************/
|
|
|
|
|
|
int
|
|
cbb_activate_resource(device_t brdev, device_t child, int type, int rid,
|
|
struct resource *r)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
|
|
if (sc->flags & CBB_16BIT_CARD)
|
|
return (cbb_pcic_activate_resource(brdev, child, type, rid, r));
|
|
else
|
|
return (cbb_cardbus_activate_resource(brdev, child, type, rid,
|
|
r));
|
|
}
|
|
|
|
int
|
|
cbb_deactivate_resource(device_t brdev, device_t child, int type,
|
|
int rid, struct resource *r)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
|
|
if (sc->flags & CBB_16BIT_CARD)
|
|
return (cbb_pcic_deactivate_resource(brdev, child, type,
|
|
rid, r));
|
|
else
|
|
return (cbb_cardbus_deactivate_resource(brdev, child, type,
|
|
rid, r));
|
|
}
|
|
|
|
struct resource *
|
|
cbb_alloc_resource(device_t brdev, device_t child, int type, int *rid,
|
|
u_long start, u_long end, u_long count, u_int flags)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
|
|
if (sc->flags & CBB_16BIT_CARD)
|
|
return (cbb_pcic_alloc_resource(brdev, child, type, rid,
|
|
start, end, count, flags));
|
|
else
|
|
return (cbb_cardbus_alloc_resource(brdev, child, type, rid,
|
|
start, end, count, flags));
|
|
}
|
|
|
|
int
|
|
cbb_release_resource(device_t brdev, device_t child, int type, int rid,
|
|
struct resource *r)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
|
|
if (sc->flags & CBB_16BIT_CARD)
|
|
return (cbb_pcic_release_resource(brdev, child, type,
|
|
rid, r));
|
|
else
|
|
return (cbb_cardbus_release_resource(brdev, child, type,
|
|
rid, r));
|
|
}
|
|
|
|
int
|
|
cbb_read_ivar(device_t brdev, device_t child, int which, uintptr_t *result)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
|
|
switch (which) {
|
|
case PCIB_IVAR_DOMAIN:
|
|
*result = sc->domain;
|
|
return (0);
|
|
case PCIB_IVAR_BUS:
|
|
*result = sc->secbus;
|
|
return (0);
|
|
}
|
|
return (ENOENT);
|
|
}
|
|
|
|
int
|
|
cbb_write_ivar(device_t brdev, device_t child, int which, uintptr_t value)
|
|
{
|
|
struct cbb_softc *sc = device_get_softc(brdev);
|
|
|
|
switch (which) {
|
|
case PCIB_IVAR_DOMAIN:
|
|
return (EINVAL);
|
|
case PCIB_IVAR_BUS:
|
|
sc->secbus = value;
|
|
return (0);
|
|
}
|
|
return (ENOENT);
|
|
}
|
|
|
|
int
|
|
cbb_suspend(device_t self)
|
|
{
|
|
int error = 0;
|
|
struct cbb_softc *sc = device_get_softc(self);
|
|
|
|
error = bus_generic_suspend(self);
|
|
if (error != 0)
|
|
return (error);
|
|
cbb_set(sc, CBB_SOCKET_MASK, 0); /* Quiet hardware */
|
|
sc->cardok = 0; /* Card is bogus now */
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
cbb_resume(device_t self)
|
|
{
|
|
int error = 0;
|
|
struct cbb_softc *sc = (struct cbb_softc *)device_get_softc(self);
|
|
uint32_t tmp;
|
|
|
|
/*
|
|
* Some BIOSes will not save the BARs for the pci chips, so we
|
|
* must do it ourselves. If the BAR is reset to 0 for an I/O
|
|
* device, it will read back as 0x1, so no explicit test for
|
|
* memory devices are needed.
|
|
*
|
|
* Note: The PCI bus code should do this automatically for us on
|
|
* suspend/resume, but until it does, we have to cope.
|
|
*/
|
|
pci_write_config(self, CBBR_SOCKBASE, rman_get_start(sc->base_res), 4);
|
|
DEVPRINTF((self, "PCI Memory allocated: %08lx\n",
|
|
rman_get_start(sc->base_res)));
|
|
|
|
sc->chipinit(sc);
|
|
|
|
/* reset interrupt -- Do we really need to do this? */
|
|
tmp = cbb_get(sc, CBB_SOCKET_EVENT);
|
|
cbb_set(sc, CBB_SOCKET_EVENT, tmp);
|
|
|
|
/* CSC Interrupt: Card detect interrupt on */
|
|
cbb_setb(sc, CBB_SOCKET_MASK, CBB_SOCKET_MASK_CD);
|
|
|
|
/* Signal the thread to wakeup. */
|
|
wakeup(&sc->intrhand);
|
|
|
|
error = bus_generic_resume(self);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
cbb_child_present(device_t parent, device_t child)
|
|
{
|
|
struct cbb_softc *sc = (struct cbb_softc *)device_get_softc(parent);
|
|
uint32_t sockstate;
|
|
|
|
sockstate = cbb_get(sc, CBB_SOCKET_STATE);
|
|
return (CBB_CARD_PRESENT(sockstate) && sc->cardok);
|
|
}
|