freebsd-nq/sys/dev/bge/if_bge.c
Alfred Perlstein 44956c9863 Remove M_TRYWAIT/M_WAITOK/M_WAIT. Callers should use 0.
Merge M_NOWAIT/M_DONTWAIT into a single flag M_NOWAIT.
2003-01-21 08:56:16 +00:00

2744 lines
69 KiB
C

/*
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2001
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Engineer, Wind River Systems
*/
/*
* The Broadcom BCM5700 is based on technology originally developed by
* Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
* MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
* frames, highly configurable RX filtering, and 16 RX and TX queues
* (which, along with RX filter rules, can be used for QOS applications).
* Other features, such as TCP segmentation, may be available as part
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
* firmware images can be stored in hardware and need not be compiled
* into the driver.
*
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
* function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
*
* The BCM5701 is a single-chip solution incorporating both the BCM5700
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
* does not support external SSRAM.
*
* Broadcom also produces a variation of the BCM5700 under the "Altima"
* brand name, which is functionally similar but lacks PCI-X support.
*
* Without external SSRAM, you can only have at most 4 TX rings,
* and the use of the mini RX ring is disabled. This seems to imply
* that these features are simply not available on the BCM5701. As a
* result, this driver does not implement any support for the mini RX
* ring.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miidevs.h"
#include <dev/mii/brgphyreg.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <dev/bge/if_bgereg.h>
#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
MODULE_DEPEND(bge, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#if !defined(lint)
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names. Note: the
* spec seems to indicate that the hardware still has Alteon's vendor
* ID burned into it, though it will always be overriden by the vendor
* ID in the EEPROM. Just to be safe, we cover all possibilities.
*/
#define BGE_DEVDESC_MAX 64 /* Maximum device description length */
static struct bge_type bge_devs[] = {
{ ALT_VENDORID, ALT_DEVICEID_BCM5700,
"Broadcom BCM5700 Gigabit Ethernet" },
{ ALT_VENDORID, ALT_DEVICEID_BCM5701,
"Broadcom BCM5701 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700,
"Broadcom BCM5700 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701,
"Broadcom BCM5701 Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702X,
"Broadcom BCM5702X Gigabit Ethernet" },
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703X,
"Broadcom BCM5703X Gigabit Ethernet" },
{ SK_VENDORID, SK_DEVICEID_ALTIMA,
"SysKonnect Gigabit Ethernet" },
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000,
"Altima AC1000 Gigabit Ethernet" },
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100,
"Altima AC9100 Gigabit Ethernet" },
{ 0, 0, NULL }
};
static int bge_probe (device_t);
static int bge_attach (device_t);
static int bge_detach (device_t);
static void bge_release_resources
(struct bge_softc *);
static void bge_txeof (struct bge_softc *);
static void bge_rxeof (struct bge_softc *);
static void bge_tick (void *);
static void bge_stats_update (struct bge_softc *);
static int bge_encap (struct bge_softc *, struct mbuf *,
u_int32_t *);
static void bge_intr (void *);
static void bge_start (struct ifnet *);
static int bge_ioctl (struct ifnet *, u_long, caddr_t);
static void bge_init (void *);
static void bge_stop (struct bge_softc *);
static void bge_watchdog (struct ifnet *);
static void bge_shutdown (device_t);
static int bge_ifmedia_upd (struct ifnet *);
static void bge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static u_int8_t bge_eeprom_getbyte (struct bge_softc *, int, u_int8_t *);
static int bge_read_eeprom (struct bge_softc *, caddr_t, int, int);
static u_int32_t bge_crc (caddr_t);
static void bge_setmulti (struct bge_softc *);
static void bge_handle_events (struct bge_softc *);
static int bge_alloc_jumbo_mem (struct bge_softc *);
static void bge_free_jumbo_mem (struct bge_softc *);
static void *bge_jalloc (struct bge_softc *);
static void bge_jfree (void *, void *);
static int bge_newbuf_std (struct bge_softc *, int, struct mbuf *);
static int bge_newbuf_jumbo (struct bge_softc *, int, struct mbuf *);
static int bge_init_rx_ring_std (struct bge_softc *);
static void bge_free_rx_ring_std (struct bge_softc *);
static int bge_init_rx_ring_jumbo (struct bge_softc *);
static void bge_free_rx_ring_jumbo (struct bge_softc *);
static void bge_free_tx_ring (struct bge_softc *);
static int bge_init_tx_ring (struct bge_softc *);
static int bge_chipinit (struct bge_softc *);
static int bge_blockinit (struct bge_softc *);
#ifdef notdef
static u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
static void bge_vpd_read_res (struct bge_softc *, struct vpd_res *, int);
static void bge_vpd_read (struct bge_softc *);
#endif
static u_int32_t bge_readmem_ind
(struct bge_softc *, int);
static void bge_writemem_ind (struct bge_softc *, int, int);
#ifdef notdef
static u_int32_t bge_readreg_ind
(struct bge_softc *, int);
#endif
static void bge_writereg_ind (struct bge_softc *, int, int);
static int bge_miibus_readreg (device_t, int, int);
static int bge_miibus_writereg (device_t, int, int, int);
static void bge_miibus_statchg (device_t);
static void bge_reset (struct bge_softc *);
static void bge_phy_hack (struct bge_softc *);
static device_method_t bge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bge_probe),
DEVMETHOD(device_attach, bge_attach),
DEVMETHOD(device_detach, bge_detach),
DEVMETHOD(device_shutdown, bge_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, bge_miibus_readreg),
DEVMETHOD(miibus_writereg, bge_miibus_writereg),
DEVMETHOD(miibus_statchg, bge_miibus_statchg),
{ 0, 0 }
};
static driver_t bge_driver = {
"bge",
bge_methods,
sizeof(struct bge_softc)
};
static devclass_t bge_devclass;
DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
static u_int32_t
bge_readmem_ind(sc, off)
struct bge_softc *sc;
int off;
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
}
static void
bge_writemem_ind(sc, off, val)
struct bge_softc *sc;
int off, val;
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
return;
}
#ifdef notdef
static u_int32_t
bge_readreg_ind(sc, off)
struct bge_softc *sc;
int off;
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
}
#endif
static void
bge_writereg_ind(sc, off, val)
struct bge_softc *sc;
int off, val;
{
device_t dev;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
return;
}
#ifdef notdef
static u_int8_t
bge_vpd_readbyte(sc, addr)
struct bge_softc *sc;
int addr;
{
int i;
device_t dev;
u_int32_t val;
dev = sc->bge_dev;
pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
break;
}
if (i == BGE_TIMEOUT) {
printf("bge%d: VPD read timed out\n", sc->bge_unit);
return(0);
}
val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
return((val >> ((addr % 4) * 8)) & 0xFF);
}
static void
bge_vpd_read_res(sc, res, addr)
struct bge_softc *sc;
struct vpd_res *res;
int addr;
{
int i;
u_int8_t *ptr;
ptr = (u_int8_t *)res;
for (i = 0; i < sizeof(struct vpd_res); i++)
ptr[i] = bge_vpd_readbyte(sc, i + addr);
return;
}
static void
bge_vpd_read(sc)
struct bge_softc *sc;
{
int pos = 0, i;
struct vpd_res res;
if (sc->bge_vpd_prodname != NULL)
free(sc->bge_vpd_prodname, M_DEVBUF);
if (sc->bge_vpd_readonly != NULL)
free(sc->bge_vpd_readonly, M_DEVBUF);
sc->bge_vpd_prodname = NULL;
sc->bge_vpd_readonly = NULL;
bge_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_ID) {
printf("bge%d: bad VPD resource id: expected %x got %x\n",
sc->bge_unit, VPD_RES_ID, res.vr_id);
return;
}
pos += sizeof(res);
sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
for (i = 0; i < res.vr_len; i++)
sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
sc->bge_vpd_prodname[i] = '\0';
pos += i;
bge_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_READ) {
printf("bge%d: bad VPD resource id: expected %x got %x\n",
sc->bge_unit, VPD_RES_READ, res.vr_id);
return;
}
pos += sizeof(res);
sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
for (i = 0; i < res.vr_len + 1; i++)
sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
return;
}
#endif
/*
* Read a byte of data stored in the EEPROM at address 'addr.' The
* BCM570x supports both the traditional bitbang interface and an
* auto access interface for reading the EEPROM. We use the auto
* access method.
*/
static u_int8_t
bge_eeprom_getbyte(sc, addr, dest)
struct bge_softc *sc;
int addr;
u_int8_t *dest;
{
int i;
u_int32_t byte = 0;
/*
* Enable use of auto EEPROM access so we can avoid
* having to use the bitbang method.
*/
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
/* Reset the EEPROM, load the clock period. */
CSR_WRITE_4(sc, BGE_EE_ADDR,
BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
DELAY(20);
/* Issue the read EEPROM command. */
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
/* Wait for completion */
for(i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
break;
}
if (i == BGE_TIMEOUT) {
printf("bge%d: eeprom read timed out\n", sc->bge_unit);
return(0);
}
/* Get result. */
byte = CSR_READ_4(sc, BGE_EE_DATA);
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
return(0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int
bge_read_eeprom(sc, dest, off, cnt)
struct bge_softc *sc;
caddr_t dest;
int off;
int cnt;
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = bge_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return(err ? 1 : 0);
}
static int
bge_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct bge_softc *sc;
struct ifnet *ifp;
u_int32_t val;
int i;
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
if (phy != 1)
switch(sc->bge_asicrev) {
case BGE_ASICREV_BCM5701_B5:
case BGE_ASICREV_BCM5703_A2:
return(0);
}
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
BGE_MIPHY(phy)|BGE_MIREG(reg));
for (i = 0; i < BGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, BGE_MI_COMM);
if (!(val & BGE_MICOMM_BUSY))
break;
}
if (i == BGE_TIMEOUT) {
printf("bge%d: PHY read timed out\n", sc->bge_unit);
return(0);
}
val = CSR_READ_4(sc, BGE_MI_COMM);
if (val & BGE_MICOMM_READFAIL)
return(0);
return(val & 0xFFFF);
}
static int
bge_miibus_writereg(dev, phy, reg, val)
device_t dev;
int phy, reg, val;
{
struct bge_softc *sc;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
for (i = 0; i < BGE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
break;
}
if (i == BGE_TIMEOUT) {
printf("bge%d: PHY read timed out\n", sc->bge_unit);
return(0);
}
return(0);
}
static void
bge_miibus_statchg(dev)
device_t dev;
{
struct bge_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->bge_miibus);
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
}
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
}
bge_phy_hack(sc);
return;
}
/*
* Handle events that have triggered interrupts.
*/
static void
bge_handle_events(sc)
struct bge_softc *sc;
{
return;
}
/*
* Memory management for jumbo frames.
*/
static int
bge_alloc_jumbo_mem(sc)
struct bge_softc *sc;
{
caddr_t ptr;
register int i;
struct bge_jpool_entry *entry;
/* Grab a big chunk o' storage. */
sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->bge_cdata.bge_jumbo_buf == NULL) {
printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
return(ENOBUFS);
}
SLIST_INIT(&sc->bge_jfree_listhead);
SLIST_INIT(&sc->bge_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc->bge_cdata.bge_jumbo_buf;
for (i = 0; i < BGE_JSLOTS; i++) {
sc->bge_cdata.bge_jslots[i] = ptr;
ptr += BGE_JLEN;
entry = malloc(sizeof(struct bge_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
contigfree(sc->bge_cdata.bge_jumbo_buf,
BGE_JMEM, M_DEVBUF);
sc->bge_cdata.bge_jumbo_buf = NULL;
printf("bge%d: no memory for jumbo "
"buffer queue!\n", sc->bge_unit);
return(ENOBUFS);
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
entry, jpool_entries);
}
return(0);
}
static void
bge_free_jumbo_mem(sc)
struct bge_softc *sc;
{
int i;
struct bge_jpool_entry *entry;
for (i = 0; i < BGE_JSLOTS; i++) {
entry = SLIST_FIRST(&sc->bge_jfree_listhead);
SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
free(entry, M_DEVBUF);
}
contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
return;
}
/*
* Allocate a jumbo buffer.
*/
static void *
bge_jalloc(sc)
struct bge_softc *sc;
{
struct bge_jpool_entry *entry;
entry = SLIST_FIRST(&sc->bge_jfree_listhead);
if (entry == NULL) {
printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
return(NULL);
}
SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
return(sc->bge_cdata.bge_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void
bge_jfree(buf, args)
void *buf;
void *args;
{
struct bge_jpool_entry *entry;
struct bge_softc *sc;
int i;
/* Extract the softc struct pointer. */
sc = (struct bge_softc *)args;
if (sc == NULL)
panic("bge_jfree: can't find softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((vm_offset_t)buf
- (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
if ((i < 0) || (i >= BGE_JSLOTS))
panic("bge_jfree: asked to free buffer that we don't manage!");
entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
if (entry == NULL)
panic("bge_jfree: buffer not in use!");
entry->slot = i;
SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
return;
}
/*
* Intialize a standard receive ring descriptor.
*/
static int
bge_newbuf_std(sc, i, m)
struct bge_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct bge_rx_bd *r;
if (m == NULL) {
MGETHDR(m_new, M_NOWAIT, MT_DATA);
if (m_new == NULL) {
return(ENOBUFS);
}
MCLGET(m_new, M_NOWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
if (!sc->bge_rx_alignment_bug)
m_adj(m_new, ETHER_ALIGN);
sc->bge_cdata.bge_rx_std_chain[i] = m_new;
r = &sc->bge_rdata->bge_rx_std_ring[i];
BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
r->bge_flags = BGE_RXBDFLAG_END;
r->bge_len = m_new->m_len;
r->bge_idx = i;
return(0);
}
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
bge_newbuf_jumbo(sc, i, m)
struct bge_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct bge_rx_bd *r;
if (m == NULL) {
caddr_t *buf = NULL;
/* Allocate the mbuf. */
MGETHDR(m_new, M_NOWAIT, MT_DATA);
if (m_new == NULL) {
return(ENOBUFS);
}
/* Allocate the jumbo buffer */
buf = bge_jalloc(sc);
if (buf == NULL) {
m_freem(m_new);
printf("bge%d: jumbo allocation failed "
"-- packet dropped!\n", sc->bge_unit);
return(ENOBUFS);
}
/* Attach the buffer to the mbuf. */
m_new->m_data = (void *) buf;
m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, bge_jfree,
(struct bge_softc *)sc, 0, EXT_NET_DRV);
} else {
m_new = m;
m_new->m_data = m_new->m_ext.ext_buf;
m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
}
if (!sc->bge_rx_alignment_bug)
m_adj(m_new, ETHER_ALIGN);
/* Set up the descriptor. */
r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
BGE_HOSTADDR(r->bge_addr) = vtophys(mtod(m_new, caddr_t));
r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
r->bge_len = m_new->m_len;
r->bge_idx = i;
return(0);
}
/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB or memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
static int
bge_init_rx_ring_std(sc)
struct bge_softc *sc;
{
int i;
for (i = 0; i < BGE_SSLOTS; i++) {
if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
};
sc->bge_std = i - 1;
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
return(0);
}
static void
bge_free_rx_ring_std(sc)
struct bge_softc *sc;
{
int i;
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
}
bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
sizeof(struct bge_rx_bd));
}
return;
}
static int
bge_init_rx_ring_jumbo(sc)
struct bge_softc *sc;
{
int i;
struct bge_rcb *rcb;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
};
sc->bge_jumbo = i - 1;
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
return(0);
}
static void
bge_free_rx_ring_jumbo(sc)
struct bge_softc *sc;
{
int i;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
}
bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
sizeof(struct bge_rx_bd));
}
return;
}
static void
bge_free_tx_ring(sc)
struct bge_softc *sc;
{
int i;
if (sc->bge_rdata->bge_tx_ring == NULL)
return;
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
m_freem(sc->bge_cdata.bge_tx_chain[i]);
sc->bge_cdata.bge_tx_chain[i] = NULL;
}
bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
sizeof(struct bge_tx_bd));
}
return;
}
static int
bge_init_tx_ring(sc)
struct bge_softc *sc;
{
sc->bge_txcnt = 0;
sc->bge_tx_saved_considx = 0;
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
return(0);
}
#define BGE_POLY 0xEDB88320
static u_int32_t
bge_crc(addr)
caddr_t addr;
{
u_int32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
}
return(crc & 0x7F);
}
static void
bge_setmulti(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t hashes[4] = { 0, 0, 0, 0 };
int h, i;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
return;
}
/* First, zot all the existing filters. */
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
/* Now program new ones. */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
}
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
return;
}
/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
static int
bge_chipinit(sc)
struct bge_softc *sc;
{
int i;
/* Set endianness before we access any non-PCI registers. */
#if BYTE_ORDER == BIG_ENDIAN
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
BGE_BIGENDIAN_INIT, 4);
#else
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
BGE_LITTLEENDIAN_INIT, 4);
#endif
/*
* Check the 'ROM failed' bit on the RX CPU to see if
* self-tests passed.
*/
if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
printf("bge%d: RX CPU self-diagnostics failed!\n",
sc->bge_unit);
return(ENODEV);
}
/* Clear the MAC control register */
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
/*
* Clear the MAC statistics block in the NIC's
* internal memory.
*/
for (i = BGE_STATS_BLOCK;
i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
BGE_MEMWIN_WRITE(sc, i, 0);
for (i = BGE_STATUS_BLOCK;
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
BGE_MEMWIN_WRITE(sc, i, 0);
/* Set up the PCI DMA control register. */
if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
BGE_PCISTATE_PCI_BUSMODE) {
/* Conventional PCI bus */
pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x3F000F, 4);
} else {
/* PCI-X bus */
pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x1B000F, 4);
}
/*
* Set up general mode register.
*/
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
BGE_MODECTL_RX_NO_PHDR_CSUM);
/*
* Disable memory write invalidate. Apparently it is not supported
* properly by these devices.
*/
PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
#ifdef __brokenalpha__
/*
* Must insure that we do not cross an 8K (bytes) boundary
* for DMA reads. Our highest limit is 1K bytes. This is a
* restriction on some ALPHA platforms with early revision
* 21174 PCI chipsets, such as the AlphaPC 164lx
*/
PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
BGE_PCI_READ_BNDRY_1024BYTES, 4);
#endif
/* Set the timer prescaler (always 66Mhz) */
CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
return(0);
}
static int
bge_blockinit(sc)
struct bge_softc *sc;
{
struct bge_rcb *rcb;
volatile struct bge_rcb *vrcb;
int i;
/*
* Initialize the memory window pointer register so that
* we can access the first 32K of internal NIC RAM. This will
* allow us to set up the TX send ring RCBs and the RX return
* ring RCBs, plus other things which live in NIC memory.
*/
CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
/* Configure mbuf memory pool */
if (sc->bge_extram) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
}
/* Configure DMA resource pool */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
/* Configure mbuf pool watermarks */
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
/* Configure DMA resource watermarks */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
/* Enable buffer manager */
CSR_WRITE_4(sc, BGE_BMAN_MODE,
BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
/* Poll for buffer manager start indication */
for (i = 0; i < BGE_TIMEOUT; i++) {
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("bge%d: buffer manager failed to start\n",
sc->bge_unit);
return(ENXIO);
}
/* Enable flow-through queues */
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
/* Wait until queue initialization is complete */
for (i = 0; i < BGE_TIMEOUT; i++) {
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("bge%d: flow-through queue init failed\n",
sc->bge_unit);
return(ENXIO);
}
/* Initialize the standard RX ring control block */
rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
BGE_HOSTADDR(rcb->bge_hostaddr) =
vtophys(&sc->bge_rdata->bge_rx_std_ring);
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
if (sc->bge_extram)
rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
else
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
/*
* Initialize the jumbo RX ring control block
* We set the 'ring disabled' bit in the flags
* field until we're actually ready to start
* using this ring (i.e. once we set the MTU
* high enough to require it).
*/
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
BGE_HOSTADDR(rcb->bge_hostaddr) =
vtophys(&sc->bge_rdata->bge_rx_jumbo_ring);
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
if (sc->bge_extram)
rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
else
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
rcb->bge_hostaddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
/* Set up dummy disabled mini ring RCB */
rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
/*
* Set the BD ring replentish thresholds. The recommended
* values are 1/8th the number of descriptors allocated to
* each ring.
*/
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
/*
* Disable all unused send rings by setting the 'ring disabled'
* bit in the flags field of all the TX send ring control blocks.
* These are located in NIC memory.
*/
vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
BGE_SEND_RING_RCB);
for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
vrcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
vrcb->bge_nicaddr = 0;
vrcb++;
}
/* Configure TX RCB 0 (we use only the first ring) */
vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
BGE_SEND_RING_RCB);
vrcb->bge_hostaddr.bge_addr_hi = 0;
BGE_HOSTADDR(vrcb->bge_hostaddr) =
vtophys(&sc->bge_rdata->bge_tx_ring);
vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
/* Disable all unused RX return rings */
vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
BGE_RX_RETURN_RING_RCB);
for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
vrcb->bge_hostaddr.bge_addr_hi = 0;
vrcb->bge_hostaddr.bge_addr_lo = 0;
vrcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
BGE_RCB_FLAG_RING_DISABLED);
vrcb->bge_nicaddr = 0;
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
(i * (sizeof(u_int64_t))), 0);
vrcb++;
}
/* Initialize RX ring indexes */
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
/*
* Set up RX return ring 0
* Note that the NIC address for RX return rings is 0x00000000.
* The return rings live entirely within the host, so the
* nicaddr field in the RCB isn't used.
*/
vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
BGE_RX_RETURN_RING_RCB);
vrcb->bge_hostaddr.bge_addr_hi = 0;
BGE_HOSTADDR(vrcb->bge_hostaddr) =
vtophys(&sc->bge_rdata->bge_rx_return_ring);
vrcb->bge_nicaddr = 0x00000000;
vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT, 0);
/* Set random backoff seed for TX */
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
BGE_TX_BACKOFF_SEED_MASK);
/* Set inter-packet gap */
CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
/*
* Specify which ring to use for packets that don't match
* any RX rules.
*/
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
/*
* Configure number of RX lists. One interrupt distribution
* list, sixteen active lists, one bad frames class.
*/
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
/* Inialize RX list placement stats mask. */
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
/* Disable host coalescing until we get it set up */
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
/* Poll to make sure it's shut down. */
for (i = 0; i < BGE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("bge%d: host coalescing engine failed to idle\n",
sc->bge_unit);
return(ENXIO);
}
/* Set up host coalescing defaults */
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
/* Set up address of statistics block */
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
vtophys(&sc->bge_rdata->bge_info.bge_stats));
/* Set up address of status block */
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
vtophys(&sc->bge_rdata->bge_status_block));
sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
/* Turn on host coalescing state machine */
CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
/* Turn on RX BD completion state machine and enable attentions */
CSR_WRITE_4(sc, BGE_RBDC_MODE,
BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
/* Turn on RX list placement state machine */
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
/* Turn on RX list selector state machine. */
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
/* Turn on DMA, clear stats */
CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
(sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
/* Set misc. local control, enable interrupts on attentions */
CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
#ifdef notdef
/* Assert GPIO pins for PHY reset */
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
#endif
/* Turn on DMA completion state machine */
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
/* Turn on write DMA state machine */
CSR_WRITE_4(sc, BGE_WDMA_MODE,
BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
/* Turn on read DMA state machine */
CSR_WRITE_4(sc, BGE_RDMA_MODE,
BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
/* Turn on RX data completion state machine */
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
/* Turn on RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
/* Turn on RX data and RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
/* Turn on Mbuf cluster free state machine */
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
/* Turn on send BD completion state machine */
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/* Turn on send data completion state machine */
CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
/* Turn on send data initiator state machine */
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
/* Turn on send BD initiator state machine */
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
/* Turn on send BD selector state machine */
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
/* init LED register */
CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
/* ack/clear link change events */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
BGE_MACSTAT_CFG_CHANGED);
CSR_WRITE_4(sc, BGE_MI_STS, 0);
/* Enable PHY auto polling (for MII/GMII only) */
if (sc->bge_tbi) {
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
} else {
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
}
/* Enable link state change attentions. */
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
return(0);
}
/*
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match. Note
* that since the Broadcom controller contains VPD support, we
* can get the device name string from the controller itself instead
* of the compiled-in string. This is a little slow, but it guarantees
* we'll always announce the right product name.
*/
static int
bge_probe(dev)
device_t dev;
{
struct bge_type *t;
struct bge_softc *sc;
char *descbuf;
t = bge_devs;
sc = device_get_softc(dev);
bzero(sc, sizeof(struct bge_softc));
sc->bge_unit = device_get_unit(dev);
sc->bge_dev = dev;
while(t->bge_name != NULL) {
if ((pci_get_vendor(dev) == t->bge_vid) &&
(pci_get_device(dev) == t->bge_did)) {
#ifdef notdef
bge_vpd_read(sc);
device_set_desc(dev, sc->bge_vpd_prodname);
#endif
descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
if (descbuf == NULL)
return(ENOMEM);
snprintf(descbuf, BGE_DEVDESC_MAX,
"%s, ASIC rev. %#04x", t->bge_name,
pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
device_set_desc_copy(dev, descbuf);
free(descbuf, M_TEMP);
return(0);
}
t++;
}
return(ENXIO);
}
static int
bge_attach(dev)
device_t dev;
{
int s;
u_int32_t command;
struct ifnet *ifp;
struct bge_softc *sc;
u_int32_t hwcfg = 0;
u_int32_t mac_addr = 0;
int unit, error = 0, rid;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
sc->bge_dev = dev;
sc->bge_unit = unit;
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
pci_enable_io(dev, SYS_RES_MEMORY);
command = pci_read_config(dev, PCIR_COMMAND, 4);
if (!(command & PCIM_CMD_MEMEN)) {
printf("bge%d: failed to enable memory mapping!\n", unit);
error = ENXIO;
goto fail;
}
rid = BGE_PCI_BAR0;
sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0, ~0, 1, RF_ACTIVE|PCI_RF_DENSE);
if (sc->bge_res == NULL) {
printf ("bge%d: couldn't map memory\n", unit);
error = ENXIO;
goto fail;
}
sc->bge_btag = rman_get_bustag(sc->bge_res);
sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
/* Allocate interrupt */
rid = 0;
sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->bge_irq == NULL) {
printf("bge%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
bge_intr, sc, &sc->bge_intrhand);
if (error) {
bge_release_resources(sc);
printf("bge%d: couldn't set up irq\n", unit);
goto fail;
}
sc->bge_unit = unit;
/* Try to reset the chip. */
bge_reset(sc);
if (bge_chipinit(sc)) {
printf("bge%d: chip initialization failed\n", sc->bge_unit);
bge_release_resources(sc);
error = ENXIO;
goto fail;
}
/*
* Get station address from the EEPROM.
*/
mac_addr = bge_readmem_ind(sc, 0x0c14);
if ((mac_addr >> 16) == 0x484b) {
sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8);
sc->arpcom.ac_enaddr[1] = (u_char)mac_addr;
mac_addr = bge_readmem_ind(sc, 0x0c18);
sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24);
sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16);
sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8);
sc->arpcom.ac_enaddr[5] = (u_char)mac_addr;
} else if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
printf("bge%d: failed to read station address\n", unit);
bge_release_resources(sc);
error = ENXIO;
goto fail;
}
/*
* A Broadcom chip was detected. Inform the world.
*/
printf("bge%d: Ethernet address: %6D\n", unit,
sc->arpcom.ac_enaddr, ":");
/* Allocate the general information block and ring buffers. */
sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->bge_rdata == NULL) {
bge_release_resources(sc);
error = ENXIO;
printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
goto fail;
}
bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
/* Try to allocate memory for jumbo buffers. */
if (bge_alloc_jumbo_mem(sc)) {
printf("bge%d: jumbo buffer allocation "
"failed\n", sc->bge_unit);
bge_release_resources(sc);
error = ENXIO;
goto fail;
}
/* Set default tuneable values. */
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
sc->bge_rx_coal_ticks = 150;
sc->bge_tx_coal_ticks = 150;
sc->bge_rx_max_coal_bds = 64;
sc->bge_tx_max_coal_bds = 128;
/* Set up ifnet structure */
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = sc->bge_unit;
ifp->if_name = "bge";
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bge_ioctl;
ifp->if_output = ether_output;
ifp->if_start = bge_start;
ifp->if_watchdog = bge_watchdog;
ifp->if_init = bge_init;
ifp->if_mtu = ETHERMTU;
ifp->if_snd.ifq_maxlen = BGE_TX_RING_CNT - 1;
ifp->if_hwassist = BGE_CSUM_FEATURES;
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
/* Save ASIC rev. */
sc->bge_asicrev =
pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
BGE_PCIMISCCTL_ASICREV;
/* Pretend all 5700s are the same */
if ((sc->bge_asicrev & 0xFF000000) == BGE_ASICREV_BCM5700)
sc->bge_asicrev = BGE_ASICREV_BCM5700;
/*
* Figure out what sort of media we have by checking the
* hardware config word in the EEPROM. Note: on some BCM5700
* cards, this value appears to be unset. If that's the
* case, we have to rely on identifying the NIC by its PCI
* subsystem ID, as we do below for the SysKonnect SK-9D41.
*/
bge_read_eeprom(sc, (caddr_t)&hwcfg,
BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
if ((ntohl(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
sc->bge_tbi = 1;
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
sc->bge_tbi = 1;
if (sc->bge_tbi) {
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
bge_ifmedia_upd, bge_ifmedia_sts);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->bge_ifmedia,
IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
} else {
/*
* Do transceiver setup.
*/
if (mii_phy_probe(dev, &sc->bge_miibus,
bge_ifmedia_upd, bge_ifmedia_sts)) {
printf("bge%d: MII without any PHY!\n", sc->bge_unit);
bge_release_resources(sc);
bge_free_jumbo_mem(sc);
error = ENXIO;
goto fail;
}
}
/*
* When using the BCM5701 in PCI-X mode, data corruption has
* been observed in the first few bytes of some received packets.
* Aligning the packet buffer in memory eliminates the corruption.
* Unfortunately, this misaligns the packet payloads. On platforms
* which do not support unaligned accesses, we will realign the
* payloads by copying the received packets.
*/
switch (sc->bge_asicrev) {
case BGE_ASICREV_BCM5701_A0:
case BGE_ASICREV_BCM5701_B0:
case BGE_ASICREV_BCM5701_B2:
case BGE_ASICREV_BCM5701_B5:
/* If in PCI-X mode, work around the alignment bug. */
if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
(BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
BGE_PCISTATE_PCI_BUSSPEED)
sc->bge_rx_alignment_bug = 1;
break;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, sc->arpcom.ac_enaddr);
callout_handle_init(&sc->bge_stat_ch);
fail:
splx(s);
return(error);
}
static int
bge_detach(dev)
device_t dev;
{
struct bge_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
ether_ifdetach(ifp);
bge_stop(sc);
bge_reset(sc);
if (sc->bge_tbi) {
ifmedia_removeall(&sc->bge_ifmedia);
} else {
bus_generic_detach(dev);
device_delete_child(dev, sc->bge_miibus);
}
bge_release_resources(sc);
bge_free_jumbo_mem(sc);
splx(s);
return(0);
}
static void
bge_release_resources(sc)
struct bge_softc *sc;
{
device_t dev;
dev = sc->bge_dev;
if (sc->bge_vpd_prodname != NULL)
free(sc->bge_vpd_prodname, M_DEVBUF);
if (sc->bge_vpd_readonly != NULL)
free(sc->bge_vpd_readonly, M_DEVBUF);
if (sc->bge_intrhand != NULL)
bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
if (sc->bge_irq != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
if (sc->bge_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
BGE_PCI_BAR0, sc->bge_res);
if (sc->bge_rdata != NULL)
contigfree(sc->bge_rdata,
sizeof(struct bge_ring_data), M_DEVBUF);
return;
}
static void
bge_reset(sc)
struct bge_softc *sc;
{
device_t dev;
u_int32_t cachesize, command, pcistate;
int i, val = 0;
dev = sc->bge_dev;
/* Save some important PCI state. */
cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
command = pci_read_config(dev, BGE_PCI_CMD, 4);
pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
pci_write_config(dev, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
/* Issue global reset */
bge_writereg_ind(sc, BGE_MISC_CFG,
BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
DELAY(1000);
/* Reset some of the PCI state that got zapped by reset */
pci_write_config(dev, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
pci_write_config(dev, BGE_PCI_CMD, command, 4);
bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
/*
* Prevent PXE restart: write a magic number to the
* general communications memory at 0xB50.
*/
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
/*
* Poll the value location we just wrote until
* we see the 1's complement of the magic number.
* This indicates that the firmware initialization
* is complete.
*/
for (i = 0; i < BGE_TIMEOUT; i++) {
val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
if (val == ~BGE_MAGIC_NUMBER)
break;
DELAY(10);
}
if (i == BGE_TIMEOUT) {
printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
return;
}
/*
* XXX Wait for the value of the PCISTATE register to
* return to its original pre-reset state. This is a
* fairly good indicator of reset completion. If we don't
* wait for the reset to fully complete, trying to read
* from the device's non-PCI registers may yield garbage
* results.
*/
for (i = 0; i < BGE_TIMEOUT; i++) {
if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
break;
DELAY(10);
}
/* Enable memory arbiter. */
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
/* Fix up byte swapping */
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
BGE_MODECTL_BYTESWAP_DATA);
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
DELAY(10000);
return;
}
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle two possibilities here:
* 1) the frame is from the jumbo recieve ring
* 2) the frame is from the standard receive ring
*/
static void
bge_rxeof(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
int stdcnt = 0, jumbocnt = 0;
ifp = &sc->arpcom.ac_if;
while(sc->bge_rx_saved_considx !=
sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
struct bge_rx_bd *cur_rx;
u_int32_t rxidx;
struct ether_header *eh;
struct mbuf *m = NULL;
u_int16_t vlan_tag = 0;
int have_tag = 0;
cur_rx =
&sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
rxidx = cur_rx->bge_idx;
BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
have_tag = 1;
vlan_tag = cur_rx->bge_vlan_tag;
}
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
jumbocnt++;
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
ifp->if_ierrors++;
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
continue;
}
if (bge_newbuf_jumbo(sc,
sc->bge_jumbo, NULL) == ENOBUFS) {
ifp->if_ierrors++;
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
continue;
}
} else {
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
stdcnt++;
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
ifp->if_ierrors++;
bge_newbuf_std(sc, sc->bge_std, m);
continue;
}
if (bge_newbuf_std(sc, sc->bge_std,
NULL) == ENOBUFS) {
ifp->if_ierrors++;
bge_newbuf_std(sc, sc->bge_std, m);
continue;
}
}
ifp->if_ipackets++;
#ifndef __i386__
/*
* The i386 allows unaligned accesses, but for other
* platforms we must make sure the payload is aligned.
*/
if (sc->bge_rx_alignment_bug) {
bcopy(m->m_data, m->m_data + ETHER_ALIGN,
cur_rx->bge_len);
m->m_data += ETHER_ALIGN;
}
#endif
eh = mtod(m, struct ether_header *);
m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
m->m_pkthdr.rcvif = ifp;
#if 0 /* currently broken for some packets, possibly related to TCP options */
if (ifp->if_hwassist) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
m->m_pkthdr.csum_data =
cur_rx->bge_tcp_udp_csum;
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
}
}
#endif
/*
* If we received a packet with a vlan tag,
* attach that information to the packet.
*/
if (have_tag)
VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
(*ifp->if_input)(ifp, m);
}
CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
if (stdcnt)
CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
if (jumbocnt)
CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
return;
}
static void
bge_txeof(sc)
struct bge_softc *sc;
{
struct bge_tx_bd *cur_tx = NULL;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
while (sc->bge_tx_saved_considx !=
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
u_int32_t idx = 0;
idx = sc->bge_tx_saved_considx;
cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
ifp->if_opackets++;
if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
m_freem(sc->bge_cdata.bge_tx_chain[idx]);
sc->bge_cdata.bge_tx_chain[idx] = NULL;
}
sc->bge_txcnt--;
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
ifp->if_timer = 0;
}
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
static void
bge_intr(xsc)
void *xsc;
{
struct bge_softc *sc;
struct ifnet *ifp;
sc = xsc;
ifp = &sc->arpcom.ac_if;
#ifdef notdef
/* Avoid this for now -- checking this register is expensive. */
/* Make sure this is really our interrupt. */
if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
return;
#endif
/* Ack interrupt and stop others from occuring. */
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
/*
* Process link state changes.
* Grrr. The link status word in the status block does
* not work correctly on the BCM5700 rev AX and BX chips,
* according to all avaibable information. Hence, we have
* to enable MII interrupts in order to properly obtain
* async link changes. Unfortunately, this also means that
* we have to read the MAC status register to detect link
* changes, thereby adding an additional register access to
* the interrupt handler.
*/
if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
u_int32_t status;
status = CSR_READ_4(sc, BGE_MAC_STS);
if (status & BGE_MACSTAT_MI_INTERRUPT) {
sc->bge_link = 0;
untimeout(bge_tick, sc, sc->bge_stat_ch);
bge_tick(sc);
/* Clear the interrupt */
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
BRGPHY_INTRS);
}
} else {
if (sc->bge_rdata->bge_status_block.bge_status &
BGE_STATFLAG_LINKSTATE_CHANGED) {
sc->bge_link = 0;
untimeout(bge_tick, sc, sc->bge_stat_ch);
bge_tick(sc);
/* Clear the interrupt */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
BGE_MACSTAT_CFG_CHANGED);
}
}
if (ifp->if_flags & IFF_RUNNING) {
/* Check RX return ring producer/consumer */
bge_rxeof(sc);
/* Check TX ring producer/consumer */
bge_txeof(sc);
}
bge_handle_events(sc);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
bge_start(ifp);
return;
}
static void
bge_tick(xsc)
void *xsc;
{
struct bge_softc *sc;
struct mii_data *mii = NULL;
struct ifmedia *ifm = NULL;
struct ifnet *ifp;
int s;
sc = xsc;
ifp = &sc->arpcom.ac_if;
s = splimp();
bge_stats_update(sc);
sc->bge_stat_ch = timeout(bge_tick, sc, hz);
if (sc->bge_link) {
splx(s);
return;
}
if (sc->bge_tbi) {
ifm = &sc->bge_ifmedia;
if (CSR_READ_4(sc, BGE_MAC_STS) &
BGE_MACSTAT_TBI_PCS_SYNCHED) {
sc->bge_link++;
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
printf("bge%d: gigabit link up\n", sc->bge_unit);
if (ifp->if_snd.ifq_head != NULL)
bge_start(ifp);
}
splx(s);
return;
}
mii = device_get_softc(sc->bge_miibus);
mii_tick(mii);
if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->bge_link++;
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
printf("bge%d: gigabit link up\n",
sc->bge_unit);
if (ifp->if_snd.ifq_head != NULL)
bge_start(ifp);
}
splx(s);
return;
}
static void
bge_stats_update(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
struct bge_stats *stats;
ifp = &sc->arpcom.ac_if;
stats = (struct bge_stats *)(sc->bge_vhandle +
BGE_MEMWIN_START + BGE_STATS_BLOCK);
ifp->if_collisions +=
(stats->dot3StatsSingleCollisionFrames.bge_addr_lo +
stats->dot3StatsMultipleCollisionFrames.bge_addr_lo +
stats->dot3StatsExcessiveCollisions.bge_addr_lo +
stats->dot3StatsLateCollisions.bge_addr_lo) -
ifp->if_collisions;
#ifdef notdef
ifp->if_collisions +=
(sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
ifp->if_collisions;
#endif
return;
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int
bge_encap(sc, m_head, txidx)
struct bge_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct bge_tx_bd *f = NULL;
struct mbuf *m;
u_int32_t frag, cur, cnt = 0;
u_int16_t csum_flags = 0;
struct m_tag *mtag;
m = m_head;
cur = frag = *txidx;
if (m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
if (m_head->m_flags & M_LASTFRAG)
csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
else if (m_head->m_flags & M_FRAG)
csum_flags |= BGE_TXBDFLAG_IP_FRAG;
}
mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
f = &sc->bge_rdata->bge_tx_ring[frag];
if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
break;
BGE_HOSTADDR(f->bge_addr) =
vtophys(mtod(m, vm_offset_t));
f->bge_len = m->m_len;
f->bge_flags = csum_flags;
if (mtag != NULL) {
f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
} else {
f->bge_vlan_tag = 0;
}
/*
* Sanity check: avoid coming within 16 descriptors
* of the end of the ring.
*/
if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
return(ENOBUFS);
cur = frag;
BGE_INC(frag, BGE_TX_RING_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
if (frag == sc->bge_tx_saved_considx)
return(ENOBUFS);
sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
sc->bge_cdata.bge_tx_chain[cur] = m_head;
sc->bge_txcnt += cnt;
*txidx = frag;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
bge_start(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t prodidx = 0;
sc = ifp->if_softc;
if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
return;
prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* XXX
* safety overkill. If this is a fragmented packet chain
* with delayed TCP/UDP checksums, then only encapsulate
* it if we have enough descriptors to handle the entire
* chain at once.
* (paranoia -- may not actually be needed)
*/
if (m_head->m_flags & M_FIRSTFRAG &&
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
m_head->m_pkthdr.csum_data + 16) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
}
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (bge_encap(sc, m_head, &prodidx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
/* Transmit */
CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
/*
* If we have a BCM5400 or BCM5401 PHY, we need to properly
* program its internal DSP. Failing to do this can result in
* massive packet loss at 1Gb speeds.
*/
static void
bge_phy_hack(sc)
struct bge_softc *sc;
{
struct bge_bcom_hack bhack[] = {
{ BRGPHY_MII_AUXCTL, 0x4C20 },
{ BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
{ BRGPHY_MII_DSP_RW_PORT, 0x1804 },
{ BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
{ BRGPHY_MII_DSP_RW_PORT, 0x1204 },
{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
{ BRGPHY_MII_DSP_RW_PORT, 0x0132 },
{ BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
{ BRGPHY_MII_DSP_RW_PORT, 0x0232 },
{ BRGPHY_MII_DSP_ADDR_REG, 0x201F },
{ BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
{ 0, 0 } };
u_int16_t vid, did;
int i;
vid = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR1);
did = bge_miibus_readreg(sc->bge_dev, 1, MII_PHYIDR2);
if (MII_OUI(vid, did) == MII_OUI_xxBROADCOM &&
(MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5400 ||
MII_MODEL(did) == MII_MODEL_xxBROADCOM_BCM5401)) {
i = 0;
while(bhack[i].reg) {
bge_miibus_writereg(sc->bge_dev, 1, bhack[i].reg,
bhack[i].val);
i++;
}
}
return;
}
static void
bge_init(xsc)
void *xsc;
{
struct bge_softc *sc = xsc;
struct ifnet *ifp;
u_int16_t *m;
int s;
s = splimp();
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_RUNNING) {
splx(s);
return;
}
/* Cancel pending I/O and flush buffers. */
bge_stop(sc);
bge_reset(sc);
bge_chipinit(sc);
/*
* Init the various state machines, ring
* control blocks and firmware.
*/
if (bge_blockinit(sc)) {
printf("bge%d: initialization failure\n", sc->bge_unit);
splx(s);
return;
}
ifp = &sc->arpcom.ac_if;
/* Specify MTU. */
CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN);
/* Load our MAC address. */
m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC) {
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
} else {
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
}
/* Program multicast filter. */
bge_setmulti(sc);
/* Init RX ring. */
bge_init_rx_ring_std(sc);
/* Init jumbo RX ring. */
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
bge_init_rx_ring_jumbo(sc);
/* Init our RX return ring index */
sc->bge_rx_saved_considx = 0;
/* Init TX ring. */
bge_init_tx_ring(sc);
/* Turn on transmitter */
BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
/* Turn on receiver */
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
/* Tell firmware we're alive. */
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
/* Enable host interrupts. */
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
bge_ifmedia_upd(ifp);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
sc->bge_stat_ch = timeout(bge_tick, sc, hz);
return;
}
/*
* Set media options.
*/
static int
bge_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->bge_ifmedia;
/* If this is a 1000baseX NIC, enable the TBI port. */
if (sc->bge_tbi) {
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
break;
case IFM_1000_SX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
}
break;
default:
return(EINVAL);
}
return(0);
}
mii = device_get_softc(sc->bge_miibus);
sc->bge_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
miisc = LIST_NEXT(miisc, mii_list))
mii_phy_reset(miisc);
}
bge_phy_hack(sc);
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
static void
bge_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct bge_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
if (sc->bge_tbi) {
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (CSR_READ_4(sc, BGE_MAC_STS) &
BGE_MACSTAT_TBI_PCS_SYNCHED)
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_1000_SX;
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
else
ifmr->ifm_active |= IFM_FDX;
return;
}
mii = device_get_softc(sc->bge_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int
bge_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct bge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, mask, error = 0;
struct mii_data *mii;
s = splimp();
switch(command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > BGE_JUMBO_MTU)
error = EINVAL;
else {
ifp->if_mtu = ifr->ifr_mtu;
ifp->if_flags &= ~IFF_RUNNING;
bge_init(sc);
}
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
/*
* If only the state of the PROMISC flag changed,
* then just use the 'set promisc mode' command
* instead of reinitializing the entire NIC. Doing
* a full re-init means reloading the firmware and
* waiting for it to start up, which may take a
* second or two.
*/
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->bge_if_flags & IFF_PROMISC)) {
BGE_SETBIT(sc, BGE_RX_MODE,
BGE_RXMODE_RX_PROMISC);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->bge_if_flags & IFF_PROMISC) {
BGE_CLRBIT(sc, BGE_RX_MODE,
BGE_RXMODE_RX_PROMISC);
} else
bge_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING) {
bge_stop(sc);
}
}
sc->bge_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_flags & IFF_RUNNING) {
bge_setmulti(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (sc->bge_tbi) {
error = ifmedia_ioctl(ifp, ifr,
&sc->bge_ifmedia, command);
} else {
mii = device_get_softc(sc->bge_miibus);
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
}
break;
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_HWCSUM) {
if (IFCAP_HWCSUM & ifp->if_capenable)
ifp->if_capenable &= ~IFCAP_HWCSUM;
else
ifp->if_capenable |= IFCAP_HWCSUM;
}
error = 0;
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
(void)splx(s);
return(error);
}
static void
bge_watchdog(ifp)
struct ifnet *ifp;
{
struct bge_softc *sc;
sc = ifp->if_softc;
printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
ifp->if_flags &= ~IFF_RUNNING;
bge_init(sc);
ifp->if_oerrors++;
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
bge_stop(sc)
struct bge_softc *sc;
{
struct ifnet *ifp;
struct ifmedia_entry *ifm;
struct mii_data *mii = NULL;
int mtmp, itmp;
ifp = &sc->arpcom.ac_if;
if (!sc->bge_tbi)
mii = device_get_softc(sc->bge_miibus);
untimeout(bge_tick, sc, sc->bge_stat_ch);
/*
* Disable all of the receiver blocks
*/
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
/*
* Disable all of the transmit blocks
*/
BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/*
* Shut down all of the memory managers and related
* state machines.
*/
BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
/* Disable host interrupts. */
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
/*
* Tell firmware we're shutting down.
*/
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
/* Free the RX lists. */
bge_free_rx_ring_std(sc);
/* Free jumbo RX list. */
bge_free_rx_ring_jumbo(sc);
/* Free TX buffers. */
bge_free_tx_ring(sc);
/*
* Isolate/power down the PHY, but leave the media selection
* unchanged so that things will be put back to normal when
* we bring the interface back up.
*/
if (!sc->bge_tbi) {
itmp = ifp->if_flags;
ifp->if_flags |= IFF_UP;
ifm = mii->mii_media.ifm_cur;
mtmp = ifm->ifm_media;
ifm->ifm_media = IFM_ETHER|IFM_NONE;
mii_mediachg(mii);
ifm->ifm_media = mtmp;
ifp->if_flags = itmp;
}
sc->bge_link = 0;
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
bge_shutdown(dev)
device_t dev;
{
struct bge_softc *sc;
sc = device_get_softc(dev);
bge_stop(sc);
bge_reset(sc);
return;
}