3b3ec2004a
The reason we are required to commit to -current first is so that later MFC's do not risk the loss of existing bug fixes. Even if this was not strictly required in -current, it should still be fixed there too.
3434 lines
84 KiB
C
3434 lines
84 KiB
C
/*
|
|
* Copyright (c) 1997, 1998, 1999
|
|
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
|
|
* series chips and several workalikes including the following:
|
|
*
|
|
* Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
|
|
* Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
|
|
* Lite-On 82c168/82c169 PNIC (www.litecom.com)
|
|
* ASIX Electronics AX88140A (www.asix.com.tw)
|
|
* ASIX Electronics AX88141 (www.asix.com.tw)
|
|
* ADMtek AL981 (www.admtek.com.tw)
|
|
* ADMtek AN985 (www.admtek.com.tw)
|
|
* Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
|
|
* Accton EN1217 (www.accton.com)
|
|
* Xircom X3201 (www.xircom.com)
|
|
* Abocom FE2500
|
|
* Conexant LANfinity (www.conexant.com)
|
|
*
|
|
* Datasheets for the 21143 are available at developer.intel.com.
|
|
* Datasheets for the clone parts can be found at their respective sites.
|
|
* (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
|
|
* The PNIC II is essentially a Macronix 98715A chip; the only difference
|
|
* worth noting is that its multicast hash table is only 128 bits wide
|
|
* instead of 512.
|
|
*
|
|
* Written by Bill Paul <wpaul@ee.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* The Intel 21143 is the successor to the DEC 21140. It is basically
|
|
* the same as the 21140 but with a few new features. The 21143 supports
|
|
* three kinds of media attachments:
|
|
*
|
|
* o MII port, for 10Mbps and 100Mbps support and NWAY
|
|
* autonegotiation provided by an external PHY.
|
|
* o SYM port, for symbol mode 100Mbps support.
|
|
* o 10baseT port.
|
|
* o AUI/BNC port.
|
|
*
|
|
* The 100Mbps SYM port and 10baseT port can be used together in
|
|
* combination with the internal NWAY support to create a 10/100
|
|
* autosensing configuration.
|
|
*
|
|
* Note that not all tulip workalikes are handled in this driver: we only
|
|
* deal with those which are relatively well behaved. The Winbond is
|
|
* handled separately due to its different register offsets and the
|
|
* special handling needed for its various bugs. The PNIC is handled
|
|
* here, but I'm not thrilled about it.
|
|
*
|
|
* All of the workalike chips use some form of MII transceiver support
|
|
* with the exception of the Macronix chips, which also have a SYM port.
|
|
* The ASIX AX88140A is also documented to have a SYM port, but all
|
|
* the cards I've seen use an MII transceiver, probably because the
|
|
* AX88140A doesn't support internal NWAY.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <vm/vm.h> /* for vtophys */
|
|
#include <vm/pmap.h> /* for vtophys */
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
|
|
#define DC_USEIOSPACE
|
|
#ifdef __alpha__
|
|
#define SRM_MEDIA
|
|
#endif
|
|
|
|
#include <pci/if_dcreg.h>
|
|
|
|
MODULE_DEPEND(dc, miibus, 1, 1, 1);
|
|
|
|
/* "controller miibus0" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
#ifndef lint
|
|
static const char rcsid[] =
|
|
"$FreeBSD$";
|
|
#endif
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct dc_type dc_devs[] = {
|
|
{ DC_VENDORID_DEC, DC_DEVICEID_21143,
|
|
"Intel 21143 10/100BaseTX" },
|
|
{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
|
|
"Davicom DM9100 10/100BaseTX" },
|
|
{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
|
|
"Davicom DM9102 10/100BaseTX" },
|
|
{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
|
|
"Davicom DM9102A 10/100BaseTX" },
|
|
{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
|
|
"ADMtek AL981 10/100BaseTX" },
|
|
{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
|
|
"ADMtek AN985 10/100BaseTX" },
|
|
{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
|
|
"ASIX AX88140A 10/100BaseTX" },
|
|
{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
|
|
"ASIX AX88141 10/100BaseTX" },
|
|
{ DC_VENDORID_MX, DC_DEVICEID_98713,
|
|
"Macronix 98713 10/100BaseTX" },
|
|
{ DC_VENDORID_MX, DC_DEVICEID_98713,
|
|
"Macronix 98713A 10/100BaseTX" },
|
|
{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
|
|
"Compex RL100-TX 10/100BaseTX" },
|
|
{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
|
|
"Compex RL100-TX 10/100BaseTX" },
|
|
{ DC_VENDORID_MX, DC_DEVICEID_987x5,
|
|
"Macronix 98715/98715A 10/100BaseTX" },
|
|
{ DC_VENDORID_MX, DC_DEVICEID_987x5,
|
|
"Macronix 98715AEC-C 10/100BaseTX" },
|
|
{ DC_VENDORID_MX, DC_DEVICEID_987x5,
|
|
"Macronix 98725 10/100BaseTX" },
|
|
{ DC_VENDORID_MX, DC_DEVICEID_98727,
|
|
"Macronix 98727/98732 10/100BaseTX" },
|
|
{ DC_VENDORID_LO, DC_DEVICEID_82C115,
|
|
"LC82C115 PNIC II 10/100BaseTX" },
|
|
{ DC_VENDORID_LO, DC_DEVICEID_82C168,
|
|
"82c168 PNIC 10/100BaseTX" },
|
|
{ DC_VENDORID_LO, DC_DEVICEID_82C168,
|
|
"82c169 PNIC 10/100BaseTX" },
|
|
{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
|
|
"Accton EN1217 10/100BaseTX" },
|
|
{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
|
|
"Accton EN2242 MiniPCI 10/100BaseTX" },
|
|
{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
|
|
"Xircom X3201 10/100BaseTX" },
|
|
{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
|
|
"Abocom FE2500 10/100BaseTX" },
|
|
{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
|
|
"Conexant LANfinity MiniPCI 10/100BaseTX" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int dc_probe __P((device_t));
|
|
static int dc_attach __P((device_t));
|
|
static int dc_detach __P((device_t));
|
|
static void dc_acpi __P((device_t));
|
|
static struct dc_type *dc_devtype __P((device_t));
|
|
static int dc_newbuf __P((struct dc_softc *, int, struct mbuf *));
|
|
static int dc_encap __P((struct dc_softc *, struct mbuf *,
|
|
u_int32_t *));
|
|
static int dc_coal __P((struct dc_softc *, struct mbuf **));
|
|
static void dc_pnic_rx_bug_war __P((struct dc_softc *, int));
|
|
static int dc_rx_resync __P((struct dc_softc *));
|
|
static void dc_rxeof __P((struct dc_softc *));
|
|
static void dc_txeof __P((struct dc_softc *));
|
|
static void dc_tick __P((void *));
|
|
static void dc_tx_underrun __P((struct dc_softc *));
|
|
static void dc_intr __P((void *));
|
|
static void dc_start __P((struct ifnet *));
|
|
static int dc_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static void dc_init __P((void *));
|
|
static void dc_stop __P((struct dc_softc *));
|
|
static void dc_watchdog __P((struct ifnet *));
|
|
static void dc_shutdown __P((device_t));
|
|
static int dc_ifmedia_upd __P((struct ifnet *));
|
|
static void dc_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
|
|
|
static void dc_delay __P((struct dc_softc *));
|
|
static void dc_eeprom_idle __P((struct dc_softc *));
|
|
static void dc_eeprom_putbyte __P((struct dc_softc *, int));
|
|
static void dc_eeprom_getword __P((struct dc_softc *, int, u_int16_t *));
|
|
static void dc_eeprom_getword_pnic
|
|
__P((struct dc_softc *, int, u_int16_t *));
|
|
static void dc_eeprom_getword_xircom
|
|
__P((struct dc_softc *, int, u_int16_t *));
|
|
static void dc_read_eeprom __P((struct dc_softc *, caddr_t, int,
|
|
int, int));
|
|
|
|
static void dc_mii_writebit __P((struct dc_softc *, int));
|
|
static int dc_mii_readbit __P((struct dc_softc *));
|
|
static void dc_mii_sync __P((struct dc_softc *));
|
|
static void dc_mii_send __P((struct dc_softc *, u_int32_t, int));
|
|
static int dc_mii_readreg __P((struct dc_softc *, struct dc_mii_frame *));
|
|
static int dc_mii_writereg __P((struct dc_softc *, struct dc_mii_frame *));
|
|
static int dc_miibus_readreg __P((device_t, int, int));
|
|
static int dc_miibus_writereg __P((device_t, int, int, int));
|
|
static void dc_miibus_statchg __P((device_t));
|
|
static void dc_miibus_mediainit __P((device_t));
|
|
|
|
static void dc_setcfg __P((struct dc_softc *, int));
|
|
static u_int32_t dc_crc_le __P((struct dc_softc *, caddr_t));
|
|
static u_int32_t dc_crc_be __P((caddr_t));
|
|
static void dc_setfilt_21143 __P((struct dc_softc *));
|
|
static void dc_setfilt_asix __P((struct dc_softc *));
|
|
static void dc_setfilt_admtek __P((struct dc_softc *));
|
|
static void dc_setfilt_xircom __P((struct dc_softc *));
|
|
|
|
static void dc_setfilt __P((struct dc_softc *));
|
|
|
|
static void dc_reset __P((struct dc_softc *));
|
|
static int dc_list_rx_init __P((struct dc_softc *));
|
|
static int dc_list_tx_init __P((struct dc_softc *));
|
|
|
|
static void dc_parse_21143_srom __P((struct dc_softc *));
|
|
static void dc_decode_leaf_sia __P((struct dc_softc *,
|
|
struct dc_eblock_sia *));
|
|
static void dc_decode_leaf_mii __P((struct dc_softc *,
|
|
struct dc_eblock_mii *));
|
|
static void dc_decode_leaf_sym __P((struct dc_softc *,
|
|
struct dc_eblock_sym *));
|
|
static void dc_apply_fixup __P((struct dc_softc *, int));
|
|
|
|
#ifdef DC_USEIOSPACE
|
|
#define DC_RES SYS_RES_IOPORT
|
|
#define DC_RID DC_PCI_CFBIO
|
|
#else
|
|
#define DC_RES SYS_RES_MEMORY
|
|
#define DC_RID DC_PCI_CFBMA
|
|
#endif
|
|
|
|
static device_method_t dc_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, dc_probe),
|
|
DEVMETHOD(device_attach, dc_attach),
|
|
DEVMETHOD(device_detach, dc_detach),
|
|
DEVMETHOD(device_shutdown, dc_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, dc_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, dc_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, dc_miibus_statchg),
|
|
DEVMETHOD(miibus_mediainit, dc_miibus_mediainit),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t dc_driver = {
|
|
"dc",
|
|
dc_methods,
|
|
sizeof(struct dc_softc)
|
|
};
|
|
|
|
static devclass_t dc_devclass;
|
|
#ifdef __i386__
|
|
static int dc_quick=1;
|
|
SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
|
|
&dc_quick,0,"do not mdevget in dc driver");
|
|
#endif
|
|
|
|
DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0);
|
|
DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
#define DC_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
|
|
|
|
#define DC_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
|
|
|
|
#define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x))
|
|
#define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x))
|
|
|
|
#define IS_MPSAFE 0
|
|
|
|
static void dc_delay(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
int idx;
|
|
|
|
for (idx = (300 / 33) + 1; idx > 0; idx--)
|
|
CSR_READ_4(sc, DC_BUSCTL);
|
|
}
|
|
|
|
static void dc_eeprom_idle(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
|
|
dc_delay(sc);
|
|
|
|
for (i = 0; i < 25; i++) {
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
}
|
|
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
|
|
dc_delay(sc);
|
|
CSR_WRITE_4(sc, DC_SIO, 0x00000000);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Send a read command and address to the EEPROM, check for ACK.
|
|
*/
|
|
static void dc_eeprom_putbyte(sc, addr)
|
|
struct dc_softc *sc;
|
|
int addr;
|
|
{
|
|
register int d, i;
|
|
|
|
/*
|
|
* The AN985 has a 93C66 EEPROM on it instead of
|
|
* a 93C46. It uses a different bit sequence for
|
|
* specifying the "read" opcode.
|
|
*/
|
|
if (DC_IS_CENTAUR(sc) || DC_IS_CONEXANT(sc))
|
|
d = addr | (DC_EECMD_READ << 2);
|
|
else
|
|
d = addr | DC_EECMD_READ;
|
|
|
|
/*
|
|
* Feed in each bit and strobe the clock.
|
|
*/
|
|
for (i = 0x400; i; i >>= 1) {
|
|
if (d & i) {
|
|
SIO_SET(DC_SIO_EE_DATAIN);
|
|
} else {
|
|
SIO_CLR(DC_SIO_EE_DATAIN);
|
|
}
|
|
dc_delay(sc);
|
|
SIO_SET(DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
SIO_CLR(DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
* The PNIC 82c168/82c169 has its own non-standard way to read
|
|
* the EEPROM.
|
|
*/
|
|
static void dc_eeprom_getword_pnic(sc, addr, dest)
|
|
struct dc_softc *sc;
|
|
int addr;
|
|
u_int16_t *dest;
|
|
{
|
|
register int i;
|
|
u_int32_t r;
|
|
|
|
CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
|
|
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
r = CSR_READ_4(sc, DC_SIO);
|
|
if (!(r & DC_PN_SIOCTL_BUSY)) {
|
|
*dest = (u_int16_t)(r & 0xFFFF);
|
|
return;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
* The Xircom X3201 has its own non-standard way to read
|
|
* the EEPROM, too.
|
|
*/
|
|
static void dc_eeprom_getword_xircom(sc, addr, dest)
|
|
struct dc_softc *sc;
|
|
int addr;
|
|
u_int16_t *dest;
|
|
{
|
|
SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
|
|
|
|
addr *= 2;
|
|
CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
|
|
*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
|
|
addr += 1;
|
|
CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
|
|
*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
|
|
|
|
SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
*/
|
|
static void dc_eeprom_getword(sc, addr, dest)
|
|
struct dc_softc *sc;
|
|
int addr;
|
|
u_int16_t *dest;
|
|
{
|
|
register int i;
|
|
u_int16_t word = 0;
|
|
|
|
/* Force EEPROM to idle state. */
|
|
dc_eeprom_idle(sc);
|
|
|
|
/* Enter EEPROM access mode. */
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
|
|
dc_delay(sc);
|
|
|
|
/*
|
|
* Send address of word we want to read.
|
|
*/
|
|
dc_eeprom_putbyte(sc, addr);
|
|
|
|
/*
|
|
* Start reading bits from EEPROM.
|
|
*/
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
SIO_SET(DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
|
|
word |= i;
|
|
dc_delay(sc);
|
|
SIO_CLR(DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
}
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
dc_eeprom_idle(sc);
|
|
|
|
*dest = word;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM.
|
|
*/
|
|
static void dc_read_eeprom(sc, dest, off, cnt, swap)
|
|
struct dc_softc *sc;
|
|
caddr_t dest;
|
|
int off;
|
|
int cnt;
|
|
int swap;
|
|
{
|
|
int i;
|
|
u_int16_t word = 0, *ptr;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
if (DC_IS_PNIC(sc))
|
|
dc_eeprom_getword_pnic(sc, off + i, &word);
|
|
else if (DC_IS_XIRCOM(sc))
|
|
dc_eeprom_getword_xircom(sc, off + i, &word);
|
|
else
|
|
dc_eeprom_getword(sc, off + i, &word);
|
|
ptr = (u_int16_t *)(dest + (i * 2));
|
|
if (swap)
|
|
*ptr = ntohs(word);
|
|
else
|
|
*ptr = word;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The following two routines are taken from the Macronix 98713
|
|
* Application Notes pp.19-21.
|
|
*/
|
|
/*
|
|
* Write a bit to the MII bus.
|
|
*/
|
|
static void dc_mii_writebit(sc, bit)
|
|
struct dc_softc *sc;
|
|
int bit;
|
|
{
|
|
if (bit)
|
|
CSR_WRITE_4(sc, DC_SIO,
|
|
DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
|
|
else
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
|
|
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read a bit from the MII bus.
|
|
*/
|
|
static int dc_mii_readbit(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
|
|
CSR_READ_4(sc, DC_SIO);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
|
|
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
|
|
return(1);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
*/
|
|
static void dc_mii_sync(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
|
|
|
|
for (i = 0; i < 32; i++)
|
|
dc_mii_writebit(sc, 1);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Clock a series of bits through the MII.
|
|
*/
|
|
static void dc_mii_send(sc, bits, cnt)
|
|
struct dc_softc *sc;
|
|
u_int32_t bits;
|
|
int cnt;
|
|
{
|
|
int i;
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1)
|
|
dc_mii_writebit(sc, bits & i);
|
|
}
|
|
|
|
/*
|
|
* Read an PHY register through the MII.
|
|
*/
|
|
static int dc_mii_readreg(sc, frame)
|
|
struct dc_softc *sc;
|
|
struct dc_mii_frame *frame;
|
|
|
|
{
|
|
int i, ack;
|
|
|
|
DC_LOCK(sc);
|
|
|
|
/*
|
|
* Set up frame for RX.
|
|
*/
|
|
frame->mii_stdelim = DC_MII_STARTDELIM;
|
|
frame->mii_opcode = DC_MII_READOP;
|
|
frame->mii_turnaround = 0;
|
|
frame->mii_data = 0;
|
|
|
|
/*
|
|
* Sync the PHYs.
|
|
*/
|
|
dc_mii_sync(sc);
|
|
|
|
/*
|
|
* Send command/address info.
|
|
*/
|
|
dc_mii_send(sc, frame->mii_stdelim, 2);
|
|
dc_mii_send(sc, frame->mii_opcode, 2);
|
|
dc_mii_send(sc, frame->mii_phyaddr, 5);
|
|
dc_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
#ifdef notdef
|
|
/* Idle bit */
|
|
dc_mii_writebit(sc, 1);
|
|
dc_mii_writebit(sc, 0);
|
|
#endif
|
|
|
|
/* Check for ack */
|
|
ack = dc_mii_readbit(sc);
|
|
|
|
/*
|
|
* Now try reading data bits. If the ack failed, we still
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
*/
|
|
if (ack) {
|
|
for(i = 0; i < 16; i++) {
|
|
dc_mii_readbit(sc);
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
if (!ack) {
|
|
if (dc_mii_readbit(sc))
|
|
frame->mii_data |= i;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
|
|
dc_mii_writebit(sc, 0);
|
|
dc_mii_writebit(sc, 0);
|
|
|
|
DC_UNLOCK(sc);
|
|
|
|
if (ack)
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Write to a PHY register through the MII.
|
|
*/
|
|
static int dc_mii_writereg(sc, frame)
|
|
struct dc_softc *sc;
|
|
struct dc_mii_frame *frame;
|
|
|
|
{
|
|
DC_LOCK(sc);
|
|
/*
|
|
* Set up frame for TX.
|
|
*/
|
|
|
|
frame->mii_stdelim = DC_MII_STARTDELIM;
|
|
frame->mii_opcode = DC_MII_WRITEOP;
|
|
frame->mii_turnaround = DC_MII_TURNAROUND;
|
|
|
|
/*
|
|
* Sync the PHYs.
|
|
*/
|
|
dc_mii_sync(sc);
|
|
|
|
dc_mii_send(sc, frame->mii_stdelim, 2);
|
|
dc_mii_send(sc, frame->mii_opcode, 2);
|
|
dc_mii_send(sc, frame->mii_phyaddr, 5);
|
|
dc_mii_send(sc, frame->mii_regaddr, 5);
|
|
dc_mii_send(sc, frame->mii_turnaround, 2);
|
|
dc_mii_send(sc, frame->mii_data, 16);
|
|
|
|
/* Idle bit. */
|
|
dc_mii_writebit(sc, 0);
|
|
dc_mii_writebit(sc, 0);
|
|
|
|
DC_UNLOCK(sc);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int dc_miibus_readreg(dev, phy, reg)
|
|
device_t dev;
|
|
int phy, reg;
|
|
{
|
|
struct dc_mii_frame frame;
|
|
struct dc_softc *sc;
|
|
int i, rval, phy_reg = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
/*
|
|
* Note: both the AL981 and AN985 have internal PHYs,
|
|
* however the AL981 provides direct access to the PHY
|
|
* registers while the AN985 uses a serial MII interface.
|
|
* The AN985's MII interface is also buggy in that you
|
|
* can read from any MII address (0 to 31), but only address 1
|
|
* behaves normally. To deal with both cases, we pretend
|
|
* that the PHY is at MII address 1.
|
|
*/
|
|
if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
|
|
return(0);
|
|
|
|
/*
|
|
* Note: the ukphy probes of the RS7112 report a PHY at
|
|
* MII address 0 (possibly HomePNA?) and 1 (ethernet)
|
|
* so we only respond to correct one.
|
|
*/
|
|
if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
|
|
return(0);
|
|
|
|
if (sc->dc_pmode != DC_PMODE_MII) {
|
|
if (phy == (MII_NPHY - 1)) {
|
|
switch(reg) {
|
|
case MII_BMSR:
|
|
/*
|
|
* Fake something to make the probe
|
|
* code think there's a PHY here.
|
|
*/
|
|
return(BMSR_MEDIAMASK);
|
|
break;
|
|
case MII_PHYIDR1:
|
|
if (DC_IS_PNIC(sc))
|
|
return(DC_VENDORID_LO);
|
|
return(DC_VENDORID_DEC);
|
|
break;
|
|
case MII_PHYIDR2:
|
|
if (DC_IS_PNIC(sc))
|
|
return(DC_DEVICEID_82C168);
|
|
return(DC_DEVICEID_21143);
|
|
break;
|
|
default:
|
|
return(0);
|
|
break;
|
|
}
|
|
} else
|
|
return(0);
|
|
}
|
|
|
|
if (DC_IS_PNIC(sc)) {
|
|
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
|
|
(phy << 23) | (reg << 18));
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
rval = CSR_READ_4(sc, DC_PN_MII);
|
|
if (!(rval & DC_PN_MII_BUSY)) {
|
|
rval &= 0xFFFF;
|
|
return(rval == 0xFFFF ? 0 : rval);
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
if (DC_IS_COMET(sc)) {
|
|
switch(reg) {
|
|
case MII_BMCR:
|
|
phy_reg = DC_AL_BMCR;
|
|
break;
|
|
case MII_BMSR:
|
|
phy_reg = DC_AL_BMSR;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
phy_reg = DC_AL_VENID;
|
|
break;
|
|
case MII_PHYIDR2:
|
|
phy_reg = DC_AL_DEVID;
|
|
break;
|
|
case MII_ANAR:
|
|
phy_reg = DC_AL_ANAR;
|
|
break;
|
|
case MII_ANLPAR:
|
|
phy_reg = DC_AL_LPAR;
|
|
break;
|
|
case MII_ANER:
|
|
phy_reg = DC_AL_ANER;
|
|
break;
|
|
default:
|
|
printf("dc%d: phy_read: bad phy register %x\n",
|
|
sc->dc_unit, reg);
|
|
return(0);
|
|
break;
|
|
}
|
|
|
|
rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
|
|
|
|
if (rval == 0xFFFF)
|
|
return(0);
|
|
return(rval);
|
|
}
|
|
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
if (sc->dc_type == DC_TYPE_98713) {
|
|
phy_reg = CSR_READ_4(sc, DC_NETCFG);
|
|
CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
|
|
}
|
|
dc_mii_readreg(sc, &frame);
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
|
|
|
|
return(frame.mii_data);
|
|
}
|
|
|
|
static int dc_miibus_writereg(dev, phy, reg, data)
|
|
device_t dev;
|
|
int phy, reg, data;
|
|
{
|
|
struct dc_softc *sc;
|
|
struct dc_mii_frame frame;
|
|
int i, phy_reg = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
bzero((char *)&frame, sizeof(frame));
|
|
|
|
if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
|
|
return(0);
|
|
|
|
if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
|
|
return(0);
|
|
|
|
if (DC_IS_PNIC(sc)) {
|
|
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
|
|
(phy << 23) | (reg << 10) | data);
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
|
|
break;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
if (DC_IS_COMET(sc)) {
|
|
switch(reg) {
|
|
case MII_BMCR:
|
|
phy_reg = DC_AL_BMCR;
|
|
break;
|
|
case MII_BMSR:
|
|
phy_reg = DC_AL_BMSR;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
phy_reg = DC_AL_VENID;
|
|
break;
|
|
case MII_PHYIDR2:
|
|
phy_reg = DC_AL_DEVID;
|
|
break;
|
|
case MII_ANAR:
|
|
phy_reg = DC_AL_ANAR;
|
|
break;
|
|
case MII_ANLPAR:
|
|
phy_reg = DC_AL_LPAR;
|
|
break;
|
|
case MII_ANER:
|
|
phy_reg = DC_AL_ANER;
|
|
break;
|
|
default:
|
|
printf("dc%d: phy_write: bad phy register %x\n",
|
|
sc->dc_unit, reg);
|
|
return(0);
|
|
break;
|
|
}
|
|
|
|
CSR_WRITE_4(sc, phy_reg, data);
|
|
return(0);
|
|
}
|
|
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
frame.mii_data = data;
|
|
|
|
if (sc->dc_type == DC_TYPE_98713) {
|
|
phy_reg = CSR_READ_4(sc, DC_NETCFG);
|
|
CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
|
|
}
|
|
dc_mii_writereg(sc, &frame);
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void dc_miibus_statchg(dev)
|
|
device_t dev;
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = device_get_softc(dev);
|
|
if (DC_IS_ADMTEK(sc))
|
|
return;
|
|
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
ifm = &mii->mii_media;
|
|
if (DC_IS_DAVICOM(sc) &&
|
|
IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
|
|
dc_setcfg(sc, ifm->ifm_media);
|
|
sc->dc_if_media = ifm->ifm_media;
|
|
} else {
|
|
dc_setcfg(sc, mii->mii_media_active);
|
|
sc->dc_if_media = mii->mii_media_active;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Special support for DM9102A cards with HomePNA PHYs. Note:
|
|
* with the Davicom DM9102A/DM9801 eval board that I have, it seems
|
|
* to be impossible to talk to the management interface of the DM9801
|
|
* PHY (its MDIO pin is not connected to anything). Consequently,
|
|
* the driver has to just 'know' about the additional mode and deal
|
|
* with it itself. *sigh*
|
|
*/
|
|
static void dc_miibus_mediainit(dev)
|
|
device_t dev;
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
int rev;
|
|
|
|
rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
|
|
|
|
sc = device_get_softc(dev);
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
ifm = &mii->mii_media;
|
|
|
|
if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
|
|
ifmedia_add(ifm, IFM_ETHER|IFM_homePNA, 0, NULL);
|
|
|
|
return;
|
|
}
|
|
|
|
#define DC_POLY 0xEDB88320
|
|
#define DC_BITS_512 9
|
|
#define DC_BITS_128 7
|
|
#define DC_BITS_64 6
|
|
|
|
static u_int32_t dc_crc_le(sc, addr)
|
|
struct dc_softc *sc;
|
|
caddr_t addr;
|
|
{
|
|
u_int32_t idx, bit, data, crc;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
for (idx = 0; idx < 6; idx++) {
|
|
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
|
|
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
|
|
}
|
|
|
|
/*
|
|
* The hash table on the PNIC II and the MX98715AEC-C/D/E
|
|
* chips is only 128 bits wide.
|
|
*/
|
|
if (sc->dc_flags & DC_128BIT_HASH)
|
|
return (crc & ((1 << DC_BITS_128) - 1));
|
|
|
|
/* The hash table on the MX98715BEC is only 64 bits wide. */
|
|
if (sc->dc_flags & DC_64BIT_HASH)
|
|
return (crc & ((1 << DC_BITS_64) - 1));
|
|
|
|
/* Xircom's hash filtering table is different (read: weird) */
|
|
/* Xircom uses the LEAST significant bits */
|
|
if (DC_IS_XIRCOM(sc)) {
|
|
if ((crc & 0x180) == 0x180)
|
|
return (crc & 0x0F) + (crc & 0x70)*3 + (14 << 4);
|
|
else
|
|
return (crc & 0x1F) + ((crc>>1) & 0xF0)*3 + (12 << 4);
|
|
}
|
|
|
|
return (crc & ((1 << DC_BITS_512) - 1));
|
|
}
|
|
|
|
/*
|
|
* Calculate CRC of a multicast group address, return the lower 6 bits.
|
|
*/
|
|
static u_int32_t dc_crc_be(addr)
|
|
caddr_t addr;
|
|
{
|
|
u_int32_t crc, carry;
|
|
int i, j;
|
|
u_int8_t c;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
c = *(addr + i);
|
|
for (j = 0; j < 8; j++) {
|
|
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
|
|
crc <<= 1;
|
|
c >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ 0x04c11db6) | carry;
|
|
}
|
|
}
|
|
|
|
/* return the filter bit position */
|
|
return((crc >> 26) & 0x0000003F);
|
|
}
|
|
|
|
/*
|
|
* 21143-style RX filter setup routine. Filter programming is done by
|
|
* downloading a special setup frame into the TX engine. 21143, Macronix,
|
|
* PNIC, PNIC II and Davicom chips are programmed this way.
|
|
*
|
|
* We always program the chip using 'hash perfect' mode, i.e. one perfect
|
|
* address (our node address) and a 512-bit hash filter for multicast
|
|
* frames. We also sneak the broadcast address into the hash filter since
|
|
* we need that too.
|
|
*/
|
|
void dc_setfilt_21143(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
struct dc_desc *sframe;
|
|
u_int32_t h, *sp;
|
|
struct ifmultiaddr *ifma;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
i = sc->dc_cdata.dc_tx_prod;
|
|
DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
|
|
sc->dc_cdata.dc_tx_cnt++;
|
|
sframe = &sc->dc_ldata->dc_tx_list[i];
|
|
sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
|
|
bzero((char *)sp, DC_SFRAME_LEN);
|
|
|
|
sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
|
|
sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
|
|
DC_FILTER_HASHPERF | DC_TXCTL_FINT;
|
|
|
|
sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = dc_crc_le(sc,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
sp[h >> 4] |= 1 << (h & 0xF);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
h = dc_crc_le(sc, (caddr_t)ðerbroadcastaddr);
|
|
sp[h >> 4] |= 1 << (h & 0xF);
|
|
}
|
|
|
|
/* Set our MAC address */
|
|
sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
|
|
sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
|
|
sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
|
|
|
|
sframe->dc_status = DC_TXSTAT_OWN;
|
|
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* The PNIC takes an exceedingly long time to process its
|
|
* setup frame; wait 10ms after posting the setup frame
|
|
* before proceeding, just so it has time to swallow its
|
|
* medicine.
|
|
*/
|
|
DELAY(10000);
|
|
|
|
ifp->if_timer = 5;
|
|
|
|
return;
|
|
}
|
|
|
|
void dc_setfilt_admtek(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int h = 0;
|
|
u_int32_t hashes[2] = { 0, 0 };
|
|
struct ifmultiaddr *ifma;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Init our MAC address */
|
|
CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
|
|
CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
|
|
/* first, zot all the existing hash bits */
|
|
CSR_WRITE_4(sc, DC_AL_MAR0, 0);
|
|
CSR_WRITE_4(sc, DC_AL_MAR1, 0);
|
|
|
|
/*
|
|
* If we're already in promisc or allmulti mode, we
|
|
* don't have to bother programming the multicast filter.
|
|
*/
|
|
if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
|
|
return;
|
|
|
|
/* now program new ones */
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
}
|
|
|
|
CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
|
|
|
|
return;
|
|
}
|
|
|
|
void dc_setfilt_asix(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int h = 0;
|
|
u_int32_t hashes[2] = { 0, 0 };
|
|
struct ifmultiaddr *ifma;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Init our MAC address */
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA,
|
|
*(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA,
|
|
*(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
|
|
/*
|
|
* The ASIX chip has a special bit to enable reception
|
|
* of broadcast frames.
|
|
*/
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
|
|
|
|
/* first, zot all the existing hash bits */
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
|
|
|
|
/*
|
|
* If we're already in promisc or allmulti mode, we
|
|
* don't have to bother programming the multicast filter.
|
|
*/
|
|
if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
|
|
return;
|
|
|
|
/* now program new ones */
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
}
|
|
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
|
|
|
|
return;
|
|
}
|
|
|
|
void dc_setfilt_xircom(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
struct dc_desc *sframe;
|
|
u_int32_t h, *sp;
|
|
struct ifmultiaddr *ifma;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
|
|
|
|
i = sc->dc_cdata.dc_tx_prod;
|
|
DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
|
|
sc->dc_cdata.dc_tx_cnt++;
|
|
sframe = &sc->dc_ldata->dc_tx_list[i];
|
|
sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
|
|
bzero((char *)sp, DC_SFRAME_LEN);
|
|
|
|
sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
|
|
sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
|
|
DC_FILTER_HASHPERF | DC_TXCTL_FINT;
|
|
|
|
sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = dc_crc_le(sc,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
sp[h >> 4] |= 1 << (h & 0xF);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
h = dc_crc_le(sc, (caddr_t)ðerbroadcastaddr);
|
|
sp[h >> 4] |= 1 << (h & 0xF);
|
|
}
|
|
|
|
/* Set our MAC address */
|
|
sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
|
|
sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
|
|
sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
|
|
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
sframe->dc_status = DC_TXSTAT_OWN;
|
|
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* wait some time...
|
|
*/
|
|
DELAY(1000);
|
|
|
|
ifp->if_timer = 5;
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_setfilt(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
|
|
DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
|
|
dc_setfilt_21143(sc);
|
|
|
|
if (DC_IS_ASIX(sc))
|
|
dc_setfilt_asix(sc);
|
|
|
|
if (DC_IS_ADMTEK(sc))
|
|
dc_setfilt_admtek(sc);
|
|
|
|
if (DC_IS_XIRCOM(sc))
|
|
dc_setfilt_xircom(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In order to fiddle with the
|
|
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
|
|
* first have to put the transmit and/or receive logic in the idle state.
|
|
*/
|
|
static void dc_setcfg(sc, media)
|
|
struct dc_softc *sc;
|
|
int media;
|
|
{
|
|
int i, restart = 0;
|
|
u_int32_t isr;
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_NONE)
|
|
return;
|
|
|
|
if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
|
|
restart = 1;
|
|
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
|
|
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
isr = CSR_READ_4(sc, DC_ISR);
|
|
if (isr & DC_ISR_TX_IDLE &&
|
|
(isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == DC_TIMEOUT)
|
|
printf("dc%d: failed to force tx and "
|
|
"rx to idle state\n", sc->dc_unit);
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_TX) {
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
|
|
if (sc->dc_pmode == DC_PMODE_MII) {
|
|
int watchdogreg;
|
|
|
|
if (DC_IS_INTEL(sc)) {
|
|
/* there's a write enable bit here that reads as 1 */
|
|
watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
|
|
watchdogreg &= ~DC_WDOG_CTLWREN;
|
|
watchdogreg |= DC_WDOG_JABBERDIS;
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
|
|
} else {
|
|
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
|
|
}
|
|
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
|
|
DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
|
|
DC_NETCFG_SCRAMBLER));
|
|
if (!DC_IS_DAVICOM(sc))
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
|
|
if (DC_IS_INTEL(sc))
|
|
dc_apply_fixup(sc, IFM_AUTO);
|
|
} else {
|
|
if (DC_IS_PNIC(sc)) {
|
|
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
|
|
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
|
|
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
|
|
}
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
|
|
if (DC_IS_INTEL(sc))
|
|
dc_apply_fixup(sc,
|
|
(media & IFM_GMASK) == IFM_FDX ?
|
|
IFM_100_TX|IFM_FDX : IFM_100_TX);
|
|
}
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_T) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
|
|
if (sc->dc_pmode == DC_PMODE_MII) {
|
|
int watchdogreg;
|
|
|
|
/* there's a write enable bit here that reads as 1 */
|
|
if (DC_IS_INTEL(sc)) {
|
|
watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
|
|
watchdogreg &= ~DC_WDOG_CTLWREN;
|
|
watchdogreg |= DC_WDOG_JABBERDIS;
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
|
|
} else {
|
|
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
|
|
}
|
|
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
|
|
DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
|
|
if (!DC_IS_DAVICOM(sc))
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
|
|
if (DC_IS_INTEL(sc))
|
|
dc_apply_fixup(sc, IFM_AUTO);
|
|
} else {
|
|
if (DC_IS_PNIC(sc)) {
|
|
DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
|
|
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
|
|
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
|
|
}
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
|
|
if (DC_IS_INTEL(sc)) {
|
|
DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
|
|
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
|
|
if ((media & IFM_GMASK) == IFM_FDX)
|
|
DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
|
|
else
|
|
DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
|
|
DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
|
|
DC_CLRBIT(sc, DC_10BTCTRL,
|
|
DC_TCTL_AUTONEGENBL);
|
|
dc_apply_fixup(sc,
|
|
(media & IFM_GMASK) == IFM_FDX ?
|
|
IFM_10_T|IFM_FDX : IFM_10_T);
|
|
DELAY(20000);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a Davicom DM9102A card with a DM9801 HomePNA
|
|
* PHY and we want HomePNA mode, set the portsel bit to turn
|
|
* on the external MII port.
|
|
*/
|
|
if (DC_IS_DAVICOM(sc)) {
|
|
if (IFM_SUBTYPE(media) == IFM_homePNA) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
sc->dc_link = 1;
|
|
} else {
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
}
|
|
}
|
|
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
|
|
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
|
|
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
|
|
} else {
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
|
|
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
|
|
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
|
|
}
|
|
|
|
if (restart)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_reset(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
|
|
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
|
|
break;
|
|
}
|
|
|
|
if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
|
|
DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
|
|
DELAY(10000);
|
|
DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
|
|
i = 0;
|
|
}
|
|
|
|
if (i == DC_TIMEOUT)
|
|
printf("dc%d: reset never completed!\n", sc->dc_unit);
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
DELAY(1000);
|
|
|
|
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
|
|
CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
|
|
CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
|
|
|
|
/*
|
|
* Bring the SIA out of reset. In some cases, it looks
|
|
* like failing to unreset the SIA soon enough gets it
|
|
* into a state where it will never come out of reset
|
|
* until we reset the whole chip again.
|
|
*/
|
|
if (DC_IS_INTEL(sc)) {
|
|
DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
|
|
CSR_WRITE_4(sc, DC_10BTCTRL, 0);
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, 0);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static struct dc_type *dc_devtype(dev)
|
|
device_t dev;
|
|
{
|
|
struct dc_type *t;
|
|
u_int32_t rev;
|
|
|
|
t = dc_devs;
|
|
|
|
while(t->dc_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->dc_vid) &&
|
|
(pci_get_device(dev) == t->dc_did)) {
|
|
/* Check the PCI revision */
|
|
rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
|
|
if (t->dc_did == DC_DEVICEID_98713 &&
|
|
rev >= DC_REVISION_98713A)
|
|
t++;
|
|
if (t->dc_did == DC_DEVICEID_98713_CP &&
|
|
rev >= DC_REVISION_98713A)
|
|
t++;
|
|
if (t->dc_did == DC_DEVICEID_987x5 &&
|
|
rev >= DC_REVISION_98715AEC_C)
|
|
t++;
|
|
if (t->dc_did == DC_DEVICEID_987x5 &&
|
|
rev >= DC_REVISION_98725)
|
|
t++;
|
|
if (t->dc_did == DC_DEVICEID_AX88140A &&
|
|
rev >= DC_REVISION_88141)
|
|
t++;
|
|
if (t->dc_did == DC_DEVICEID_82C168 &&
|
|
rev >= DC_REVISION_82C169)
|
|
t++;
|
|
if (t->dc_did == DC_DEVICEID_DM9102 &&
|
|
rev >= DC_REVISION_DM9102A)
|
|
t++;
|
|
return(t);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* Probe for a 21143 or clone chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
* We do a little bit of extra work to identify the exact type of
|
|
* chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
|
|
* but different revision IDs. The same is true for 98715/98715A
|
|
* chips and the 98725, as well as the ASIX and ADMtek chips. In some
|
|
* cases, the exact chip revision affects driver behavior.
|
|
*/
|
|
static int dc_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct dc_type *t;
|
|
|
|
t = dc_devtype(dev);
|
|
|
|
if (t != NULL) {
|
|
device_set_desc(dev, t->dc_name);
|
|
return(0);
|
|
}
|
|
|
|
return(ENXIO);
|
|
}
|
|
|
|
static void dc_acpi(dev)
|
|
device_t dev;
|
|
{
|
|
int unit;
|
|
|
|
unit = device_get_unit(dev);
|
|
|
|
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
|
|
u_int32_t iobase, membase, irq;
|
|
|
|
/* Save important PCI config data. */
|
|
iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
|
|
membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
|
|
irq = pci_read_config(dev, DC_PCI_CFIT, 4);
|
|
|
|
/* Reset the power state. */
|
|
printf("dc%d: chip is in D%d power mode "
|
|
"-- setting to D0\n", unit,
|
|
pci_get_powerstate(dev));
|
|
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
|
|
|
|
/* Restore PCI config data. */
|
|
pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
|
|
pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
|
|
pci_write_config(dev, DC_PCI_CFIT, irq, 4);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_apply_fixup(sc, media)
|
|
struct dc_softc *sc;
|
|
int media;
|
|
{
|
|
struct dc_mediainfo *m;
|
|
u_int8_t *p;
|
|
int i;
|
|
u_int32_t reg;
|
|
|
|
m = sc->dc_mi;
|
|
|
|
while (m != NULL) {
|
|
if (m->dc_media == media)
|
|
break;
|
|
m = m->dc_next;
|
|
}
|
|
|
|
if (m == NULL)
|
|
return;
|
|
|
|
for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
|
|
reg = (p[0] | (p[1] << 8)) << 16;
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, reg);
|
|
}
|
|
|
|
for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
|
|
reg = (p[0] | (p[1] << 8)) << 16;
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, reg);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_decode_leaf_sia(sc, l)
|
|
struct dc_softc *sc;
|
|
struct dc_eblock_sia *l;
|
|
{
|
|
struct dc_mediainfo *m;
|
|
|
|
m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
|
|
bzero(m, sizeof(struct dc_mediainfo));
|
|
if (l->dc_sia_code == DC_SIA_CODE_10BT)
|
|
m->dc_media = IFM_10_T;
|
|
|
|
if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
|
|
m->dc_media = IFM_10_T|IFM_FDX;
|
|
|
|
if (l->dc_sia_code == DC_SIA_CODE_10B2)
|
|
m->dc_media = IFM_10_2;
|
|
|
|
if (l->dc_sia_code == DC_SIA_CODE_10B5)
|
|
m->dc_media = IFM_10_5;
|
|
|
|
m->dc_gp_len = 2;
|
|
m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
|
|
|
|
m->dc_next = sc->dc_mi;
|
|
sc->dc_mi = m;
|
|
|
|
sc->dc_pmode = DC_PMODE_SIA;
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_decode_leaf_sym(sc, l)
|
|
struct dc_softc *sc;
|
|
struct dc_eblock_sym *l;
|
|
{
|
|
struct dc_mediainfo *m;
|
|
|
|
m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
|
|
bzero(m, sizeof(struct dc_mediainfo));
|
|
if (l->dc_sym_code == DC_SYM_CODE_100BT)
|
|
m->dc_media = IFM_100_TX;
|
|
|
|
if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
|
|
m->dc_media = IFM_100_TX|IFM_FDX;
|
|
|
|
m->dc_gp_len = 2;
|
|
m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
|
|
|
|
m->dc_next = sc->dc_mi;
|
|
sc->dc_mi = m;
|
|
|
|
sc->dc_pmode = DC_PMODE_SYM;
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_decode_leaf_mii(sc, l)
|
|
struct dc_softc *sc;
|
|
struct dc_eblock_mii *l;
|
|
{
|
|
u_int8_t *p;
|
|
struct dc_mediainfo *m;
|
|
|
|
m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
|
|
bzero(m, sizeof(struct dc_mediainfo));
|
|
/* We abuse IFM_AUTO to represent MII. */
|
|
m->dc_media = IFM_AUTO;
|
|
m->dc_gp_len = l->dc_gpr_len;
|
|
|
|
p = (u_int8_t *)l;
|
|
p += sizeof(struct dc_eblock_mii);
|
|
m->dc_gp_ptr = p;
|
|
p += 2 * l->dc_gpr_len;
|
|
m->dc_reset_len = *p;
|
|
p++;
|
|
m->dc_reset_ptr = p;
|
|
|
|
m->dc_next = sc->dc_mi;
|
|
sc->dc_mi = m;
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_parse_21143_srom(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
struct dc_leaf_hdr *lhdr;
|
|
struct dc_eblock_hdr *hdr;
|
|
int i, loff;
|
|
char *ptr;
|
|
|
|
loff = sc->dc_srom[27];
|
|
lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
|
|
|
|
ptr = (char *)lhdr;
|
|
ptr += sizeof(struct dc_leaf_hdr) - 1;
|
|
for (i = 0; i < lhdr->dc_mcnt; i++) {
|
|
hdr = (struct dc_eblock_hdr *)ptr;
|
|
switch(hdr->dc_type) {
|
|
case DC_EBLOCK_MII:
|
|
dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
|
|
break;
|
|
case DC_EBLOCK_SIA:
|
|
dc_decode_leaf_sia(sc, (struct dc_eblock_sia *)hdr);
|
|
break;
|
|
case DC_EBLOCK_SYM:
|
|
dc_decode_leaf_sym(sc, (struct dc_eblock_sym *)hdr);
|
|
break;
|
|
default:
|
|
/* Don't care. Yet. */
|
|
break;
|
|
}
|
|
ptr += (hdr->dc_len & 0x7F);
|
|
ptr++;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int dc_attach(dev)
|
|
device_t dev;
|
|
{
|
|
int tmp = 0;
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
u_int32_t command;
|
|
struct dc_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int32_t revision;
|
|
int unit, error = 0, rid, mac_offset;
|
|
|
|
sc = device_get_softc(dev);
|
|
unit = device_get_unit(dev);
|
|
bzero(sc, sizeof(struct dc_softc));
|
|
|
|
mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
|
|
DC_LOCK(sc);
|
|
|
|
/*
|
|
* Handle power management nonsense.
|
|
*/
|
|
dc_acpi(dev);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
pci_enable_io(dev, SYS_RES_IOPORT);
|
|
pci_enable_io(dev, SYS_RES_MEMORY);
|
|
command = pci_read_config(dev, PCIR_COMMAND, 4);
|
|
|
|
#ifdef DC_USEIOSPACE
|
|
if (!(command & PCIM_CMD_PORTEN)) {
|
|
printf("dc%d: failed to enable I/O ports!\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
#else
|
|
if (!(command & PCIM_CMD_MEMEN)) {
|
|
printf("dc%d: failed to enable memory mapping!\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
#endif
|
|
|
|
rid = DC_RID;
|
|
sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
|
|
0, ~0, 1, RF_ACTIVE);
|
|
|
|
if (sc->dc_res == NULL) {
|
|
printf("dc%d: couldn't map ports/memory\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
sc->dc_btag = rman_get_bustag(sc->dc_res);
|
|
sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
|
|
|
|
/* Allocate interrupt */
|
|
rid = 0;
|
|
sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->dc_irq == NULL) {
|
|
printf("dc%d: couldn't map interrupt\n", unit);
|
|
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET |
|
|
(IS_MPSAFE ? INTR_MPSAFE : 0),
|
|
dc_intr, sc, &sc->dc_intrhand);
|
|
|
|
if (error) {
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
|
|
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
|
|
printf("dc%d: couldn't set up irq\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
/* Need this info to decide on a chip type. */
|
|
sc->dc_info = dc_devtype(dev);
|
|
revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
|
|
|
|
switch(sc->dc_info->dc_did) {
|
|
case DC_DEVICEID_21143:
|
|
sc->dc_type = DC_TYPE_21143;
|
|
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL;
|
|
/* Save EEPROM contents so we can parse them later. */
|
|
dc_read_eeprom(sc, (caddr_t)&sc->dc_srom, 0, 512, 0);
|
|
break;
|
|
case DC_DEVICEID_DM9100:
|
|
case DC_DEVICEID_DM9102:
|
|
sc->dc_type = DC_TYPE_DM9102;
|
|
sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
/* Increase the latency timer value. */
|
|
command = pci_read_config(dev, DC_PCI_CFLT, 4);
|
|
command &= 0xFFFF00FF;
|
|
command |= 0x00008000;
|
|
pci_write_config(dev, DC_PCI_CFLT, command, 4);
|
|
break;
|
|
case DC_DEVICEID_AL981:
|
|
sc->dc_type = DC_TYPE_AL981;
|
|
sc->dc_flags |= DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_TX_ADMTEK_WAR;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
break;
|
|
case DC_DEVICEID_AN985:
|
|
case DC_DEVICEID_FE2500:
|
|
case DC_DEVICEID_EN2242:
|
|
sc->dc_type = DC_TYPE_AN985;
|
|
sc->dc_flags |= DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_TX_ADMTEK_WAR;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
break;
|
|
case DC_DEVICEID_98713:
|
|
case DC_DEVICEID_98713_CP:
|
|
if (revision < DC_REVISION_98713A) {
|
|
sc->dc_type = DC_TYPE_98713;
|
|
}
|
|
if (revision >= DC_REVISION_98713A) {
|
|
sc->dc_type = DC_TYPE_98713A;
|
|
sc->dc_flags |= DC_21143_NWAY;
|
|
}
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL;
|
|
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
|
|
break;
|
|
case DC_DEVICEID_987x5:
|
|
case DC_DEVICEID_EN1217:
|
|
/*
|
|
* Macronix MX98715AEC-C/D/E parts have only a
|
|
* 128-bit hash table. We need to deal with these
|
|
* in the same manner as the PNIC II so that we
|
|
* get the right number of bits out of the
|
|
* CRC routine.
|
|
*/
|
|
if (revision >= DC_REVISION_98715AEC_C &&
|
|
revision < DC_REVISION_98725)
|
|
sc->dc_flags |= DC_128BIT_HASH;
|
|
sc->dc_type = DC_TYPE_987x5;
|
|
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
|
|
break;
|
|
case DC_DEVICEID_98727:
|
|
sc->dc_type = DC_TYPE_987x5;
|
|
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
|
|
break;
|
|
case DC_DEVICEID_82C115:
|
|
sc->dc_type = DC_TYPE_PNICII;
|
|
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
|
|
break;
|
|
case DC_DEVICEID_82C168:
|
|
sc->dc_type = DC_TYPE_PNIC;
|
|
sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
|
|
sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
|
|
sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
|
|
if (revision < DC_REVISION_82C169)
|
|
sc->dc_pmode = DC_PMODE_SYM;
|
|
break;
|
|
case DC_DEVICEID_AX88140A:
|
|
sc->dc_type = DC_TYPE_ASIX;
|
|
sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
break;
|
|
case DC_DEVICEID_X3201:
|
|
sc->dc_type = DC_TYPE_XIRCOM;
|
|
sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE;
|
|
/*
|
|
* We don't actually need to coalesce, but we're doing
|
|
* it to obtain a double word aligned buffer.
|
|
*/
|
|
break;
|
|
case DC_DEVICEID_RS7112:
|
|
sc->dc_type = DC_TYPE_CONEXANT;
|
|
sc->dc_flags |= DC_TX_INTR_ALWAYS;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
dc_read_eeprom(sc, (caddr_t)&sc->dc_srom, 0, 256, 0);
|
|
break;
|
|
default:
|
|
printf("dc%d: unknown device: %x\n", sc->dc_unit,
|
|
sc->dc_info->dc_did);
|
|
break;
|
|
}
|
|
|
|
/* Save the cache line size. */
|
|
if (DC_IS_DAVICOM(sc))
|
|
sc->dc_cachesize = 0;
|
|
else
|
|
sc->dc_cachesize = pci_read_config(dev,
|
|
DC_PCI_CFLT, 4) & 0xFF;
|
|
|
|
/* Reset the adapter. */
|
|
dc_reset(sc);
|
|
|
|
/* Take 21143 out of snooze mode */
|
|
if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
|
|
command = pci_read_config(dev, DC_PCI_CFDD, 4);
|
|
command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
|
|
pci_write_config(dev, DC_PCI_CFDD, command, 4);
|
|
}
|
|
|
|
/*
|
|
* Try to learn something about the supported media.
|
|
* We know that ASIX and ADMtek and Davicom devices
|
|
* will *always* be using MII media, so that's a no-brainer.
|
|
* The tricky ones are the Macronix/PNIC II and the
|
|
* Intel 21143.
|
|
*/
|
|
if (DC_IS_INTEL(sc))
|
|
dc_parse_21143_srom(sc);
|
|
else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
else
|
|
sc->dc_pmode = DC_PMODE_SYM;
|
|
} else if (!sc->dc_pmode)
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
switch(sc->dc_type) {
|
|
case DC_TYPE_98713:
|
|
case DC_TYPE_98713A:
|
|
case DC_TYPE_987x5:
|
|
case DC_TYPE_PNICII:
|
|
dc_read_eeprom(sc, (caddr_t)&mac_offset,
|
|
(DC_EE_NODEADDR_OFFSET / 2), 1, 0);
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
|
|
break;
|
|
case DC_TYPE_PNIC:
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
|
|
break;
|
|
case DC_TYPE_DM9102:
|
|
case DC_TYPE_21143:
|
|
case DC_TYPE_ASIX:
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
|
|
break;
|
|
case DC_TYPE_AL981:
|
|
case DC_TYPE_AN985:
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
|
|
break;
|
|
case DC_TYPE_CONEXANT:
|
|
bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
|
|
break;
|
|
case DC_TYPE_XIRCOM:
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, 3, 3, 0);
|
|
break;
|
|
default:
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* A 21143 or clone chip was detected. Inform the world.
|
|
*/
|
|
printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
|
|
|
|
sc->dc_unit = unit;
|
|
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
|
|
|
|
sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
|
|
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
|
|
|
|
if (sc->dc_ldata == NULL) {
|
|
printf("dc%d: no memory for list buffers!\n", unit);
|
|
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
|
|
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
bzero(sc->dc_ldata, sizeof(struct dc_list_data));
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_unit = unit;
|
|
ifp->if_name = "dc";
|
|
/* XXX: bleah, MTU gets overwritten in ether_ifattach() */
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = dc_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = dc_start;
|
|
ifp->if_watchdog = dc_watchdog;
|
|
ifp->if_init = dc_init;
|
|
ifp->if_baudrate = 10000000;
|
|
ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
|
|
|
|
/*
|
|
* Do MII setup. If this is a 21143, check for a PHY on the
|
|
* MII bus after applying any necessary fixups to twiddle the
|
|
* GPIO bits. If we don't end up finding a PHY, restore the
|
|
* old selection (SIA only or SIA/SYM) and attach the dcphy
|
|
* driver instead.
|
|
*/
|
|
if (DC_IS_INTEL(sc)) {
|
|
dc_apply_fixup(sc, IFM_AUTO);
|
|
tmp = sc->dc_pmode;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
}
|
|
|
|
error = mii_phy_probe(dev, &sc->dc_miibus,
|
|
dc_ifmedia_upd, dc_ifmedia_sts);
|
|
|
|
if (error && DC_IS_INTEL(sc)) {
|
|
sc->dc_pmode = tmp;
|
|
if (sc->dc_pmode != DC_PMODE_SIA)
|
|
sc->dc_pmode = DC_PMODE_SYM;
|
|
sc->dc_flags |= DC_21143_NWAY;
|
|
mii_phy_probe(dev, &sc->dc_miibus,
|
|
dc_ifmedia_upd, dc_ifmedia_sts);
|
|
/*
|
|
* For non-MII cards, we need to have the 21143
|
|
* drive the LEDs. Except there are some systems
|
|
* like the NEC VersaPro NoteBook PC which have no
|
|
* LEDs, and twiddling these bits has adverse effects
|
|
* on them. (I.e. you suddenly can't get a link.)
|
|
*/
|
|
if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
|
|
sc->dc_flags |= DC_TULIP_LEDS;
|
|
error = 0;
|
|
}
|
|
|
|
if (error) {
|
|
printf("dc%d: MII without any PHY!\n", sc->dc_unit);
|
|
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
|
|
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
if (DC_IS_XIRCOM(sc)) {
|
|
/*
|
|
* setup General Purpose Port mode and data so the tulip
|
|
* can talk to the MII.
|
|
*/
|
|
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
|
|
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
|
|
DELAY(10);
|
|
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
|
|
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
|
|
DELAY(10);
|
|
}
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
|
|
callout_init(&sc->dc_stat_ch, IS_MPSAFE);
|
|
|
|
#ifdef SRM_MEDIA
|
|
sc->dc_srm_media = 0;
|
|
|
|
/* Remember the SRM console media setting */
|
|
if (DC_IS_INTEL(sc)) {
|
|
command = pci_read_config(dev, DC_PCI_CFDD, 4);
|
|
command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
|
|
switch ((command >> 8) & 0xff) {
|
|
case 3:
|
|
sc->dc_srm_media = IFM_10_T;
|
|
break;
|
|
case 4:
|
|
sc->dc_srm_media = IFM_10_T | IFM_FDX;
|
|
break;
|
|
case 5:
|
|
sc->dc_srm_media = IFM_100_TX;
|
|
break;
|
|
case 6:
|
|
sc->dc_srm_media = IFM_100_TX | IFM_FDX;
|
|
break;
|
|
}
|
|
if (sc->dc_srm_media)
|
|
sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
|
|
}
|
|
#endif
|
|
|
|
DC_UNLOCK(sc);
|
|
return(0);
|
|
|
|
fail:
|
|
DC_UNLOCK(sc);
|
|
mtx_destroy(&sc->dc_mtx);
|
|
return(error);
|
|
}
|
|
|
|
static int dc_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct dc_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct dc_mediainfo *m;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
DC_LOCK(sc);
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
dc_stop(sc);
|
|
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
|
|
|
|
bus_generic_detach(dev);
|
|
device_delete_child(dev, sc->dc_miibus);
|
|
|
|
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
|
|
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
|
|
|
|
contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
|
|
if (sc->dc_pnic_rx_buf != NULL)
|
|
free(sc->dc_pnic_rx_buf, M_DEVBUF);
|
|
|
|
while(sc->dc_mi != NULL) {
|
|
m = sc->dc_mi->dc_next;
|
|
free(sc->dc_mi, M_DEVBUF);
|
|
sc->dc_mi = m;
|
|
}
|
|
|
|
DC_UNLOCK(sc);
|
|
mtx_destroy(&sc->dc_mtx);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
static int dc_list_tx_init(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
struct dc_chain_data *cd;
|
|
struct dc_list_data *ld;
|
|
int i, nexti;
|
|
|
|
cd = &sc->dc_cdata;
|
|
ld = sc->dc_ldata;
|
|
for (i = 0; i < DC_TX_LIST_CNT; i++) {
|
|
nexti = (i == (DC_TX_LIST_CNT - 1)) ? 0 : i+1;
|
|
ld->dc_tx_list[i].dc_next = vtophys(&ld->dc_tx_list[nexti]);
|
|
cd->dc_tx_chain[i] = NULL;
|
|
ld->dc_tx_list[i].dc_data = 0;
|
|
ld->dc_tx_list[i].dc_ctl = 0;
|
|
}
|
|
|
|
cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
* points back to the first.
|
|
*/
|
|
static int dc_list_rx_init(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
struct dc_chain_data *cd;
|
|
struct dc_list_data *ld;
|
|
int i, nexti;
|
|
|
|
cd = &sc->dc_cdata;
|
|
ld = sc->dc_ldata;
|
|
|
|
for (i = 0; i < DC_RX_LIST_CNT; i++) {
|
|
if (dc_newbuf(sc, i, NULL) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
nexti = (i == (DC_RX_LIST_CNT - 1)) ? 0 : i+1;
|
|
ld->dc_rx_list[i].dc_next = vtophys(&ld->dc_rx_list[nexti]);
|
|
}
|
|
|
|
cd->dc_rx_prod = 0;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
*/
|
|
static int dc_newbuf(sc, i, m)
|
|
struct dc_softc *sc;
|
|
int i;
|
|
struct mbuf *m;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
struct dc_desc *c;
|
|
|
|
c = &sc->dc_ldata->dc_rx_list[i];
|
|
|
|
if (m == NULL) {
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
return(ENOBUFS);
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
return(ENOBUFS);
|
|
}
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
} else {
|
|
m_new = m;
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
}
|
|
|
|
m_adj(m_new, sizeof(u_int64_t));
|
|
|
|
/*
|
|
* If this is a PNIC chip, zero the buffer. This is part
|
|
* of the workaround for the receive bug in the 82c168 and
|
|
* 82c169 chips.
|
|
*/
|
|
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
|
|
bzero((char *)mtod(m_new, char *), m_new->m_len);
|
|
|
|
sc->dc_cdata.dc_rx_chain[i] = m_new;
|
|
c->dc_data = vtophys(mtod(m_new, caddr_t));
|
|
c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
|
|
c->dc_status = DC_RXSTAT_OWN;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Grrrrr.
|
|
* The PNIC chip has a terrible bug in it that manifests itself during
|
|
* periods of heavy activity. The exact mode of failure if difficult to
|
|
* pinpoint: sometimes it only happens in promiscuous mode, sometimes it
|
|
* will happen on slow machines. The bug is that sometimes instead of
|
|
* uploading one complete frame during reception, it uploads what looks
|
|
* like the entire contents of its FIFO memory. The frame we want is at
|
|
* the end of the whole mess, but we never know exactly how much data has
|
|
* been uploaded, so salvaging the frame is hard.
|
|
*
|
|
* There is only one way to do it reliably, and it's disgusting.
|
|
* Here's what we know:
|
|
*
|
|
* - We know there will always be somewhere between one and three extra
|
|
* descriptors uploaded.
|
|
*
|
|
* - We know the desired received frame will always be at the end of the
|
|
* total data upload.
|
|
*
|
|
* - We know the size of the desired received frame because it will be
|
|
* provided in the length field of the status word in the last descriptor.
|
|
*
|
|
* Here's what we do:
|
|
*
|
|
* - When we allocate buffers for the receive ring, we bzero() them.
|
|
* This means that we know that the buffer contents should be all
|
|
* zeros, except for data uploaded by the chip.
|
|
*
|
|
* - We also force the PNIC chip to upload frames that include the
|
|
* ethernet CRC at the end.
|
|
*
|
|
* - We gather all of the bogus frame data into a single buffer.
|
|
*
|
|
* - We then position a pointer at the end of this buffer and scan
|
|
* backwards until we encounter the first non-zero byte of data.
|
|
* This is the end of the received frame. We know we will encounter
|
|
* some data at the end of the frame because the CRC will always be
|
|
* there, so even if the sender transmits a packet of all zeros,
|
|
* we won't be fooled.
|
|
*
|
|
* - We know the size of the actual received frame, so we subtract
|
|
* that value from the current pointer location. This brings us
|
|
* to the start of the actual received packet.
|
|
*
|
|
* - We copy this into an mbuf and pass it on, along with the actual
|
|
* frame length.
|
|
*
|
|
* The performance hit is tremendous, but it beats dropping frames all
|
|
* the time.
|
|
*/
|
|
|
|
#define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
|
|
static void dc_pnic_rx_bug_war(sc, idx)
|
|
struct dc_softc *sc;
|
|
int idx;
|
|
{
|
|
struct dc_desc *cur_rx;
|
|
struct dc_desc *c = NULL;
|
|
struct mbuf *m = NULL;
|
|
unsigned char *ptr;
|
|
int i, total_len;
|
|
u_int32_t rxstat = 0;
|
|
|
|
i = sc->dc_pnic_rx_bug_save;
|
|
cur_rx = &sc->dc_ldata->dc_rx_list[idx];
|
|
ptr = sc->dc_pnic_rx_buf;
|
|
bzero(ptr, sizeof(DC_RXLEN * 5));
|
|
|
|
/* Copy all the bytes from the bogus buffers. */
|
|
while (1) {
|
|
c = &sc->dc_ldata->dc_rx_list[i];
|
|
rxstat = c->dc_status;
|
|
m = sc->dc_cdata.dc_rx_chain[i];
|
|
bcopy(mtod(m, char *), ptr, DC_RXLEN);
|
|
ptr += DC_RXLEN;
|
|
/* If this is the last buffer, break out. */
|
|
if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
|
|
break;
|
|
dc_newbuf(sc, i, m);
|
|
DC_INC(i, DC_RX_LIST_CNT);
|
|
}
|
|
|
|
/* Find the length of the actual receive frame. */
|
|
total_len = DC_RXBYTES(rxstat);
|
|
|
|
/* Scan backwards until we hit a non-zero byte. */
|
|
while(*ptr == 0x00)
|
|
ptr--;
|
|
|
|
/* Round off. */
|
|
if ((uintptr_t)(ptr) & 0x3)
|
|
ptr -= 1;
|
|
|
|
/* Now find the start of the frame. */
|
|
ptr -= total_len;
|
|
if (ptr < sc->dc_pnic_rx_buf)
|
|
ptr = sc->dc_pnic_rx_buf;
|
|
|
|
/*
|
|
* Now copy the salvaged frame to the last mbuf and fake up
|
|
* the status word to make it look like a successful
|
|
* frame reception.
|
|
*/
|
|
dc_newbuf(sc, i, m);
|
|
bcopy(ptr, mtod(m, char *), total_len);
|
|
cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This routine searches the RX ring for dirty descriptors in the
|
|
* event that the rxeof routine falls out of sync with the chip's
|
|
* current descriptor pointer. This may happen sometimes as a result
|
|
* of a "no RX buffer available" condition that happens when the chip
|
|
* consumes all of the RX buffers before the driver has a chance to
|
|
* process the RX ring. This routine may need to be called more than
|
|
* once to bring the driver back in sync with the chip, however we
|
|
* should still be getting RX DONE interrupts to drive the search
|
|
* for new packets in the RX ring, so we should catch up eventually.
|
|
*/
|
|
static int dc_rx_resync(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
int i, pos;
|
|
struct dc_desc *cur_rx;
|
|
|
|
pos = sc->dc_cdata.dc_rx_prod;
|
|
|
|
for (i = 0; i < DC_RX_LIST_CNT; i++) {
|
|
cur_rx = &sc->dc_ldata->dc_rx_list[pos];
|
|
if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
|
|
break;
|
|
DC_INC(pos, DC_RX_LIST_CNT);
|
|
}
|
|
|
|
/* If the ring really is empty, then just return. */
|
|
if (i == DC_RX_LIST_CNT)
|
|
return(0);
|
|
|
|
/* We've fallen behing the chip: catch it. */
|
|
sc->dc_cdata.dc_rx_prod = pos;
|
|
|
|
return(EAGAIN);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static void dc_rxeof(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct dc_desc *cur_rx;
|
|
int i, total_len = 0;
|
|
u_int32_t rxstat;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
i = sc->dc_cdata.dc_rx_prod;
|
|
|
|
while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
|
|
|
|
cur_rx = &sc->dc_ldata->dc_rx_list[i];
|
|
rxstat = cur_rx->dc_status;
|
|
m = sc->dc_cdata.dc_rx_chain[i];
|
|
total_len = DC_RXBYTES(rxstat);
|
|
|
|
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
|
|
if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
|
|
if (rxstat & DC_RXSTAT_FIRSTFRAG)
|
|
sc->dc_pnic_rx_bug_save = i;
|
|
if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
|
|
DC_INC(i, DC_RX_LIST_CNT);
|
|
continue;
|
|
}
|
|
dc_pnic_rx_bug_war(sc, i);
|
|
rxstat = cur_rx->dc_status;
|
|
total_len = DC_RXBYTES(rxstat);
|
|
}
|
|
}
|
|
|
|
sc->dc_cdata.dc_rx_chain[i] = NULL;
|
|
|
|
/*
|
|
* If an error occurs, update stats, clear the
|
|
* status word and leave the mbuf cluster in place:
|
|
* it should simply get re-used next time this descriptor
|
|
* comes up in the ring.
|
|
*/
|
|
if (rxstat & DC_RXSTAT_RXERR) {
|
|
ifp->if_ierrors++;
|
|
if (rxstat & DC_RXSTAT_COLLSEEN)
|
|
ifp->if_collisions++;
|
|
dc_newbuf(sc, i, m);
|
|
if (rxstat & DC_RXSTAT_CRCERR) {
|
|
DC_INC(i, DC_RX_LIST_CNT);
|
|
continue;
|
|
} else {
|
|
dc_init(sc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* No errors; receive the packet. */
|
|
total_len -= ETHER_CRC_LEN;
|
|
#ifdef __i386__
|
|
/*
|
|
* On the x86 we do not have alignment problems, so try to
|
|
* allocate a new buffer for the receive ring, and pass up
|
|
* the one where the packet is already, saving the expensive
|
|
* copy done in m_devget().
|
|
* If we are on an architecture with alignment problems, or
|
|
* if the allocation fails, then use m_devget and leave the
|
|
* existing buffer in the receive ring.
|
|
*/
|
|
if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
DC_INC(i, DC_RX_LIST_CNT);
|
|
} else
|
|
#endif
|
|
{
|
|
struct mbuf *m0;
|
|
|
|
m0 = m_devget(mtod(m, char *), total_len,
|
|
ETHER_ALIGN, ifp, NULL);
|
|
dc_newbuf(sc, i, m);
|
|
DC_INC(i, DC_RX_LIST_CNT);
|
|
if (m0 == NULL) {
|
|
ifp->if_ierrors++;
|
|
continue;
|
|
}
|
|
m = m0;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
/* Remove header from mbuf and pass it on. */
|
|
m_adj(m, sizeof(struct ether_header));
|
|
ether_input(ifp, eh, m);
|
|
}
|
|
|
|
sc->dc_cdata.dc_rx_prod = i;
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
|
|
static void dc_txeof(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
struct dc_desc *cur_tx = NULL;
|
|
struct ifnet *ifp;
|
|
int idx;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Clear the timeout timer. */
|
|
ifp->if_timer = 0;
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
idx = sc->dc_cdata.dc_tx_cons;
|
|
while(idx != sc->dc_cdata.dc_tx_prod) {
|
|
u_int32_t txstat;
|
|
|
|
cur_tx = &sc->dc_ldata->dc_tx_list[idx];
|
|
txstat = cur_tx->dc_status;
|
|
|
|
if (txstat & DC_TXSTAT_OWN)
|
|
break;
|
|
|
|
if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
|
|
cur_tx->dc_ctl & DC_TXCTL_SETUP) {
|
|
sc->dc_cdata.dc_tx_cnt--;
|
|
if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
|
|
/*
|
|
* Yes, the PNIC is so brain damaged
|
|
* that it will sometimes generate a TX
|
|
* underrun error while DMAing the RX
|
|
* filter setup frame. If we detect this,
|
|
* we have to send the setup frame again,
|
|
* or else the filter won't be programmed
|
|
* correctly.
|
|
*/
|
|
if (DC_IS_PNIC(sc)) {
|
|
if (txstat & DC_TXSTAT_ERRSUM)
|
|
dc_setfilt(sc);
|
|
}
|
|
sc->dc_cdata.dc_tx_chain[idx] = NULL;
|
|
}
|
|
DC_INC(idx, DC_TX_LIST_CNT);
|
|
continue;
|
|
}
|
|
|
|
if (DC_IS_XIRCOM(sc)) {
|
|
/*
|
|
* XXX: Why does my Xircom taunt me so?
|
|
* For some reason it likes setting the CARRLOST flag
|
|
* even when the carrier is there. wtf?!? */
|
|
if (/*sc->dc_type == DC_TYPE_21143 &&*/
|
|
sc->dc_pmode == DC_PMODE_MII &&
|
|
((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
|
|
DC_TXSTAT_NOCARRIER)))
|
|
txstat &= ~DC_TXSTAT_ERRSUM;
|
|
} else {
|
|
if (/*sc->dc_type == DC_TYPE_21143 &&*/
|
|
sc->dc_pmode == DC_PMODE_MII &&
|
|
((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
|
|
DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
|
|
txstat &= ~DC_TXSTAT_ERRSUM;
|
|
}
|
|
|
|
if (txstat & DC_TXSTAT_ERRSUM) {
|
|
ifp->if_oerrors++;
|
|
if (txstat & DC_TXSTAT_EXCESSCOLL)
|
|
ifp->if_collisions++;
|
|
if (txstat & DC_TXSTAT_LATECOLL)
|
|
ifp->if_collisions++;
|
|
if (!(txstat & DC_TXSTAT_UNDERRUN)) {
|
|
dc_init(sc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
|
|
|
|
ifp->if_opackets++;
|
|
if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
|
|
m_freem(sc->dc_cdata.dc_tx_chain[idx]);
|
|
sc->dc_cdata.dc_tx_chain[idx] = NULL;
|
|
}
|
|
|
|
sc->dc_cdata.dc_tx_cnt--;
|
|
DC_INC(idx, DC_TX_LIST_CNT);
|
|
}
|
|
|
|
sc->dc_cdata.dc_tx_cons = idx;
|
|
if (cur_tx != NULL)
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_tick(xsc)
|
|
void *xsc;
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
u_int32_t r;
|
|
|
|
sc = xsc;
|
|
DC_LOCK(sc);
|
|
ifp = &sc->arpcom.ac_if;
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
|
|
if (sc->dc_flags & DC_REDUCED_MII_POLL) {
|
|
if (sc->dc_flags & DC_21143_NWAY) {
|
|
r = CSR_READ_4(sc, DC_10BTSTAT);
|
|
if (IFM_SUBTYPE(mii->mii_media_active) ==
|
|
IFM_100_TX && (r & DC_TSTAT_LS100)) {
|
|
sc->dc_link = 0;
|
|
mii_mediachg(mii);
|
|
}
|
|
if (IFM_SUBTYPE(mii->mii_media_active) ==
|
|
IFM_10_T && (r & DC_TSTAT_LS10)) {
|
|
sc->dc_link = 0;
|
|
mii_mediachg(mii);
|
|
}
|
|
if (sc->dc_link == 0)
|
|
mii_tick(mii);
|
|
} else {
|
|
r = CSR_READ_4(sc, DC_ISR);
|
|
if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
|
|
sc->dc_cdata.dc_tx_cnt == 0)
|
|
mii_tick(mii);
|
|
if (!(mii->mii_media_status & IFM_ACTIVE))
|
|
sc->dc_link = 0;
|
|
}
|
|
} else
|
|
mii_tick(mii);
|
|
|
|
/*
|
|
* When the init routine completes, we expect to be able to send
|
|
* packets right away, and in fact the network code will send a
|
|
* gratuitous ARP the moment the init routine marks the interface
|
|
* as running. However, even though the MAC may have been initialized,
|
|
* there may be a delay of a few seconds before the PHY completes
|
|
* autonegotiation and the link is brought up. Any transmissions
|
|
* made during that delay will be lost. Dealing with this is tricky:
|
|
* we can't just pause in the init routine while waiting for the
|
|
* PHY to come ready since that would bring the whole system to
|
|
* a screeching halt for several seconds.
|
|
*
|
|
* What we do here is prevent the TX start routine from sending
|
|
* any packets until a link has been established. After the
|
|
* interface has been initialized, the tick routine will poll
|
|
* the state of the PHY until the IFM_ACTIVE flag is set. Until
|
|
* that time, packets will stay in the send queue, and once the
|
|
* link comes up, they will be flushed out to the wire.
|
|
*/
|
|
if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->dc_link++;
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
dc_start(ifp);
|
|
}
|
|
|
|
if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
|
|
callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
|
|
else
|
|
callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
|
|
|
|
DC_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A transmit underrun has occurred. Back off the transmit threshold,
|
|
* or switch to store and forward mode if we have to.
|
|
*/
|
|
static void dc_tx_underrun(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
u_int32_t isr;
|
|
int i;
|
|
|
|
if (DC_IS_DAVICOM(sc))
|
|
dc_init(sc);
|
|
|
|
if (DC_IS_INTEL(sc)) {
|
|
/*
|
|
* The real 21143 requires that the transmitter be idle
|
|
* in order to change the transmit threshold or store
|
|
* and forward state.
|
|
*/
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
|
|
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
isr = CSR_READ_4(sc, DC_ISR);
|
|
if (isr & DC_ISR_TX_IDLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == DC_TIMEOUT) {
|
|
printf("dc%d: failed to force tx to idle state\n",
|
|
sc->dc_unit);
|
|
dc_init(sc);
|
|
}
|
|
}
|
|
|
|
printf("dc%d: TX underrun -- ", sc->dc_unit);
|
|
sc->dc_txthresh += DC_TXTHRESH_INC;
|
|
if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
|
|
printf("using store and forward mode\n");
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
|
|
} else {
|
|
printf("increasing TX threshold\n");
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
|
|
DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
|
|
}
|
|
|
|
if (DC_IS_INTEL(sc))
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct dc_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int32_t status;
|
|
|
|
sc = arg;
|
|
|
|
if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
|
|
return ;
|
|
|
|
DC_LOCK(sc);
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* Suppress unwanted interrupts */
|
|
if (!(ifp->if_flags & IFF_UP)) {
|
|
if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
|
|
dc_stop(sc);
|
|
DC_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
|
|
|
|
while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS)
|
|
&& status != 0xFFFFFFFF) {
|
|
|
|
CSR_WRITE_4(sc, DC_ISR, status);
|
|
|
|
if (status & DC_ISR_RX_OK) {
|
|
int curpkts;
|
|
curpkts = ifp->if_ipackets;
|
|
dc_rxeof(sc);
|
|
if (curpkts == ifp->if_ipackets) {
|
|
while(dc_rx_resync(sc))
|
|
dc_rxeof(sc);
|
|
}
|
|
}
|
|
|
|
if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
|
|
dc_txeof(sc);
|
|
|
|
if (status & DC_ISR_TX_IDLE) {
|
|
dc_txeof(sc);
|
|
if (sc->dc_cdata.dc_tx_cnt) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
|
|
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
|
|
}
|
|
}
|
|
|
|
if (status & DC_ISR_TX_UNDERRUN)
|
|
dc_tx_underrun(sc);
|
|
|
|
if ((status & DC_ISR_RX_WATDOGTIMEO)
|
|
|| (status & DC_ISR_RX_NOBUF)) {
|
|
int curpkts;
|
|
curpkts = ifp->if_ipackets;
|
|
dc_rxeof(sc);
|
|
if (curpkts == ifp->if_ipackets) {
|
|
while(dc_rx_resync(sc))
|
|
dc_rxeof(sc);
|
|
}
|
|
}
|
|
|
|
if (status & DC_ISR_BUS_ERR) {
|
|
dc_reset(sc);
|
|
dc_init(sc);
|
|
}
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
dc_start(ifp);
|
|
|
|
DC_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int dc_encap(sc, m_head, txidx)
|
|
struct dc_softc *sc;
|
|
struct mbuf *m_head;
|
|
u_int32_t *txidx;
|
|
{
|
|
struct dc_desc *f = NULL;
|
|
struct mbuf *m;
|
|
int frag, cur, cnt = 0;
|
|
|
|
/*
|
|
* Start packing the mbufs in this chain into
|
|
* the fragment pointers. Stop when we run out
|
|
* of fragments or hit the end of the mbuf chain.
|
|
*/
|
|
m = m_head;
|
|
cur = frag = *txidx;
|
|
|
|
for (m = m_head; m != NULL; m = m->m_next) {
|
|
if (m->m_len != 0) {
|
|
if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
|
|
if (*txidx != sc->dc_cdata.dc_tx_prod &&
|
|
frag == (DC_TX_LIST_CNT - 1))
|
|
return(ENOBUFS);
|
|
}
|
|
if ((DC_TX_LIST_CNT -
|
|
(sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
|
|
return(ENOBUFS);
|
|
|
|
f = &sc->dc_ldata->dc_tx_list[frag];
|
|
f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
|
|
if (cnt == 0) {
|
|
f->dc_status = 0;
|
|
f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
|
|
} else
|
|
f->dc_status = DC_TXSTAT_OWN;
|
|
f->dc_data = vtophys(mtod(m, vm_offset_t));
|
|
cur = frag;
|
|
DC_INC(frag, DC_TX_LIST_CNT);
|
|
cnt++;
|
|
}
|
|
}
|
|
|
|
if (m != NULL)
|
|
return(ENOBUFS);
|
|
|
|
sc->dc_cdata.dc_tx_cnt += cnt;
|
|
sc->dc_cdata.dc_tx_chain[cur] = m_head;
|
|
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
|
|
if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
|
|
sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
|
|
if (sc->dc_flags & DC_TX_INTR_ALWAYS)
|
|
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
|
|
if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
|
|
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
|
|
sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
|
|
*txidx = frag;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Coalesce an mbuf chain into a single mbuf cluster buffer.
|
|
* Needed for some really badly behaved chips that just can't
|
|
* do scatter/gather correctly.
|
|
*/
|
|
static int dc_coal(sc, m_head)
|
|
struct dc_softc *sc;
|
|
struct mbuf **m_head;
|
|
{
|
|
struct mbuf *m_new, *m;
|
|
|
|
m = *m_head;
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
return(ENOBUFS);
|
|
if (m->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
return(ENOBUFS);
|
|
}
|
|
}
|
|
m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
|
|
m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
|
|
m_freem(m);
|
|
*m_head = m_new;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit lists. We also save a
|
|
* copy of the pointers since the transmit list fragment pointers are
|
|
* physical addresses.
|
|
*/
|
|
|
|
static void dc_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
int idx;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
DC_LOCK(sc);
|
|
|
|
if (!sc->dc_link && ifp->if_snd.ifq_len < 10) {
|
|
DC_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_OACTIVE) {
|
|
DC_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
idx = sc->dc_cdata.dc_tx_prod;
|
|
|
|
while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
if (sc->dc_flags & DC_TX_COALESCE) {
|
|
if (dc_coal(sc, &m_head)) {
|
|
IF_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dc_encap(sc, m_head, &idx)) {
|
|
IF_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, m_head);
|
|
|
|
if (sc->dc_flags & DC_TX_ONE) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Transmit */
|
|
sc->dc_cdata.dc_tx_prod = idx;
|
|
if (!(sc->dc_flags & DC_TX_POLL))
|
|
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
|
|
DC_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static void dc_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct dc_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->arpcom.ac_if;
|
|
struct mii_data *mii;
|
|
|
|
DC_LOCK(sc);
|
|
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
dc_stop(sc);
|
|
dc_reset(sc);
|
|
|
|
/*
|
|
* Set cache alignment and burst length.
|
|
*/
|
|
if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
|
|
CSR_WRITE_4(sc, DC_BUSCTL, 0);
|
|
else
|
|
CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
|
|
/*
|
|
* Evenly share the bus between receive and transmit process.
|
|
*/
|
|
if (DC_IS_INTEL(sc))
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
|
|
if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
|
|
} else {
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
|
|
}
|
|
if (sc->dc_flags & DC_TX_POLL)
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
|
|
switch(sc->dc_cachesize) {
|
|
case 32:
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
|
|
break;
|
|
case 16:
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
|
|
break;
|
|
case 8:
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
|
|
break;
|
|
case 0:
|
|
default:
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
|
|
break;
|
|
}
|
|
|
|
if (sc->dc_flags & DC_TX_STORENFWD)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
|
|
else {
|
|
if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
|
|
} else {
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
|
|
DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
|
|
}
|
|
}
|
|
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
|
|
|
|
if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
|
|
/*
|
|
* The app notes for the 98713 and 98715A say that
|
|
* in order to have the chips operate properly, a magic
|
|
* number must be written to CSR16. Macronix does not
|
|
* document the meaning of these bits so there's no way
|
|
* to know exactly what they do. The 98713 has a magic
|
|
* number all its own; the rest all use a different one.
|
|
*/
|
|
DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
|
|
else
|
|
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
|
|
}
|
|
|
|
if (DC_IS_XIRCOM(sc)) {
|
|
/*
|
|
* setup General Purpose Port mode and data so the tulip
|
|
* can talk to the MII.
|
|
*/
|
|
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
|
|
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
|
|
DELAY(10);
|
|
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
|
|
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
|
|
DELAY(10);
|
|
}
|
|
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
|
|
|
|
/* Init circular RX list. */
|
|
if (dc_list_rx_init(sc) == ENOBUFS) {
|
|
printf("dc%d: initialization failed: no "
|
|
"memory for rx buffers\n", sc->dc_unit);
|
|
dc_stop(sc);
|
|
DC_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Init tx descriptors.
|
|
*/
|
|
dc_list_tx_init(sc);
|
|
|
|
/*
|
|
* Load the address of the RX list.
|
|
*/
|
|
CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
|
|
CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
|
|
CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
|
|
|
|
/* Enable transmitter. */
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
|
|
|
|
/*
|
|
* If this is an Intel 21143 and we're not using the
|
|
* MII port, program the LED control pins so we get
|
|
* link and activity indications.
|
|
*/
|
|
if (sc->dc_flags & DC_TULIP_LEDS) {
|
|
CSR_WRITE_4(sc, DC_WATCHDOG,
|
|
DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, 0);
|
|
}
|
|
|
|
/*
|
|
* Load the RX/multicast filter. We do this sort of late
|
|
* because the filter programming scheme on the 21143 and
|
|
* some clones requires DMAing a setup frame via the TX
|
|
* engine, and we need the transmitter enabled for that.
|
|
*/
|
|
dc_setfilt(sc);
|
|
|
|
/* Enable receiver. */
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
|
|
CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
|
|
|
|
mii_mediachg(mii);
|
|
dc_setcfg(sc, sc->dc_if_media);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* Don't start the ticker if this is a homePNA link. */
|
|
if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_homePNA)
|
|
sc->dc_link = 1;
|
|
else {
|
|
if (sc->dc_flags & DC_21143_NWAY)
|
|
callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
|
|
else
|
|
callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
|
|
}
|
|
|
|
#ifdef SRM_MEDIA
|
|
if(sc->dc_srm_media) {
|
|
struct ifreq ifr;
|
|
|
|
ifr.ifr_media = sc->dc_srm_media;
|
|
ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
|
|
sc->dc_srm_media = 0;
|
|
}
|
|
#endif
|
|
DC_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int dc_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
mii_mediachg(mii);
|
|
ifm = &mii->mii_media;
|
|
|
|
if (DC_IS_DAVICOM(sc) &&
|
|
IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA)
|
|
dc_setcfg(sc, ifm->ifm_media);
|
|
else
|
|
sc->dc_link = 0;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void dc_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
mii_pollstat(mii);
|
|
ifm = &mii->mii_media;
|
|
if (DC_IS_DAVICOM(sc)) {
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
|
|
ifmr->ifm_active = ifm->ifm_media;
|
|
ifmr->ifm_status = 0;
|
|
return;
|
|
}
|
|
}
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
|
|
return;
|
|
}
|
|
|
|
static int dc_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct dc_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct mii_data *mii;
|
|
int error = 0;
|
|
|
|
DC_LOCK(sc);
|
|
|
|
switch(command) {
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFMTU:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING &&
|
|
ifp->if_flags & IFF_PROMISC &&
|
|
!(sc->dc_if_flags & IFF_PROMISC)) {
|
|
dc_setfilt(sc);
|
|
} else if (ifp->if_flags & IFF_RUNNING &&
|
|
!(ifp->if_flags & IFF_PROMISC) &&
|
|
sc->dc_if_flags & IFF_PROMISC) {
|
|
dc_setfilt(sc);
|
|
} else if (!(ifp->if_flags & IFF_RUNNING)) {
|
|
sc->dc_txthresh = 0;
|
|
dc_init(sc);
|
|
}
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
dc_stop(sc);
|
|
}
|
|
sc->dc_if_flags = ifp->if_flags;
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
dc_setfilt(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
#ifdef SRM_MEDIA
|
|
if (sc->dc_srm_media)
|
|
sc->dc_srm_media = 0;
|
|
#endif
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
DC_UNLOCK(sc);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static void dc_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct dc_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
DC_LOCK(sc);
|
|
|
|
ifp->if_oerrors++;
|
|
printf("dc%d: watchdog timeout\n", sc->dc_unit);
|
|
|
|
dc_stop(sc);
|
|
dc_reset(sc);
|
|
dc_init(sc);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
dc_start(ifp);
|
|
|
|
DC_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void dc_stop(sc)
|
|
struct dc_softc *sc;
|
|
{
|
|
register int i;
|
|
struct ifnet *ifp;
|
|
|
|
DC_LOCK(sc);
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_timer = 0;
|
|
|
|
callout_stop(&sc->dc_stat_ch);
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
|
|
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
|
|
CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
|
|
CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
|
|
sc->dc_link = 0;
|
|
|
|
/*
|
|
* Free data in the RX lists.
|
|
*/
|
|
for (i = 0; i < DC_RX_LIST_CNT; i++) {
|
|
if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
|
|
m_freem(sc->dc_cdata.dc_rx_chain[i]);
|
|
sc->dc_cdata.dc_rx_chain[i] = NULL;
|
|
}
|
|
}
|
|
bzero((char *)&sc->dc_ldata->dc_rx_list,
|
|
sizeof(sc->dc_ldata->dc_rx_list));
|
|
|
|
/*
|
|
* Free the TX list buffers.
|
|
*/
|
|
for (i = 0; i < DC_TX_LIST_CNT; i++) {
|
|
if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
|
|
if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
|
|
DC_TXCTL_SETUP) {
|
|
sc->dc_cdata.dc_tx_chain[i] = NULL;
|
|
continue;
|
|
}
|
|
m_freem(sc->dc_cdata.dc_tx_chain[i]);
|
|
sc->dc_cdata.dc_tx_chain[i] = NULL;
|
|
}
|
|
}
|
|
|
|
bzero((char *)&sc->dc_ldata->dc_tx_list,
|
|
sizeof(sc->dc_ldata->dc_tx_list));
|
|
|
|
DC_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static void dc_shutdown(dev)
|
|
device_t dev;
|
|
{
|
|
struct dc_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
dc_stop(sc);
|
|
|
|
return;
|
|
}
|