freebsd-nq/sys/dev/cxgbe/t4_sge.c
Navdeep Parhar 9af71ab3bc cxgbe(4): Add a new knob that controls the congestion response of netmap
rx queues.  The default is to drop rather than backpressure.

This decouples the congestion settings of NIC and netmap rx queues.

MFC after:	3 days
2015-07-06 20:56:59 +00:00

4760 lines
123 KiB
C

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/types.h>
#include <sys/eventhandler.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <sys/sglist.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <sys/counter.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <machine/md_var.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#ifdef DEV_NETMAP
#include <machine/bus.h>
#include <sys/selinfo.h>
#include <net/if_var.h>
#include <net/netmap.h>
#include <dev/netmap/netmap_kern.h>
#endif
#include "common/common.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "common/t4_msg.h"
#include "t4_mp_ring.h"
#ifdef T4_PKT_TIMESTAMP
#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
#else
#define RX_COPY_THRESHOLD MINCLSIZE
#endif
/*
* Ethernet frames are DMA'd at this byte offset into the freelist buffer.
* 0-7 are valid values.
*/
int fl_pktshift = 2;
TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
/*
* Pad ethernet payload up to this boundary.
* -1: driver should figure out a good value.
* 0: disable padding.
* Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
*/
int fl_pad = -1;
TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
/*
* Status page length.
* -1: driver should figure out a good value.
* 64 or 128 are the only other valid values.
*/
int spg_len = -1;
TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
/*
* Congestion drops.
* -1: no congestion feedback (not recommended).
* 0: backpressure the channel instead of dropping packets right away.
* 1: no backpressure, drop packets for the congested queue immediately.
*/
static int cong_drop = 0;
TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
/*
* Deliver multiple frames in the same free list buffer if they fit.
* -1: let the driver decide whether to enable buffer packing or not.
* 0: disable buffer packing.
* 1: enable buffer packing.
*/
static int buffer_packing = -1;
TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
/*
* Start next frame in a packed buffer at this boundary.
* -1: driver should figure out a good value.
* T4: driver will ignore this and use the same value as fl_pad above.
* T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
*/
static int fl_pack = -1;
TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
/*
* Allow the driver to create mbuf(s) in a cluster allocated for rx.
* 0: never; always allocate mbufs from the zone_mbuf UMA zone.
* 1: ok to create mbuf(s) within a cluster if there is room.
*/
static int allow_mbufs_in_cluster = 1;
TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
/*
* Largest rx cluster size that the driver is allowed to allocate.
*/
static int largest_rx_cluster = MJUM16BYTES;
TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
/*
* Size of cluster allocation that's most likely to succeed. The driver will
* fall back to this size if it fails to allocate clusters larger than this.
*/
static int safest_rx_cluster = PAGE_SIZE;
TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
struct txpkts {
u_int wr_type; /* type 0 or type 1 */
u_int npkt; /* # of packets in this work request */
u_int plen; /* total payload (sum of all packets) */
u_int len16; /* # of 16B pieces used by this work request */
};
/* A packet's SGL. This + m_pkthdr has all info needed for tx */
struct sgl {
struct sglist sg;
struct sglist_seg seg[TX_SGL_SEGS];
};
static int service_iq(struct sge_iq *, int);
static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
char *);
static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
bus_addr_t *, void **);
static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
void *);
static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
int, int);
static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
struct sge_fl *);
static int alloc_fwq(struct adapter *);
static int free_fwq(struct adapter *);
static int alloc_mgmtq(struct adapter *);
static int free_mgmtq(struct adapter *);
static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
struct sysctl_oid *);
static int free_rxq(struct port_info *, struct sge_rxq *);
#ifdef TCP_OFFLOAD
static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
struct sysctl_oid *);
static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
#endif
#ifdef DEV_NETMAP
static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int,
struct sysctl_oid *);
static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *);
static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int,
struct sysctl_oid *);
static int free_nm_txq(struct port_info *, struct sge_nm_txq *);
#endif
static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
#ifdef TCP_OFFLOAD
static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
#endif
static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
static int free_eq(struct adapter *, struct sge_eq *);
static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
struct sysctl_oid *);
static int free_wrq(struct adapter *, struct sge_wrq *);
static int alloc_txq(struct port_info *, struct sge_txq *, int,
struct sysctl_oid *);
static int free_txq(struct port_info *, struct sge_txq *);
static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
static inline void ring_fl_db(struct adapter *, struct sge_fl *);
static int refill_fl(struct adapter *, struct sge_fl *, int);
static void refill_sfl(void *);
static int alloc_fl_sdesc(struct sge_fl *);
static void free_fl_sdesc(struct adapter *, struct sge_fl *);
static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
static void find_safe_refill_source(struct adapter *, struct sge_fl *);
static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
static inline void get_pkt_gl(struct mbuf *, struct sglist *);
static inline u_int txpkt_len16(u_int, u_int);
static inline u_int txpkts0_len16(u_int);
static inline u_int txpkts1_len16(void);
static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
struct mbuf *, u_int);
static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
struct mbuf *, const struct txpkts *, u_int);
static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
static inline uint16_t read_hw_cidx(struct sge_eq *);
static inline u_int reclaimable_tx_desc(struct sge_eq *);
static inline u_int total_available_tx_desc(struct sge_eq *);
static u_int reclaim_tx_descs(struct sge_txq *, u_int);
static void tx_reclaim(void *, int);
static __be64 get_flit(struct sglist_seg *, int, int);
static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static void wrq_tx_drain(void *, int);
static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
static counter_u64_t extfree_refs;
static counter_u64_t extfree_rels;
/*
* Called on MOD_LOAD. Validates and calculates the SGE tunables.
*/
void
t4_sge_modload(void)
{
if (fl_pktshift < 0 || fl_pktshift > 7) {
printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
" using 2 instead.\n", fl_pktshift);
fl_pktshift = 2;
}
if (spg_len != 64 && spg_len != 128) {
int len;
#if defined(__i386__) || defined(__amd64__)
len = cpu_clflush_line_size > 64 ? 128 : 64;
#else
len = 64;
#endif
if (spg_len != -1) {
printf("Invalid hw.cxgbe.spg_len value (%d),"
" using %d instead.\n", spg_len, len);
}
spg_len = len;
}
if (cong_drop < -1 || cong_drop > 1) {
printf("Invalid hw.cxgbe.cong_drop value (%d),"
" using 0 instead.\n", cong_drop);
cong_drop = 0;
}
extfree_refs = counter_u64_alloc(M_WAITOK);
extfree_rels = counter_u64_alloc(M_WAITOK);
counter_u64_zero(extfree_refs);
counter_u64_zero(extfree_rels);
}
void
t4_sge_modunload(void)
{
counter_u64_free(extfree_refs);
counter_u64_free(extfree_rels);
}
uint64_t
t4_sge_extfree_refs(void)
{
uint64_t refs, rels;
rels = counter_u64_fetch(extfree_rels);
refs = counter_u64_fetch(extfree_refs);
return (refs - rels);
}
void
t4_init_sge_cpl_handlers(struct adapter *sc)
{
t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
}
static inline void
setup_pad_and_pack_boundaries(struct adapter *sc)
{
uint32_t v, m;
int pad, pack;
pad = fl_pad;
if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
/*
* If there is any chance that we might use buffer packing and
* the chip is a T4, then pick 64 as the pad/pack boundary. Set
* it to 32 in all other cases.
*/
pad = is_t4(sc) && buffer_packing ? 64 : 32;
/*
* For fl_pad = 0 we'll still write a reasonable value to the
* register but all the freelists will opt out of padding.
* We'll complain here only if the user tried to set it to a
* value greater than 0 that was invalid.
*/
if (fl_pad > 0) {
device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
" (%d), using %d instead.\n", fl_pad, pad);
}
}
m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
v = V_INGPADBOUNDARY(ilog2(pad) - 5);
t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
if (is_t4(sc)) {
if (fl_pack != -1 && fl_pack != pad) {
/* Complain but carry on. */
device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
" using %d instead.\n", fl_pack, pad);
}
return;
}
pack = fl_pack;
if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
!powerof2(fl_pack)) {
pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
MPASS(powerof2(pack));
if (pack < 16)
pack = 16;
if (pack == 32)
pack = 64;
if (pack > 4096)
pack = 4096;
if (fl_pack != -1) {
device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
" (%d), using %d instead.\n", fl_pack, pack);
}
}
m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
if (pack == 16)
v = V_INGPACKBOUNDARY(0);
else
v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */
t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
}
/*
* adap->params.vpd.cclk must be set up before this is called.
*/
void
t4_tweak_chip_settings(struct adapter *sc)
{
int i;
uint32_t v, m;
int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
static int sge_flbuf_sizes[] = {
MCLBYTES,
#if MJUMPAGESIZE != MCLBYTES
MJUMPAGESIZE,
MJUMPAGESIZE - CL_METADATA_SIZE,
MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
#endif
MJUM9BYTES,
MJUM16BYTES,
MCLBYTES - MSIZE - CL_METADATA_SIZE,
MJUM9BYTES - CL_METADATA_SIZE,
MJUM16BYTES - CL_METADATA_SIZE,
};
KASSERT(sc->flags & MASTER_PF,
("%s: trying to change chip settings when not master.", __func__));
m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
V_EGRSTATUSPAGESIZE(spg_len == 128);
t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
setup_pad_and_pack_boundaries(sc);
v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
("%s: hw buffer size table too big", __func__));
for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
sge_flbuf_sizes[i]);
}
v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
KASSERT(intr_timer[0] <= timer_max,
("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
timer_max));
for (i = 1; i < nitems(intr_timer); i++) {
KASSERT(intr_timer[i] >= intr_timer[i - 1],
("%s: timers not listed in increasing order (%d)",
__func__, i));
while (intr_timer[i] > timer_max) {
if (i == nitems(intr_timer) - 1) {
intr_timer[i] = timer_max;
break;
}
intr_timer[i] += intr_timer[i - 1];
intr_timer[i] /= 2;
}
}
v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
/* 4K, 16K, 64K, 256K DDP "page sizes" */
v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
m = v = F_TDDPTAGTCB;
t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
F_RESETDDPOFFSET;
v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
}
/*
* SGE wants the buffer to be at least 64B and then a multiple of 16. If
* padding is is use the buffer's start and end need to be aligned to the pad
* boundary as well. We'll just make sure that the size is a multiple of the
* boundary here, it is up to the buffer allocation code to make sure the start
* of the buffer is aligned as well.
*/
static inline int
hwsz_ok(struct adapter *sc, int hwsz)
{
int mask = fl_pad ? sc->sge.pad_boundary - 1 : 16 - 1;
return (hwsz >= 64 && (hwsz & mask) == 0);
}
/*
* XXX: driver really should be able to deal with unexpected settings.
*/
int
t4_read_chip_settings(struct adapter *sc)
{
struct sge *s = &sc->sge;
int i, j, n, rc = 0;
uint32_t m, v, r;
uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
static int sw_buf_sizes[] = { /* Sorted by size */
MCLBYTES,
#if MJUMPAGESIZE != MCLBYTES
MJUMPAGESIZE,
#endif
MJUM9BYTES,
MJUM16BYTES
};
struct sw_zone_info *swz, *safe_swz;
struct hw_buf_info *hwb;
m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
V_EGRSTATUSPAGESIZE(spg_len == 128);
r = t4_read_reg(sc, A_SGE_CONTROL);
if ((r & m) != v) {
device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
rc = EINVAL;
}
s->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 5);
if (is_t4(sc))
s->pack_boundary = s->pad_boundary;
else {
r = t4_read_reg(sc, A_SGE_CONTROL2);
if (G_INGPACKBOUNDARY(r) == 0)
s->pack_boundary = 16;
else
s->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
}
v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
if (r != v) {
device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
rc = EINVAL;
}
/* Filter out unusable hw buffer sizes entirely (mark with -2). */
hwb = &s->hw_buf_info[0];
for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
hwb->size = r;
hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
hwb->next = -1;
}
/*
* Create a sorted list in decreasing order of hw buffer sizes (and so
* increasing order of spare area) for each software zone.
*
* If padding is enabled then the start and end of the buffer must align
* to the pad boundary; if packing is enabled then they must align with
* the pack boundary as well. Allocations from the cluster zones are
* aligned to min(size, 4K), so the buffer starts at that alignment and
* ends at hwb->size alignment. If mbuf inlining is allowed the
* starting alignment will be reduced to MSIZE and the driver will
* exercise appropriate caution when deciding on the best buffer layout
* to use.
*/
n = 0; /* no usable buffer size to begin with */
swz = &s->sw_zone_info[0];
safe_swz = NULL;
for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
int8_t head = -1, tail = -1;
swz->size = sw_buf_sizes[i];
swz->zone = m_getzone(swz->size);
swz->type = m_gettype(swz->size);
if (swz->size < PAGE_SIZE) {
MPASS(powerof2(swz->size));
if (fl_pad && (swz->size % sc->sge.pad_boundary != 0))
continue;
}
if (swz->size == safest_rx_cluster)
safe_swz = swz;
hwb = &s->hw_buf_info[0];
for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
if (hwb->zidx != -1 || hwb->size > swz->size)
continue;
#ifdef INVARIANTS
if (fl_pad)
MPASS(hwb->size % sc->sge.pad_boundary == 0);
#endif
hwb->zidx = i;
if (head == -1)
head = tail = j;
else if (hwb->size < s->hw_buf_info[tail].size) {
s->hw_buf_info[tail].next = j;
tail = j;
} else {
int8_t *cur;
struct hw_buf_info *t;
for (cur = &head; *cur != -1; cur = &t->next) {
t = &s->hw_buf_info[*cur];
if (hwb->size == t->size) {
hwb->zidx = -2;
break;
}
if (hwb->size > t->size) {
hwb->next = *cur;
*cur = j;
break;
}
}
}
}
swz->head_hwidx = head;
swz->tail_hwidx = tail;
if (tail != -1) {
n++;
if (swz->size - s->hw_buf_info[tail].size >=
CL_METADATA_SIZE)
sc->flags |= BUF_PACKING_OK;
}
}
if (n == 0) {
device_printf(sc->dev, "no usable SGE FL buffer size.\n");
rc = EINVAL;
}
s->safe_hwidx1 = -1;
s->safe_hwidx2 = -1;
if (safe_swz != NULL) {
s->safe_hwidx1 = safe_swz->head_hwidx;
for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
int spare;
hwb = &s->hw_buf_info[i];
#ifdef INVARIANTS
if (fl_pad)
MPASS(hwb->size % sc->sge.pad_boundary == 0);
#endif
spare = safe_swz->size - hwb->size;
if (spare >= CL_METADATA_SIZE) {
s->safe_hwidx2 = i;
break;
}
}
}
r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
s->counter_val[0] = G_THRESHOLD_0(r);
s->counter_val[1] = G_THRESHOLD_1(r);
s->counter_val[2] = G_THRESHOLD_2(r);
s->counter_val[3] = G_THRESHOLD_3(r);
r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
if (r != v) {
device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
rc = EINVAL;
}
m = v = F_TDDPTAGTCB;
r = t4_read_reg(sc, A_ULP_RX_CTL);
if ((r & m) != v) {
device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
rc = EINVAL;
}
m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
F_RESETDDPOFFSET;
v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
r = t4_read_reg(sc, A_TP_PARA_REG5);
if ((r & m) != v) {
device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
rc = EINVAL;
}
r = t4_read_reg(sc, A_SGE_CONM_CTRL);
s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
if (is_t4(sc))
s->fl_starve_threshold2 = s->fl_starve_threshold;
else
s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
/* egress queues: log2 of # of doorbells per BAR2 page */
r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
r >>= S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
/* ingress queues: log2 of # of doorbells per BAR2 page */
r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
r >>= S_QUEUESPERPAGEPF0 +
(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
t4_init_tp_params(sc);
t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
return (rc);
}
int
t4_create_dma_tag(struct adapter *sc)
{
int rc;
rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
NULL, &sc->dmat);
if (rc != 0) {
device_printf(sc->dev,
"failed to create main DMA tag: %d\n", rc);
}
return (rc);
}
void
t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *children)
{
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
"freelist buffer sizes");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
NULL, sc->sge.pad_boundary, "payload pad boundary (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
NULL, spg_len, "status page size (bytes)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
NULL, cong_drop, "congestion drop setting");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
}
int
t4_destroy_dma_tag(struct adapter *sc)
{
if (sc->dmat)
bus_dma_tag_destroy(sc->dmat);
return (0);
}
/*
* Allocate and initialize the firmware event queue and the management queue.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*/
int
t4_setup_adapter_queues(struct adapter *sc)
{
int rc;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
sysctl_ctx_init(&sc->ctx);
sc->flags |= ADAP_SYSCTL_CTX;
/*
* Firmware event queue
*/
rc = alloc_fwq(sc);
if (rc != 0)
return (rc);
/*
* Management queue. This is just a control queue that uses the fwq as
* its associated iq.
*/
rc = alloc_mgmtq(sc);
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_adapter_queues(struct adapter *sc)
{
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
/* Do this before freeing the queue */
if (sc->flags & ADAP_SYSCTL_CTX) {
sysctl_ctx_free(&sc->ctx);
sc->flags &= ~ADAP_SYSCTL_CTX;
}
free_mgmtq(sc);
free_fwq(sc);
return (0);
}
static inline int
port_intr_count(struct port_info *pi)
{
int rc = 0;
if (pi->flags & INTR_RXQ)
rc += pi->nrxq;
#ifdef TCP_OFFLOAD
if (pi->flags & INTR_OFLD_RXQ)
rc += pi->nofldrxq;
#endif
#ifdef DEV_NETMAP
if (pi->flags & INTR_NM_RXQ)
rc += pi->nnmrxq;
#endif
return (rc);
}
static inline int
first_vector(struct port_info *pi)
{
struct adapter *sc = pi->adapter;
int rc = T4_EXTRA_INTR, i;
if (sc->intr_count == 1)
return (0);
for_each_port(sc, i) {
if (i == pi->port_id)
break;
rc += port_intr_count(sc->port[i]);
}
return (rc);
}
/*
* Given an arbitrary "index," come up with an iq that can be used by other
* queues (of this port) for interrupt forwarding, SGE egress updates, etc.
* The iq returned is guaranteed to be something that takes direct interrupts.
*/
static struct sge_iq *
port_intr_iq(struct port_info *pi, int idx)
{
struct adapter *sc = pi->adapter;
struct sge *s = &sc->sge;
struct sge_iq *iq = NULL;
int nintr, i;
if (sc->intr_count == 1)
return (&sc->sge.fwq);
nintr = port_intr_count(pi);
KASSERT(nintr != 0,
("%s: pi %p has no exclusive interrupts, total interrupts = %d",
__func__, pi, sc->intr_count));
#ifdef DEV_NETMAP
/* Exclude netmap queues as they can't take anyone else's interrupts */
if (pi->flags & INTR_NM_RXQ)
nintr -= pi->nnmrxq;
KASSERT(nintr > 0,
("%s: pi %p has nintr %d after netmap adjustment of %d", __func__,
pi, nintr, pi->nnmrxq));
#endif
i = idx % nintr;
if (pi->flags & INTR_RXQ) {
if (i < pi->nrxq) {
iq = &s->rxq[pi->first_rxq + i].iq;
goto done;
}
i -= pi->nrxq;
}
#ifdef TCP_OFFLOAD
if (pi->flags & INTR_OFLD_RXQ) {
if (i < pi->nofldrxq) {
iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq;
goto done;
}
i -= pi->nofldrxq;
}
#endif
panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
pi, pi->flags & INTR_ALL, idx, nintr);
done:
MPASS(iq != NULL);
KASSERT(iq->flags & IQ_INTR,
("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi,
pi->flags & INTR_ALL, idx));
return (iq);
}
/* Maximum payload that can be delivered with a single iq descriptor */
static inline int
mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
{
int payload;
#ifdef TCP_OFFLOAD
if (toe) {
payload = sc->tt.rx_coalesce ?
G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
} else {
#endif
/* large enough even when hw VLAN extraction is disabled */
payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
mtu;
#ifdef TCP_OFFLOAD
}
#endif
return (payload);
}
int
t4_setup_port_queues(struct port_info *pi)
{
int rc = 0, i, j, intr_idx, iqid;
struct sge_rxq *rxq;
struct sge_txq *txq;
struct sge_wrq *ctrlq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
#endif
#ifdef DEV_NETMAP
struct sge_nm_rxq *nm_rxq;
struct sge_nm_txq *nm_txq;
#endif
char name[16];
struct adapter *sc = pi->adapter;
struct ifnet *ifp = pi->ifp;
struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
int maxp, mtu = ifp->if_mtu;
/* Interrupt vector to start from (when using multiple vectors) */
intr_idx = first_vector(pi);
/*
* First pass over all NIC and TOE rx queues:
* a) initialize iq and fl
* b) allocate queue iff it will take direct interrupts.
*/
maxp = mtu_to_max_payload(sc, mtu, 0);
if (pi->flags & INTR_RXQ) {
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
CTLFLAG_RD, NULL, "rx queues");
}
for_each_rxq(pi, i, rxq) {
init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq);
snprintf(name, sizeof(name), "%s rxq%d-fl",
device_get_nameunit(pi->dev), i);
init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, name);
if (pi->flags & INTR_RXQ) {
rxq->iq.flags |= IQ_INTR;
rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
intr_idx++;
}
}
#ifdef TCP_OFFLOAD
maxp = mtu_to_max_payload(sc, mtu, 1);
if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) {
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
CTLFLAG_RD, NULL,
"rx queues for offloaded TCP connections");
}
for_each_ofld_rxq(pi, i, ofld_rxq) {
init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
pi->qsize_rxq);
snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
device_get_nameunit(pi->dev), i);
init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, name);
if (pi->flags & INTR_OFLD_RXQ) {
ofld_rxq->iq.flags |= IQ_INTR;
rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
intr_idx++;
}
}
#endif
#ifdef DEV_NETMAP
/*
* We don't have buffers to back the netmap rx queues right now so we
* create the queues in a way that doesn't set off any congestion signal
* in the chip.
*/
if (pi->flags & INTR_NM_RXQ) {
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq",
CTLFLAG_RD, NULL, "rx queues for netmap");
for_each_nm_rxq(pi, i, nm_rxq) {
rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
intr_idx++;
}
}
#endif
/*
* Second pass over all NIC and TOE rx queues. The queues forwarding
* their interrupts are allocated now.
*/
j = 0;
if (!(pi->flags & INTR_RXQ)) {
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
CTLFLAG_RD, NULL, "rx queues");
for_each_rxq(pi, i, rxq) {
MPASS(!(rxq->iq.flags & IQ_INTR));
intr_idx = port_intr_iq(pi, j)->abs_id;
rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
j++;
}
}
#ifdef TCP_OFFLOAD
if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) {
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
CTLFLAG_RD, NULL,
"rx queues for offloaded TCP connections");
for_each_ofld_rxq(pi, i, ofld_rxq) {
MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
intr_idx = port_intr_iq(pi, j)->abs_id;
rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
if (rc != 0)
goto done;
j++;
}
}
#endif
#ifdef DEV_NETMAP
if (!(pi->flags & INTR_NM_RXQ))
CXGBE_UNIMPLEMENTED(__func__);
#endif
/*
* Now the tx queues. Only one pass needed.
*/
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
NULL, "tx queues");
j = 0;
for_each_txq(pi, i, txq) {
iqid = port_intr_iq(pi, j)->cntxt_id;
snprintf(name, sizeof(name), "%s txq%d",
device_get_nameunit(pi->dev), i);
init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
name);
rc = alloc_txq(pi, txq, i, oid);
if (rc != 0)
goto done;
j++;
}
#ifdef TCP_OFFLOAD
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
for_each_ofld_txq(pi, i, ofld_txq) {
struct sysctl_oid *oid2;
iqid = port_intr_iq(pi, j)->cntxt_id;
snprintf(name, sizeof(name), "%s ofld_txq%d",
device_get_nameunit(pi->dev), i);
init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
iqid, name);
snprintf(name, sizeof(name), "%d", i);
oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
name, CTLFLAG_RD, NULL, "offload tx queue");
rc = alloc_wrq(sc, pi, ofld_txq, oid2);
if (rc != 0)
goto done;
j++;
}
#endif
#ifdef DEV_NETMAP
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq",
CTLFLAG_RD, NULL, "tx queues for netmap use");
for_each_nm_txq(pi, i, nm_txq) {
iqid = pi->first_nm_rxq + (j % pi->nnmrxq);
rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid);
if (rc != 0)
goto done;
j++;
}
#endif
/*
* Finally, the control queue.
*/
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
NULL, "ctrl queue");
ctrlq = &sc->sge.ctrlq[pi->port_id];
iqid = port_intr_iq(pi, 0)->cntxt_id;
snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
rc = alloc_wrq(sc, pi, ctrlq, oid);
done:
if (rc)
t4_teardown_port_queues(pi);
return (rc);
}
/*
* Idempotent
*/
int
t4_teardown_port_queues(struct port_info *pi)
{
int i;
struct adapter *sc = pi->adapter;
struct sge_rxq *rxq;
struct sge_txq *txq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
#endif
#ifdef DEV_NETMAP
struct sge_nm_rxq *nm_rxq;
struct sge_nm_txq *nm_txq;
#endif
/* Do this before freeing the queues */
if (pi->flags & PORT_SYSCTL_CTX) {
sysctl_ctx_free(&pi->ctx);
pi->flags &= ~PORT_SYSCTL_CTX;
}
/*
* Take down all the tx queues first, as they reference the rx queues
* (for egress updates, etc.).
*/
free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
for_each_txq(pi, i, txq) {
free_txq(pi, txq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_txq(pi, i, ofld_txq) {
free_wrq(sc, ofld_txq);
}
#endif
#ifdef DEV_NETMAP
for_each_nm_txq(pi, i, nm_txq)
free_nm_txq(pi, nm_txq);
#endif
/*
* Then take down the rx queues that forward their interrupts, as they
* reference other rx queues.
*/
for_each_rxq(pi, i, rxq) {
if ((rxq->iq.flags & IQ_INTR) == 0)
free_rxq(pi, rxq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(pi, i, ofld_rxq) {
if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
free_ofld_rxq(pi, ofld_rxq);
}
#endif
#ifdef DEV_NETMAP
for_each_nm_rxq(pi, i, nm_rxq)
free_nm_rxq(pi, nm_rxq);
#endif
/*
* Then take down the rx queues that take direct interrupts.
*/
for_each_rxq(pi, i, rxq) {
if (rxq->iq.flags & IQ_INTR)
free_rxq(pi, rxq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(pi, i, ofld_rxq) {
if (ofld_rxq->iq.flags & IQ_INTR)
free_ofld_rxq(pi, ofld_rxq);
}
#endif
return (0);
}
/*
* Deals with errors and the firmware event queue. All data rx queues forward
* their interrupt to the firmware event queue.
*/
void
t4_intr_all(void *arg)
{
struct adapter *sc = arg;
struct sge_iq *fwq = &sc->sge.fwq;
t4_intr_err(arg);
if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(fwq, 0);
atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
}
}
/* Deals with error interrupts */
void
t4_intr_err(void *arg)
{
struct adapter *sc = arg;
t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
t4_slow_intr_handler(sc);
}
void
t4_intr_evt(void *arg)
{
struct sge_iq *iq = arg;
if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(iq, 0);
atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
void
t4_intr(void *arg)
{
struct sge_iq *iq = arg;
if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
service_iq(iq, 0);
atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
}
}
/*
* Deals with anything and everything on the given ingress queue.
*/
static int
service_iq(struct sge_iq *iq, int budget)
{
struct sge_iq *q;
struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */
struct sge_fl *fl; /* Use iff IQ_HAS_FL */
struct adapter *sc = iq->adapter;
struct iq_desc *d = &iq->desc[iq->cidx];
int ndescs = 0, limit;
int rsp_type, refill;
uint32_t lq;
uint16_t fl_hw_cidx;
struct mbuf *m0;
STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
#if defined(INET) || defined(INET6)
const struct timeval lro_timeout = {0, sc->lro_timeout};
#endif
KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
limit = budget ? budget : iq->qsize / 16;
if (iq->flags & IQ_HAS_FL) {
fl = &rxq->fl;
fl_hw_cidx = fl->hw_cidx; /* stable snapshot */
} else {
fl = NULL;
fl_hw_cidx = 0; /* to silence gcc warning */
}
/*
* We always come back and check the descriptor ring for new indirect
* interrupts and other responses after running a single handler.
*/
for (;;) {
while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
rmb();
refill = 0;
m0 = NULL;
rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
lq = be32toh(d->rsp.pldbuflen_qid);
switch (rsp_type) {
case X_RSPD_TYPE_FLBUF:
KASSERT(iq->flags & IQ_HAS_FL,
("%s: data for an iq (%p) with no freelist",
__func__, iq));
m0 = get_fl_payload(sc, fl, lq);
if (__predict_false(m0 == NULL))
goto process_iql;
refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
#ifdef T4_PKT_TIMESTAMP
/*
* 60 bit timestamp for the payload is
* *(uint64_t *)m0->m_pktdat. Note that it is
* in the leading free-space in the mbuf. The
* kernel can clobber it during a pullup,
* m_copymdata, etc. You need to make sure that
* the mbuf reaches you unmolested if you care
* about the timestamp.
*/
*(uint64_t *)m0->m_pktdat =
be64toh(ctrl->u.last_flit) &
0xfffffffffffffff;
#endif
/* fall through */
case X_RSPD_TYPE_CPL:
KASSERT(d->rss.opcode < NUM_CPL_CMDS,
("%s: bad opcode %02x.", __func__,
d->rss.opcode));
sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0);
break;
case X_RSPD_TYPE_INTR:
/*
* Interrupts should be forwarded only to queues
* that are not forwarding their interrupts.
* This means service_iq can recurse but only 1
* level deep.
*/
KASSERT(budget == 0,
("%s: budget %u, rsp_type %u", __func__,
budget, rsp_type));
/*
* There are 1K interrupt-capable queues (qids 0
* through 1023). A response type indicating a
* forwarded interrupt with a qid >= 1K is an
* iWARP async notification.
*/
if (lq >= 1024) {
sc->an_handler(iq, &d->rsp);
break;
}
q = sc->sge.iqmap[lq - sc->sge.iq_start];
if (atomic_cmpset_int(&q->state, IQS_IDLE,
IQS_BUSY)) {
if (service_iq(q, q->qsize / 16) == 0) {
atomic_cmpset_int(&q->state,
IQS_BUSY, IQS_IDLE);
} else {
STAILQ_INSERT_TAIL(&iql, q,
link);
}
}
break;
default:
KASSERT(0,
("%s: illegal response type %d on iq %p",
__func__, rsp_type, iq));
log(LOG_ERR,
"%s: illegal response type %d on iq %p",
device_get_nameunit(sc->dev), rsp_type, iq);
break;
}
d++;
if (__predict_false(++iq->cidx == iq->sidx)) {
iq->cidx = 0;
iq->gen ^= F_RSPD_GEN;
d = &iq->desc[0];
}
if (__predict_false(++ndescs == limit)) {
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
V_CIDXINC(ndescs) |
V_INGRESSQID(iq->cntxt_id) |
V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
ndescs = 0;
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_LRO_ENABLED &&
sc->lro_timeout != 0) {
tcp_lro_flush_inactive(&rxq->lro,
&lro_timeout);
}
#endif
if (budget) {
if (iq->flags & IQ_HAS_FL) {
FL_LOCK(fl);
refill_fl(sc, fl, 32);
FL_UNLOCK(fl);
}
return (EINPROGRESS);
}
}
if (refill) {
FL_LOCK(fl);
refill_fl(sc, fl, 32);
FL_UNLOCK(fl);
fl_hw_cidx = fl->hw_cidx;
}
}
process_iql:
if (STAILQ_EMPTY(&iql))
break;
/*
* Process the head only, and send it to the back of the list if
* it's still not done.
*/
q = STAILQ_FIRST(&iql);
STAILQ_REMOVE_HEAD(&iql, link);
if (service_iq(q, q->qsize / 8) == 0)
atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
else
STAILQ_INSERT_TAIL(&iql, q, link);
}
#if defined(INET) || defined(INET6)
if (iq->flags & IQ_LRO_ENABLED) {
struct lro_ctrl *lro = &rxq->lro;
struct lro_entry *l;
while (!SLIST_EMPTY(&lro->lro_active)) {
l = SLIST_FIRST(&lro->lro_active);
SLIST_REMOVE_HEAD(&lro->lro_active, next);
tcp_lro_flush(lro, l);
}
}
#endif
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
if (iq->flags & IQ_HAS_FL) {
int starved;
FL_LOCK(fl);
starved = refill_fl(sc, fl, 64);
FL_UNLOCK(fl);
if (__predict_false(starved != 0))
add_fl_to_sfl(sc, fl);
}
return (0);
}
static inline int
cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
{
int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
if (rc)
MPASS(cll->region3 >= CL_METADATA_SIZE);
return (rc);
}
static inline struct cluster_metadata *
cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
caddr_t cl)
{
if (cl_has_metadata(fl, cll)) {
struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
return ((struct cluster_metadata *)(cl + swz->size) - 1);
}
return (NULL);
}
static void
rxb_free(struct mbuf *m, void *arg1, void *arg2)
{
uma_zone_t zone = arg1;
caddr_t cl = arg2;
uma_zfree(zone, cl);
counter_u64_add(extfree_rels, 1);
}
/*
* The mbuf returned by this function could be allocated from zone_mbuf or
* constructed in spare room in the cluster.
*
* The mbuf carries the payload in one of these ways
* a) frame inside the mbuf (mbuf from zone_mbuf)
* b) m_cljset (for clusters without metadata) zone_mbuf
* c) m_extaddref (cluster with metadata) inline mbuf
* d) m_extaddref (cluster with metadata) zone_mbuf
*/
static struct mbuf *
get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
int remaining)
{
struct mbuf *m;
struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
struct cluster_layout *cll = &sd->cll;
struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
int len, blen;
caddr_t payload;
blen = hwb->size - fl->rx_offset; /* max possible in this buf */
len = min(remaining, blen);
payload = sd->cl + cll->region1 + fl->rx_offset;
if (fl->flags & FL_BUF_PACKING) {
const u_int l = fr_offset + len;
const u_int pad = roundup2(l, fl->buf_boundary) - l;
if (fl->rx_offset + len + pad < hwb->size)
blen = len + pad;
MPASS(fl->rx_offset + blen <= hwb->size);
} else {
MPASS(fl->rx_offset == 0); /* not packing */
}
if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
/*
* Copy payload into a freshly allocated mbuf.
*/
m = fr_offset == 0 ?
m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
if (m == NULL)
return (NULL);
fl->mbuf_allocated++;
#ifdef T4_PKT_TIMESTAMP
/* Leave room for a timestamp */
m->m_data += 8;
#endif
/* copy data to mbuf */
bcopy(payload, mtod(m, caddr_t), len);
} else if (sd->nmbuf * MSIZE < cll->region1) {
/*
* There's spare room in the cluster for an mbuf. Create one
* and associate it with the payload that's in the cluster.
*/
MPASS(clm != NULL);
m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
/* No bzero required */
if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA,
fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
return (NULL);
fl->mbuf_inlined++;
m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
swz->zone, sd->cl);
if (sd->nmbuf++ == 0)
counter_u64_add(extfree_refs, 1);
} else {
/*
* Grab an mbuf from zone_mbuf and associate it with the
* payload in the cluster.
*/
m = fr_offset == 0 ?
m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
if (m == NULL)
return (NULL);
fl->mbuf_allocated++;
if (clm != NULL) {
m_extaddref(m, payload, blen, &clm->refcount,
rxb_free, swz->zone, sd->cl);
if (sd->nmbuf++ == 0)
counter_u64_add(extfree_refs, 1);
} else {
m_cljset(m, sd->cl, swz->type);
sd->cl = NULL; /* consumed, not a recycle candidate */
}
}
if (fr_offset == 0)
m->m_pkthdr.len = remaining;
m->m_len = len;
if (fl->flags & FL_BUF_PACKING) {
fl->rx_offset += blen;
MPASS(fl->rx_offset <= hwb->size);
if (fl->rx_offset < hwb->size)
return (m); /* without advancing the cidx */
}
if (__predict_false(++fl->cidx % 8 == 0)) {
uint16_t cidx = fl->cidx / 8;
if (__predict_false(cidx == fl->sidx))
fl->cidx = cidx = 0;
fl->hw_cidx = cidx;
}
fl->rx_offset = 0;
return (m);
}
static struct mbuf *
get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
{
struct mbuf *m0, *m, **pnext;
u_int remaining;
const u_int total = G_RSPD_LEN(len_newbuf);
if (__predict_false(fl->flags & FL_BUF_RESUME)) {
M_ASSERTPKTHDR(fl->m0);
MPASS(fl->m0->m_pkthdr.len == total);
MPASS(fl->remaining < total);
m0 = fl->m0;
pnext = fl->pnext;
remaining = fl->remaining;
fl->flags &= ~FL_BUF_RESUME;
goto get_segment;
}
if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
fl->rx_offset = 0;
if (__predict_false(++fl->cidx % 8 == 0)) {
uint16_t cidx = fl->cidx / 8;
if (__predict_false(cidx == fl->sidx))
fl->cidx = cidx = 0;
fl->hw_cidx = cidx;
}
}
/*
* Payload starts at rx_offset in the current hw buffer. Its length is
* 'len' and it may span multiple hw buffers.
*/
m0 = get_scatter_segment(sc, fl, 0, total);
if (m0 == NULL)
return (NULL);
remaining = total - m0->m_len;
pnext = &m0->m_next;
while (remaining > 0) {
get_segment:
MPASS(fl->rx_offset == 0);
m = get_scatter_segment(sc, fl, total - remaining, remaining);
if (__predict_false(m == NULL)) {
fl->m0 = m0;
fl->pnext = pnext;
fl->remaining = remaining;
fl->flags |= FL_BUF_RESUME;
return (NULL);
}
*pnext = m;
pnext = &m->m_next;
remaining -= m->m_len;
}
*pnext = NULL;
M_ASSERTPKTHDR(m0);
return (m0);
}
static int
t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
{
struct sge_rxq *rxq = iq_to_rxq(iq);
struct ifnet *ifp = rxq->ifp;
const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
#if defined(INET) || defined(INET6)
struct lro_ctrl *lro = &rxq->lro;
#endif
static const int sw_hashtype[4][2] = {
{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
};
KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
rss->opcode));
m0->m_pkthdr.len -= fl_pktshift;
m0->m_len -= fl_pktshift;
m0->m_data += fl_pktshift;
m0->m_pkthdr.rcvif = ifp;
M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
m0->m_pkthdr.flowid = be32toh(rss->hash_val);
if (cpl->csum_calc && !cpl->err_vec) {
if (ifp->if_capenable & IFCAP_RXCSUM &&
cpl->l2info & htobe32(F_RXF_IP)) {
m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
rxq->rxcsum++;
} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
cpl->l2info & htobe32(F_RXF_IP6)) {
m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
CSUM_PSEUDO_HDR);
rxq->rxcsum++;
}
if (__predict_false(cpl->ip_frag))
m0->m_pkthdr.csum_data = be16toh(cpl->csum);
else
m0->m_pkthdr.csum_data = 0xffff;
}
if (cpl->vlan_ex) {
m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
m0->m_flags |= M_VLANTAG;
rxq->vlan_extraction++;
}
#if defined(INET) || defined(INET6)
if (cpl->l2info & htobe32(F_RXF_LRO) &&
iq->flags & IQ_LRO_ENABLED &&
tcp_lro_rx(lro, m0, 0) == 0) {
/* queued for LRO */
} else
#endif
ifp->if_input(ifp, m0);
return (0);
}
/*
* Must drain the wrq or make sure that someone else will.
*/
static void
wrq_tx_drain(void *arg, int n)
{
struct sge_wrq *wrq = arg;
struct sge_eq *eq = &wrq->eq;
EQ_LOCK(eq);
if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
drain_wrq_wr_list(wrq->adapter, wrq);
EQ_UNLOCK(eq);
}
static void
drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
{
struct sge_eq *eq = &wrq->eq;
u_int available, dbdiff; /* # of hardware descriptors */
u_int n;
struct wrqe *wr;
struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */
EQ_LOCK_ASSERT_OWNED(eq);
MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
wr = STAILQ_FIRST(&wrq->wr_list);
MPASS(wr != NULL); /* Must be called with something useful to do */
dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
do {
eq->cidx = read_hw_cidx(eq);
if (eq->pidx == eq->cidx)
available = eq->sidx - 1;
else
available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
MPASS(wr->wrq == wrq);
n = howmany(wr->wr_len, EQ_ESIZE);
if (available < n)
return;
dst = (void *)&eq->desc[eq->pidx];
if (__predict_true(eq->sidx - eq->pidx > n)) {
/* Won't wrap, won't end exactly at the status page. */
bcopy(&wr->wr[0], dst, wr->wr_len);
eq->pidx += n;
} else {
int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
bcopy(&wr->wr[0], dst, first_portion);
if (wr->wr_len > first_portion) {
bcopy(&wr->wr[first_portion], &eq->desc[0],
wr->wr_len - first_portion);
}
eq->pidx = n - (eq->sidx - eq->pidx);
}
if (available < eq->sidx / 4 &&
atomic_cmpset_int(&eq->equiq, 0, 1)) {
dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
F_FW_WR_EQUEQ);
eq->equeqidx = eq->pidx;
} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
eq->equeqidx = eq->pidx;
}
dbdiff += n;
if (dbdiff >= 16) {
ring_eq_db(sc, eq, dbdiff);
dbdiff = 0;
}
STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
free_wrqe(wr);
MPASS(wrq->nwr_pending > 0);
wrq->nwr_pending--;
MPASS(wrq->ndesc_needed >= n);
wrq->ndesc_needed -= n;
} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
if (dbdiff)
ring_eq_db(sc, eq, dbdiff);
}
/*
* Doesn't fail. Holds on to work requests it can't send right away.
*/
void
t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
{
#ifdef INVARIANTS
struct sge_eq *eq = &wrq->eq;
#endif
EQ_LOCK_ASSERT_OWNED(eq);
MPASS(wr != NULL);
MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
MPASS((wr->wr_len & 0x7) == 0);
STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
wrq->nwr_pending++;
wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
return; /* commit_wrq_wr will drain wr_list as well. */
drain_wrq_wr_list(sc, wrq);
/* Doorbell must have caught up to the pidx. */
MPASS(eq->pidx == eq->dbidx);
}
void
t4_update_fl_bufsize(struct ifnet *ifp)
{
struct port_info *pi = ifp->if_softc;
struct adapter *sc = pi->adapter;
struct sge_rxq *rxq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
#endif
struct sge_fl *fl;
int i, maxp, mtu = ifp->if_mtu;
maxp = mtu_to_max_payload(sc, mtu, 0);
for_each_rxq(pi, i, rxq) {
fl = &rxq->fl;
FL_LOCK(fl);
find_best_refill_source(sc, fl, maxp);
FL_UNLOCK(fl);
}
#ifdef TCP_OFFLOAD
maxp = mtu_to_max_payload(sc, mtu, 1);
for_each_ofld_rxq(pi, i, ofld_rxq) {
fl = &ofld_rxq->fl;
FL_LOCK(fl);
find_best_refill_source(sc, fl, maxp);
FL_UNLOCK(fl);
}
#endif
}
static inline int
mbuf_nsegs(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
KASSERT(m->m_pkthdr.l5hlen > 0,
("%s: mbuf %p missing information on # of segments.", __func__, m));
return (m->m_pkthdr.l5hlen);
}
static inline void
set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.l5hlen = nsegs;
}
static inline int
mbuf_len16(struct mbuf *m)
{
int n;
M_ASSERTPKTHDR(m);
n = m->m_pkthdr.PH_loc.eight[0];
MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
return (n);
}
static inline void
set_mbuf_len16(struct mbuf *m, uint8_t len16)
{
M_ASSERTPKTHDR(m);
m->m_pkthdr.PH_loc.eight[0] = len16;
}
static inline int
needs_tso(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
KASSERT(m->m_pkthdr.tso_segsz > 0,
("%s: TSO requested in mbuf %p but MSS not provided",
__func__, m));
return (1);
}
return (0);
}
static inline int
needs_l3_csum(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
return (1);
return (0);
}
static inline int
needs_l4_csum(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
CSUM_TCP_IPV6 | CSUM_TSO))
return (1);
return (0);
}
static inline int
needs_vlan_insertion(struct mbuf *m)
{
M_ASSERTPKTHDR(m);
if (m->m_flags & M_VLANTAG) {
KASSERT(m->m_pkthdr.ether_vtag != 0,
("%s: HWVLAN requested in mbuf %p but tag not provided",
__func__, m));
return (1);
}
return (0);
}
static void *
m_advance(struct mbuf **pm, int *poffset, int len)
{
struct mbuf *m = *pm;
int offset = *poffset;
uintptr_t p = 0;
MPASS(len > 0);
while (len) {
if (offset + len < m->m_len) {
offset += len;
p = mtod(m, uintptr_t) + offset;
break;
}
len -= m->m_len - offset;
m = m->m_next;
offset = 0;
MPASS(m != NULL);
}
*poffset = offset;
*pm = m;
return ((void *)p);
}
static inline int
same_paddr(char *a, char *b)
{
if (a == b)
return (1);
else if (a != NULL && b != NULL) {
vm_offset_t x = (vm_offset_t)a;
vm_offset_t y = (vm_offset_t)b;
if ((x & PAGE_MASK) == (y & PAGE_MASK) &&
pmap_kextract(x) == pmap_kextract(y))
return (1);
}
return (0);
}
/*
* Can deal with empty mbufs in the chain that have m_len = 0, but the chain
* must have at least one mbuf that's not empty.
*/
static inline int
count_mbuf_nsegs(struct mbuf *m)
{
char *prev_end, *start;
int len, nsegs;
MPASS(m != NULL);
nsegs = 0;
prev_end = NULL;
for (; m; m = m->m_next) {
len = m->m_len;
if (__predict_false(len == 0))
continue;
start = mtod(m, char *);
nsegs += sglist_count(start, len);
if (same_paddr(prev_end, start))
nsegs--;
prev_end = start + len;
}
MPASS(nsegs > 0);
return (nsegs);
}
/*
* Analyze the mbuf to determine its tx needs. The mbuf passed in may change:
* a) caller can assume it's been freed if this function returns with an error.
* b) it may get defragged up if the gather list is too long for the hardware.
*/
int
parse_pkt(struct mbuf **mp)
{
struct mbuf *m0 = *mp, *m;
int rc, nsegs, defragged = 0, offset;
struct ether_header *eh;
void *l3hdr;
#if defined(INET) || defined(INET6)
struct tcphdr *tcp;
#endif
uint16_t eh_type;
M_ASSERTPKTHDR(m0);
if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
rc = EINVAL;
fail:
m_freem(m0);
*mp = NULL;
return (rc);
}
restart:
/*
* First count the number of gather list segments in the payload.
* Defrag the mbuf if nsegs exceeds the hardware limit.
*/
M_ASSERTPKTHDR(m0);
MPASS(m0->m_pkthdr.len > 0);
nsegs = count_mbuf_nsegs(m0);
if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
rc = EFBIG;
goto fail;
}
*mp = m0 = m; /* update caller's copy after defrag */
goto restart;
}
if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
m0 = m_pullup(m0, m0->m_pkthdr.len);
if (m0 == NULL) {
/* Should have left well enough alone. */
rc = EFBIG;
goto fail;
}
*mp = m0; /* update caller's copy after pullup */
goto restart;
}
set_mbuf_nsegs(m0, nsegs);
set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
if (!needs_tso(m0))
return (0);
m = m0;
eh = mtod(m, struct ether_header *);
eh_type = ntohs(eh->ether_type);
if (eh_type == ETHERTYPE_VLAN) {
struct ether_vlan_header *evh = (void *)eh;
eh_type = ntohs(evh->evl_proto);
m0->m_pkthdr.l2hlen = sizeof(*evh);
} else
m0->m_pkthdr.l2hlen = sizeof(*eh);
offset = 0;
l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
switch (eh_type) {
#ifdef INET6
case ETHERTYPE_IPV6:
{
struct ip6_hdr *ip6 = l3hdr;
MPASS(ip6->ip6_nxt == IPPROTO_TCP);
m0->m_pkthdr.l3hlen = sizeof(*ip6);
break;
}
#endif
#ifdef INET
case ETHERTYPE_IP:
{
struct ip *ip = l3hdr;
m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
break;
}
#endif
default:
panic("%s: ethertype 0x%04x unknown. if_cxgbe must be compiled"
" with the same INET/INET6 options as the kernel.",
__func__, eh_type);
}
#if defined(INET) || defined(INET6)
tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
m0->m_pkthdr.l4hlen = tcp->th_off * 4;
#endif
MPASS(m0 == *mp);
return (0);
}
void *
start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
{
struct sge_eq *eq = &wrq->eq;
struct adapter *sc = wrq->adapter;
int ndesc, available;
struct wrqe *wr;
void *w;
MPASS(len16 > 0);
ndesc = howmany(len16, EQ_ESIZE / 16);
MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
EQ_LOCK(eq);
if (!STAILQ_EMPTY(&wrq->wr_list))
drain_wrq_wr_list(sc, wrq);
if (!STAILQ_EMPTY(&wrq->wr_list)) {
slowpath:
EQ_UNLOCK(eq);
wr = alloc_wrqe(len16 * 16, wrq);
if (__predict_false(wr == NULL))
return (NULL);
cookie->pidx = -1;
cookie->ndesc = ndesc;
return (&wr->wr);
}
eq->cidx = read_hw_cidx(eq);
if (eq->pidx == eq->cidx)
available = eq->sidx - 1;
else
available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
if (available < ndesc)
goto slowpath;
cookie->pidx = eq->pidx;
cookie->ndesc = ndesc;
TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
w = &eq->desc[eq->pidx];
IDXINCR(eq->pidx, ndesc, eq->sidx);
if (__predict_false(eq->pidx < ndesc - 1)) {
w = &wrq->ss[0];
wrq->ss_pidx = cookie->pidx;
wrq->ss_len = len16 * 16;
}
EQ_UNLOCK(eq);
return (w);
}
void
commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
{
struct sge_eq *eq = &wrq->eq;
struct adapter *sc = wrq->adapter;
int ndesc, pidx;
struct wrq_cookie *prev, *next;
if (cookie->pidx == -1) {
struct wrqe *wr = __containerof(w, struct wrqe, wr);
t4_wrq_tx(sc, wr);
return;
}
ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */
pidx = cookie->pidx;
MPASS(pidx >= 0 && pidx < eq->sidx);
if (__predict_false(w == &wrq->ss[0])) {
int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
MPASS(wrq->ss_len > n); /* WR had better wrap around. */
bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
wrq->tx_wrs_ss++;
} else
wrq->tx_wrs_direct++;
EQ_LOCK(eq);
prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
next = TAILQ_NEXT(cookie, link);
if (prev == NULL) {
MPASS(pidx == eq->dbidx);
if (next == NULL || ndesc >= 16)
ring_eq_db(wrq->adapter, eq, ndesc);
else {
MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
next->pidx = pidx;
next->ndesc += ndesc;
}
} else {
MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
prev->ndesc += ndesc;
}
TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
drain_wrq_wr_list(sc, wrq);
#ifdef INVARIANTS
if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
/* Doorbell must have caught up to the pidx. */
MPASS(wrq->eq.pidx == wrq->eq.dbidx);
}
#endif
EQ_UNLOCK(eq);
}
static u_int
can_resume_eth_tx(struct mp_ring *r)
{
struct sge_eq *eq = r->cookie;
return (total_available_tx_desc(eq) > eq->sidx / 8);
}
static inline int
cannot_use_txpkts(struct mbuf *m)
{
/* maybe put a GL limit too, to avoid silliness? */
return (needs_tso(m));
}
/*
* r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
* be consumed. Return the actual number consumed. 0 indicates a stall.
*/
static u_int
eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
{
struct sge_txq *txq = r->cookie;
struct sge_eq *eq = &txq->eq;
struct ifnet *ifp = txq->ifp;
struct port_info *pi = (void *)ifp->if_softc;
struct adapter *sc = pi->adapter;
u_int total, remaining; /* # of packets */
u_int available, dbdiff; /* # of hardware descriptors */
u_int n, next_cidx;
struct mbuf *m0, *tail;
struct txpkts txp;
struct fw_eth_tx_pkts_wr *wr; /* any fw WR struct will do */
remaining = IDXDIFF(pidx, cidx, r->size);
MPASS(remaining > 0); /* Must not be called without work to do. */
total = 0;
TXQ_LOCK(txq);
if (__predict_false((eq->flags & EQ_ENABLED) == 0)) {
while (cidx != pidx) {
m0 = r->items[cidx];
m_freem(m0);
if (++cidx == r->size)
cidx = 0;
}
reclaim_tx_descs(txq, 2048);
total = remaining;
goto done;
}
/* How many hardware descriptors do we have readily available. */
if (eq->pidx == eq->cidx)
available = eq->sidx - 1;
else
available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
while (remaining > 0) {
m0 = r->items[cidx];
M_ASSERTPKTHDR(m0);
MPASS(m0->m_nextpkt == NULL);
if (available < SGE_MAX_WR_NDESC) {
available += reclaim_tx_descs(txq, 64);
if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
break; /* out of descriptors */
}
next_cidx = cidx + 1;
if (__predict_false(next_cidx == r->size))
next_cidx = 0;
wr = (void *)&eq->desc[eq->pidx];
if (remaining > 1 &&
try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
/* pkts at cidx, next_cidx should both be in txp. */
MPASS(txp.npkt == 2);
tail = r->items[next_cidx];
MPASS(tail->m_nextpkt == NULL);
ETHER_BPF_MTAP(ifp, m0);
ETHER_BPF_MTAP(ifp, tail);
m0->m_nextpkt = tail;
if (__predict_false(++next_cidx == r->size))
next_cidx = 0;
while (next_cidx != pidx) {
if (add_to_txpkts(r->items[next_cidx], &txp,
available) != 0)
break;
tail->m_nextpkt = r->items[next_cidx];
tail = tail->m_nextpkt;
ETHER_BPF_MTAP(ifp, tail);
if (__predict_false(++next_cidx == r->size))
next_cidx = 0;
}
n = write_txpkts_wr(txq, wr, m0, &txp, available);
total += txp.npkt;
remaining -= txp.npkt;
} else {
total++;
remaining--;
n = write_txpkt_wr(txq, (void *)wr, m0, available);
ETHER_BPF_MTAP(ifp, m0);
}
MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
available -= n;
dbdiff += n;
IDXINCR(eq->pidx, n, eq->sidx);
if (total_available_tx_desc(eq) < eq->sidx / 4 &&
atomic_cmpset_int(&eq->equiq, 0, 1)) {
wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
F_FW_WR_EQUEQ);
eq->equeqidx = eq->pidx;
} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
eq->equeqidx = eq->pidx;
}
if (dbdiff >= 16 && remaining >= 4) {
ring_eq_db(sc, eq, dbdiff);
available += reclaim_tx_descs(txq, 4 * dbdiff);
dbdiff = 0;
}
cidx = next_cidx;
}
if (dbdiff != 0) {
ring_eq_db(sc, eq, dbdiff);
reclaim_tx_descs(txq, 32);
}
done:
TXQ_UNLOCK(txq);
return (total);
}
static inline void
init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
int qsize)
{
KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
("%s: bad tmr_idx %d", __func__, tmr_idx));
KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */
("%s: bad pktc_idx %d", __func__, pktc_idx));
iq->flags = 0;
iq->adapter = sc;
iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
if (pktc_idx >= 0) {
iq->intr_params |= F_QINTR_CNT_EN;
iq->intr_pktc_idx = pktc_idx;
}
iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */
iq->sidx = iq->qsize - spg_len / IQ_ESIZE;
}
static inline void
init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
{
fl->qsize = qsize;
fl->sidx = qsize - spg_len / EQ_ESIZE;
strlcpy(fl->lockname, name, sizeof(fl->lockname));
if (sc->flags & BUF_PACKING_OK &&
((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */
(is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
fl->flags |= FL_BUF_PACKING;
find_best_refill_source(sc, fl, maxp);
find_safe_refill_source(sc, fl);
}
static inline void
init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
uint16_t iqid, char *name)
{
KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
eq->flags = eqtype & EQ_TYPEMASK;
eq->tx_chan = tx_chan;
eq->iqid = iqid;
eq->sidx = qsize - spg_len / EQ_ESIZE;
strlcpy(eq->lockname, name, sizeof(eq->lockname));
}
static int
alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
bus_dmamap_t *map, bus_addr_t *pa, void **va)
{
int rc;
rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
if (rc != 0) {
device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
goto done;
}
rc = bus_dmamem_alloc(*tag, va,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
if (rc != 0) {
device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
goto done;
}
rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
if (rc != 0) {
device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
goto done;
}
done:
if (rc)
free_ring(sc, *tag, *map, *pa, *va);
return (rc);
}
static int
free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
bus_addr_t pa, void *va)
{
if (pa)
bus_dmamap_unload(tag, map);
if (va)
bus_dmamem_free(tag, va, map);
if (tag)
bus_dma_tag_destroy(tag);
return (0);
}
/*
* Allocates the ring for an ingress queue and an optional freelist. If the
* freelist is specified it will be allocated and then associated with the
* ingress queue.
*
* Returns errno on failure. Resources allocated up to that point may still be
* allocated. Caller is responsible for cleanup in case this function fails.
*
* If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
* the intr_idx specifies the vector, starting from 0. Otherwise it specifies
* the abs_id of the ingress queue to which its interrupts should be forwarded.
*/
static int
alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
int intr_idx, int cong)
{
int rc, i, cntxt_id;
size_t len;
struct fw_iq_cmd c;
struct adapter *sc = iq->adapter;
__be32 v = 0;
len = iq->qsize * IQ_ESIZE;
rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
(void **)&iq->desc);
if (rc != 0)
return (rc);
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
V_FW_IQ_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
FW_LEN16(c));
/* Special handling for firmware event queue */
if (iq == &sc->sge.fwq)
v |= F_FW_IQ_CMD_IQASYNCH;
if (iq->flags & IQ_INTR) {
KASSERT(intr_idx < sc->intr_count,
("%s: invalid direct intr_idx %d", __func__, intr_idx));
} else
v |= F_FW_IQ_CMD_IQANDST;
v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
c.type_to_iqandstindex = htobe32(v |
V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
V_FW_IQ_CMD_VIID(pi->viid) |
V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
F_FW_IQ_CMD_IQGTSMODE |
V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
c.iqsize = htobe16(iq->qsize);
c.iqaddr = htobe64(iq->ba);
if (cong >= 0)
c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
if (fl) {
mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
len = fl->qsize * EQ_ESIZE;
rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
&fl->ba, (void **)&fl->desc);
if (rc)
return (rc);
/* Allocate space for one software descriptor per buffer. */
rc = alloc_fl_sdesc(fl);
if (rc != 0) {
device_printf(sc->dev,
"failed to setup fl software descriptors: %d\n",
rc);
return (rc);
}
if (fl->flags & FL_BUF_PACKING) {
fl->lowat = roundup2(sc->sge.fl_starve_threshold2, 8);
fl->buf_boundary = sc->sge.pack_boundary;
} else {
fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8);
fl->buf_boundary = 16;
}
if (fl_pad && fl->buf_boundary < sc->sge.pad_boundary)
fl->buf_boundary = sc->sge.pad_boundary;
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
0));
if (cong >= 0) {
c.iqns_to_fl0congen |=
htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
F_FW_IQ_CMD_FL0CONGCIF |
F_FW_IQ_CMD_FL0CONGEN);
}
c.fl0dcaen_to_fl0cidxfthresh =
htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) |
V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
c.fl0size = htobe16(fl->qsize);
c.fl0addr = htobe64(fl->ba);
}
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(sc->dev,
"failed to create ingress queue: %d\n", rc);
return (rc);
}
iq->cidx = 0;
iq->gen = F_RSPD_GEN;
iq->intr_next = iq->intr_params;
iq->cntxt_id = be16toh(c.iqid);
iq->abs_id = be16toh(c.physiqid);
iq->flags |= IQ_ALLOCATED;
cntxt_id = iq->cntxt_id - sc->sge.iq_start;
if (cntxt_id >= sc->sge.niq) {
panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.niq - 1);
}
sc->sge.iqmap[cntxt_id] = iq;
if (fl) {
u_int qid;
iq->flags |= IQ_HAS_FL;
fl->cntxt_id = be16toh(c.fl0id);
fl->pidx = fl->cidx = 0;
cntxt_id = fl->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq) {
panic("%s: fl->cntxt_id (%d) more than the max (%d)",
__func__, cntxt_id, sc->sge.neq - 1);
}
sc->sge.eqmap[cntxt_id] = (void *)fl;
qid = fl->cntxt_id;
if (isset(&sc->doorbells, DOORBELL_UDB)) {
uint32_t s_qpp = sc->sge.eq_s_qpp;
uint32_t mask = (1 << s_qpp) - 1;
volatile uint8_t *udb;
udb = sc->udbs_base + UDBS_DB_OFFSET;
udb += (qid >> s_qpp) << PAGE_SHIFT;
qid &= mask;
if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
udb += qid << UDBS_SEG_SHIFT;
qid = 0;
}
fl->udb = (volatile void *)udb;
}
fl->dbval = F_DBPRIO | V_QID(qid);
if (is_t5(sc))
fl->dbval |= F_DBTYPE;
FL_LOCK(fl);
/* Enough to make sure the SGE doesn't think it's starved */
refill_fl(sc, fl, fl->lowat);
FL_UNLOCK(fl);
}
if (is_t5(sc) && cong >= 0) {
uint32_t param, val;
param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
if (cong == 0)
val = 1 << 19;
else {
val = 2 << 19;
for (i = 0; i < 4; i++) {
if (cong & (1 << i))
val |= 1 << (i << 2);
}
}
rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
if (rc != 0) {
/* report error but carry on */
device_printf(sc->dev,
"failed to set congestion manager context for "
"ingress queue %d: %d\n", iq->cntxt_id, rc);
}
}
/* Enable IQ interrupts */
atomic_store_rel_int(&iq->state, IQS_IDLE);
t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
V_INGRESSQID(iq->cntxt_id));
return (0);
}
static int
free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
{
int rc;
struct adapter *sc = iq->adapter;
device_t dev;
if (sc == NULL)
return (0); /* nothing to do */
dev = pi ? pi->dev : sc->dev;
if (iq->flags & IQ_ALLOCATED) {
rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
fl ? fl->cntxt_id : 0xffff, 0xffff);
if (rc != 0) {
device_printf(dev,
"failed to free queue %p: %d\n", iq, rc);
return (rc);
}
iq->flags &= ~IQ_ALLOCATED;
}
free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
bzero(iq, sizeof(*iq));
if (fl) {
free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
fl->desc);
if (fl->sdesc)
free_fl_sdesc(sc, fl);
if (mtx_initialized(&fl->fl_lock))
mtx_destroy(&fl->fl_lock);
bzero(fl, sizeof(*fl));
}
return (0);
}
static void
add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
struct sge_fl *fl)
{
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
"freelist");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the freelist");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
fl_pad ? 1 : 0, "padding enabled");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
0, "consumer index");
if (fl->flags & FL_BUF_PACKING) {
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
}
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
0, "producer index");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
}
static int
alloc_fwq(struct adapter *sc)
{
int rc, intr_idx;
struct sge_iq *fwq = &sc->sge.fwq;
struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
fwq->flags |= IQ_INTR; /* always */
intr_idx = sc->intr_count > 1 ? 1 : 0;
rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
if (rc != 0) {
device_printf(sc->dev,
"failed to create firmware event queue: %d\n", rc);
return (rc);
}
oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
NULL, "firmware event queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
"absolute id of the queue");
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the queue");
SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
"consumer index");
return (0);
}
static int
free_fwq(struct adapter *sc)
{
return free_iq_fl(NULL, &sc->sge.fwq, NULL);
}
static int
alloc_mgmtq(struct adapter *sc)
{
int rc;
struct sge_wrq *mgmtq = &sc->sge.mgmtq;
char name[16];
struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
NULL, "management queue");
snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
sc->sge.fwq.cntxt_id, name);
rc = alloc_wrq(sc, NULL, mgmtq, oid);
if (rc != 0) {
device_printf(sc->dev,
"failed to create management queue: %d\n", rc);
return (rc);
}
return (0);
}
static int
free_mgmtq(struct adapter *sc)
{
return free_wrq(sc, &sc->sge.mgmtq);
}
int
tnl_cong(struct port_info *pi, int drop)
{
if (drop == -1)
return (-1);
else if (drop == 1)
return (0);
else
return (pi->rx_chan_map);
}
static int
alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
struct sysctl_oid *oid)
{
int rc;
struct sysctl_oid_list *children;
char name[16];
rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx,
tnl_cong(pi, cong_drop));
if (rc != 0)
return (rc);
/*
* The freelist is just barely above the starvation threshold right now,
* fill it up a bit more.
*/
FL_LOCK(&rxq->fl);
refill_fl(pi->adapter, &rxq->fl, 128);
FL_UNLOCK(&rxq->fl);
#if defined(INET) || defined(INET6)
rc = tcp_lro_init(&rxq->lro);
if (rc != 0)
return (rc);
rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
if (pi->ifp->if_capenable & IFCAP_LRO)
rxq->iq.flags |= IQ_LRO_ENABLED;
#endif
rxq->ifp = pi->ifp;
children = SYSCTL_CHILDREN(oid);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "rx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
"absolute id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
"SGE context id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
"consumer index");
#if defined(INET) || defined(INET6)
SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
&rxq->lro.lro_queued, 0, NULL);
SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
&rxq->lro.lro_flushed, 0, NULL);
#endif
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
&rxq->rxcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
CTLFLAG_RD, &rxq->vlan_extraction,
"# of times hardware extracted 802.1Q tag");
add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
return (rc);
}
static int
free_rxq(struct port_info *pi, struct sge_rxq *rxq)
{
int rc;
#if defined(INET) || defined(INET6)
if (rxq->lro.ifp) {
tcp_lro_free(&rxq->lro);
rxq->lro.ifp = NULL;
}
#endif
rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
if (rc == 0)
bzero(rxq, sizeof(*rxq));
return (rc);
}
#ifdef TCP_OFFLOAD
static int
alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
int intr_idx, int idx, struct sysctl_oid *oid)
{
int rc;
struct sysctl_oid_list *children;
char name[16];
rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
pi->rx_chan_map);
if (rc != 0)
return (rc);
children = SYSCTL_CHILDREN(oid);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "rx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
"I", "absolute id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
"I", "SGE context id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
"consumer index");
add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
return (rc);
}
static int
free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
{
int rc;
rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
if (rc == 0)
bzero(ofld_rxq, sizeof(*ofld_rxq));
return (rc);
}
#endif
#ifdef DEV_NETMAP
static int
alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx,
int idx, struct sysctl_oid *oid)
{
int rc;
struct sysctl_oid_list *children;
struct sysctl_ctx_list *ctx;
char name[16];
size_t len;
struct adapter *sc = pi->adapter;
struct netmap_adapter *na = NA(pi->nm_ifp);
MPASS(na != NULL);
len = pi->qsize_rxq * IQ_ESIZE;
rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
&nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
if (rc != 0)
return (rc);
len = na->num_rx_desc * EQ_ESIZE + spg_len;
rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
&nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
if (rc != 0)
return (rc);
nm_rxq->pi = pi;
nm_rxq->nid = idx;
nm_rxq->iq_cidx = 0;
nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / IQ_ESIZE;
nm_rxq->iq_gen = F_RSPD_GEN;
nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
nm_rxq->fl_sidx = na->num_rx_desc;
nm_rxq->intr_idx = intr_idx;
ctx = &pi->ctx;
children = SYSCTL_CHILDREN(oid);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
"rx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
"I", "absolute id of the queue");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
"I", "SGE context id of the queue");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
"consumer index");
children = SYSCTL_CHILDREN(oid);
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
"freelist");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
"I", "SGE context id of the freelist");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
&nm_rxq->fl_cidx, 0, "consumer index");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
&nm_rxq->fl_pidx, 0, "producer index");
return (rc);
}
static int
free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
{
struct adapter *sc = pi->adapter;
free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
nm_rxq->iq_desc);
free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
nm_rxq->fl_desc);
return (0);
}
static int
alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
struct sysctl_oid *oid)
{
int rc;
size_t len;
struct adapter *sc = pi->adapter;
struct netmap_adapter *na = NA(pi->nm_ifp);
char name[16];
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
len = na->num_tx_desc * EQ_ESIZE + spg_len;
rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
&nm_txq->ba, (void **)&nm_txq->desc);
if (rc)
return (rc);
nm_txq->pidx = nm_txq->cidx = 0;
nm_txq->sidx = na->num_tx_desc;
nm_txq->nid = idx;
nm_txq->iqidx = iqidx;
nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "netmap tx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&nm_txq->cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
"consumer index");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
"producer index");
return (rc);
}
static int
free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq)
{
struct adapter *sc = pi->adapter;
free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
nm_txq->desc);
return (0);
}
#endif
static int
ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ctrl_cmd c;
int qsize = eq->sidx + spg_len / EQ_ESIZE;
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
V_FW_EQ_CTRL_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
c.physeqid_pkd = htobe32(0);
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(sc->dev,
"failed to create control queue %d: %d\n", eq->tx_chan, rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
static int
eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_eth_cmd c;
int qsize = eq->sidx + spg_len / EQ_ESIZE;
bzero(&c, sizeof(c));
c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
V_FW_EQ_ETH_CMD_VFN(0));
c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid));
c.fetchszm_to_iqid =
htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
V_FW_EQ_ETH_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_ETH_CMD_EQSIZE(qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(pi->dev,
"failed to create Ethernet egress queue: %d\n", rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#ifdef TCP_OFFLOAD
static int
ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
{
int rc, cntxt_id;
struct fw_eq_ofld_cmd c;
int qsize = eq->sidx + spg_len / EQ_ESIZE;
bzero(&c, sizeof(c));
c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
V_FW_EQ_OFLD_CMD_VFN(0));
c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
c.fetchszm_to_iqid =
htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
c.dcaen_to_eqsize =
htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
c.eqaddr = htobe64(eq->ba);
rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
if (rc != 0) {
device_printf(pi->dev,
"failed to create egress queue for TCP offload: %d\n", rc);
return (rc);
}
eq->flags |= EQ_ALLOCATED;
eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
cntxt_id = eq->cntxt_id - sc->sge.eq_start;
if (cntxt_id >= sc->sge.neq)
panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
cntxt_id, sc->sge.neq - 1);
sc->sge.eqmap[cntxt_id] = eq;
return (rc);
}
#endif
static int
alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
{
int rc, qsize;
size_t len;
mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
qsize = eq->sidx + spg_len / EQ_ESIZE;
len = qsize * EQ_ESIZE;
rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
&eq->ba, (void **)&eq->desc);
if (rc)
return (rc);
eq->pidx = eq->cidx = 0;
eq->equeqidx = eq->dbidx = 0;
eq->doorbells = sc->doorbells;
switch (eq->flags & EQ_TYPEMASK) {
case EQ_CTRL:
rc = ctrl_eq_alloc(sc, eq);
break;
case EQ_ETH:
rc = eth_eq_alloc(sc, pi, eq);
break;
#ifdef TCP_OFFLOAD
case EQ_OFLD:
rc = ofld_eq_alloc(sc, pi, eq);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__,
eq->flags & EQ_TYPEMASK);
}
if (rc != 0) {
device_printf(sc->dev,
"failed to allocate egress queue(%d): %d\n",
eq->flags & EQ_TYPEMASK, rc);
}
if (isset(&eq->doorbells, DOORBELL_UDB) ||
isset(&eq->doorbells, DOORBELL_UDBWC) ||
isset(&eq->doorbells, DOORBELL_WCWR)) {
uint32_t s_qpp = sc->sge.eq_s_qpp;
uint32_t mask = (1 << s_qpp) - 1;
volatile uint8_t *udb;
udb = sc->udbs_base + UDBS_DB_OFFSET;
udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */
eq->udb_qid = eq->cntxt_id & mask; /* id in page */
if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
clrbit(&eq->doorbells, DOORBELL_WCWR);
else {
udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */
eq->udb_qid = 0;
}
eq->udb = (volatile void *)udb;
}
return (rc);
}
static int
free_eq(struct adapter *sc, struct sge_eq *eq)
{
int rc;
if (eq->flags & EQ_ALLOCATED) {
switch (eq->flags & EQ_TYPEMASK) {
case EQ_CTRL:
rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
case EQ_ETH:
rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
#ifdef TCP_OFFLOAD
case EQ_OFLD:
rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
eq->cntxt_id);
break;
#endif
default:
panic("%s: invalid eq type %d.", __func__,
eq->flags & EQ_TYPEMASK);
}
if (rc != 0) {
device_printf(sc->dev,
"failed to free egress queue (%d): %d\n",
eq->flags & EQ_TYPEMASK, rc);
return (rc);
}
eq->flags &= ~EQ_ALLOCATED;
}
free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
if (mtx_initialized(&eq->eq_lock))
mtx_destroy(&eq->eq_lock);
bzero(eq, sizeof(*eq));
return (0);
}
static int
alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
struct sysctl_oid *oid)
{
int rc;
struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
rc = alloc_eq(sc, pi, &wrq->eq);
if (rc)
return (rc);
wrq->adapter = sc;
TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
TAILQ_INIT(&wrq->incomplete_wrs);
STAILQ_INIT(&wrq->wr_list);
wrq->nwr_pending = 0;
wrq->ndesc_needed = 0;
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&wrq->eq.cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
"consumer index");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
"producer index");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
&wrq->tx_wrs_direct, "# of work requests (direct)");
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
&wrq->tx_wrs_copied, "# of work requests (copied)");
return (rc);
}
static int
free_wrq(struct adapter *sc, struct sge_wrq *wrq)
{
int rc;
rc = free_eq(sc, &wrq->eq);
if (rc)
return (rc);
bzero(wrq, sizeof(*wrq));
return (0);
}
static int
alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
struct sysctl_oid *oid)
{
int rc;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
char name[16];
struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
M_CXGBE, M_WAITOK);
if (rc != 0) {
device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
return (rc);
}
rc = alloc_eq(sc, pi, eq);
if (rc != 0) {
mp_ring_free(txq->r);
txq->r = NULL;
return (rc);
}
/* Can't fail after this point. */
TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
txq->ifp = pi->ifp;
txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
M_ZERO | M_WAITOK);
snprintf(name, sizeof(name), "%d", idx);
oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
NULL, "tx queue");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
&eq->cntxt_id, 0, "SGE context id of the queue");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
"consumer index");
SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
"producer index");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
&txq->txcsum, "# of times hardware assisted with checksum");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
CTLFLAG_RD, &txq->vlan_insertion,
"# of times hardware inserted 802.1Q tag");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
&txq->tso_wrs, "# of TSO work requests");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
&txq->imm_wrs, "# of work requests with immediate data");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
&txq->sgl_wrs, "# of work requests with direct SGL");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
&txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts0_wrs",
CTLFLAG_RD, &txq->txpkts0_wrs,
"# of txpkts (type 0) work requests");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts1_wrs",
CTLFLAG_RD, &txq->txpkts1_wrs,
"# of txpkts (type 1) work requests");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts0_pkts",
CTLFLAG_RD, &txq->txpkts0_pkts,
"# of frames tx'd using type0 txpkts work requests");
SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts1_pkts",
CTLFLAG_RD, &txq->txpkts1_pkts,
"# of frames tx'd using type1 txpkts work requests");
SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_enqueues",
CTLFLAG_RD, &txq->r->enqueues,
"# of enqueues to the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_drops",
CTLFLAG_RD, &txq->r->drops,
"# of drops in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_starts",
CTLFLAG_RD, &txq->r->starts,
"# of normal consumer starts in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_stalls",
CTLFLAG_RD, &txq->r->stalls,
"# of consumer stalls in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_restarts",
CTLFLAG_RD, &txq->r->restarts,
"# of consumer restarts in the mp_ring for this queue");
SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_abdications",
CTLFLAG_RD, &txq->r->abdications,
"# of consumer abdications in the mp_ring for this queue");
return (0);
}
static int
free_txq(struct port_info *pi, struct sge_txq *txq)
{
int rc;
struct adapter *sc = pi->adapter;
struct sge_eq *eq = &txq->eq;
rc = free_eq(sc, eq);
if (rc)
return (rc);
sglist_free(txq->gl);
free(txq->sdesc, M_CXGBE);
mp_ring_free(txq->r);
bzero(txq, sizeof(*txq));
return (0);
}
static void
oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *ba = arg;
KASSERT(nseg == 1,
("%s meant for single segment mappings only.", __func__));
*ba = error ? 0 : segs->ds_addr;
}
static inline void
ring_fl_db(struct adapter *sc, struct sge_fl *fl)
{
uint32_t n, v;
n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
MPASS(n > 0);
wmb();
v = fl->dbval | V_PIDX(n);
if (fl->udb)
*fl->udb = htole32(v);
else
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
IDXINCR(fl->dbidx, n, fl->sidx);
}
/*
* Fills up the freelist by allocating upto 'n' buffers. Buffers that are
* recycled do not count towards this allocation budget.
*
* Returns non-zero to indicate that this freelist should be added to the list
* of starving freelists.
*/
static int
refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
{
__be64 *d;
struct fl_sdesc *sd;
uintptr_t pa;
caddr_t cl;
struct cluster_layout *cll;
struct sw_zone_info *swz;
struct cluster_metadata *clm;
uint16_t max_pidx;
uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */
FL_LOCK_ASSERT_OWNED(fl);
/*
* We always stop at the begining of the hardware descriptor that's just
* before the one with the hw cidx. This is to avoid hw pidx = hw cidx,
* which would mean an empty freelist to the chip.
*/
max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
if (fl->pidx == max_pidx * 8)
return (0);
d = &fl->desc[fl->pidx];
sd = &fl->sdesc[fl->pidx];
cll = &fl->cll_def; /* default layout */
swz = &sc->sge.sw_zone_info[cll->zidx];
while (n > 0) {
if (sd->cl != NULL) {
if (sd->nmbuf == 0) {
/*
* Fast recycle without involving any atomics on
* the cluster's metadata (if the cluster has
* metadata). This happens when all frames
* received in the cluster were small enough to
* fit within a single mbuf each.
*/
fl->cl_fast_recycled++;
#ifdef INVARIANTS
clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
if (clm != NULL)
MPASS(clm->refcount == 1);
#endif
goto recycled_fast;
}
/*
* Cluster is guaranteed to have metadata. Clusters
* without metadata always take the fast recycle path
* when they're recycled.
*/
clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
MPASS(clm != NULL);
if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
fl->cl_recycled++;
counter_u64_add(extfree_rels, 1);
goto recycled;
}
sd->cl = NULL; /* gave up my reference */
}
MPASS(sd->cl == NULL);
alloc:
cl = uma_zalloc(swz->zone, M_NOWAIT);
if (__predict_false(cl == NULL)) {
if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
fl->cll_def.zidx == fl->cll_alt.zidx)
break;
/* fall back to the safe zone */
cll = &fl->cll_alt;
swz = &sc->sge.sw_zone_info[cll->zidx];
goto alloc;
}
fl->cl_allocated++;
n--;
pa = pmap_kextract((vm_offset_t)cl);
pa += cll->region1;
sd->cl = cl;
sd->cll = *cll;
*d = htobe64(pa | cll->hwidx);
clm = cl_metadata(sc, fl, cll, cl);
if (clm != NULL) {
recycled:
#ifdef INVARIANTS
clm->sd = sd;
#endif
clm->refcount = 1;
}
sd->nmbuf = 0;
recycled_fast:
d++;
sd++;
if (__predict_false(++fl->pidx % 8 == 0)) {
uint16_t pidx = fl->pidx / 8;
if (__predict_false(pidx == fl->sidx)) {
fl->pidx = 0;
pidx = 0;
sd = fl->sdesc;
d = fl->desc;
}
if (pidx == max_pidx)
break;
if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
ring_fl_db(sc, fl);
}
}
if (fl->pidx / 8 != fl->dbidx)
ring_fl_db(sc, fl);
return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
}
/*
* Attempt to refill all starving freelists.
*/
static void
refill_sfl(void *arg)
{
struct adapter *sc = arg;
struct sge_fl *fl, *fl_temp;
mtx_lock(&sc->sfl_lock);
TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
FL_LOCK(fl);
refill_fl(sc, fl, 64);
if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
TAILQ_REMOVE(&sc->sfl, fl, link);
fl->flags &= ~FL_STARVING;
}
FL_UNLOCK(fl);
}
if (!TAILQ_EMPTY(&sc->sfl))
callout_schedule(&sc->sfl_callout, hz / 5);
mtx_unlock(&sc->sfl_lock);
}
static int
alloc_fl_sdesc(struct sge_fl *fl)
{
fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
M_ZERO | M_WAITOK);
return (0);
}
static void
free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
{
struct fl_sdesc *sd;
struct cluster_metadata *clm;
struct cluster_layout *cll;
int i;
sd = fl->sdesc;
for (i = 0; i < fl->sidx * 8; i++, sd++) {
if (sd->cl == NULL)
continue;
cll = &sd->cll;
clm = cl_metadata(sc, fl, cll, sd->cl);
if (sd->nmbuf == 0)
uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
counter_u64_add(extfree_rels, 1);
}
sd->cl = NULL;
}
free(fl->sdesc, M_CXGBE);
fl->sdesc = NULL;
}
static inline void
get_pkt_gl(struct mbuf *m, struct sglist *gl)
{
int rc;
M_ASSERTPKTHDR(m);
sglist_reset(gl);
rc = sglist_append_mbuf(gl, m);
if (__predict_false(rc != 0)) {
panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
"with %d.", __func__, m, mbuf_nsegs(m), rc);
}
KASSERT(gl->sg_nseg == mbuf_nsegs(m),
("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
mbuf_nsegs(m), gl->sg_nseg));
KASSERT(gl->sg_nseg > 0 &&
gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
}
/*
* len16 for a txpkt WR with a GL. Includes the firmware work request header.
*/
static inline u_int
txpkt_len16(u_int nsegs, u_int tso)
{
u_int n;
MPASS(nsegs > 0);
nsegs--; /* first segment is part of ulptx_sgl */
n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
if (tso)
n += sizeof(struct cpl_tx_pkt_lso_core);
return (howmany(n, 16));
}
/*
* len16 for a txpkts type 0 WR with a GL. Does not include the firmware work
* request header.
*/
static inline u_int
txpkts0_len16(u_int nsegs)
{
u_int n;
MPASS(nsegs > 0);
nsegs--; /* first segment is part of ulptx_sgl */
n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
8 * ((3 * nsegs) / 2 + (nsegs & 1));
return (howmany(n, 16));
}
/*
* len16 for a txpkts type 1 WR with a GL. Does not include the firmware work
* request header.
*/
static inline u_int
txpkts1_len16(void)
{
u_int n;
n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
return (howmany(n, 16));
}
static inline u_int
imm_payload(u_int ndesc)
{
u_int n;
n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
sizeof(struct cpl_tx_pkt_core);
return (n);
}
/*
* Write a txpkt WR for this packet to the hardware descriptors, update the
* software descriptor, and advance the pidx. It is guaranteed that enough
* descriptors are available.
*
* The return value is the # of hardware descriptors used.
*/
static u_int
write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
struct mbuf *m0, u_int available)
{
struct sge_eq *eq = &txq->eq;
struct tx_sdesc *txsd;
struct cpl_tx_pkt_core *cpl;
uint32_t ctrl; /* used in many unrelated places */
uint64_t ctrl1;
int len16, ndesc, pktlen, nsegs;
caddr_t dst;
TXQ_LOCK_ASSERT_OWNED(txq);
M_ASSERTPKTHDR(m0);
MPASS(available > 0 && available < eq->sidx);
len16 = mbuf_len16(m0);
nsegs = mbuf_nsegs(m0);
pktlen = m0->m_pkthdr.len;
ctrl = sizeof(struct cpl_tx_pkt_core);
if (needs_tso(m0))
ctrl += sizeof(struct cpl_tx_pkt_lso_core);
else if (pktlen <= imm_payload(2) && available >= 2) {
/* Immediate data. Recalculate len16 and set nsegs to 0. */
ctrl += pktlen;
len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
nsegs = 0;
}
ndesc = howmany(len16, EQ_ESIZE / 16);
MPASS(ndesc <= available);
/* Firmware work request header */
MPASS(wr == (void *)&eq->desc[eq->pidx]);
wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
ctrl = V_FW_WR_LEN16(len16);
wr->equiq_to_len16 = htobe32(ctrl);
wr->r3 = 0;
if (needs_tso(m0)) {
struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
m0->m_pkthdr.l4hlen > 0,
("%s: mbuf %p needs TSO but missing header lengths",
__func__, m0));
ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
| V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
ctrl |= V_LSO_ETHHDR_LEN(1);
if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
ctrl |= F_LSO_IPV6;
lso->lso_ctrl = htobe32(ctrl);
lso->ipid_ofst = htobe16(0);
lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
lso->seqno_offset = htobe32(0);
lso->len = htobe32(pktlen);
cpl = (void *)(lso + 1);
txq->tso_wrs++;
} else
cpl = (void *)(wr + 1);
/* Checksum offload */
ctrl1 = 0;
if (needs_l3_csum(m0) == 0)
ctrl1 |= F_TXPKT_IPCSUM_DIS;
if (needs_l4_csum(m0) == 0)
ctrl1 |= F_TXPKT_L4CSUM_DIS;
if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (needs_vlan_insertion(m0)) {
ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(pktlen);
cpl->ctrl1 = htobe64(ctrl1);
/* SGL */
dst = (void *)(cpl + 1);
if (nsegs > 0) {
write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
txq->sgl_wrs++;
} else {
struct mbuf *m;
for (m = m0; m != NULL; m = m->m_next) {
copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
#ifdef INVARIANTS
pktlen -= m->m_len;
#endif
}
#ifdef INVARIANTS
KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
#endif
txq->imm_wrs++;
}
txq->txpkt_wrs++;
txsd = &txq->sdesc[eq->pidx];
txsd->m = m0;
txsd->desc_used = ndesc;
return (ndesc);
}
static int
try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
{
u_int needed, nsegs1, nsegs2, l1, l2;
if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
return (1);
nsegs1 = mbuf_nsegs(m);
nsegs2 = mbuf_nsegs(n);
if (nsegs1 + nsegs2 == 2) {
txp->wr_type = 1;
l1 = l2 = txpkts1_len16();
} else {
txp->wr_type = 0;
l1 = txpkts0_len16(nsegs1);
l2 = txpkts0_len16(nsegs2);
}
txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
needed = howmany(txp->len16, EQ_ESIZE / 16);
if (needed > SGE_MAX_WR_NDESC || needed > available)
return (1);
txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
if (txp->plen > 65535)
return (1);
txp->npkt = 2;
set_mbuf_len16(m, l1);
set_mbuf_len16(n, l2);
return (0);
}
static int
add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
{
u_int plen, len16, needed, nsegs;
MPASS(txp->wr_type == 0 || txp->wr_type == 1);
nsegs = mbuf_nsegs(m);
if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
return (1);
plen = txp->plen + m->m_pkthdr.len;
if (plen > 65535)
return (1);
if (txp->wr_type == 0)
len16 = txpkts0_len16(nsegs);
else
len16 = txpkts1_len16();
needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
if (needed > SGE_MAX_WR_NDESC || needed > available)
return (1);
txp->npkt++;
txp->plen = plen;
txp->len16 += len16;
set_mbuf_len16(m, len16);
return (0);
}
/*
* Write a txpkts WR for the packets in txp to the hardware descriptors, update
* the software descriptor, and advance the pidx. It is guaranteed that enough
* descriptors are available.
*
* The return value is the # of hardware descriptors used.
*/
static u_int
write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
struct mbuf *m0, const struct txpkts *txp, u_int available)
{
struct sge_eq *eq = &txq->eq;
struct tx_sdesc *txsd;
struct cpl_tx_pkt_core *cpl;
uint32_t ctrl;
uint64_t ctrl1;
int ndesc, checkwrap;
struct mbuf *m;
void *flitp;
TXQ_LOCK_ASSERT_OWNED(txq);
MPASS(txp->npkt > 0);
MPASS(txp->plen < 65536);
MPASS(m0 != NULL);
MPASS(m0->m_nextpkt != NULL);
MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
MPASS(available > 0 && available < eq->sidx);
ndesc = howmany(txp->len16, EQ_ESIZE / 16);
MPASS(ndesc <= available);
MPASS(wr == (void *)&eq->desc[eq->pidx]);
wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
ctrl = V_FW_WR_LEN16(txp->len16);
wr->equiq_to_len16 = htobe32(ctrl);
wr->plen = htobe16(txp->plen);
wr->npkt = txp->npkt;
wr->r3 = 0;
wr->type = txp->wr_type;
flitp = wr + 1;
/*
* At this point we are 16B into a hardware descriptor. If checkwrap is
* set then we know the WR is going to wrap around somewhere. We'll
* check for that at appropriate points.
*/
checkwrap = eq->sidx - ndesc < eq->pidx;
for (m = m0; m != NULL; m = m->m_nextpkt) {
if (txp->wr_type == 0) {
struct ulp_txpkt *ulpmc;
struct ulptx_idata *ulpsc;
/* ULP master command */
ulpmc = flitp;
ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
ulpmc->len = htobe32(mbuf_len16(m));
/* ULP subcommand */
ulpsc = (void *)(ulpmc + 1);
ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
F_ULP_TX_SC_MORE);
ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
cpl = (void *)(ulpsc + 1);
if (checkwrap &&
(uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
cpl = (void *)&eq->desc[0];
txq->txpkts0_pkts += txp->npkt;
txq->txpkts0_wrs++;
} else {
cpl = flitp;
txq->txpkts1_pkts += txp->npkt;
txq->txpkts1_wrs++;
}
/* Checksum offload */
ctrl1 = 0;
if (needs_l3_csum(m) == 0)
ctrl1 |= F_TXPKT_IPCSUM_DIS;
if (needs_l4_csum(m) == 0)
ctrl1 |= F_TXPKT_L4CSUM_DIS;
if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
txq->txcsum++; /* some hardware assistance provided */
/* VLAN tag insertion */
if (needs_vlan_insertion(m)) {
ctrl1 |= F_TXPKT_VLAN_VLD |
V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
txq->vlan_insertion++;
}
/* CPL header */
cpl->ctrl0 = txq->cpl_ctrl0;
cpl->pack = 0;
cpl->len = htobe16(m->m_pkthdr.len);
cpl->ctrl1 = htobe64(ctrl1);
flitp = cpl + 1;
if (checkwrap &&
(uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
flitp = (void *)&eq->desc[0];
write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
}
txsd = &txq->sdesc[eq->pidx];
txsd->m = m0;
txsd->desc_used = ndesc;
return (ndesc);
}
/*
* If the SGL ends on an address that is not 16 byte aligned, this function will
* add a 0 filled flit at the end.
*/
static void
write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
{
struct sge_eq *eq = &txq->eq;
struct sglist *gl = txq->gl;
struct sglist_seg *seg;
__be64 *flitp, *wrap;
struct ulptx_sgl *usgl;
int i, nflits, nsegs;
KASSERT(((uintptr_t)(*to) & 0xf) == 0,
("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
get_pkt_gl(m, gl);
nsegs = gl->sg_nseg;
MPASS(nsegs > 0);
nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
flitp = (__be64 *)(*to);
wrap = (__be64 *)(&eq->desc[eq->sidx]);
seg = &gl->sg_segs[0];
usgl = (void *)flitp;
/*
* We start at a 16 byte boundary somewhere inside the tx descriptor
* ring, so we're at least 16 bytes away from the status page. There is
* no chance of a wrap around in the middle of usgl (which is 16 bytes).
*/
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nsegs));
usgl->len0 = htobe32(seg->ss_len);
usgl->addr0 = htobe64(seg->ss_paddr);
seg++;
if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
/* Won't wrap around at all */
for (i = 0; i < nsegs - 1; i++, seg++) {
usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
}
if (i & 1)
usgl->sge[i / 2].len[1] = htobe32(0);
flitp += nflits;
} else {
/* Will wrap somewhere in the rest of the SGL */
/* 2 flits already written, write the rest flit by flit */
flitp = (void *)(usgl + 1);
for (i = 0; i < nflits - 2; i++) {
if (flitp == wrap)
flitp = (void *)eq->desc;
*flitp++ = get_flit(seg, nsegs - 1, i);
}
}
if (nflits & 1) {
MPASS(((uintptr_t)flitp) & 0xf);
*flitp++ = 0;
}
MPASS((((uintptr_t)flitp) & 0xf) == 0);
if (__predict_false(flitp == wrap))
*to = (void *)eq->desc;
else
*to = (void *)flitp;
}
static inline void
copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
{
MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
if (__predict_true((uintptr_t)(*to) + len <=
(uintptr_t)&eq->desc[eq->sidx])) {
bcopy(from, *to, len);
(*to) += len;
} else {
int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
bcopy(from, *to, portion);
from += portion;
portion = len - portion; /* remaining */
bcopy(from, (void *)eq->desc, portion);
(*to) = (caddr_t)eq->desc + portion;
}
}
static inline void
ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
{
u_int db;
MPASS(n > 0);
db = eq->doorbells;
if (n > 1)
clrbit(&db, DOORBELL_WCWR);
wmb();
switch (ffs(db) - 1) {
case DOORBELL_UDB:
*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
break;
case DOORBELL_WCWR: {
volatile uint64_t *dst, *src;
int i;
/*
* Queues whose 128B doorbell segment fits in the page do not
* use relative qid (udb_qid is always 0). Only queues with
* doorbell segments can do WCWR.
*/
KASSERT(eq->udb_qid == 0 && n == 1,
("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
__func__, eq->doorbells, n, eq->dbidx, eq));
dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
UDBS_DB_OFFSET);
i = eq->dbidx;
src = (void *)&eq->desc[i];
while (src != (void *)&eq->desc[i + 1])
*dst++ = *src++;
wmb();
break;
}
case DOORBELL_UDBWC:
*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
wmb();
break;
case DOORBELL_KDB:
t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
V_QID(eq->cntxt_id) | V_PIDX(n));
break;
}
IDXINCR(eq->dbidx, n, eq->sidx);
}
static inline u_int
reclaimable_tx_desc(struct sge_eq *eq)
{
uint16_t hw_cidx;
hw_cidx = read_hw_cidx(eq);
return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
}
static inline u_int
total_available_tx_desc(struct sge_eq *eq)
{
uint16_t hw_cidx, pidx;
hw_cidx = read_hw_cidx(eq);
pidx = eq->pidx;
if (pidx == hw_cidx)
return (eq->sidx - 1);
else
return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
}
static inline uint16_t
read_hw_cidx(struct sge_eq *eq)
{
struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
uint16_t cidx = spg->cidx; /* stable snapshot */
return (be16toh(cidx));
}
/*
* Reclaim 'n' descriptors approximately.
*/
static u_int
reclaim_tx_descs(struct sge_txq *txq, u_int n)
{
struct tx_sdesc *txsd;
struct sge_eq *eq = &txq->eq;
u_int can_reclaim, reclaimed;
TXQ_LOCK_ASSERT_OWNED(txq);
MPASS(n > 0);
reclaimed = 0;
can_reclaim = reclaimable_tx_desc(eq);
while (can_reclaim && reclaimed < n) {
int ndesc;
struct mbuf *m, *nextpkt;
txsd = &txq->sdesc[eq->cidx];
ndesc = txsd->desc_used;
/* Firmware doesn't return "partial" credits. */
KASSERT(can_reclaim >= ndesc,
("%s: unexpected number of credits: %d, %d",
__func__, can_reclaim, ndesc));
for (m = txsd->m; m != NULL; m = nextpkt) {
nextpkt = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
}
reclaimed += ndesc;
can_reclaim -= ndesc;
IDXINCR(eq->cidx, ndesc, eq->sidx);
}
return (reclaimed);
}
static void
tx_reclaim(void *arg, int n)
{
struct sge_txq *txq = arg;
struct sge_eq *eq = &txq->eq;
do {
if (TXQ_TRYLOCK(txq) == 0)
break;
n = reclaim_tx_descs(txq, 32);
if (eq->cidx == eq->pidx)
eq->equeqidx = eq->pidx;
TXQ_UNLOCK(txq);
} while (n > 0);
}
static __be64
get_flit(struct sglist_seg *segs, int nsegs, int idx)
{
int i = (idx / 3) * 2;
switch (idx % 3) {
case 0: {
__be64 rc;
rc = htobe32(segs[i].ss_len);
if (i + 1 < nsegs)
rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32;
return (rc);
}
case 1:
return (htobe64(segs[i].ss_paddr));
case 2:
return (htobe64(segs[i + 1].ss_paddr));
}
return (0);
}
static void
find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
{
int8_t zidx, hwidx, idx;
uint16_t region1, region3;
int spare, spare_needed, n;
struct sw_zone_info *swz;
struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
/*
* Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
* large enough for the max payload and cluster metadata. Otherwise
* settle for the largest bufsize that leaves enough room in the cluster
* for metadata.
*
* Without buffer packing: Look for the smallest zone which has a
* bufsize large enough for the max payload. Settle for the largest
* bufsize available if there's nothing big enough for max payload.
*/
spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
swz = &sc->sge.sw_zone_info[0];
hwidx = -1;
for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
if (swz->size > largest_rx_cluster) {
if (__predict_true(hwidx != -1))
break;
/*
* This is a misconfiguration. largest_rx_cluster is
* preventing us from finding a refill source. See
* dev.t5nex.<n>.buffer_sizes to figure out why.
*/
device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
" refill source for fl %p (dma %u). Ignored.\n",
largest_rx_cluster, fl, maxp);
}
for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
hwb = &hwb_list[idx];
spare = swz->size - hwb->size;
if (spare < spare_needed)
continue;
hwidx = idx; /* best option so far */
if (hwb->size >= maxp) {
if ((fl->flags & FL_BUF_PACKING) == 0)
goto done; /* stop looking (not packing) */
if (swz->size >= safest_rx_cluster)
goto done; /* stop looking (packing) */
}
break; /* keep looking, next zone */
}
}
done:
/* A usable hwidx has been located. */
MPASS(hwidx != -1);
hwb = &hwb_list[hwidx];
zidx = hwb->zidx;
swz = &sc->sge.sw_zone_info[zidx];
region1 = 0;
region3 = swz->size - hwb->size;
/*
* Stay within this zone and see if there is a better match when mbuf
* inlining is allowed. Remember that the hwidx's are sorted in
* decreasing order of size (so in increasing order of spare area).
*/
for (idx = hwidx; idx != -1; idx = hwb->next) {
hwb = &hwb_list[idx];
spare = swz->size - hwb->size;
if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
break;
/*
* Do not inline mbufs if doing so would violate the pad/pack
* boundary alignment requirement.
*/
if (fl_pad && (MSIZE % sc->sge.pad_boundary) != 0)
continue;
if (fl->flags & FL_BUF_PACKING &&
(MSIZE % sc->sge.pack_boundary) != 0)
continue;
if (spare < CL_METADATA_SIZE + MSIZE)
continue;
n = (spare - CL_METADATA_SIZE) / MSIZE;
if (n > howmany(hwb->size, maxp))
break;
hwidx = idx;
if (fl->flags & FL_BUF_PACKING) {
region1 = n * MSIZE;
region3 = spare - region1;
} else {
region1 = MSIZE;
region3 = spare - region1;
break;
}
}
KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
sc->sge.sw_zone_info[zidx].size,
("%s: bad buffer layout for fl %p, maxp %d. "
"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
sc->sge.sw_zone_info[zidx].size, region1,
sc->sge.hw_buf_info[hwidx].size, region3));
if (fl->flags & FL_BUF_PACKING || region1 > 0) {
KASSERT(region3 >= CL_METADATA_SIZE,
("%s: no room for metadata. fl %p, maxp %d; "
"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
sc->sge.sw_zone_info[zidx].size, region1,
sc->sge.hw_buf_info[hwidx].size, region3));
KASSERT(region1 % MSIZE == 0,
("%s: bad mbuf region for fl %p, maxp %d. "
"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
sc->sge.sw_zone_info[zidx].size, region1,
sc->sge.hw_buf_info[hwidx].size, region3));
}
fl->cll_def.zidx = zidx;
fl->cll_def.hwidx = hwidx;
fl->cll_def.region1 = region1;
fl->cll_def.region3 = region3;
}
static void
find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
{
struct sge *s = &sc->sge;
struct hw_buf_info *hwb;
struct sw_zone_info *swz;
int spare;
int8_t hwidx;
if (fl->flags & FL_BUF_PACKING)
hwidx = s->safe_hwidx2; /* with room for metadata */
else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
hwidx = s->safe_hwidx2;
hwb = &s->hw_buf_info[hwidx];
swz = &s->sw_zone_info[hwb->zidx];
spare = swz->size - hwb->size;
/* no good if there isn't room for an mbuf as well */
if (spare < CL_METADATA_SIZE + MSIZE)
hwidx = s->safe_hwidx1;
} else
hwidx = s->safe_hwidx1;
if (hwidx == -1) {
/* No fallback source */
fl->cll_alt.hwidx = -1;
fl->cll_alt.zidx = -1;
return;
}
hwb = &s->hw_buf_info[hwidx];
swz = &s->sw_zone_info[hwb->zidx];
spare = swz->size - hwb->size;
fl->cll_alt.hwidx = hwidx;
fl->cll_alt.zidx = hwb->zidx;
if (allow_mbufs_in_cluster &&
(fl_pad == 0 || (MSIZE % sc->sge.pad_boundary) == 0))
fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
else
fl->cll_alt.region1 = 0;
fl->cll_alt.region3 = spare - fl->cll_alt.region1;
}
static void
add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
{
mtx_lock(&sc->sfl_lock);
FL_LOCK(fl);
if ((fl->flags & FL_DOOMED) == 0) {
fl->flags |= FL_STARVING;
TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
}
FL_UNLOCK(fl);
mtx_unlock(&sc->sfl_lock);
}
static void
handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
{
struct sge_wrq *wrq = (void *)eq;
atomic_readandclear_int(&eq->equiq);
taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
}
static void
handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
{
struct sge_txq *txq = (void *)eq;
MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
atomic_readandclear_int(&eq->equiq);
mp_ring_check_drainage(txq->r, 0);
taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
}
static int
handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
struct adapter *sc = iq->adapter;
struct sge *s = &sc->sge;
struct sge_eq *eq;
static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
&handle_wrq_egr_update, &handle_eth_egr_update,
&handle_wrq_egr_update};
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
eq = s->eqmap[qid - s->eq_start];
(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
return (0);
}
/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
offsetof(struct cpl_fw6_msg, data));
static int
handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
const struct rss_header *rss2;
rss2 = (const struct rss_header *)&cpl->data[0];
return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
}
return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
}
static int
sysctl_uint16(SYSCTL_HANDLER_ARGS)
{
uint16_t *id = arg1;
int i = *id;
return sysctl_handle_int(oidp, &i, 0, req);
}
static int
sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
{
struct sge *s = arg1;
struct hw_buf_info *hwb = &s->hw_buf_info[0];
struct sw_zone_info *swz = &s->sw_zone_info[0];
int i, rc;
struct sbuf sb;
char c;
sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
c = '*';
else
c = '\0';
sbuf_printf(&sb, "%u%c ", hwb->size, c);
}
sbuf_trim(&sb);
sbuf_finish(&sb);
rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
sbuf_delete(&sb);
return (rc);
}