John Baldwin 463e0f91cb Probe CPUs after the PCI hierarchy on i386, amd64, and ia64. This allows
the cpufreq drivers to reliably use properties of PCI devices for quirks,
etc.
- For the legacy drivers, add CPU devices via an identify routine in the
  CPU driver itself rather than in the legacy driver's attach routine.
- Add CPU devices after Host-PCI bridges in the acpi bus driver.
- Change the ichss(4) driver to use pci_find_bsf() to locate the ICH and
  check its device ID rather than having a bogus PCI attachment that only
  checked for the ID in probe and always failed.  As a side effect, you
  can now kldload ichss after boot.
- Fix the ichss(4) driver to use the correct device_t for the ICH (and not
  for ichss0) when doing PCI config space operations to enable SpeedStep.

MFC after:	2 weeks
Reviewed by:	njl, Andriy Gapon  avg of icyb.net.ua
2008-03-10 22:18:07 +00:00

3402 lines
93 KiB
C

/*-
* Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org>
* Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
* Copyright (c) 2000, 2001 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/reboot.h>
#include <sys/sysctl.h>
#include <sys/ctype.h>
#include <sys/linker.h>
#include <sys/power.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <isa/isavar.h>
#include <isa/pnpvar.h>
#include <contrib/dev/acpica/acpi.h>
#include <dev/acpica/acpivar.h>
#include <dev/acpica/acpiio.h>
#include <contrib/dev/acpica/achware.h>
#include <contrib/dev/acpica/acnamesp.h>
#include "pci_if.h"
#include <dev/pci/pcivar.h>
#include <dev/pci/pci_private.h>
#include <vm/vm_param.h>
MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
/* Hooks for the ACPI CA debugging infrastructure */
#define _COMPONENT ACPI_BUS
ACPI_MODULE_NAME("ACPI")
static d_open_t acpiopen;
static d_close_t acpiclose;
static d_ioctl_t acpiioctl;
static struct cdevsw acpi_cdevsw = {
.d_version = D_VERSION,
.d_open = acpiopen,
.d_close = acpiclose,
.d_ioctl = acpiioctl,
.d_name = "acpi",
};
/* Global mutex for locking access to the ACPI subsystem. */
struct mtx acpi_mutex;
/* Bitmap of device quirks. */
int acpi_quirks;
static int acpi_modevent(struct module *mod, int event, void *junk);
static void acpi_identify(driver_t *driver, device_t parent);
static int acpi_probe(device_t dev);
static int acpi_attach(device_t dev);
static int acpi_suspend(device_t dev);
static int acpi_resume(device_t dev);
static int acpi_shutdown(device_t dev);
static device_t acpi_add_child(device_t bus, int order, const char *name,
int unit);
static int acpi_print_child(device_t bus, device_t child);
static void acpi_probe_nomatch(device_t bus, device_t child);
static void acpi_driver_added(device_t dev, driver_t *driver);
static int acpi_read_ivar(device_t dev, device_t child, int index,
uintptr_t *result);
static int acpi_write_ivar(device_t dev, device_t child, int index,
uintptr_t value);
static struct resource_list *acpi_get_rlist(device_t dev, device_t child);
static int acpi_sysres_alloc(device_t dev);
static struct resource *acpi_alloc_resource(device_t bus, device_t child,
int type, int *rid, u_long start, u_long end,
u_long count, u_int flags);
static int acpi_release_resource(device_t bus, device_t child, int type,
int rid, struct resource *r);
static void acpi_delete_resource(device_t bus, device_t child, int type,
int rid);
static uint32_t acpi_isa_get_logicalid(device_t dev);
static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
static char *acpi_device_id_probe(device_t bus, device_t dev, char **ids);
static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev,
ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters,
ACPI_BUFFER *ret);
static int acpi_device_pwr_for_sleep(device_t bus, device_t dev,
int *dstate);
static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
void *context, void **retval);
static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev,
int max_depth, acpi_scan_cb_t user_fn, void *arg);
static int acpi_set_powerstate_method(device_t bus, device_t child,
int state);
static int acpi_isa_pnp_probe(device_t bus, device_t child,
struct isa_pnp_id *ids);
static void acpi_probe_children(device_t bus);
static int acpi_probe_order(ACPI_HANDLE handle, int *order);
static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
void *context, void **status);
static BOOLEAN acpi_MatchHid(ACPI_HANDLE h, const char *hid);
static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state);
static void acpi_shutdown_final(void *arg, int howto);
static void acpi_enable_fixed_events(struct acpi_softc *sc);
static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate);
static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate);
static int acpi_wake_prep_walk(int sstate);
static int acpi_wake_sysctl_walk(device_t dev);
static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
static void acpi_system_eventhandler_sleep(void *arg, int state);
static void acpi_system_eventhandler_wakeup(void *arg, int state);
static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
static int acpi_pm_func(u_long cmd, void *arg, ...);
static int acpi_child_location_str_method(device_t acdev, device_t child,
char *buf, size_t buflen);
static int acpi_child_pnpinfo_str_method(device_t acdev, device_t child,
char *buf, size_t buflen);
static device_method_t acpi_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, acpi_identify),
DEVMETHOD(device_probe, acpi_probe),
DEVMETHOD(device_attach, acpi_attach),
DEVMETHOD(device_shutdown, acpi_shutdown),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_suspend, acpi_suspend),
DEVMETHOD(device_resume, acpi_resume),
/* Bus interface */
DEVMETHOD(bus_add_child, acpi_add_child),
DEVMETHOD(bus_print_child, acpi_print_child),
DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch),
DEVMETHOD(bus_driver_added, acpi_driver_added),
DEVMETHOD(bus_read_ivar, acpi_read_ivar),
DEVMETHOD(bus_write_ivar, acpi_write_ivar),
DEVMETHOD(bus_get_resource_list, acpi_get_rlist),
DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
DEVMETHOD(bus_alloc_resource, acpi_alloc_resource),
DEVMETHOD(bus_release_resource, acpi_release_resource),
DEVMETHOD(bus_delete_resource, acpi_delete_resource),
DEVMETHOD(bus_child_pnpinfo_str, acpi_child_pnpinfo_str_method),
DEVMETHOD(bus_child_location_str, acpi_child_location_str_method),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
/* ACPI bus */
DEVMETHOD(acpi_id_probe, acpi_device_id_probe),
DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj),
DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep),
DEVMETHOD(acpi_scan_children, acpi_device_scan_children),
/* PCI emulation */
DEVMETHOD(pci_set_powerstate, acpi_set_powerstate_method),
/* ISA emulation */
DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe),
{0, 0}
};
static driver_t acpi_driver = {
"acpi",
acpi_methods,
sizeof(struct acpi_softc),
};
static devclass_t acpi_devclass;
DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0);
MODULE_VERSION(acpi, 1);
ACPI_SERIAL_DECL(acpi, "ACPI root bus");
/* Local pools for managing system resources for ACPI child devices. */
static struct rman acpi_rman_io, acpi_rman_mem;
#define ACPI_MINIMUM_AWAKETIME 5
static const char* sleep_state_names[] = {
"S0", "S1", "S2", "S3", "S4", "S5", "NONE"};
SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD, NULL, "ACPI debugging");
static char acpi_ca_version[12];
SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
acpi_ca_version, 0, "Version of Intel ACPI-CA");
/*
* Allow override of whether methods execute in parallel or not.
* Enable this for serial behavior, which fixes "AE_ALREADY_EXISTS"
* errors for AML that really can't handle parallel method execution.
* It is off by default since this breaks recursive methods and
* some IBMs use such code.
*/
static int acpi_serialize_methods;
TUNABLE_INT("hw.acpi.serialize_methods", &acpi_serialize_methods);
/* Power devices off and on in suspend and resume. XXX Remove once tested. */
static int acpi_do_powerstate = 1;
TUNABLE_INT("debug.acpi.do_powerstate", &acpi_do_powerstate);
SYSCTL_INT(_debug_acpi, OID_AUTO, do_powerstate, CTLFLAG_RW,
&acpi_do_powerstate, 1, "Turn off devices when suspending.");
/* Allow users to override quirks. */
TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
static int acpi_susp_bounce;
SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
&acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
/*
* ACPI can only be loaded as a module by the loader; activating it after
* system bootstrap time is not useful, and can be fatal to the system.
* It also cannot be unloaded, since the entire system bus heirarchy hangs
* off it.
*/
static int
acpi_modevent(struct module *mod, int event, void *junk)
{
switch (event) {
case MOD_LOAD:
if (!cold) {
printf("The ACPI driver cannot be loaded after boot.\n");
return (EPERM);
}
break;
case MOD_UNLOAD:
if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
return (EBUSY);
break;
default:
break;
}
return (0);
}
/*
* Perform early initialization.
*/
ACPI_STATUS
acpi_Startup(void)
{
static int started = 0;
ACPI_STATUS status;
int val;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/* Only run the startup code once. The MADT driver also calls this. */
if (started)
return_VALUE (AE_OK);
started = 1;
/*
* Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
* if more tables exist.
*/
if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
printf("ACPI: Table initialisation failed: %s\n",
AcpiFormatException(status));
return_VALUE (status);
}
/* Set up any quirks we have for this system. */
if (acpi_quirks == ACPI_Q_OK)
acpi_table_quirks(&acpi_quirks);
/* If the user manually set the disabled hint to 0, force-enable ACPI. */
if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
acpi_quirks &= ~ACPI_Q_BROKEN;
if (acpi_quirks & ACPI_Q_BROKEN) {
printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n");
status = AE_SUPPORT;
}
return_VALUE (status);
}
/*
* Detect ACPI, perform early initialisation
*/
static void
acpi_identify(driver_t *driver, device_t parent)
{
device_t child;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
if (!cold)
return_VOID;
/* Check that we haven't been disabled with a hint. */
if (resource_disabled("acpi", 0))
return_VOID;
/* Make sure we're not being doubly invoked. */
if (device_find_child(parent, "acpi", 0) != NULL)
return_VOID;
snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
/* Initialize root tables. */
if (ACPI_FAILURE(acpi_Startup())) {
printf("ACPI: Try disabling either ACPI or apic support.\n");
return_VOID;
}
/* Attach the actual ACPI device. */
if ((child = BUS_ADD_CHILD(parent, 10, "acpi", 0)) == NULL) {
device_printf(parent, "device_identify failed\n");
return_VOID;
}
}
/*
* Fetch some descriptive data from ACPI to put in our attach message.
*/
static int
acpi_probe(device_t dev)
{
ACPI_TABLE_RSDP *rsdp;
ACPI_TABLE_HEADER *rsdt;
ACPI_PHYSICAL_ADDRESS paddr;
char buf[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
struct sbuf sb;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
power_pm_get_type() != POWER_PM_TYPE_ACPI) {
device_printf(dev, "probe failed, other PM system enabled.\n");
return_VALUE (ENXIO);
}
if ((paddr = AcpiOsGetRootPointer()) == 0 ||
(rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
return_VALUE (ENXIO);
if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
else
paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
return_VALUE (ENXIO);
sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
sbuf_trim(&sb);
sbuf_putc(&sb, ' ');
sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
sbuf_trim(&sb);
sbuf_finish(&sb);
device_set_desc_copy(dev, sbuf_data(&sb));
sbuf_delete(&sb);
AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
return_VALUE (0);
}
static int
acpi_attach(device_t dev)
{
struct acpi_softc *sc;
ACPI_TABLE_FACS *facs;
ACPI_STATUS status;
int error, state;
UINT32 flags;
UINT8 TypeA, TypeB;
char *env;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
sc = device_get_softc(dev);
sc->acpi_dev = dev;
callout_init(&sc->susp_force_to, TRUE);
error = ENXIO;
/* Initialize resource manager. */
acpi_rman_io.rm_type = RMAN_ARRAY;
acpi_rman_io.rm_start = 0;
acpi_rman_io.rm_end = 0xffff;
acpi_rman_io.rm_descr = "ACPI I/O ports";
if (rman_init(&acpi_rman_io) != 0)
panic("acpi rman_init IO ports failed");
acpi_rman_mem.rm_type = RMAN_ARRAY;
acpi_rman_mem.rm_start = 0;
acpi_rman_mem.rm_end = ~0ul;
acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
if (rman_init(&acpi_rman_mem) != 0)
panic("acpi rman_init memory failed");
/* Initialise the ACPI mutex */
mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF);
/*
* Set the globals from our tunables. This is needed because ACPI-CA
* uses UINT8 for some values and we have no tunable_byte.
*/
AcpiGbl_AllMethodsSerialized = acpi_serialize_methods;
AcpiGbl_EnableInterpreterSlack = TRUE;
/* Start up the ACPI CA subsystem. */
status = AcpiInitializeSubsystem();
if (ACPI_FAILURE(status)) {
device_printf(dev, "Could not initialize Subsystem: %s\n",
AcpiFormatException(status));
goto out;
}
/* Load ACPI name space. */
status = AcpiLoadTables();
if (ACPI_FAILURE(status)) {
device_printf(dev, "Could not load Namespace: %s\n",
AcpiFormatException(status));
goto out;
}
/* Install the default address space handlers. */
status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT,
ACPI_ADR_SPACE_SYSTEM_MEMORY, ACPI_DEFAULT_HANDLER, NULL, NULL);
if (ACPI_FAILURE(status)) {
device_printf(dev, "Could not initialise SystemMemory handler: %s\n",
AcpiFormatException(status));
goto out;
}
status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT,
ACPI_ADR_SPACE_SYSTEM_IO, ACPI_DEFAULT_HANDLER, NULL, NULL);
if (ACPI_FAILURE(status)) {
device_printf(dev, "Could not initialise SystemIO handler: %s\n",
AcpiFormatException(status));
goto out;
}
status = AcpiInstallAddressSpaceHandler(ACPI_ROOT_OBJECT,
ACPI_ADR_SPACE_PCI_CONFIG, ACPI_DEFAULT_HANDLER, NULL, NULL);
if (ACPI_FAILURE(status)) {
device_printf(dev, "could not initialise PciConfig handler: %s\n",
AcpiFormatException(status));
goto out;
}
/*
* Note that some systems (specifically, those with namespace evaluation
* issues that require the avoidance of parts of the namespace) must
* avoid running _INI and _STA on everything, as well as dodging the final
* object init pass.
*
* For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
*
* XXX We should arrange for the object init pass after we have attached
* all our child devices, but on many systems it works here.
*/
flags = 0;
if (testenv("debug.acpi.avoid"))
flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
/* Bring the hardware and basic handlers online. */
if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
device_printf(dev, "Could not enable ACPI: %s\n",
AcpiFormatException(status));
goto out;
}
/*
* Call the ECDT probe function to provide EC functionality before
* the namespace has been evaluated.
*
* XXX This happens before the sysresource devices have been probed and
* attached so its resources come from nexus0. In practice, this isn't
* a problem but should be addressed eventually.
*/
acpi_ec_ecdt_probe(dev);
/* Bring device objects and regions online. */
if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
device_printf(dev, "Could not initialize ACPI objects: %s\n",
AcpiFormatException(status));
goto out;
}
/*
* Setup our sysctl tree.
*
* XXX: This doesn't check to make sure that none of these fail.
*/
sysctl_ctx_init(&sc->acpi_sysctl_ctx);
sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
device_get_name(dev), CTLFLAG_RD, 0, "");
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD,
0, 0, acpi_supported_sleep_state_sysctl, "A", "");
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW,
&sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", "");
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW,
&sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", "");
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW,
&sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", "");
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW,
&sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", "");
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW,
&sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", "");
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
"sleep delay");
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode");
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
&sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
OID_AUTO, "handle_reboot", CTLFLAG_RW,
&sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
/*
* Default to 1 second before sleeping to give some machines time to
* stabilize.
*/
sc->acpi_sleep_delay = 1;
if (bootverbose)
sc->acpi_verbose = 1;
if ((env = getenv("hw.acpi.verbose")) != NULL) {
if (strcmp(env, "0") != 0)
sc->acpi_verbose = 1;
freeenv(env);
}
/* Only enable S4BIOS by default if the FACS says it is available. */
status = AcpiGetTable(ACPI_SIG_FACS, 0, (ACPI_TABLE_HEADER **)&facs);
if (ACPI_FAILURE(status)) {
device_printf(dev, "couldn't get FACS: %s\n",
AcpiFormatException(status));
error = ENXIO;
goto out;
}
if (facs->Flags & ACPI_FACS_S4_BIOS_PRESENT)
sc->acpi_s4bios = 1;
/*
* Dispatch the default sleep state to devices. The lid switch is set
* to NONE by default to avoid surprising users.
*/
sc->acpi_power_button_sx = ACPI_STATE_S5;
sc->acpi_lid_switch_sx = ACPI_S_STATES_MAX + 1;
sc->acpi_standby_sx = ACPI_STATE_S1;
sc->acpi_suspend_sx = ACPI_STATE_S3;
/* Pick the first valid sleep state for the sleep button default. */
sc->acpi_sleep_button_sx = ACPI_S_STATES_MAX + 1;
for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++)
if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) {
sc->acpi_sleep_button_sx = state;
break;
}
acpi_enable_fixed_events(sc);
/*
* Scan the namespace and attach/initialise children.
*/
/* Register our shutdown handler. */
EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
SHUTDOWN_PRI_LAST);
/*
* Register our acpi event handlers.
* XXX should be configurable eg. via userland policy manager.
*/
EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
sc, ACPI_EVENT_PRI_LAST);
EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
sc, ACPI_EVENT_PRI_LAST);
/* Flag our initial states. */
sc->acpi_enabled = 1;
sc->acpi_sstate = ACPI_STATE_S0;
sc->acpi_sleep_disabled = 0;
/* Create the control device */
sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_WHEEL, 0644,
"acpi");
sc->acpi_dev_t->si_drv1 = sc;
if ((error = acpi_machdep_init(dev)))
goto out;
/* Register ACPI again to pass the correct argument of pm_func. */
power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc);
if (!acpi_disabled("bus"))
acpi_probe_children(dev);
error = 0;
out:
return_VALUE (error);
}
static int
acpi_suspend(device_t dev)
{
device_t child, *devlist;
int error, i, numdevs, pstate;
GIANT_REQUIRED;
/* First give child devices a chance to suspend. */
error = bus_generic_suspend(dev);
if (error)
return (error);
/*
* Now, set them into the appropriate power state, usually D3. If the
* device has an _SxD method for the next sleep state, use that power
* state instead.
*/
device_get_children(dev, &devlist, &numdevs);
for (i = 0; i < numdevs; i++) {
/* If the device is not attached, we've powered it down elsewhere. */
child = devlist[i];
if (!device_is_attached(child))
continue;
/*
* Default to D3 for all sleep states. The _SxD method is optional
* so set the powerstate even if it's absent.
*/
pstate = PCI_POWERSTATE_D3;
error = acpi_device_pwr_for_sleep(device_get_parent(child),
child, &pstate);
if ((error == 0 || error == ESRCH) && acpi_do_powerstate)
pci_set_powerstate(child, pstate);
}
free(devlist, M_TEMP);
error = 0;
return (error);
}
static int
acpi_resume(device_t dev)
{
ACPI_HANDLE handle;
int i, numdevs;
device_t child, *devlist;
GIANT_REQUIRED;
/*
* Put all devices in D0 before resuming them. Call _S0D on each one
* since some systems expect this.
*/
device_get_children(dev, &devlist, &numdevs);
for (i = 0; i < numdevs; i++) {
child = devlist[i];
handle = acpi_get_handle(child);
if (handle)
AcpiEvaluateObject(handle, "_S0D", NULL, NULL);
if (device_is_attached(child) && acpi_do_powerstate)
pci_set_powerstate(child, PCI_POWERSTATE_D0);
}
free(devlist, M_TEMP);
return (bus_generic_resume(dev));
}
static int
acpi_shutdown(device_t dev)
{
GIANT_REQUIRED;
/* Allow children to shutdown first. */
bus_generic_shutdown(dev);
/*
* Enable any GPEs that are able to power-on the system (i.e., RTC).
* Also, disable any that are not valid for this state (most).
*/
acpi_wake_prep_walk(ACPI_STATE_S5);
return (0);
}
/*
* Handle a new device being added
*/
static device_t
acpi_add_child(device_t bus, int order, const char *name, int unit)
{
struct acpi_device *ad;
device_t child;
if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
return (NULL);
resource_list_init(&ad->ad_rl);
child = device_add_child_ordered(bus, order, name, unit);
if (child != NULL)
device_set_ivars(child, ad);
else
free(ad, M_ACPIDEV);
return (child);
}
static int
acpi_print_child(device_t bus, device_t child)
{
struct acpi_device *adev = device_get_ivars(child);
struct resource_list *rl = &adev->ad_rl;
int retval = 0;
retval += bus_print_child_header(bus, child);
retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx");
retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#lx");
retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld");
retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%ld");
if (device_get_flags(child))
retval += printf(" flags %#x", device_get_flags(child));
retval += bus_print_child_footer(bus, child);
return (retval);
}
/*
* If this device is an ACPI child but no one claimed it, attempt
* to power it off. We'll power it back up when a driver is added.
*
* XXX Disabled for now since many necessary devices (like fdc and
* ATA) don't claim the devices we created for them but still expect
* them to be powered up.
*/
static void
acpi_probe_nomatch(device_t bus, device_t child)
{
/* pci_set_powerstate(child, PCI_POWERSTATE_D3); */
}
/*
* If a new driver has a chance to probe a child, first power it up.
*
* XXX Disabled for now (see acpi_probe_nomatch for details).
*/
static void
acpi_driver_added(device_t dev, driver_t *driver)
{
device_t child, *devlist;
int i, numdevs;
DEVICE_IDENTIFY(driver, dev);
device_get_children(dev, &devlist, &numdevs);
for (i = 0; i < numdevs; i++) {
child = devlist[i];
if (device_get_state(child) == DS_NOTPRESENT) {
/* pci_set_powerstate(child, PCI_POWERSTATE_D0); */
if (device_probe_and_attach(child) != 0)
; /* pci_set_powerstate(child, PCI_POWERSTATE_D3); */
}
}
free(devlist, M_TEMP);
}
/* Location hint for devctl(8) */
static int
acpi_child_location_str_method(device_t cbdev, device_t child, char *buf,
size_t buflen)
{
struct acpi_device *dinfo = device_get_ivars(child);
if (dinfo->ad_handle)
snprintf(buf, buflen, "handle=%s", acpi_name(dinfo->ad_handle));
else
snprintf(buf, buflen, "unknown");
return (0);
}
/* PnP information for devctl(8) */
static int
acpi_child_pnpinfo_str_method(device_t cbdev, device_t child, char *buf,
size_t buflen)
{
ACPI_BUFFER adbuf = {ACPI_ALLOCATE_BUFFER, NULL};
ACPI_DEVICE_INFO *adinfo;
struct acpi_device *dinfo = device_get_ivars(child);
char *end;
int error;
error = AcpiGetObjectInfo(dinfo->ad_handle, &adbuf);
adinfo = (ACPI_DEVICE_INFO *) adbuf.Pointer;
if (error)
snprintf(buf, buflen, "unknown");
else
snprintf(buf, buflen, "_HID=%s _UID=%lu",
(adinfo->Valid & ACPI_VALID_HID) ?
adinfo->HardwareId.Value : "none",
(adinfo->Valid & ACPI_VALID_UID) ?
strtoul(adinfo->UniqueId.Value, &end, 10) : 0);
if (adinfo)
AcpiOsFree(adinfo);
return (0);
}
/*
* Handle per-device ivars
*/
static int
acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
{
struct acpi_device *ad;
if ((ad = device_get_ivars(child)) == NULL) {
printf("device has no ivars\n");
return (ENOENT);
}
/* ACPI and ISA compatibility ivars */
switch(index) {
case ACPI_IVAR_HANDLE:
*(ACPI_HANDLE *)result = ad->ad_handle;
break;
case ACPI_IVAR_MAGIC:
*(uintptr_t *)result = ad->ad_magic;
break;
case ACPI_IVAR_PRIVATE:
*(void **)result = ad->ad_private;
break;
case ACPI_IVAR_FLAGS:
*(int *)result = ad->ad_flags;
break;
case ISA_IVAR_VENDORID:
case ISA_IVAR_SERIAL:
case ISA_IVAR_COMPATID:
*(int *)result = -1;
break;
case ISA_IVAR_LOGICALID:
*(int *)result = acpi_isa_get_logicalid(child);
break;
default:
return (ENOENT);
}
return (0);
}
static int
acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
{
struct acpi_device *ad;
if ((ad = device_get_ivars(child)) == NULL) {
printf("device has no ivars\n");
return (ENOENT);
}
switch(index) {
case ACPI_IVAR_HANDLE:
ad->ad_handle = (ACPI_HANDLE)value;
break;
case ACPI_IVAR_MAGIC:
ad->ad_magic = (uintptr_t)value;
break;
case ACPI_IVAR_PRIVATE:
ad->ad_private = (void *)value;
break;
case ACPI_IVAR_FLAGS:
ad->ad_flags = (int)value;
break;
default:
panic("bad ivar write request (%d)", index);
return (ENOENT);
}
return (0);
}
/*
* Handle child resource allocation/removal
*/
static struct resource_list *
acpi_get_rlist(device_t dev, device_t child)
{
struct acpi_device *ad;
ad = device_get_ivars(child);
return (&ad->ad_rl);
}
/*
* Pre-allocate/manage all memory and IO resources. Since rman can't handle
* duplicates, we merge any in the sysresource attach routine.
*/
static int
acpi_sysres_alloc(device_t dev)
{
struct resource *res;
struct resource_list *rl;
struct resource_list_entry *rle;
struct rman *rm;
char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
device_t *children;
int child_count, i;
/*
* Probe/attach any sysresource devices. This would be unnecessary if we
* had multi-pass probe/attach.
*/
if (device_get_children(dev, &children, &child_count) != 0)
return (ENXIO);
for (i = 0; i < child_count; i++) {
if (ACPI_ID_PROBE(dev, children[i], sysres_ids) != NULL)
device_probe_and_attach(children[i]);
}
free(children, M_TEMP);
rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev);
STAILQ_FOREACH(rle, rl, link) {
if (rle->res != NULL) {
device_printf(dev, "duplicate resource for %lx\n", rle->start);
continue;
}
/* Only memory and IO resources are valid here. */
switch (rle->type) {
case SYS_RES_IOPORT:
rm = &acpi_rman_io;
break;
case SYS_RES_MEMORY:
rm = &acpi_rman_mem;
break;
default:
continue;
}
/* Pre-allocate resource and add to our rman pool. */
res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type,
&rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0);
if (res != NULL) {
rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
rle->res = res;
} else
device_printf(dev, "reservation of %lx, %lx (%d) failed\n",
rle->start, rle->count, rle->type);
}
return (0);
}
static struct resource *
acpi_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
ACPI_RESOURCE ares;
struct acpi_device *ad = device_get_ivars(child);
struct resource_list *rl = &ad->ad_rl;
struct resource_list_entry *rle;
struct resource *res;
struct rman *rm;
res = NULL;
/* We only handle memory and IO resources through rman. */
switch (type) {
case SYS_RES_IOPORT:
rm = &acpi_rman_io;
break;
case SYS_RES_MEMORY:
rm = &acpi_rman_mem;
break;
default:
rm = NULL;
}
ACPI_SERIAL_BEGIN(acpi);
/*
* If this is an allocation of the "default" range for a given RID, and
* we know what the resources for this device are (i.e., they're on the
* child's resource list), use those start/end values.
*/
if (bus == device_get_parent(child) && start == 0UL && end == ~0UL) {
rle = resource_list_find(rl, type, *rid);
if (rle == NULL)
goto out;
start = rle->start;
end = rle->end;
count = rle->count;
}
/*
* If this is an allocation of a specific range, see if we can satisfy
* the request from our system resource regions. If we can't, pass the
* request up to the parent.
*/
if (start + count - 1 == end && rm != NULL)
res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
child);
if (res == NULL) {
res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid,
start, end, count, flags);
} else {
rman_set_rid(res, *rid);
/* If requested, activate the resource using the parent's method. */
if (flags & RF_ACTIVE)
if (bus_activate_resource(child, type, *rid, res) != 0) {
rman_release_resource(res);
res = NULL;
goto out;
}
}
if (res != NULL && device_get_parent(child) == bus)
switch (type) {
case SYS_RES_IRQ:
/*
* Since bus_config_intr() takes immediate effect, we cannot
* configure the interrupt associated with a device when we
* parse the resources but have to defer it until a driver
* actually allocates the interrupt via bus_alloc_resource().
*
* XXX: Should we handle the lookup failing?
*/
if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares)))
acpi_config_intr(child, &ares);
break;
}
out:
ACPI_SERIAL_END(acpi);
return (res);
}
static int
acpi_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
struct rman *rm;
int ret;
/* We only handle memory and IO resources through rman. */
switch (type) {
case SYS_RES_IOPORT:
rm = &acpi_rman_io;
break;
case SYS_RES_MEMORY:
rm = &acpi_rman_mem;
break;
default:
rm = NULL;
}
ACPI_SERIAL_BEGIN(acpi);
/*
* If this resource belongs to one of our internal managers,
* deactivate it and release it to the local pool. If it doesn't,
* pass this request up to the parent.
*/
if (rm != NULL && rman_is_region_manager(r, rm)) {
if (rman_get_flags(r) & RF_ACTIVE) {
ret = bus_deactivate_resource(child, type, rid, r);
if (ret != 0)
goto out;
}
ret = rman_release_resource(r);
} else
ret = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, r);
out:
ACPI_SERIAL_END(acpi);
return (ret);
}
static void
acpi_delete_resource(device_t bus, device_t child, int type, int rid)
{
struct resource_list *rl;
rl = acpi_get_rlist(bus, child);
resource_list_delete(rl, type, rid);
}
/* Allocate an IO port or memory resource, given its GAS. */
int
acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas,
struct resource **res, u_int flags)
{
int error, res_type;
error = ENOMEM;
if (type == NULL || rid == NULL || gas == NULL || res == NULL)
return (EINVAL);
/* We only support memory and IO spaces. */
switch (gas->SpaceId) {
case ACPI_ADR_SPACE_SYSTEM_MEMORY:
res_type = SYS_RES_MEMORY;
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
res_type = SYS_RES_IOPORT;
break;
default:
return (EOPNOTSUPP);
}
/*
* If the register width is less than 8, assume the BIOS author means
* it is a bit field and just allocate a byte.
*/
if (gas->BitWidth && gas->BitWidth < 8)
gas->BitWidth = 8;
/* Validate the address after we're sure we support the space. */
if (gas->Address == 0 || gas->BitWidth == 0)
return (EINVAL);
bus_set_resource(dev, res_type, *rid, gas->Address,
gas->BitWidth / 8);
*res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
if (*res != NULL) {
*type = res_type;
error = 0;
} else
bus_delete_resource(dev, res_type, *rid);
return (error);
}
/* Probe _HID and _CID for compatible ISA PNP ids. */
static uint32_t
acpi_isa_get_logicalid(device_t dev)
{
ACPI_DEVICE_INFO *devinfo;
ACPI_BUFFER buf;
ACPI_HANDLE h;
ACPI_STATUS error;
u_int32_t pnpid;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
pnpid = 0;
buf.Pointer = NULL;
buf.Length = ACPI_ALLOCATE_BUFFER;
/* Fetch and validate the HID. */
if ((h = acpi_get_handle(dev)) == NULL)
goto out;
error = AcpiGetObjectInfo(h, &buf);
if (ACPI_FAILURE(error))
goto out;
devinfo = (ACPI_DEVICE_INFO *)buf.Pointer;
if ((devinfo->Valid & ACPI_VALID_HID) != 0)
pnpid = PNP_EISAID(devinfo->HardwareId.Value);
out:
if (buf.Pointer != NULL)
AcpiOsFree(buf.Pointer);
return_VALUE (pnpid);
}
static int
acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
{
ACPI_DEVICE_INFO *devinfo;
ACPI_BUFFER buf;
ACPI_HANDLE h;
ACPI_STATUS error;
uint32_t *pnpid;
int valid, i;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
pnpid = cids;
valid = 0;
buf.Pointer = NULL;
buf.Length = ACPI_ALLOCATE_BUFFER;
/* Fetch and validate the CID */
if ((h = acpi_get_handle(dev)) == NULL)
goto out;
error = AcpiGetObjectInfo(h, &buf);
if (ACPI_FAILURE(error))
goto out;
devinfo = (ACPI_DEVICE_INFO *)buf.Pointer;
if ((devinfo->Valid & ACPI_VALID_CID) == 0)
goto out;
if (devinfo->CompatibilityId.Count < count)
count = devinfo->CompatibilityId.Count;
for (i = 0; i < count; i++) {
if (strncmp(devinfo->CompatibilityId.Id[i].Value, "PNP", 3) != 0)
continue;
*pnpid++ = PNP_EISAID(devinfo->CompatibilityId.Id[i].Value);
valid++;
}
out:
if (buf.Pointer != NULL)
AcpiOsFree(buf.Pointer);
return_VALUE (valid);
}
static char *
acpi_device_id_probe(device_t bus, device_t dev, char **ids)
{
ACPI_HANDLE h;
int i;
h = acpi_get_handle(dev);
if (ids == NULL || h == NULL || acpi_get_type(dev) != ACPI_TYPE_DEVICE)
return (NULL);
/* Try to match one of the array of IDs with a HID or CID. */
for (i = 0; ids[i] != NULL; i++) {
if (acpi_MatchHid(h, ids[i]))
return (ids[i]);
}
return (NULL);
}
static ACPI_STATUS
acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
{
ACPI_HANDLE h;
if (dev == NULL)
h = ACPI_ROOT_OBJECT;
else if ((h = acpi_get_handle(dev)) == NULL)
return (AE_BAD_PARAMETER);
return (AcpiEvaluateObject(h, pathname, parameters, ret));
}
static int
acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
{
struct acpi_softc *sc;
ACPI_HANDLE handle;
ACPI_STATUS status;
char sxd[8];
int error;
sc = device_get_softc(bus);
handle = acpi_get_handle(dev);
/*
* XXX If we find these devices, don't try to power them down.
* The serial and IRDA ports on my T23 hang the system when
* set to D3 and it appears that such legacy devices may
* need special handling in their drivers.
*/
if (handle == NULL ||
acpi_MatchHid(handle, "PNP0500") ||
acpi_MatchHid(handle, "PNP0501") ||
acpi_MatchHid(handle, "PNP0502") ||
acpi_MatchHid(handle, "PNP0510") ||
acpi_MatchHid(handle, "PNP0511"))
return (ENXIO);
/*
* Override next state with the value from _SxD, if present. If no
* dstate argument was provided, don't fetch the return value.
*/
snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate);
if (dstate)
status = acpi_GetInteger(handle, sxd, dstate);
else
status = AcpiEvaluateObject(handle, sxd, NULL, NULL);
switch (status) {
case AE_OK:
error = 0;
break;
case AE_NOT_FOUND:
error = ESRCH;
break;
default:
error = ENXIO;
break;
}
return (error);
}
/* Callback arg for our implementation of walking the namespace. */
struct acpi_device_scan_ctx {
acpi_scan_cb_t user_fn;
void *arg;
ACPI_HANDLE parent;
};
static ACPI_STATUS
acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
{
struct acpi_device_scan_ctx *ctx;
device_t dev, old_dev;
ACPI_STATUS status;
ACPI_OBJECT_TYPE type;
/*
* Skip this device if we think we'll have trouble with it or it is
* the parent where the scan began.
*/
ctx = (struct acpi_device_scan_ctx *)arg;
if (acpi_avoid(h) || h == ctx->parent)
return (AE_OK);
/* If this is not a valid device type (e.g., a method), skip it. */
if (ACPI_FAILURE(AcpiGetType(h, &type)))
return (AE_OK);
if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
return (AE_OK);
/*
* Call the user function with the current device. If it is unchanged
* afterwards, return. Otherwise, we update the handle to the new dev.
*/
old_dev = acpi_get_device(h);
dev = old_dev;
status = ctx->user_fn(h, &dev, level, ctx->arg);
if (ACPI_FAILURE(status) || old_dev == dev)
return (status);
/* Remove the old child and its connection to the handle. */
if (old_dev != NULL) {
device_delete_child(device_get_parent(old_dev), old_dev);
AcpiDetachData(h, acpi_fake_objhandler);
}
/* Recreate the handle association if the user created a device. */
if (dev != NULL)
AcpiAttachData(h, acpi_fake_objhandler, dev);
return (AE_OK);
}
static ACPI_STATUS
acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
acpi_scan_cb_t user_fn, void *arg)
{
ACPI_HANDLE h;
struct acpi_device_scan_ctx ctx;
if (acpi_disabled("children"))
return (AE_OK);
if (dev == NULL)
h = ACPI_ROOT_OBJECT;
else if ((h = acpi_get_handle(dev)) == NULL)
return (AE_BAD_PARAMETER);
ctx.user_fn = user_fn;
ctx.arg = arg;
ctx.parent = h;
return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
acpi_device_scan_cb, &ctx, NULL));
}
/*
* Even though ACPI devices are not PCI, we use the PCI approach for setting
* device power states since it's close enough to ACPI.
*/
static int
acpi_set_powerstate_method(device_t bus, device_t child, int state)
{
ACPI_HANDLE h;
ACPI_STATUS status;
int error;
error = 0;
h = acpi_get_handle(child);
if (state < ACPI_STATE_D0 || state > ACPI_STATE_D3)
return (EINVAL);
if (h == NULL)
return (0);
/* Ignore errors if the power methods aren't present. */
status = acpi_pwr_switch_consumer(h, state);
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND
&& status != AE_BAD_PARAMETER)
device_printf(bus, "failed to set ACPI power state D%d on %s: %s\n",
state, acpi_name(h), AcpiFormatException(status));
return (error);
}
static int
acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
{
int result, cid_count, i;
uint32_t lid, cids[8];
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/*
* ISA-style drivers attached to ACPI may persist and
* probe manually if we return ENOENT. We never want
* that to happen, so don't ever return it.
*/
result = ENXIO;
/* Scan the supplied IDs for a match */
lid = acpi_isa_get_logicalid(child);
cid_count = acpi_isa_get_compatid(child, cids, 8);
while (ids && ids->ip_id) {
if (lid == ids->ip_id) {
result = 0;
goto out;
}
for (i = 0; i < cid_count; i++) {
if (cids[i] == ids->ip_id) {
result = 0;
goto out;
}
}
ids++;
}
out:
if (result == 0 && ids->ip_desc)
device_set_desc(child, ids->ip_desc);
return_VALUE (result);
}
/*
* Scan all of the ACPI namespace and attach child devices.
*
* We should only expect to find devices in the \_PR, \_TZ, \_SI, and
* \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
* However, in violation of the spec, some systems place their PCI link
* devices in \, so we have to walk the whole namespace. We check the
* type of namespace nodes, so this should be ok.
*/
static void
acpi_probe_children(device_t bus)
{
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/*
* Scan the namespace and insert placeholders for all the devices that
* we find. We also probe/attach any early devices.
*
* Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
* we want to create nodes for all devices, not just those that are
* currently present. (This assumes that we don't want to create/remove
* devices as they appear, which might be smarter.)
*/
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child,
bus, NULL);
/* Pre-allocate resources for our rman from any sysresource devices. */
acpi_sysres_alloc(bus);
/* Create any static children by calling device identify methods. */
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
bus_generic_probe(bus);
/* Probe/attach all children, created staticly and from the namespace. */
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "first bus_generic_attach\n"));
bus_generic_attach(bus);
/*
* Some of these children may have attached others as part of their attach
* process (eg. the root PCI bus driver), so rescan.
*/
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "second bus_generic_attach\n"));
bus_generic_attach(bus);
/* Attach wake sysctls. */
acpi_wake_sysctl_walk(bus);
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
return_VOID;
}
/*
* Determine the probe order for a given device and return non-zero if it
* should be attached immediately.
*/
static int
acpi_probe_order(ACPI_HANDLE handle, int *order)
{
ACPI_OBJECT_TYPE type;
u_int addr;
/*
* 1. I/O port and memory system resource holders
* 2. Embedded controllers (to handle early accesses)
* 3. PCI Link Devices
* 11 - 266. Host-PCI bridges sorted by _ADR
* 280. CPUs
*/
AcpiGetType(handle, &type);
if (acpi_MatchHid(handle, "PNP0C01") || acpi_MatchHid(handle, "PNP0C02"))
*order = 1;
else if (acpi_MatchHid(handle, "PNP0C09"))
*order = 2;
else if (acpi_MatchHid(handle, "PNP0C0F"))
*order = 3;
else if (acpi_MatchHid(handle, "PNP0A03")) {
if (ACPI_SUCCESS(acpi_GetInteger(handle, "_ADR", &addr)))
*order = 11 + ACPI_ADR_PCI_SLOT(addr) * (PCI_FUNCMAX + 1) +
ACPI_ADR_PCI_FUNC(addr);
else
*order = 11;
} else if (type == ACPI_TYPE_PROCESSOR)
*order = 280;
return (0);
}
/*
* Evaluate a child device and determine whether we might attach a device to
* it.
*/
static ACPI_STATUS
acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
{
ACPI_OBJECT_TYPE type;
ACPI_HANDLE h;
device_t bus, child;
int order;
char *handle_str, **search;
static char *scopes[] = {"\\_PR_", "\\_TZ_", "\\_SI_", "\\_SB_", NULL};
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
/* Skip this device if we think we'll have trouble with it. */
if (acpi_avoid(handle))
return_ACPI_STATUS (AE_OK);
bus = (device_t)context;
if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
switch (type) {
case ACPI_TYPE_DEVICE:
case ACPI_TYPE_PROCESSOR:
case ACPI_TYPE_THERMAL:
case ACPI_TYPE_POWER:
if (acpi_disabled("children"))
break;
/*
* Since we scan from \, be sure to skip system scope objects.
* At least \_SB and \_TZ are detected as devices (ACPI-CA bug?)
*/
handle_str = acpi_name(handle);
for (search = scopes; *search != NULL; search++) {
if (strcmp(handle_str, *search) == 0)
break;
}
if (*search != NULL)
break;
/*
* Create a placeholder device for this node. Sort the
* placeholder so that the probe/attach passes will run
* breadth-first. Orders less than ACPI_DEV_BASE_ORDER
* are reserved for special objects (i.e., system
* resources). Orders between ACPI_DEV_BASE_ORDER and 300
* are used for Host-PCI bridges (and effectively all
* their children) and CPUs. Larger values are used for
* all other devices.
*/
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
order = level * 10 + 300;
acpi_probe_order(handle, &order);
child = BUS_ADD_CHILD(bus, order, NULL, -1);
if (child == NULL)
break;
/* Associate the handle with the device_t and vice versa. */
acpi_set_handle(child, handle);
AcpiAttachData(handle, acpi_fake_objhandler, child);
/*
* Check that the device is present. If it's not present,
* leave it disabled (so that we have a device_t attached to
* the handle, but we don't probe it).
*
* XXX PCI link devices sometimes report "present" but not
* "functional" (i.e. if disabled). Go ahead and probe them
* anyway since we may enable them later.
*/
if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
/* Never disable PCI link devices. */
if (acpi_MatchHid(handle, "PNP0C0F"))
break;
/*
* Docking stations should remain enabled since the system
* may be undocked at boot.
*/
if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
break;
device_disable(child);
break;
}
/*
* Get the device's resource settings and attach them.
* Note that if the device has _PRS but no _CRS, we need
* to decide when it's appropriate to try to configure the
* device. Ignore the return value here; it's OK for the
* device not to have any resources.
*/
acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
break;
}
}
return_ACPI_STATUS (AE_OK);
}
/*
* AcpiAttachData() requires an object handler but never uses it. This is a
* placeholder object handler so we can store a device_t in an ACPI_HANDLE.
*/
void
acpi_fake_objhandler(ACPI_HANDLE h, UINT32 fn, void *data)
{
}
static void
acpi_shutdown_final(void *arg, int howto)
{
struct acpi_softc *sc;
ACPI_STATUS status;
/*
* XXX Shutdown code should only run on the BSP (cpuid 0).
* Some chipsets do not power off the system correctly if called from
* an AP.
*/
sc = arg;
if ((howto & RB_POWEROFF) != 0) {
status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
if (ACPI_FAILURE(status)) {
printf("AcpiEnterSleepStatePrep failed - %s\n",
AcpiFormatException(status));
return;
}
printf("Powering system off using ACPI\n");
ACPI_DISABLE_IRQS();
status = AcpiEnterSleepState(ACPI_STATE_S5);
if (ACPI_FAILURE(status)) {
printf("ACPI power-off failed - %s\n", AcpiFormatException(status));
} else {
DELAY(1000000);
printf("ACPI power-off failed - timeout\n");
}
} else if ((howto & RB_HALT) == 0 &&
(AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) &&
sc->acpi_handle_reboot) {
/* Reboot using the reset register. */
status = AcpiHwLowLevelWrite(
AcpiGbl_FADT.ResetRegister.BitWidth,
AcpiGbl_FADT.ResetValue, &AcpiGbl_FADT.ResetRegister);
if (ACPI_FAILURE(status)) {
printf("ACPI reset failed - %s\n", AcpiFormatException(status));
} else {
DELAY(1000000);
printf("ACPI reset failed - timeout\n");
}
} else if (sc->acpi_do_disable && panicstr == NULL) {
/*
* Only disable ACPI if the user requested. On some systems, writing
* the disable value to SMI_CMD hangs the system.
*/
printf("Shutting down ACPI\n");
AcpiTerminate();
}
}
static void
acpi_enable_fixed_events(struct acpi_softc *sc)
{
static int first_time = 1;
/* Enable and clear fixed events and install handlers. */
if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
acpi_event_power_button_sleep, sc);
if (first_time)
device_printf(sc->acpi_dev, "Power Button (fixed)\n");
}
if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
acpi_event_sleep_button_sleep, sc);
if (first_time)
device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
}
first_time = 0;
}
/*
* Returns true if the device is actually present and should
* be attached to. This requires the present, enabled, UI-visible
* and diagnostics-passed bits to be set.
*/
BOOLEAN
acpi_DeviceIsPresent(device_t dev)
{
ACPI_DEVICE_INFO *devinfo;
ACPI_HANDLE h;
ACPI_BUFFER buf;
ACPI_STATUS error;
int ret;
ret = FALSE;
if ((h = acpi_get_handle(dev)) == NULL)
return (FALSE);
buf.Pointer = NULL;
buf.Length = ACPI_ALLOCATE_BUFFER;
error = AcpiGetObjectInfo(h, &buf);
if (ACPI_FAILURE(error))
return (FALSE);
devinfo = (ACPI_DEVICE_INFO *)buf.Pointer;
/* If no _STA method, must be present */
if ((devinfo->Valid & ACPI_VALID_STA) == 0)
ret = TRUE;
/* Return true for 'present' and 'functioning' */
if (ACPI_DEVICE_PRESENT(devinfo->CurrentStatus))
ret = TRUE;
AcpiOsFree(buf.Pointer);
return (ret);
}
/*
* Returns true if the battery is actually present and inserted.
*/
BOOLEAN
acpi_BatteryIsPresent(device_t dev)
{
ACPI_DEVICE_INFO *devinfo;
ACPI_HANDLE h;
ACPI_BUFFER buf;
ACPI_STATUS error;
int ret;
ret = FALSE;
if ((h = acpi_get_handle(dev)) == NULL)
return (FALSE);
buf.Pointer = NULL;
buf.Length = ACPI_ALLOCATE_BUFFER;
error = AcpiGetObjectInfo(h, &buf);
if (ACPI_FAILURE(error))
return (FALSE);
devinfo = (ACPI_DEVICE_INFO *)buf.Pointer;
/* If no _STA method, must be present */
if ((devinfo->Valid & ACPI_VALID_STA) == 0)
ret = TRUE;
/* Return true for 'present', 'battery present', and 'functioning' */
if (ACPI_BATTERY_PRESENT(devinfo->CurrentStatus))
ret = TRUE;
AcpiOsFree(buf.Pointer);
return (ret);
}
/*
* Match a HID string against a handle
*/
static BOOLEAN
acpi_MatchHid(ACPI_HANDLE h, const char *hid)
{
ACPI_DEVICE_INFO *devinfo;
ACPI_BUFFER buf;
ACPI_STATUS error;
int ret, i;
ret = FALSE;
if (hid == NULL || h == NULL)
return (ret);
buf.Pointer = NULL;
buf.Length = ACPI_ALLOCATE_BUFFER;
error = AcpiGetObjectInfo(h, &buf);
if (ACPI_FAILURE(error))
return (ret);
devinfo = (ACPI_DEVICE_INFO *)buf.Pointer;
if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
strcmp(hid, devinfo->HardwareId.Value) == 0)
ret = TRUE;
else if ((devinfo->Valid & ACPI_VALID_CID) != 0) {
for (i = 0; i < devinfo->CompatibilityId.Count; i++) {
if (strcmp(hid, devinfo->CompatibilityId.Id[i].Value) == 0) {
ret = TRUE;
break;
}
}
}
AcpiOsFree(buf.Pointer);
return (ret);
}
/*
* Return the handle of a named object within our scope, ie. that of (parent)
* or one if its parents.
*/
ACPI_STATUS
acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
{
ACPI_HANDLE r;
ACPI_STATUS status;
/* Walk back up the tree to the root */
for (;;) {
status = AcpiGetHandle(parent, path, &r);
if (ACPI_SUCCESS(status)) {
*result = r;
return (AE_OK);
}
/* XXX Return error here? */
if (status != AE_NOT_FOUND)
return (AE_OK);
if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
return (AE_NOT_FOUND);
parent = r;
}
}
/* Find the difference between two PM tick counts. */
uint32_t
acpi_TimerDelta(uint32_t end, uint32_t start)
{
uint32_t delta;
if (end >= start)
delta = end - start;
else if (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER)
delta = ((0xFFFFFFFF - start) + end + 1);
else
delta = ((0x00FFFFFF - start) + end + 1) & 0x00FFFFFF;
return (delta);
}
/*
* Allocate a buffer with a preset data size.
*/
ACPI_BUFFER *
acpi_AllocBuffer(int size)
{
ACPI_BUFFER *buf;
if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
return (NULL);
buf->Length = size;
buf->Pointer = (void *)(buf + 1);
return (buf);
}
ACPI_STATUS
acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
{
ACPI_OBJECT arg1;
ACPI_OBJECT_LIST args;
arg1.Type = ACPI_TYPE_INTEGER;
arg1.Integer.Value = number;
args.Count = 1;
args.Pointer = &arg1;
return (AcpiEvaluateObject(handle, path, &args, NULL));
}
/*
* Evaluate a path that should return an integer.
*/
ACPI_STATUS
acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
{
ACPI_STATUS status;
ACPI_BUFFER buf;
ACPI_OBJECT param;
if (handle == NULL)
handle = ACPI_ROOT_OBJECT;
/*
* Assume that what we've been pointed at is an Integer object, or
* a method that will return an Integer.
*/
buf.Pointer = &param;
buf.Length = sizeof(param);
status = AcpiEvaluateObject(handle, path, NULL, &buf);
if (ACPI_SUCCESS(status)) {
if (param.Type == ACPI_TYPE_INTEGER)
*number = param.Integer.Value;
else
status = AE_TYPE;
}
/*
* In some applications, a method that's expected to return an Integer
* may instead return a Buffer (probably to simplify some internal
* arithmetic). We'll try to fetch whatever it is, and if it's a Buffer,
* convert it into an Integer as best we can.
*
* This is a hack.
*/
if (status == AE_BUFFER_OVERFLOW) {
if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
status = AE_NO_MEMORY;
} else {
status = AcpiEvaluateObject(handle, path, NULL, &buf);
if (ACPI_SUCCESS(status))
status = acpi_ConvertBufferToInteger(&buf, number);
AcpiOsFree(buf.Pointer);
}
}
return (status);
}
ACPI_STATUS
acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
{
ACPI_OBJECT *p;
UINT8 *val;
int i;
p = (ACPI_OBJECT *)bufp->Pointer;
if (p->Type == ACPI_TYPE_INTEGER) {
*number = p->Integer.Value;
return (AE_OK);
}
if (p->Type != ACPI_TYPE_BUFFER)
return (AE_TYPE);
if (p->Buffer.Length > sizeof(int))
return (AE_BAD_DATA);
*number = 0;
val = p->Buffer.Pointer;
for (i = 0; i < p->Buffer.Length; i++)
*number += val[i] << (i * 8);
return (AE_OK);
}
/*
* Iterate over the elements of an a package object, calling the supplied
* function for each element.
*
* XXX possible enhancement might be to abort traversal on error.
*/
ACPI_STATUS
acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
{
ACPI_OBJECT *comp;
int i;
if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
return (AE_BAD_PARAMETER);
/* Iterate over components */
i = 0;
comp = pkg->Package.Elements;
for (; i < pkg->Package.Count; i++, comp++)
func(comp, arg);
return (AE_OK);
}
/*
* Find the (index)th resource object in a set.
*/
ACPI_STATUS
acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
{
ACPI_RESOURCE *rp;
int i;
rp = (ACPI_RESOURCE *)buf->Pointer;
i = index;
while (i-- > 0) {
/* Range check */
if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
return (AE_BAD_PARAMETER);
/* Check for terminator */
if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
return (AE_NOT_FOUND);
rp = ACPI_NEXT_RESOURCE(rp);
}
if (resp != NULL)
*resp = rp;
return (AE_OK);
}
/*
* Append an ACPI_RESOURCE to an ACPI_BUFFER.
*
* Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
* provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible
* backing block. If the ACPI_RESOURCE is NULL, return an empty set of
* resources.
*/
#define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512
ACPI_STATUS
acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
{
ACPI_RESOURCE *rp;
void *newp;
/* Initialise the buffer if necessary. */
if (buf->Pointer == NULL) {
buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
return (AE_NO_MEMORY);
rp = (ACPI_RESOURCE *)buf->Pointer;
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
rp->Length = 0;
}
if (res == NULL)
return (AE_OK);
/*
* Scan the current buffer looking for the terminator.
* This will either find the terminator or hit the end
* of the buffer and return an error.
*/
rp = (ACPI_RESOURCE *)buf->Pointer;
for (;;) {
/* Range check, don't go outside the buffer */
if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
return (AE_BAD_PARAMETER);
if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
break;
rp = ACPI_NEXT_RESOURCE(rp);
}
/*
* Check the size of the buffer and expand if required.
*
* Required size is:
* size of existing resources before terminator +
* size of new resource and header +
* size of terminator.
*
* Note that this loop should really only run once, unless
* for some reason we are stuffing a *really* huge resource.
*/
while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) +
res->Length + ACPI_RS_SIZE_NO_DATA +
ACPI_RS_SIZE_MIN) >= buf->Length) {
if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
return (AE_NO_MEMORY);
bcopy(buf->Pointer, newp, buf->Length);
rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
AcpiOsFree(buf->Pointer);
buf->Pointer = newp;
buf->Length += buf->Length;
}
/* Insert the new resource. */
bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
/* And add the terminator. */
rp = ACPI_NEXT_RESOURCE(rp);
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
rp->Length = 0;
return (AE_OK);
}
/*
* Set interrupt model.
*/
ACPI_STATUS
acpi_SetIntrModel(int model)
{
return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
}
/*
* DEPRECATED. This interface has serious deficiencies and will be
* removed.
*
* Immediately enter the sleep state. In the old model, acpiconf(8) ran
* rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
*/
ACPI_STATUS
acpi_SetSleepState(struct acpi_softc *sc, int state)
{
static int once;
if (!once) {
printf(
"warning: acpi_SetSleepState() deprecated, need to update your software\n");
once = 1;
}
return (acpi_EnterSleepState(sc, state));
}
static void
acpi_sleep_force(void *arg)
{
struct acpi_softc *sc;
printf("acpi: suspend request timed out, forcing sleep now\n");
sc = arg;
if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
printf("acpi: force sleep state S%d failed\n", sc->acpi_next_sstate);
}
/*
* Request that the system enter the given suspend state. All /dev/apm
* devices and devd(8) will be notified. Userland then has a chance to
* save state and acknowledge the request. The system sleeps once all
* acks are in.
*/
int
acpi_ReqSleepState(struct acpi_softc *sc, int state)
{
struct apm_clone_data *clone;
if (state < ACPI_STATE_S1 || state > ACPI_STATE_S5)
return (EINVAL);
/* S5 (soft-off) should be entered directly with no waiting. */
if (state == ACPI_STATE_S5) {
if (ACPI_SUCCESS(acpi_EnterSleepState(sc, state)))
return (0);
else
return (ENXIO);
}
#if !defined(__i386__)
/* This platform does not support acpi suspend/resume. */
return (EOPNOTSUPP);
#endif
/* If a suspend request is already in progress, just return. */
ACPI_LOCK(acpi);
if (sc->acpi_next_sstate != 0) {
ACPI_UNLOCK(acpi);
return (0);
}
/* Record the pending state and notify all apm devices. */
sc->acpi_next_sstate = state;
STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
clone->notify_status = APM_EV_NONE;
if ((clone->flags & ACPI_EVF_DEVD) == 0) {
selwakeuppri(&clone->sel_read, PZERO);
KNOTE_UNLOCKED(&clone->sel_read.si_note, 0);
}
}
/* If devd(8) is not running, immediately enter the sleep state. */
if (devctl_process_running() == FALSE) {
ACPI_UNLOCK(acpi);
if (ACPI_SUCCESS(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) {
return (0);
} else {
return (ENXIO);
}
}
/* Now notify devd(8) also. */
acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state);
/*
* Set a timeout to fire if userland doesn't ack the suspend request
* in time. This way we still eventually go to sleep if we were
* overheating or running low on battery, even if userland is hung.
* We cancel this timeout once all userland acks are in or the
* suspend request is aborted.
*/
callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
ACPI_UNLOCK(acpi);
return (0);
}
/*
* Acknowledge (or reject) a pending sleep state. The caller has
* prepared for suspend and is now ready for it to proceed. If the
* error argument is non-zero, it indicates suspend should be cancelled
* and gives an errno value describing why. Once all votes are in,
* we suspend the system.
*/
int
acpi_AckSleepState(struct apm_clone_data *clone, int error)
{
struct acpi_softc *sc;
int ret, sleeping;
#if !defined(__i386__)
/* This platform does not support acpi suspend/resume. */
return (EOPNOTSUPP);
#endif
/* If no pending sleep state, return an error. */
ACPI_LOCK(acpi);
sc = clone->acpi_sc;
if (sc->acpi_next_sstate == 0) {
ACPI_UNLOCK(acpi);
return (ENXIO);
}
/* Caller wants to abort suspend process. */
if (error) {
sc->acpi_next_sstate = 0;
callout_stop(&sc->susp_force_to);
printf("acpi: listener on %s cancelled the pending suspend\n",
devtoname(clone->cdev));
ACPI_UNLOCK(acpi);
return (0);
}
/*
* Mark this device as acking the suspend request. Then, walk through
* all devices, seeing if they agree yet. We only count devices that
* are writable since read-only devices couldn't ack the request.
*/
clone->notify_status = APM_EV_ACKED;
sleeping = TRUE;
STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
clone->notify_status != APM_EV_ACKED) {
sleeping = FALSE;
break;
}
}
/* If all devices have voted "yes", we will suspend now. */
if (sleeping)
callout_stop(&sc->susp_force_to);
ACPI_UNLOCK(acpi);
ret = 0;
if (sleeping) {
if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
ret = ENODEV;
}
return (ret);
}
static void
acpi_sleep_enable(void *arg)
{
((struct acpi_softc *)arg)->acpi_sleep_disabled = 0;
}
enum acpi_sleep_state {
ACPI_SS_NONE,
ACPI_SS_GPE_SET,
ACPI_SS_DEV_SUSPEND,
ACPI_SS_SLP_PREP,
ACPI_SS_SLEPT,
};
/*
* Enter the desired system sleep state.
*
* Currently we support S1-S5 but S4 is only S4BIOS
*/
static ACPI_STATUS
acpi_EnterSleepState(struct acpi_softc *sc, int state)
{
ACPI_STATUS status;
UINT8 TypeA;
UINT8 TypeB;
enum acpi_sleep_state slp_state;
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
/* Re-entry once we're suspending is not allowed. */
status = AE_OK;
ACPI_LOCK(acpi);
if (sc->acpi_sleep_disabled) {
ACPI_UNLOCK(acpi);
printf("acpi: suspend request ignored (not ready yet)\n");
return (AE_ERROR);
}
sc->acpi_sleep_disabled = 1;
ACPI_UNLOCK(acpi);
/*
* Be sure to hold Giant across DEVICE_SUSPEND/RESUME since non-MPSAFE
* drivers need this.
*/
mtx_lock(&Giant);
slp_state = ACPI_SS_NONE;
switch (state) {
case ACPI_STATE_S1:
case ACPI_STATE_S2:
case ACPI_STATE_S3:
case ACPI_STATE_S4:
status = AcpiGetSleepTypeData(state, &TypeA, &TypeB);
if (status == AE_NOT_FOUND) {
device_printf(sc->acpi_dev,
"Sleep state S%d not supported by BIOS\n", state);
break;
} else if (ACPI_FAILURE(status)) {
device_printf(sc->acpi_dev, "AcpiGetSleepTypeData failed - %s\n",
AcpiFormatException(status));
break;
}
sc->acpi_sstate = state;
/* Enable any GPEs as appropriate and requested by the user. */
acpi_wake_prep_walk(state);
slp_state = ACPI_SS_GPE_SET;
/*
* Inform all devices that we are going to sleep. If at least one
* device fails, DEVICE_SUSPEND() automatically resumes the tree.
*
* XXX Note that a better two-pass approach with a 'veto' pass
* followed by a "real thing" pass would be better, but the current
* bus interface does not provide for this.
*/
if (DEVICE_SUSPEND(root_bus) != 0) {
device_printf(sc->acpi_dev, "device_suspend failed\n");
break;
}
slp_state = ACPI_SS_DEV_SUSPEND;
/* If testing device suspend only, back out of everything here. */
if (acpi_susp_bounce)
break;
status = AcpiEnterSleepStatePrep(state);
if (ACPI_FAILURE(status)) {
device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
AcpiFormatException(status));
break;
}
slp_state = ACPI_SS_SLP_PREP;
if (sc->acpi_sleep_delay > 0)
DELAY(sc->acpi_sleep_delay * 1000000);
if (state != ACPI_STATE_S1) {
acpi_sleep_machdep(sc, state);
/* Re-enable ACPI hardware on wakeup from sleep state 4. */
if (state == ACPI_STATE_S4)
AcpiEnable();
} else {
ACPI_DISABLE_IRQS();
status = AcpiEnterSleepState(state);
if (ACPI_FAILURE(status)) {
device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
AcpiFormatException(status));
break;
}
}
slp_state = ACPI_SS_SLEPT;
break;
case ACPI_STATE_S5:
/*
* Shut down cleanly and power off. This will call us back through the
* shutdown handlers.
*/
shutdown_nice(RB_POWEROFF);
break;
case ACPI_STATE_S0:
default:
status = AE_BAD_PARAMETER;
break;
}
/*
* Back out state according to how far along we got in the suspend
* process. This handles both the error and success cases.
*/
sc->acpi_next_sstate = 0;
if (slp_state >= ACPI_SS_GPE_SET) {
acpi_wake_prep_walk(state);
sc->acpi_sstate = ACPI_STATE_S0;
}
if (slp_state >= ACPI_SS_SLP_PREP)
AcpiLeaveSleepState(state);
if (slp_state >= ACPI_SS_DEV_SUSPEND)
DEVICE_RESUME(root_bus);
if (slp_state >= ACPI_SS_SLEPT)
acpi_enable_fixed_events(sc);
/* Allow another sleep request after a while. */
if (state != ACPI_STATE_S5)
timeout(acpi_sleep_enable, sc, hz * ACPI_MINIMUM_AWAKETIME);
/* Run /etc/rc.resume after we are back. */
acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state);
mtx_unlock(&Giant);
return_ACPI_STATUS (status);
}
/* Initialize a device's wake GPE. */
int
acpi_wake_init(device_t dev, int type)
{
struct acpi_prw_data prw;
/* Evaluate _PRW to find the GPE. */
if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
return (ENXIO);
/* Set the requested type for the GPE (runtime, wake, or both). */
if (ACPI_FAILURE(AcpiSetGpeType(prw.gpe_handle, prw.gpe_bit, type))) {
device_printf(dev, "set GPE type failed\n");
return (ENXIO);
}
return (0);
}
/* Enable or disable the device's wake GPE. */
int
acpi_wake_set_enable(device_t dev, int enable)
{
struct acpi_prw_data prw;
ACPI_STATUS status;
int flags;
/* Make sure the device supports waking the system and get the GPE. */
if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
return (ENXIO);
flags = acpi_get_flags(dev);
if (enable) {
status = AcpiEnableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR);
if (ACPI_FAILURE(status)) {
device_printf(dev, "enable wake failed\n");
return (ENXIO);
}
acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
} else {
status = AcpiDisableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR);
if (ACPI_FAILURE(status)) {
device_printf(dev, "disable wake failed\n");
return (ENXIO);
}
acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
}
return (0);
}
static int
acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate)
{
struct acpi_prw_data prw;
device_t dev;
/* Check that this is a wake-capable device and get its GPE. */
if (acpi_parse_prw(handle, &prw) != 0)
return (ENXIO);
dev = acpi_get_device(handle);
/*
* The destination sleep state must be less than (i.e., higher power)
* or equal to the value specified by _PRW. If this GPE cannot be
* enabled for the next sleep state, then disable it. If it can and
* the user requested it be enabled, turn on any required power resources
* and set _PSW.
*/
if (sstate > prw.lowest_wake) {
AcpiDisableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR);
if (bootverbose)
device_printf(dev, "wake_prep disabled wake for %s (S%d)\n",
acpi_name(handle), sstate);
} else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
acpi_pwr_wake_enable(handle, 1);
acpi_SetInteger(handle, "_PSW", 1);
if (bootverbose)
device_printf(dev, "wake_prep enabled for %s (S%d)\n",
acpi_name(handle), sstate);
}
return (0);
}
static int
acpi_wake_run_prep(ACPI_HANDLE handle, int sstate)
{
struct acpi_prw_data prw;
device_t dev;
/*
* Check that this is a wake-capable device and get its GPE. Return
* now if the user didn't enable this device for wake.
*/
if (acpi_parse_prw(handle, &prw) != 0)
return (ENXIO);
dev = acpi_get_device(handle);
if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
return (0);
/*
* If this GPE couldn't be enabled for the previous sleep state, it was
* disabled before going to sleep so re-enable it. If it was enabled,
* clear _PSW and turn off any power resources it used.
*/
if (sstate > prw.lowest_wake) {
AcpiEnableGpe(prw.gpe_handle, prw.gpe_bit, ACPI_NOT_ISR);
if (bootverbose)
device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
} else {
acpi_SetInteger(handle, "_PSW", 0);
acpi_pwr_wake_enable(handle, 0);
if (bootverbose)
device_printf(dev, "run_prep cleaned up for %s\n",
acpi_name(handle));
}
return (0);
}
static ACPI_STATUS
acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
{
int sstate;
/* If suspending, run the sleep prep function, otherwise wake. */
sstate = *(int *)context;
if (AcpiGbl_SystemAwakeAndRunning)
acpi_wake_sleep_prep(handle, sstate);
else
acpi_wake_run_prep(handle, sstate);
return (AE_OK);
}
/* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
static int
acpi_wake_prep_walk(int sstate)
{
ACPI_HANDLE sb_handle;
if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
acpi_wake_prep, &sstate, NULL);
return (0);
}
/* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
static int
acpi_wake_sysctl_walk(device_t dev)
{
int error, i, numdevs;
device_t *devlist;
device_t child;
ACPI_STATUS status;
error = device_get_children(dev, &devlist, &numdevs);
if (error != 0 || numdevs == 0) {
if (numdevs == 0)
free(devlist, M_TEMP);
return (error);
}
for (i = 0; i < numdevs; i++) {
child = devlist[i];
acpi_wake_sysctl_walk(child);
if (!device_is_attached(child))
continue;
status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
if (ACPI_SUCCESS(status)) {
SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
"wake", CTLTYPE_INT | CTLFLAG_RW, child, 0,
acpi_wake_set_sysctl, "I", "Device set to wake the system");
}
}
free(devlist, M_TEMP);
return (0);
}
/* Enable or disable wake from userland. */
static int
acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
{
int enable, error;
device_t dev;
dev = (device_t)arg1;
enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
error = sysctl_handle_int(oidp, &enable, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (enable != 0 && enable != 1)
return (EINVAL);
return (acpi_wake_set_enable(dev, enable));
}
/* Parse a device's _PRW into a structure. */
int
acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
{
ACPI_STATUS status;
ACPI_BUFFER prw_buffer;
ACPI_OBJECT *res, *res2;
int error, i, power_count;
if (h == NULL || prw == NULL)
return (EINVAL);
/*
* The _PRW object (7.2.9) is only required for devices that have the
* ability to wake the system from a sleeping state.
*/
error = EINVAL;
prw_buffer.Pointer = NULL;
prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
if (ACPI_FAILURE(status))
return (ENOENT);
res = (ACPI_OBJECT *)prw_buffer.Pointer;
if (res == NULL)
return (ENOENT);
if (!ACPI_PKG_VALID(res, 2))
goto out;
/*
* Element 1 of the _PRW object:
* The lowest power system sleeping state that can be entered while still
* providing wake functionality. The sleeping state being entered must
* be less than (i.e., higher power) or equal to this value.
*/
if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
goto out;
/*
* Element 0 of the _PRW object:
*/
switch (res->Package.Elements[0].Type) {
case ACPI_TYPE_INTEGER:
/*
* If the data type of this package element is numeric, then this
* _PRW package element is the bit index in the GPEx_EN, in the
* GPE blocks described in the FADT, of the enable bit that is
* enabled for the wake event.
*/
prw->gpe_handle = NULL;
prw->gpe_bit = res->Package.Elements[0].Integer.Value;
error = 0;
break;
case ACPI_TYPE_PACKAGE:
/*
* If the data type of this package element is a package, then this
* _PRW package element is itself a package containing two
* elements. The first is an object reference to the GPE Block
* device that contains the GPE that will be triggered by the wake
* event. The second element is numeric and it contains the bit
* index in the GPEx_EN, in the GPE Block referenced by the
* first element in the package, of the enable bit that is enabled for
* the wake event.
*
* For example, if this field is a package then it is of the form:
* Package() {\_SB.PCI0.ISA.GPE, 2}
*/
res2 = &res->Package.Elements[0];
if (!ACPI_PKG_VALID(res2, 2))
goto out;
prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
if (prw->gpe_handle == NULL)
goto out;
if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
goto out;
error = 0;
break;
default:
goto out;
}
/* Elements 2 to N of the _PRW object are power resources. */
power_count = res->Package.Count - 2;
if (power_count > ACPI_PRW_MAX_POWERRES) {
printf("ACPI device %s has too many power resources\n", acpi_name(h));
power_count = 0;
}
prw->power_res_count = power_count;
for (i = 0; i < power_count; i++)
prw->power_res[i] = res->Package.Elements[i];
out:
if (prw_buffer.Pointer != NULL)
AcpiOsFree(prw_buffer.Pointer);
return (error);
}
/*
* ACPI Event Handlers
*/
/* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
static void
acpi_system_eventhandler_sleep(void *arg, int state)
{
int ret;
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
/* Check if button action is disabled. */
if (state == ACPI_S_STATES_MAX + 1)
return;
/* Request that the system prepare to enter the given suspend state. */
ret = acpi_ReqSleepState((struct acpi_softc *)arg, state);
if (ret != 0)
printf("acpi: request to enter state S%d failed (err %d)\n",
state, ret);
return_VOID;
}
static void
acpi_system_eventhandler_wakeup(void *arg, int state)
{
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
/* Currently, nothing to do for wakeup. */
return_VOID;
}
/*
* ACPICA Event Handlers (FixedEvent, also called from button notify handler)
*/
UINT32
acpi_event_power_button_sleep(void *context)
{
struct acpi_softc *sc = (struct acpi_softc *)context;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_power_button_sx);
return_VALUE (ACPI_INTERRUPT_HANDLED);
}
UINT32
acpi_event_power_button_wake(void *context)
{
struct acpi_softc *sc = (struct acpi_softc *)context;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_power_button_sx);
return_VALUE (ACPI_INTERRUPT_HANDLED);
}
UINT32
acpi_event_sleep_button_sleep(void *context)
{
struct acpi_softc *sc = (struct acpi_softc *)context;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
EVENTHANDLER_INVOKE(acpi_sleep_event, sc->acpi_sleep_button_sx);
return_VALUE (ACPI_INTERRUPT_HANDLED);
}
UINT32
acpi_event_sleep_button_wake(void *context)
{
struct acpi_softc *sc = (struct acpi_softc *)context;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
EVENTHANDLER_INVOKE(acpi_wakeup_event, sc->acpi_sleep_button_sx);
return_VALUE (ACPI_INTERRUPT_HANDLED);
}
/*
* XXX This static buffer is suboptimal. There is no locking so only
* use this for single-threaded callers.
*/
char *
acpi_name(ACPI_HANDLE handle)
{
ACPI_BUFFER buf;
static char data[256];
buf.Length = sizeof(data);
buf.Pointer = data;
if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
return (data);
return ("(unknown)");
}
/*
* Debugging/bug-avoidance. Avoid trying to fetch info on various
* parts of the namespace.
*/
int
acpi_avoid(ACPI_HANDLE handle)
{
char *cp, *env, *np;
int len;
np = acpi_name(handle);
if (*np == '\\')
np++;
if ((env = getenv("debug.acpi.avoid")) == NULL)
return (0);
/* Scan the avoid list checking for a match */
cp = env;
for (;;) {
while (*cp != 0 && isspace(*cp))
cp++;
if (*cp == 0)
break;
len = 0;
while (cp[len] != 0 && !isspace(cp[len]))
len++;
if (!strncmp(cp, np, len)) {
freeenv(env);
return(1);
}
cp += len;
}
freeenv(env);
return (0);
}
/*
* Debugging/bug-avoidance. Disable ACPI subsystem components.
*/
int
acpi_disabled(char *subsys)
{
char *cp, *env;
int len;
if ((env = getenv("debug.acpi.disabled")) == NULL)
return (0);
if (strcmp(env, "all") == 0) {
freeenv(env);
return (1);
}
/* Scan the disable list, checking for a match. */
cp = env;
for (;;) {
while (*cp != '\0' && isspace(*cp))
cp++;
if (*cp == '\0')
break;
len = 0;
while (cp[len] != '\0' && !isspace(cp[len]))
len++;
if (strncmp(cp, subsys, len) == 0) {
freeenv(env);
return (1);
}
cp += len;
}
freeenv(env);
return (0);
}
/*
* Control interface.
*
* We multiplex ioctls for all participating ACPI devices here. Individual
* drivers wanting to be accessible via /dev/acpi should use the
* register/deregister interface to make their handlers visible.
*/
struct acpi_ioctl_hook
{
TAILQ_ENTRY(acpi_ioctl_hook) link;
u_long cmd;
acpi_ioctl_fn fn;
void *arg;
};
static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks;
static int acpi_ioctl_hooks_initted;
int
acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
{
struct acpi_ioctl_hook *hp;
if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL)
return (ENOMEM);
hp->cmd = cmd;
hp->fn = fn;
hp->arg = arg;
ACPI_LOCK(acpi);
if (acpi_ioctl_hooks_initted == 0) {
TAILQ_INIT(&acpi_ioctl_hooks);
acpi_ioctl_hooks_initted = 1;
}
TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
ACPI_UNLOCK(acpi);
return (0);
}
void
acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
{
struct acpi_ioctl_hook *hp;
ACPI_LOCK(acpi);
TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
if (hp->cmd == cmd && hp->fn == fn)
break;
if (hp != NULL) {
TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
free(hp, M_ACPIDEV);
}
ACPI_UNLOCK(acpi);
}
static int
acpiopen(struct cdev *dev, int flag, int fmt, d_thread_t *td)
{
return (0);
}
static int
acpiclose(struct cdev *dev, int flag, int fmt, d_thread_t *td)
{
return (0);
}
static int
acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, d_thread_t *td)
{
struct acpi_softc *sc;
struct acpi_ioctl_hook *hp;
int error, state;
error = 0;
hp = NULL;
sc = dev->si_drv1;
/*
* Scan the list of registered ioctls, looking for handlers.
*/
ACPI_LOCK(acpi);
if (acpi_ioctl_hooks_initted)
TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
if (hp->cmd == cmd)
break;
}
ACPI_UNLOCK(acpi);
if (hp)
return (hp->fn(cmd, addr, hp->arg));
/*
* Core ioctls are not permitted for non-writable user.
* Currently, other ioctls just fetch information.
* Not changing system behavior.
*/
if ((flag & FWRITE) == 0)
return (EPERM);
/* Core system ioctls. */
switch (cmd) {
case ACPIIO_REQSLPSTATE:
state = *(int *)addr;
if (state != ACPI_STATE_S5)
error = acpi_ReqSleepState(sc, state);
else {
printf("power off via acpi ioctl not supported\n");
error = ENXIO;
}
break;
case ACPIIO_ACKSLPSTATE:
error = *(int *)addr;
error = acpi_AckSleepState(sc->acpi_clone, error);
break;
case ACPIIO_SETSLPSTATE: /* DEPRECATED */
error = EINVAL;
state = *(int *)addr;
if (state >= ACPI_STATE_S0 && state <= ACPI_S_STATES_MAX)
if (ACPI_SUCCESS(acpi_SetSleepState(sc, state)))
error = 0;
break;
default:
error = ENXIO;
break;
}
return (error);
}
static int
acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
{
int error;
struct sbuf sb;
UINT8 state, TypeA, TypeB;
sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
for (state = ACPI_STATE_S1; state < ACPI_S_STATES_MAX + 1; state++)
if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB)))
sbuf_printf(&sb, "S%d ", state);
sbuf_trim(&sb);
sbuf_finish(&sb);
error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
sbuf_delete(&sb);
return (error);
}
static int
acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
{
char sleep_state[10];
int error;
u_int new_state, old_state;
old_state = *(u_int *)oidp->oid_arg1;
if (old_state > ACPI_S_STATES_MAX + 1)
strlcpy(sleep_state, "unknown", sizeof(sleep_state));
else
strlcpy(sleep_state, sleep_state_names[old_state], sizeof(sleep_state));
error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
if (error == 0 && req->newptr != NULL) {
new_state = ACPI_STATE_S0;
for (; new_state <= ACPI_S_STATES_MAX + 1; new_state++)
if (strcmp(sleep_state, sleep_state_names[new_state]) == 0)
break;
if (new_state <= ACPI_S_STATES_MAX + 1) {
if (new_state != old_state)
*(u_int *)oidp->oid_arg1 = new_state;
} else
error = EINVAL;
}
return (error);
}
/* Inform devctl(4) when we receive a Notify. */
void
acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
{
char notify_buf[16];
ACPI_BUFFER handle_buf;
ACPI_STATUS status;
if (subsystem == NULL)
return;
handle_buf.Pointer = NULL;
handle_buf.Length = ACPI_ALLOCATE_BUFFER;
status = AcpiNsHandleToPathname(h, &handle_buf);
if (ACPI_FAILURE(status))
return;
snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
AcpiOsFree(handle_buf.Pointer);
}
#ifdef ACPI_DEBUG
/*
* Support for parsing debug options from the kernel environment.
*
* Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
* by specifying the names of the bits in the debug.acpi.layer and
* debug.acpi.level environment variables. Bits may be unset by
* prefixing the bit name with !.
*/
struct debugtag
{
char *name;
UINT32 value;
};
static struct debugtag dbg_layer[] = {
{"ACPI_UTILITIES", ACPI_UTILITIES},
{"ACPI_HARDWARE", ACPI_HARDWARE},
{"ACPI_EVENTS", ACPI_EVENTS},
{"ACPI_TABLES", ACPI_TABLES},
{"ACPI_NAMESPACE", ACPI_NAMESPACE},
{"ACPI_PARSER", ACPI_PARSER},
{"ACPI_DISPATCHER", ACPI_DISPATCHER},
{"ACPI_EXECUTER", ACPI_EXECUTER},
{"ACPI_RESOURCES", ACPI_RESOURCES},
{"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER},
{"ACPI_OS_SERVICES", ACPI_OS_SERVICES},
{"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER},
{"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS},
{"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER},
{"ACPI_BATTERY", ACPI_BATTERY},
{"ACPI_BUS", ACPI_BUS},
{"ACPI_BUTTON", ACPI_BUTTON},
{"ACPI_EC", ACPI_EC},
{"ACPI_FAN", ACPI_FAN},
{"ACPI_POWERRES", ACPI_POWERRES},
{"ACPI_PROCESSOR", ACPI_PROCESSOR},
{"ACPI_THERMAL", ACPI_THERMAL},
{"ACPI_TIMER", ACPI_TIMER},
{"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS},
{NULL, 0}
};
static struct debugtag dbg_level[] = {
{"ACPI_LV_ERROR", ACPI_LV_ERROR},
{"ACPI_LV_WARN", ACPI_LV_WARN},
{"ACPI_LV_INIT", ACPI_LV_INIT},
{"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT},
{"ACPI_LV_INFO", ACPI_LV_INFO},
{"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS},
/* Trace verbosity level 1 [Standard Trace Level] */
{"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES},
{"ACPI_LV_PARSE", ACPI_LV_PARSE},
{"ACPI_LV_LOAD", ACPI_LV_LOAD},
{"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH},
{"ACPI_LV_EXEC", ACPI_LV_EXEC},
{"ACPI_LV_NAMES", ACPI_LV_NAMES},
{"ACPI_LV_OPREGION", ACPI_LV_OPREGION},
{"ACPI_LV_BFIELD", ACPI_LV_BFIELD},
{"ACPI_LV_TABLES", ACPI_LV_TABLES},
{"ACPI_LV_VALUES", ACPI_LV_VALUES},
{"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS},
{"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES},
{"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS},
{"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE},
{"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1},
/* Trace verbosity level 2 [Function tracing and memory allocation] */
{"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS},
{"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS},
{"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS},
{"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2},
{"ACPI_LV_ALL", ACPI_LV_ALL},
/* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
{"ACPI_LV_MUTEX", ACPI_LV_MUTEX},
{"ACPI_LV_THREADS", ACPI_LV_THREADS},
{"ACPI_LV_IO", ACPI_LV_IO},
{"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS},
{"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3},
/* Exceptionally verbose output -- also used in the global "DebugLevel" */
{"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE},
{"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO},
{"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES},
{"ACPI_LV_EVENTS", ACPI_LV_EVENTS},
{"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE},
{NULL, 0}
};
static void
acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
{
char *ep;
int i, l;
int set;
while (*cp) {
if (isspace(*cp)) {
cp++;
continue;
}
ep = cp;
while (*ep && !isspace(*ep))
ep++;
if (*cp == '!') {
set = 0;
cp++;
if (cp == ep)
continue;
} else {
set = 1;
}
l = ep - cp;
for (i = 0; tag[i].name != NULL; i++) {
if (!strncmp(cp, tag[i].name, l)) {
if (set)
*flag |= tag[i].value;
else
*flag &= ~tag[i].value;
}
}
cp = ep;
}
}
static void
acpi_set_debugging(void *junk)
{
char *layer, *level;
if (cold) {
AcpiDbgLayer = 0;
AcpiDbgLevel = 0;
}
layer = getenv("debug.acpi.layer");
level = getenv("debug.acpi.level");
if (layer == NULL && level == NULL)
return;
printf("ACPI set debug");
if (layer != NULL) {
if (strcmp("NONE", layer) != 0)
printf(" layer '%s'", layer);
acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
freeenv(layer);
}
if (level != NULL) {
if (strcmp("NONE", level) != 0)
printf(" level '%s'", level);
acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
freeenv(level);
}
printf("\n");
}
SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
NULL);
static int
acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
{
int error, *dbg;
struct debugtag *tag;
struct sbuf sb;
if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
return (ENOMEM);
if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
tag = &dbg_layer[0];
dbg = &AcpiDbgLayer;
} else {
tag = &dbg_level[0];
dbg = &AcpiDbgLevel;
}
/* Get old values if this is a get request. */
ACPI_SERIAL_BEGIN(acpi);
if (*dbg == 0) {
sbuf_cpy(&sb, "NONE");
} else if (req->newptr == NULL) {
for (; tag->name != NULL; tag++) {
if ((*dbg & tag->value) == tag->value)
sbuf_printf(&sb, "%s ", tag->name);
}
}
sbuf_trim(&sb);
sbuf_finish(&sb);
/* Copy out the old values to the user. */
error = SYSCTL_OUT(req, sbuf_data(&sb), sbuf_len(&sb));
sbuf_delete(&sb);
/* If the user is setting a string, parse it. */
if (error == 0 && req->newptr != NULL) {
*dbg = 0;
setenv((char *)oidp->oid_arg1, (char *)req->newptr);
acpi_set_debugging(NULL);
}
ACPI_SERIAL_END(acpi);
return (error);
}
SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING,
"debug.acpi.layer", 0, acpi_debug_sysctl, "A", "");
SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING,
"debug.acpi.level", 0, acpi_debug_sysctl, "A", "");
#endif /* ACPI_DEBUG */
static int
acpi_pm_func(u_long cmd, void *arg, ...)
{
int state, acpi_state;
int error;
struct acpi_softc *sc;
va_list ap;
error = 0;
switch (cmd) {
case POWER_CMD_SUSPEND:
sc = (struct acpi_softc *)arg;
if (sc == NULL) {
error = EINVAL;
goto out;
}
va_start(ap, arg);
state = va_arg(ap, int);
va_end(ap);
switch (state) {
case POWER_SLEEP_STATE_STANDBY:
acpi_state = sc->acpi_standby_sx;
break;
case POWER_SLEEP_STATE_SUSPEND:
acpi_state = sc->acpi_suspend_sx;
break;
case POWER_SLEEP_STATE_HIBERNATE:
acpi_state = ACPI_STATE_S4;
break;
default:
error = EINVAL;
goto out;
}
if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state)))
error = ENXIO;
break;
default:
error = EINVAL;
goto out;
}
out:
return (error);
}
static void
acpi_pm_register(void *arg)
{
if (!cold || resource_disabled("acpi", 0))
return;
power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL);
}
SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, 0);