systems running with a heavy filesystem load. Tracking down this bug was elusive because there were actually two problems. Sometimes the in-memory check hash was wrong and sometimes the check hash computed when doing the read was wrong. The occurrence of either error caused a check-hash mismatch to be reported. The first error was that the check hash in the in-memory cylinder group was incorrect. This error was caused by the following sequence of events: - We read a cylinder-group buffer and the check hash is valid. - We update its cg_time and cg_old_time which makes the in-memory check-hash value invalid but we do not mark the cylinder group dirty. - We do not make any other changes to the cylinder group, so we never mark it dirty, thus do not write it out, and hence never update the incorrect check hash for the in-memory buffer. - Later, the buffer gets freed, but the page with the old incorrect check hash is still in the VM cache. - Later, we read the cylinder group again, and the first page with the old check hash is still in the VM cache, but some other pages are not, so we have to do a read. - The read does not actually get the first page from disk, but rather from the VM cache, resulting in the old check hash in the buffer. - The value computed after doing the read does not match causing the error to be printed. The fix for this problem is to only set cg_time and cg_old_time as the cylinder group is being written to disk. This keeps the in-memory check-hash valid unless the cylinder group has had other modifications which will require it to be written with a new check hash calculated. It also requires that the check hash be recalculated in the in-memory cylinder group when it is marked clean after doing a background write. The second problem was that the check hash computed at the end of the read was incorrect because the calculation of the check hash on completion of the read was being done too soon. - When a read completes we had the following sequence: - bufdone() -- b_ckhashcalc (calculates check hash) -- bufdone_finish() --- vfs_vmio_iodone() (replaces bogus pages with the cached ones) - When we are reading a buffer where one or more pages are already in memory (but not all pages, or we wouldn't be doing the read), the I/O is done with bogus_page mapped in for the pages that exist in the VM cache. This mapping is done to avoid corrupting the cached pages if there is any I/O overrun. The vfs_vmio_iodone() function is responsible for replacing the bogus_page(s) with the cached ones. But we were calculating the check hash before the bogus_page(s) were replaced. Hence, when we were calculating the check hash, we were partly reading from bogus_page, which means we calculated a bad check hash (e.g., because multiple pages have been mapped to bogus_page, so its contents are indeterminate). The second fix is to move the check-hash calculation from bufdone() to bufdone_finish() after the call to vfs_vmio_iodone() so that it computes the check hash over the correct set of pages. With these two changes, the occasional cylinder-group check-hash errors are gone. Submitted by: David Pfitzner <dpfitzner@netflix.com> Reviewed by: kib Tested by: David Pfitzner
FreeBSD Source:
This is the top level of the FreeBSD source directory. This file
was last revised on:
FreeBSD
For copyright information, please see the file COPYRIGHT in this directory (additional copyright information also exists for some sources in this tree - please see the specific source directories for more information).
The Makefile in this directory supports a number of targets for building components (or all) of the FreeBSD source tree. See build(7) and https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html for more information, including setting make(1) variables.
The buildkernel
and installkernel
targets build and install
the kernel and the modules (see below). Please see the top of
the Makefile in this directory for more information on the
standard build targets and compile-time flags.
Building a kernel is a somewhat more involved process. See build(7), config(8), and https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html for more information.
Note: If you want to build and install the kernel with the
buildkernel
and installkernel
targets, you might need to build
world before. More information is available in the handbook.
The kernel configuration files reside in the sys/<arch>/conf
sub-directory. GENERIC is the default configuration used in release builds.
NOTES contains entries and documentation for all possible
devices, not just those commonly used.
Source Roadmap:
bin System/user commands.
cddl Various commands and libraries under the Common Development
and Distribution License.
contrib Packages contributed by 3rd parties.
crypto Cryptography stuff (see crypto/README).
etc Template files for /etc.
gnu Various commands and libraries under the GNU Public License.
Please see gnu/COPYING* for more information.
include System include files.
kerberos5 Kerberos5 (Heimdal) package.
lib System libraries.
libexec System daemons.
release Release building Makefile & associated tools.
rescue Build system for statically linked /rescue utilities.
sbin System commands.
secure Cryptographic libraries and commands.
share Shared resources.
stand Boot loader sources.
sys Kernel sources.
tests Regression tests which can be run by Kyua. See tests/README
for additional information.
tools Utilities for regression testing and miscellaneous tasks.
usr.bin User commands.
usr.sbin System administration commands.
For information on synchronizing your source tree with one or more of the FreeBSD Project's development branches, please see:
https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/current-stable.html