2380 lines
56 KiB
C
2380 lines
56 KiB
C
/*-
|
|
* Copyright (c) 2004
|
|
* Bill Paul <wpaul@windriver.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
|
|
*
|
|
* Written by Bill Paul <wpaul@windriver.com>
|
|
* Senior Networking Software Engineer
|
|
* Wind River Systems
|
|
*/
|
|
|
|
/*
|
|
* The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
|
|
* combines a tri-speed ethernet MAC and PHY, with the following
|
|
* features:
|
|
*
|
|
* o Jumbo frame support up to 16K
|
|
* o Transmit and receive flow control
|
|
* o IPv4 checksum offload
|
|
* o VLAN tag insertion and stripping
|
|
* o TCP large send
|
|
* o 64-bit multicast hash table filter
|
|
* o 64 entry CAM filter
|
|
* o 16K RX FIFO and 48K TX FIFO memory
|
|
* o Interrupt moderation
|
|
*
|
|
* The VT6122 supports up to four transmit DMA queues. The descriptors
|
|
* in the transmit ring can address up to 7 data fragments; frames which
|
|
* span more than 7 data buffers must be coalesced, but in general the
|
|
* BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
|
|
* long. The receive descriptors address only a single buffer.
|
|
*
|
|
* There are two peculiar design issues with the VT6122. One is that
|
|
* receive data buffers must be aligned on a 32-bit boundary. This is
|
|
* not a problem where the VT6122 is used as a LOM device in x86-based
|
|
* systems, but on architectures that generate unaligned access traps, we
|
|
* have to do some copying.
|
|
*
|
|
* The other issue has to do with the way 64-bit addresses are handled.
|
|
* The DMA descriptors only allow you to specify 48 bits of addressing
|
|
* information. The remaining 16 bits are specified using one of the
|
|
* I/O registers. If you only have a 32-bit system, then this isn't
|
|
* an issue, but if you have a 64-bit system and more than 4GB of
|
|
* memory, you must have to make sure your network data buffers reside
|
|
* in the same 48-bit 'segment.'
|
|
*
|
|
* Special thanks to Ryan Fu at VIA Networking for providing documentation
|
|
* and sample NICs for testing.
|
|
*/
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
MODULE_DEPEND(vge, pci, 1, 1, 1);
|
|
MODULE_DEPEND(vge, ether, 1, 1, 1);
|
|
MODULE_DEPEND(vge, miibus, 1, 1, 1);
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
#include <dev/vge/if_vgereg.h>
|
|
#include <dev/vge/if_vgevar.h>
|
|
|
|
#define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct vge_type vge_devs[] = {
|
|
{ VIA_VENDORID, VIA_DEVICEID_61XX,
|
|
"VIA Networking Gigabit Ethernet" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int vge_probe (device_t);
|
|
static int vge_attach (device_t);
|
|
static int vge_detach (device_t);
|
|
|
|
static int vge_encap (struct vge_softc *, struct mbuf *, int);
|
|
|
|
static void vge_dma_map_addr (void *, bus_dma_segment_t *, int, int);
|
|
static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int,
|
|
bus_size_t, int);
|
|
static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int,
|
|
bus_size_t, int);
|
|
static int vge_allocmem (device_t, struct vge_softc *);
|
|
static int vge_newbuf (struct vge_softc *, int, struct mbuf *);
|
|
static int vge_rx_list_init (struct vge_softc *);
|
|
static int vge_tx_list_init (struct vge_softc *);
|
|
#ifdef VGE_FIXUP_RX
|
|
static __inline void vge_fixup_rx
|
|
(struct mbuf *);
|
|
#endif
|
|
static int vge_rxeof (struct vge_softc *);
|
|
static void vge_txeof (struct vge_softc *);
|
|
static void vge_intr (void *);
|
|
static void vge_tick (void *);
|
|
static void vge_start (struct ifnet *);
|
|
static void vge_start_locked (struct ifnet *);
|
|
static int vge_ioctl (struct ifnet *, u_long, caddr_t);
|
|
static void vge_init (void *);
|
|
static void vge_init_locked (struct vge_softc *);
|
|
static void vge_stop (struct vge_softc *);
|
|
static void vge_watchdog (void *);
|
|
static int vge_suspend (device_t);
|
|
static int vge_resume (device_t);
|
|
static int vge_shutdown (device_t);
|
|
static int vge_ifmedia_upd (struct ifnet *);
|
|
static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
|
|
|
|
#ifdef VGE_EEPROM
|
|
static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *);
|
|
#endif
|
|
static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int);
|
|
|
|
static void vge_miipoll_start (struct vge_softc *);
|
|
static void vge_miipoll_stop (struct vge_softc *);
|
|
static int vge_miibus_readreg (device_t, int, int);
|
|
static int vge_miibus_writereg (device_t, int, int, int);
|
|
static void vge_miibus_statchg (device_t);
|
|
|
|
static void vge_cam_clear (struct vge_softc *);
|
|
static int vge_cam_set (struct vge_softc *, uint8_t *);
|
|
static void vge_setmulti (struct vge_softc *);
|
|
static void vge_reset (struct vge_softc *);
|
|
|
|
#define VGE_PCI_LOIO 0x10
|
|
#define VGE_PCI_LOMEM 0x14
|
|
|
|
static device_method_t vge_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, vge_probe),
|
|
DEVMETHOD(device_attach, vge_attach),
|
|
DEVMETHOD(device_detach, vge_detach),
|
|
DEVMETHOD(device_suspend, vge_suspend),
|
|
DEVMETHOD(device_resume, vge_resume),
|
|
DEVMETHOD(device_shutdown, vge_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, vge_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, vge_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, vge_miibus_statchg),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t vge_driver = {
|
|
"vge",
|
|
vge_methods,
|
|
sizeof(struct vge_softc)
|
|
};
|
|
|
|
static devclass_t vge_devclass;
|
|
|
|
DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
#ifdef VGE_EEPROM
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
*/
|
|
static void
|
|
vge_eeprom_getword(sc, addr, dest)
|
|
struct vge_softc *sc;
|
|
int addr;
|
|
u_int16_t *dest;
|
|
{
|
|
int i;
|
|
u_int16_t word = 0;
|
|
|
|
/*
|
|
* Enter EEPROM embedded programming mode. In order to
|
|
* access the EEPROM at all, we first have to set the
|
|
* EELOAD bit in the CHIPCFG2 register.
|
|
*/
|
|
CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
|
|
CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
|
|
|
|
/* Select the address of the word we want to read */
|
|
CSR_WRITE_1(sc, VGE_EEADDR, addr);
|
|
|
|
/* Issue read command */
|
|
CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
|
|
|
|
/* Wait for the done bit to be set. */
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "EEPROM read timed out\n");
|
|
*dest = 0;
|
|
return;
|
|
}
|
|
|
|
/* Read the result */
|
|
word = CSR_READ_2(sc, VGE_EERDDAT);
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
|
|
CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
|
|
|
|
*dest = word;
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM.
|
|
*/
|
|
static void
|
|
vge_read_eeprom(sc, dest, off, cnt, swap)
|
|
struct vge_softc *sc;
|
|
caddr_t dest;
|
|
int off;
|
|
int cnt;
|
|
int swap;
|
|
{
|
|
int i;
|
|
#ifdef VGE_EEPROM
|
|
u_int16_t word = 0, *ptr;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
vge_eeprom_getword(sc, off + i, &word);
|
|
ptr = (u_int16_t *)(dest + (i * 2));
|
|
if (swap)
|
|
*ptr = ntohs(word);
|
|
else
|
|
*ptr = word;
|
|
}
|
|
#else
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
vge_miipoll_stop(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
CSR_WRITE_1(sc, VGE_MIICMD, 0);
|
|
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT)
|
|
device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
vge_miipoll_start(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
/* First, make sure we're idle. */
|
|
|
|
CSR_WRITE_1(sc, VGE_MIICMD, 0);
|
|
CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
|
|
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
|
|
return;
|
|
}
|
|
|
|
/* Now enable auto poll mode. */
|
|
|
|
CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
|
|
|
|
/* And make sure it started. */
|
|
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT)
|
|
device_printf(sc->vge_dev, "failed to start MII autopoll\n");
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
vge_miibus_readreg(dev, phy, reg)
|
|
device_t dev;
|
|
int phy, reg;
|
|
{
|
|
struct vge_softc *sc;
|
|
int i;
|
|
u_int16_t rval = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
|
|
return(0);
|
|
|
|
vge_miipoll_stop(sc);
|
|
|
|
/* Specify the register we want to read. */
|
|
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
|
|
|
|
/* Issue read command. */
|
|
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
|
|
|
|
/* Wait for the read command bit to self-clear. */
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT)
|
|
device_printf(sc->vge_dev, "MII read timed out\n");
|
|
else
|
|
rval = CSR_READ_2(sc, VGE_MIIDATA);
|
|
|
|
vge_miipoll_start(sc);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
static int
|
|
vge_miibus_writereg(dev, phy, reg, data)
|
|
device_t dev;
|
|
int phy, reg, data;
|
|
{
|
|
struct vge_softc *sc;
|
|
int i, rval = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
|
|
return(0);
|
|
|
|
vge_miipoll_stop(sc);
|
|
|
|
/* Specify the register we want to write. */
|
|
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
|
|
|
|
/* Specify the data we want to write. */
|
|
CSR_WRITE_2(sc, VGE_MIIDATA, data);
|
|
|
|
/* Issue write command. */
|
|
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
|
|
|
|
/* Wait for the write command bit to self-clear. */
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "MII write timed out\n");
|
|
rval = EIO;
|
|
}
|
|
|
|
vge_miipoll_start(sc);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
static void
|
|
vge_cam_clear(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Turn off all the mask bits. This tells the chip
|
|
* that none of the entries in the CAM filter are valid.
|
|
* desired entries will be enabled as we fill the filter in.
|
|
*/
|
|
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
|
|
for (i = 0; i < 8; i++)
|
|
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
|
|
|
|
/* Clear the VLAN filter too. */
|
|
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
|
|
for (i = 0; i < 8; i++)
|
|
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
|
|
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
|
|
|
|
sc->vge_camidx = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
vge_cam_set(sc, addr)
|
|
struct vge_softc *sc;
|
|
uint8_t *addr;
|
|
{
|
|
int i, error = 0;
|
|
|
|
if (sc->vge_camidx == VGE_CAM_MAXADDRS)
|
|
return(ENOSPC);
|
|
|
|
/* Select the CAM data page. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
|
|
|
|
/* Set the filter entry we want to update and enable writing. */
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
|
|
|
|
/* Write the address to the CAM registers */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
|
|
|
|
/* Issue a write command. */
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
|
|
|
|
/* Wake for it to clear. */
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "setting CAM filter failed\n");
|
|
error = EIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Select the CAM mask page. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
|
|
|
|
/* Set the mask bit that enables this filter. */
|
|
CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
|
|
1<<(sc->vge_camidx & 7));
|
|
|
|
sc->vge_camidx++;
|
|
|
|
fail:
|
|
/* Turn off access to CAM. */
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Program the multicast filter. We use the 64-entry CAM filter
|
|
* for perfect filtering. If there's more than 64 multicast addresses,
|
|
* we use the hash filter insted.
|
|
*/
|
|
static void
|
|
vge_setmulti(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int error = 0/*, h = 0*/;
|
|
struct ifmultiaddr *ifma;
|
|
u_int32_t h, hashes[2] = { 0, 0 };
|
|
|
|
ifp = sc->vge_ifp;
|
|
|
|
/* First, zot all the multicast entries. */
|
|
vge_cam_clear(sc);
|
|
CSR_WRITE_4(sc, VGE_MAR0, 0);
|
|
CSR_WRITE_4(sc, VGE_MAR1, 0);
|
|
|
|
/*
|
|
* If the user wants allmulti or promisc mode, enable reception
|
|
* of all multicast frames.
|
|
*/
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
|
|
return;
|
|
}
|
|
|
|
/* Now program new ones */
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
error = vge_cam_set(sc,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
/* If there were too many addresses, use the hash filter. */
|
|
if (error) {
|
|
vge_cam_clear(sc);
|
|
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
}
|
|
|
|
CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
vge_reset(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
|
|
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(5);
|
|
if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "soft reset timed out");
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
|
|
DELAY(2000);
|
|
}
|
|
|
|
DELAY(5000);
|
|
|
|
CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
|
|
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(5);
|
|
if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "EEPROM reload timed out\n");
|
|
return;
|
|
}
|
|
|
|
CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Probe for a VIA gigabit chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int
|
|
vge_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct vge_type *t;
|
|
|
|
t = vge_devs;
|
|
|
|
while (t->vge_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->vge_vid) &&
|
|
(pci_get_device(dev) == t->vge_did)) {
|
|
device_set_desc(dev, t->vge_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static void
|
|
vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
|
|
void *arg;
|
|
bus_dma_segment_t *segs;
|
|
int nseg;
|
|
bus_size_t mapsize;
|
|
int error;
|
|
{
|
|
|
|
struct vge_dmaload_arg *ctx;
|
|
struct vge_rx_desc *d = NULL;
|
|
|
|
if (error)
|
|
return;
|
|
|
|
ctx = arg;
|
|
|
|
/* Signal error to caller if there's too many segments */
|
|
if (nseg > ctx->vge_maxsegs) {
|
|
ctx->vge_maxsegs = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Map the segment array into descriptors.
|
|
*/
|
|
|
|
d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
|
|
|
|
/* If this descriptor is still owned by the chip, bail. */
|
|
|
|
if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
|
|
device_printf(ctx->sc->vge_dev,
|
|
"tried to map busy descriptor\n");
|
|
ctx->vge_maxsegs = 0;
|
|
return;
|
|
}
|
|
|
|
d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
|
|
d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
|
|
d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
|
|
d->vge_sts = 0;
|
|
d->vge_ctl = 0;
|
|
|
|
ctx->vge_maxsegs = 1;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
|
|
void *arg;
|
|
bus_dma_segment_t *segs;
|
|
int nseg;
|
|
bus_size_t mapsize;
|
|
int error;
|
|
{
|
|
struct vge_dmaload_arg *ctx;
|
|
struct vge_tx_desc *d = NULL;
|
|
struct vge_tx_frag *f;
|
|
int i = 0;
|
|
|
|
if (error)
|
|
return;
|
|
|
|
ctx = arg;
|
|
|
|
/* Signal error to caller if there's too many segments */
|
|
if (nseg > ctx->vge_maxsegs) {
|
|
ctx->vge_maxsegs = 0;
|
|
return;
|
|
}
|
|
|
|
/* Map the segment array into descriptors. */
|
|
|
|
d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
|
|
|
|
/* If this descriptor is still owned by the chip, bail. */
|
|
|
|
if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
|
|
ctx->vge_maxsegs = 0;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < nseg; i++) {
|
|
f = &d->vge_frag[i];
|
|
f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
|
|
f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
|
|
f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
|
|
}
|
|
|
|
/* Argh. This chip does not autopad short frames */
|
|
|
|
if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
|
|
f = &d->vge_frag[i];
|
|
f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
|
|
ctx->vge_m0->m_pkthdr.len));
|
|
f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
|
|
f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
|
|
ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* When telling the chip how many segments there are, we
|
|
* must use nsegs + 1 instead of just nsegs. Darned if I
|
|
* know why.
|
|
*/
|
|
i++;
|
|
|
|
d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
|
|
d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
|
|
|
|
if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
|
|
d->vge_ctl |= VGE_TDCTL_JUMBO;
|
|
|
|
ctx->vge_maxsegs = nseg;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Map a single buffer address.
|
|
*/
|
|
|
|
static void
|
|
vge_dma_map_addr(arg, segs, nseg, error)
|
|
void *arg;
|
|
bus_dma_segment_t *segs;
|
|
int nseg;
|
|
int error;
|
|
{
|
|
bus_addr_t *addr;
|
|
|
|
if (error)
|
|
return;
|
|
|
|
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
|
|
addr = arg;
|
|
*addr = segs->ds_addr;
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
vge_allocmem(dev, sc)
|
|
device_t dev;
|
|
struct vge_softc *sc;
|
|
{
|
|
int error;
|
|
int nseg;
|
|
int i;
|
|
|
|
/*
|
|
* Allocate map for RX mbufs.
|
|
*/
|
|
nseg = 32;
|
|
error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, &sc->vge_ldata.vge_mtag);
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Allocate map for TX descriptor list.
|
|
*/
|
|
error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
|
|
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate DMA'able memory for the TX ring */
|
|
|
|
error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
|
|
(void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
|
|
&sc->vge_ldata.vge_tx_list_map);
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
/* Load the map for the TX ring. */
|
|
|
|
error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
|
|
sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
|
|
VGE_TX_LIST_SZ, vge_dma_map_addr,
|
|
&sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
|
|
|
|
/* Create DMA maps for TX buffers */
|
|
|
|
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
|
|
error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
|
|
&sc->vge_ldata.vge_tx_dmamap[i]);
|
|
if (error) {
|
|
device_printf(dev, "can't create DMA map for TX\n");
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate map for RX descriptor list.
|
|
*/
|
|
error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
|
|
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
|
|
NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
|
|
if (error) {
|
|
device_printf(dev, "could not allocate dma tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/* Allocate DMA'able memory for the RX ring */
|
|
|
|
error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
|
|
(void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
|
|
&sc->vge_ldata.vge_rx_list_map);
|
|
if (error)
|
|
return (ENOMEM);
|
|
|
|
/* Load the map for the RX ring. */
|
|
|
|
error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
|
|
sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
|
|
VGE_TX_LIST_SZ, vge_dma_map_addr,
|
|
&sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
|
|
|
|
/* Create DMA maps for RX buffers */
|
|
|
|
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
|
|
error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
|
|
&sc->vge_ldata.vge_rx_dmamap[i]);
|
|
if (error) {
|
|
device_printf(dev, "can't create DMA map for RX\n");
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
vge_attach(dev)
|
|
device_t dev;
|
|
{
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
int error = 0, rid;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->vge_dev = dev;
|
|
|
|
mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
rid = VGE_PCI_LOMEM;
|
|
sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
|
|
0, ~0, 1, RF_ACTIVE);
|
|
|
|
if (sc->vge_res == NULL) {
|
|
device_printf(dev, "couldn't map ports/memory\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate interrupt */
|
|
rid = 0;
|
|
sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
|
|
0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->vge_irq == NULL) {
|
|
device_printf(dev, "couldn't map interrupt\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
vge_reset(sc);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
|
|
|
|
/*
|
|
* Allocate the parent bus DMA tag appropriate for PCI.
|
|
*/
|
|
#define VGE_NSEG_NEW 32
|
|
error = bus_dma_tag_create(NULL, /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vge_parent_tag);
|
|
if (error)
|
|
goto fail;
|
|
|
|
error = vge_allocmem(dev, sc);
|
|
|
|
if (error)
|
|
goto fail;
|
|
|
|
ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
/* Do MII setup */
|
|
if (mii_phy_probe(dev, &sc->vge_miibus,
|
|
vge_ifmedia_upd, vge_ifmedia_sts)) {
|
|
device_printf(dev, "MII without any phy!\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = vge_ioctl;
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU;
|
|
ifp->if_start = vge_start;
|
|
ifp->if_hwassist = VGE_CSUM_FEATURES;
|
|
ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
ifp->if_init = vge_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
|
|
ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
|
|
NULL, vge_intr, sc, &sc->vge_intrhand);
|
|
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
vge_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
vge_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
|
|
ifp = sc->vge_ifp;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
/* These should only be active if attach succeeded */
|
|
if (device_is_attached(dev)) {
|
|
ether_ifdetach(ifp);
|
|
VGE_LOCK(sc);
|
|
vge_stop(sc);
|
|
VGE_UNLOCK(sc);
|
|
callout_drain(&sc->vge_watchdog);
|
|
}
|
|
if (sc->vge_miibus)
|
|
device_delete_child(dev, sc->vge_miibus);
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->vge_intrhand)
|
|
bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
|
|
if (sc->vge_irq)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
|
|
if (sc->vge_res)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
VGE_PCI_LOMEM, sc->vge_res);
|
|
if (ifp)
|
|
if_free(ifp);
|
|
|
|
/* Unload and free the RX DMA ring memory and map */
|
|
|
|
if (sc->vge_ldata.vge_rx_list_tag) {
|
|
bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
|
|
sc->vge_ldata.vge_rx_list_map);
|
|
bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
|
|
sc->vge_ldata.vge_rx_list,
|
|
sc->vge_ldata.vge_rx_list_map);
|
|
bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
|
|
}
|
|
|
|
/* Unload and free the TX DMA ring memory and map */
|
|
|
|
if (sc->vge_ldata.vge_tx_list_tag) {
|
|
bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
|
|
sc->vge_ldata.vge_tx_list_map);
|
|
bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
|
|
sc->vge_ldata.vge_tx_list,
|
|
sc->vge_ldata.vge_tx_list_map);
|
|
bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
|
|
}
|
|
|
|
/* Destroy all the RX and TX buffer maps */
|
|
|
|
if (sc->vge_ldata.vge_mtag) {
|
|
for (i = 0; i < VGE_TX_DESC_CNT; i++)
|
|
bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
|
|
sc->vge_ldata.vge_tx_dmamap[i]);
|
|
for (i = 0; i < VGE_RX_DESC_CNT; i++)
|
|
bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
|
|
sc->vge_ldata.vge_rx_dmamap[i]);
|
|
bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
|
|
}
|
|
|
|
if (sc->vge_parent_tag)
|
|
bus_dma_tag_destroy(sc->vge_parent_tag);
|
|
|
|
mtx_destroy(&sc->vge_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vge_newbuf(sc, idx, m)
|
|
struct vge_softc *sc;
|
|
int idx;
|
|
struct mbuf *m;
|
|
{
|
|
struct vge_dmaload_arg arg;
|
|
struct mbuf *n = NULL;
|
|
int i, error;
|
|
|
|
if (m == NULL) {
|
|
n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (n == NULL)
|
|
return (ENOBUFS);
|
|
m = n;
|
|
} else
|
|
m->m_data = m->m_ext.ext_buf;
|
|
|
|
|
|
#ifdef VGE_FIXUP_RX
|
|
/*
|
|
* This is part of an evil trick to deal with non-x86 platforms.
|
|
* The VIA chip requires RX buffers to be aligned on 32-bit
|
|
* boundaries, but that will hose non-x86 machines. To get around
|
|
* this, we leave some empty space at the start of each buffer
|
|
* and for non-x86 hosts, we copy the buffer back two bytes
|
|
* to achieve word alignment. This is slightly more efficient
|
|
* than allocating a new buffer, copying the contents, and
|
|
* discarding the old buffer.
|
|
*/
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
|
|
m_adj(m, VGE_ETHER_ALIGN);
|
|
#else
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
#endif
|
|
|
|
arg.sc = sc;
|
|
arg.vge_idx = idx;
|
|
arg.vge_maxsegs = 1;
|
|
arg.vge_flags = 0;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
|
|
sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
|
|
&arg, BUS_DMA_NOWAIT);
|
|
if (error || arg.vge_maxsegs != 1) {
|
|
if (n != NULL)
|
|
m_freem(n);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Note: the manual fails to document the fact that for
|
|
* proper opration, the driver needs to replentish the RX
|
|
* DMA ring 4 descriptors at a time (rather than one at a
|
|
* time, like most chips). We can allocate the new buffers
|
|
* but we should not set the OWN bits until we're ready
|
|
* to hand back 4 of them in one shot.
|
|
*/
|
|
|
|
#define VGE_RXCHUNK 4
|
|
sc->vge_rx_consumed++;
|
|
if (sc->vge_rx_consumed == VGE_RXCHUNK) {
|
|
for (i = idx; i != idx - sc->vge_rx_consumed; i--)
|
|
sc->vge_ldata.vge_rx_list[i].vge_sts |=
|
|
htole32(VGE_RDSTS_OWN);
|
|
sc->vge_rx_consumed = 0;
|
|
}
|
|
|
|
sc->vge_ldata.vge_rx_mbuf[idx] = m;
|
|
|
|
bus_dmamap_sync(sc->vge_ldata.vge_mtag,
|
|
sc->vge_ldata.vge_rx_dmamap[idx],
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vge_tx_list_init(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
|
|
bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
|
|
(VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
|
|
|
|
bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
|
|
sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
|
|
sc->vge_ldata.vge_tx_prodidx = 0;
|
|
sc->vge_ldata.vge_tx_considx = 0;
|
|
sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vge_rx_list_init(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
int i;
|
|
|
|
bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
|
|
bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
|
|
(VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
|
|
|
|
sc->vge_rx_consumed = 0;
|
|
|
|
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
|
|
if (vge_newbuf(sc, i, NULL) == ENOBUFS)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/* Flush the RX descriptors */
|
|
|
|
bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
|
|
sc->vge_ldata.vge_rx_list_map,
|
|
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
|
|
|
|
sc->vge_ldata.vge_rx_prodidx = 0;
|
|
sc->vge_rx_consumed = 0;
|
|
sc->vge_head = sc->vge_tail = NULL;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef VGE_FIXUP_RX
|
|
static __inline void
|
|
vge_fixup_rx(m)
|
|
struct mbuf *m;
|
|
{
|
|
int i;
|
|
uint16_t *src, *dst;
|
|
|
|
src = mtod(m, uint16_t *);
|
|
dst = src - 1;
|
|
|
|
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
|
|
*dst++ = *src++;
|
|
|
|
m->m_data -= ETHER_ALIGN;
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* RX handler. We support the reception of jumbo frames that have
|
|
* been fragmented across multiple 2K mbuf cluster buffers.
|
|
*/
|
|
static int
|
|
vge_rxeof(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
int i, total_len;
|
|
int lim = 0;
|
|
struct vge_rx_desc *cur_rx;
|
|
u_int32_t rxstat, rxctl;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
ifp = sc->vge_ifp;
|
|
i = sc->vge_ldata.vge_rx_prodidx;
|
|
|
|
/* Invalidate the descriptor memory */
|
|
|
|
bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
|
|
sc->vge_ldata.vge_rx_list_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
if (sc->rxcycles <= 0)
|
|
break;
|
|
sc->rxcycles--;
|
|
}
|
|
#endif
|
|
|
|
cur_rx = &sc->vge_ldata.vge_rx_list[i];
|
|
m = sc->vge_ldata.vge_rx_mbuf[i];
|
|
total_len = VGE_RXBYTES(cur_rx);
|
|
rxstat = le32toh(cur_rx->vge_sts);
|
|
rxctl = le32toh(cur_rx->vge_ctl);
|
|
|
|
/* Invalidate the RX mbuf and unload its map */
|
|
|
|
bus_dmamap_sync(sc->vge_ldata.vge_mtag,
|
|
sc->vge_ldata.vge_rx_dmamap[i],
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->vge_ldata.vge_mtag,
|
|
sc->vge_ldata.vge_rx_dmamap[i]);
|
|
|
|
/*
|
|
* If the 'start of frame' bit is set, this indicates
|
|
* either the first fragment in a multi-fragment receive,
|
|
* or an intermediate fragment. Either way, we want to
|
|
* accumulate the buffers.
|
|
*/
|
|
if (rxstat & VGE_RXPKT_SOF) {
|
|
m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
|
|
if (sc->vge_head == NULL)
|
|
sc->vge_head = sc->vge_tail = m;
|
|
else {
|
|
m->m_flags &= ~M_PKTHDR;
|
|
sc->vge_tail->m_next = m;
|
|
sc->vge_tail = m;
|
|
}
|
|
vge_newbuf(sc, i, NULL);
|
|
VGE_RX_DESC_INC(i);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Bad/error frames will have the RXOK bit cleared.
|
|
* However, there's one error case we want to allow:
|
|
* if a VLAN tagged frame arrives and the chip can't
|
|
* match it against the CAM filter, it considers this
|
|
* a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
|
|
* We don't want to drop the frame though: our VLAN
|
|
* filtering is done in software.
|
|
*/
|
|
if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
|
|
&& !(rxstat & VGE_RDSTS_CSUMERR)) {
|
|
ifp->if_ierrors++;
|
|
/*
|
|
* If this is part of a multi-fragment packet,
|
|
* discard all the pieces.
|
|
*/
|
|
if (sc->vge_head != NULL) {
|
|
m_freem(sc->vge_head);
|
|
sc->vge_head = sc->vge_tail = NULL;
|
|
}
|
|
vge_newbuf(sc, i, m);
|
|
VGE_RX_DESC_INC(i);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If allocating a replacement mbuf fails,
|
|
* reload the current one.
|
|
*/
|
|
|
|
if (vge_newbuf(sc, i, NULL)) {
|
|
ifp->if_ierrors++;
|
|
if (sc->vge_head != NULL) {
|
|
m_freem(sc->vge_head);
|
|
sc->vge_head = sc->vge_tail = NULL;
|
|
}
|
|
vge_newbuf(sc, i, m);
|
|
VGE_RX_DESC_INC(i);
|
|
continue;
|
|
}
|
|
|
|
VGE_RX_DESC_INC(i);
|
|
|
|
if (sc->vge_head != NULL) {
|
|
m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
|
|
/*
|
|
* Special case: if there's 4 bytes or less
|
|
* in this buffer, the mbuf can be discarded:
|
|
* the last 4 bytes is the CRC, which we don't
|
|
* care about anyway.
|
|
*/
|
|
if (m->m_len <= ETHER_CRC_LEN) {
|
|
sc->vge_tail->m_len -=
|
|
(ETHER_CRC_LEN - m->m_len);
|
|
m_freem(m);
|
|
} else {
|
|
m->m_len -= ETHER_CRC_LEN;
|
|
m->m_flags &= ~M_PKTHDR;
|
|
sc->vge_tail->m_next = m;
|
|
}
|
|
m = sc->vge_head;
|
|
sc->vge_head = sc->vge_tail = NULL;
|
|
m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
|
|
} else
|
|
m->m_pkthdr.len = m->m_len =
|
|
(total_len - ETHER_CRC_LEN);
|
|
|
|
#ifdef VGE_FIXUP_RX
|
|
vge_fixup_rx(m);
|
|
#endif
|
|
ifp->if_ipackets++;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
/* Do RX checksumming if enabled */
|
|
if (ifp->if_capenable & IFCAP_RXCSUM) {
|
|
|
|
/* Check IP header checksum */
|
|
if (rxctl & VGE_RDCTL_IPPKT)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
if (rxctl & VGE_RDCTL_IPCSUMOK)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
|
|
/* Check TCP/UDP checksum */
|
|
if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
|
|
rxctl & VGE_RDCTL_PROTOCSUMOK) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
|
|
if (rxstat & VGE_RDSTS_VTAG) {
|
|
/*
|
|
* The 32-bit rxctl register is stored in little-endian.
|
|
* However, the 16-bit vlan tag is stored in big-endian,
|
|
* so we have to byte swap it.
|
|
*/
|
|
m->m_pkthdr.ether_vtag =
|
|
bswap16(rxctl & VGE_RDCTL_VLANID);
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
|
|
VGE_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
VGE_LOCK(sc);
|
|
|
|
lim++;
|
|
if (lim == VGE_RX_DESC_CNT)
|
|
break;
|
|
|
|
}
|
|
|
|
/* Flush the RX DMA ring */
|
|
|
|
bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
|
|
sc->vge_ldata.vge_rx_list_map,
|
|
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
|
|
|
|
sc->vge_ldata.vge_rx_prodidx = i;
|
|
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
|
|
|
|
|
|
return (lim);
|
|
}
|
|
|
|
static void
|
|
vge_txeof(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
u_int32_t txstat;
|
|
int idx;
|
|
|
|
ifp = sc->vge_ifp;
|
|
idx = sc->vge_ldata.vge_tx_considx;
|
|
|
|
/* Invalidate the TX descriptor list */
|
|
|
|
bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
|
|
sc->vge_ldata.vge_tx_list_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
while (idx != sc->vge_ldata.vge_tx_prodidx) {
|
|
|
|
txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
|
|
if (txstat & VGE_TDSTS_OWN)
|
|
break;
|
|
|
|
m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
|
|
sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
|
|
bus_dmamap_unload(sc->vge_ldata.vge_mtag,
|
|
sc->vge_ldata.vge_tx_dmamap[idx]);
|
|
if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
|
|
ifp->if_collisions++;
|
|
if (txstat & VGE_TDSTS_TXERR)
|
|
ifp->if_oerrors++;
|
|
else
|
|
ifp->if_opackets++;
|
|
|
|
sc->vge_ldata.vge_tx_free++;
|
|
VGE_TX_DESC_INC(idx);
|
|
}
|
|
|
|
/* No changes made to the TX ring, so no flush needed */
|
|
|
|
if (idx != sc->vge_ldata.vge_tx_considx) {
|
|
sc->vge_ldata.vge_tx_considx = idx;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->vge_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* If not all descriptors have been released reaped yet,
|
|
* reload the timer so that we will eventually get another
|
|
* interrupt that will cause us to re-enter this routine.
|
|
* This is done in case the transmitter has gone idle.
|
|
*/
|
|
if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
|
|
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
vge_tick(xsc)
|
|
void *xsc;
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
|
|
sc = xsc;
|
|
ifp = sc->vge_ifp;
|
|
VGE_LOCK_ASSERT(sc);
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
|
|
mii_tick(mii);
|
|
if (sc->vge_link) {
|
|
if (!(mii->mii_media_status & IFM_ACTIVE)) {
|
|
sc->vge_link = 0;
|
|
if_link_state_change(sc->vge_ifp,
|
|
LINK_STATE_DOWN);
|
|
}
|
|
} else {
|
|
if (mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->vge_link = 1;
|
|
if_link_state_change(sc->vge_ifp,
|
|
LINK_STATE_UP);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vge_start_locked(ifp);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static int
|
|
vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct vge_softc *sc = ifp->if_softc;
|
|
int rx_npkts = 0;
|
|
|
|
VGE_LOCK(sc);
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
goto done;
|
|
|
|
sc->rxcycles = count;
|
|
rx_npkts = vge_rxeof(sc);
|
|
vge_txeof(sc);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vge_start_locked(ifp);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
|
|
u_int32_t status;
|
|
status = CSR_READ_4(sc, VGE_ISR);
|
|
if (status == 0xFFFFFFFF)
|
|
goto done;
|
|
if (status)
|
|
CSR_WRITE_4(sc, VGE_ISR, status);
|
|
|
|
/*
|
|
* XXX check behaviour on receiver stalls.
|
|
*/
|
|
|
|
if (status & VGE_ISR_TXDMA_STALL ||
|
|
status & VGE_ISR_RXDMA_STALL)
|
|
vge_init_locked(sc);
|
|
|
|
if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
|
|
vge_rxeof(sc);
|
|
ifp->if_ierrors++;
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
|
|
}
|
|
}
|
|
done:
|
|
VGE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void
|
|
vge_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int32_t status;
|
|
|
|
sc = arg;
|
|
|
|
if (sc->suspended) {
|
|
return;
|
|
}
|
|
|
|
VGE_LOCK(sc);
|
|
ifp = sc->vge_ifp;
|
|
|
|
if (!(ifp->if_flags & IFF_UP)) {
|
|
VGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
VGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Disable interrupts */
|
|
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
|
|
|
|
for (;;) {
|
|
|
|
status = CSR_READ_4(sc, VGE_ISR);
|
|
/* If the card has gone away the read returns 0xffff. */
|
|
if (status == 0xFFFFFFFF)
|
|
break;
|
|
|
|
if (status)
|
|
CSR_WRITE_4(sc, VGE_ISR, status);
|
|
|
|
if ((status & VGE_INTRS) == 0)
|
|
break;
|
|
|
|
if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
|
|
vge_rxeof(sc);
|
|
|
|
if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
|
|
vge_rxeof(sc);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
|
|
}
|
|
|
|
if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
|
|
vge_txeof(sc);
|
|
|
|
if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
|
|
vge_init_locked(sc);
|
|
|
|
if (status & VGE_ISR_LINKSTS)
|
|
vge_tick(sc);
|
|
}
|
|
|
|
/* Re-enable interrupts */
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vge_start_locked(ifp);
|
|
|
|
VGE_UNLOCK(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
vge_encap(sc, m_head, idx)
|
|
struct vge_softc *sc;
|
|
struct mbuf *m_head;
|
|
int idx;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
struct vge_dmaload_arg arg;
|
|
bus_dmamap_t map;
|
|
int error;
|
|
|
|
if (sc->vge_ldata.vge_tx_free <= 2)
|
|
return (EFBIG);
|
|
|
|
arg.vge_flags = 0;
|
|
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
|
|
arg.vge_flags |= VGE_TDCTL_IPCSUM;
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
|
|
arg.vge_flags |= VGE_TDCTL_TCPCSUM;
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
|
|
arg.vge_flags |= VGE_TDCTL_UDPCSUM;
|
|
|
|
arg.sc = sc;
|
|
arg.vge_idx = idx;
|
|
arg.vge_m0 = m_head;
|
|
arg.vge_maxsegs = VGE_TX_FRAGS;
|
|
|
|
map = sc->vge_ldata.vge_tx_dmamap[idx];
|
|
error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
|
|
m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
|
|
|
|
if (error && error != EFBIG) {
|
|
if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n", error);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/* Too many segments to map, coalesce into a single mbuf */
|
|
|
|
if (error || arg.vge_maxsegs == 0) {
|
|
m_new = m_defrag(m_head, M_DONTWAIT);
|
|
if (m_new == NULL)
|
|
return (1);
|
|
else
|
|
m_head = m_new;
|
|
|
|
arg.sc = sc;
|
|
arg.vge_m0 = m_head;
|
|
arg.vge_idx = idx;
|
|
arg.vge_maxsegs = 1;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
|
|
m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n",
|
|
error);
|
|
return (EFBIG);
|
|
}
|
|
}
|
|
|
|
sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
|
|
sc->vge_ldata.vge_tx_free--;
|
|
|
|
/*
|
|
* Set up hardware VLAN tagging.
|
|
*/
|
|
|
|
if (m_head->m_flags & M_VLANTAG)
|
|
sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
|
|
htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
|
|
|
|
sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine.
|
|
*/
|
|
|
|
static void
|
|
vge_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct vge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
VGE_LOCK(sc);
|
|
vge_start_locked(ifp);
|
|
VGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
vge_start_locked(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct vge_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
int idx, pidx = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE)
|
|
return;
|
|
|
|
if (IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
return;
|
|
|
|
idx = sc->vge_ldata.vge_tx_prodidx;
|
|
|
|
pidx = idx - 1;
|
|
if (pidx < 0)
|
|
pidx = VGE_TX_DESC_CNT - 1;
|
|
|
|
|
|
while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
if (vge_encap(sc, m_head, idx)) {
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
|
|
htole16(VGE_TXDESC_Q);
|
|
|
|
pidx = idx;
|
|
VGE_TX_DESC_INC(idx);
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (idx == sc->vge_ldata.vge_tx_prodidx)
|
|
return;
|
|
|
|
/* Flush the TX descriptors */
|
|
|
|
bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
|
|
sc->vge_ldata.vge_tx_list_map,
|
|
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
|
|
|
|
/* Issue a transmit command. */
|
|
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
|
|
|
|
sc->vge_ldata.vge_tx_prodidx = idx;
|
|
|
|
/*
|
|
* Use the countdown timer for interrupt moderation.
|
|
* 'TX done' interrupts are disabled. Instead, we reset the
|
|
* countdown timer, which will begin counting until it hits
|
|
* the value in the SSTIMER register, and then trigger an
|
|
* interrupt. Each time we set the TIMER0_ENABLE bit, the
|
|
* the timer count is reloaded. Only when the transmitter
|
|
* is idle will the timer hit 0 and an interrupt fire.
|
|
*/
|
|
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
sc->vge_timer = 5;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
vge_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct vge_softc *sc = xsc;
|
|
|
|
VGE_LOCK(sc);
|
|
vge_init_locked(sc);
|
|
VGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
vge_init_locked(struct vge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->vge_ifp;
|
|
struct mii_data *mii;
|
|
int i;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
vge_stop(sc);
|
|
vge_reset(sc);
|
|
|
|
/*
|
|
* Initialize the RX and TX descriptors and mbufs.
|
|
*/
|
|
|
|
vge_rx_list_init(sc);
|
|
vge_tx_list_init(sc);
|
|
|
|
/* Set our station address */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
|
|
|
|
/*
|
|
* Set receive FIFO threshold. Also allow transmission and
|
|
* reception of VLAN tagged frames.
|
|
*/
|
|
CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
|
|
CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
|
|
|
|
/* Set DMA burst length */
|
|
CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
|
|
CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
|
|
|
|
CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
|
|
|
|
/* Set collision backoff algorithm */
|
|
CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
|
|
VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
|
|
CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
|
|
|
|
/* Disable LPSEL field in priority resolution */
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
|
|
|
|
/*
|
|
* Load the addresses of the DMA queues into the chip.
|
|
* Note that we only use one transmit queue.
|
|
*/
|
|
|
|
CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
|
|
VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
|
|
CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
|
|
|
|
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
|
|
VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
|
|
CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
|
|
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
|
|
|
|
/* Enable and wake up the RX descriptor queue */
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
|
|
|
|
/* Enable the TX descriptor queue */
|
|
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
|
|
|
|
/* Set up the receive filter -- allow large frames for VLANs. */
|
|
CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
|
|
}
|
|
|
|
/* Set capture broadcast bit to capture broadcast frames. */
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
|
|
}
|
|
|
|
/* Set multicast bit to capture multicast frames. */
|
|
if (ifp->if_flags & IFF_MULTICAST) {
|
|
CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
|
|
}
|
|
|
|
/* Init the cam filter. */
|
|
vge_cam_clear(sc);
|
|
|
|
/* Init the multicast filter. */
|
|
vge_setmulti(sc);
|
|
|
|
/* Enable flow control */
|
|
|
|
CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
|
|
|
|
/* Enable jumbo frame reception (if desired) */
|
|
|
|
/* Start the MAC. */
|
|
CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
|
|
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
|
|
CSR_WRITE_1(sc, VGE_CRS0,
|
|
VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
|
|
|
|
/*
|
|
* Configure one-shot timer for microsecond
|
|
* resulution and load it for 500 usecs.
|
|
*/
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
|
|
CSR_WRITE_2(sc, VGE_SSTIMER, 400);
|
|
|
|
/*
|
|
* Configure interrupt moderation for receive. Enable
|
|
* the holdoff counter and load it, and set the RX
|
|
* suppression count to the number of descriptors we
|
|
* want to allow before triggering an interrupt.
|
|
* The holdoff timer is in units of 20 usecs.
|
|
*/
|
|
|
|
#ifdef notyet
|
|
CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
|
|
/* Select the interrupt holdoff timer page. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
|
|
CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
|
|
|
|
/* Enable use of the holdoff timer. */
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
|
|
CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
|
|
|
|
/* Select the RX suppression threshold page. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
|
|
CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
|
|
|
|
/* Restore the page select bits. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
|
|
#endif
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* Disable interrupts if we are polling.
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
CSR_WRITE_4(sc, VGE_IMR, 0);
|
|
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
|
|
} else /* otherwise ... */
|
|
#endif
|
|
{
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
|
|
CSR_WRITE_4(sc, VGE_ISR, 0);
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
|
|
}
|
|
|
|
mii_mediachg(mii);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
|
|
|
|
sc->vge_if_flags = 0;
|
|
sc->vge_link = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
vge_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct vge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
VGE_LOCK(sc);
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
mii_mediachg(mii);
|
|
VGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
vge_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct vge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
|
|
VGE_LOCK(sc);
|
|
mii_pollstat(mii);
|
|
VGE_UNLOCK(sc);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
vge_miibus_statchg(dev)
|
|
device_t dev;
|
|
{
|
|
struct vge_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia_entry *ife;
|
|
|
|
sc = device_get_softc(dev);
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
ife = mii->mii_media.ifm_cur;
|
|
|
|
/*
|
|
* If the user manually selects a media mode, we need to turn
|
|
* on the forced MAC mode bit in the DIAGCTL register. If the
|
|
* user happens to choose a full duplex mode, we also need to
|
|
* set the 'force full duplex' bit. This applies only to
|
|
* 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
|
|
* mode is disabled, and in 1000baseT mode, full duplex is
|
|
* always implied, so we turn on the forced mode bit but leave
|
|
* the FDX bit cleared.
|
|
*/
|
|
|
|
switch (IFM_SUBTYPE(ife->ifm_media)) {
|
|
case IFM_AUTO:
|
|
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
|
|
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
|
|
break;
|
|
case IFM_1000_T:
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
|
|
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
|
|
break;
|
|
case IFM_100_TX:
|
|
case IFM_10_T:
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
|
|
if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
|
|
} else {
|
|
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
|
|
}
|
|
break;
|
|
default:
|
|
device_printf(dev, "unknown media type: %x\n",
|
|
IFM_SUBTYPE(ife->ifm_media));
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
vge_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct vge_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct mii_data *mii;
|
|
int error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu > VGE_JUMBO_MTU)
|
|
error = EINVAL;
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
VGE_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
|
|
ifp->if_flags & IFF_PROMISC &&
|
|
!(sc->vge_if_flags & IFF_PROMISC)) {
|
|
CSR_SETBIT_1(sc, VGE_RXCTL,
|
|
VGE_RXCTL_RX_PROMISC);
|
|
vge_setmulti(sc);
|
|
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
|
|
!(ifp->if_flags & IFF_PROMISC) &&
|
|
sc->vge_if_flags & IFF_PROMISC) {
|
|
CSR_CLRBIT_1(sc, VGE_RXCTL,
|
|
VGE_RXCTL_RX_PROMISC);
|
|
vge_setmulti(sc);
|
|
} else
|
|
vge_init_locked(sc);
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
vge_stop(sc);
|
|
}
|
|
sc->vge_if_flags = ifp->if_flags;
|
|
VGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
VGE_LOCK(sc);
|
|
vge_setmulti(sc);
|
|
VGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
{
|
|
int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
error = ether_poll_register(vge_poll, ifp);
|
|
if (error)
|
|
return(error);
|
|
VGE_LOCK(sc);
|
|
/* Disable interrupts */
|
|
CSR_WRITE_4(sc, VGE_IMR, 0);
|
|
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
VGE_UNLOCK(sc);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupts. */
|
|
VGE_LOCK(sc);
|
|
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
|
|
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
VGE_UNLOCK(sc);
|
|
}
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
VGE_LOCK(sc);
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist |= VGE_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_RXCSUM) != 0)
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
VGE_UNLOCK(sc);
|
|
}
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vge_watchdog(void *arg)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = arg;
|
|
VGE_LOCK_ASSERT(sc);
|
|
callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
|
|
if (sc->vge_timer == 0 || --sc->vge_timer > 0)
|
|
return;
|
|
|
|
ifp = sc->vge_ifp;
|
|
if_printf(ifp, "watchdog timeout\n");
|
|
ifp->if_oerrors++;
|
|
|
|
vge_txeof(sc);
|
|
vge_rxeof(sc);
|
|
|
|
vge_init_locked(sc);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
vge_stop(sc)
|
|
struct vge_softc *sc;
|
|
{
|
|
int i;
|
|
struct ifnet *ifp;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
ifp = sc->vge_ifp;
|
|
sc->vge_timer = 0;
|
|
callout_stop(&sc->vge_watchdog);
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
|
|
CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
|
|
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
|
|
CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
|
|
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
|
|
|
|
if (sc->vge_head != NULL) {
|
|
m_freem(sc->vge_head);
|
|
sc->vge_head = sc->vge_tail = NULL;
|
|
}
|
|
|
|
/* Free the TX list buffers. */
|
|
|
|
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
|
|
if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
|
|
bus_dmamap_unload(sc->vge_ldata.vge_mtag,
|
|
sc->vge_ldata.vge_tx_dmamap[i]);
|
|
m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
|
|
sc->vge_ldata.vge_tx_mbuf[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Free the RX list buffers. */
|
|
|
|
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
|
|
if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
|
|
bus_dmamap_unload(sc->vge_ldata.vge_mtag,
|
|
sc->vge_ldata.vge_rx_dmamap[i]);
|
|
m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
|
|
sc->vge_ldata.vge_rx_mbuf[i] = NULL;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Device suspend routine. Stop the interface and save some PCI
|
|
* settings in case the BIOS doesn't restore them properly on
|
|
* resume.
|
|
*/
|
|
static int
|
|
vge_suspend(dev)
|
|
device_t dev;
|
|
{
|
|
struct vge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
VGE_LOCK(sc);
|
|
vge_stop(sc);
|
|
|
|
sc->suspended = 1;
|
|
VGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Device resume routine. Restore some PCI settings in case the BIOS
|
|
* doesn't, re-enable busmastering, and restart the interface if
|
|
* appropriate.
|
|
*/
|
|
static int
|
|
vge_resume(dev)
|
|
device_t dev;
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->vge_ifp;
|
|
|
|
/* reenable busmastering */
|
|
pci_enable_busmaster(dev);
|
|
pci_enable_io(dev, SYS_RES_MEMORY);
|
|
|
|
/* reinitialize interface if necessary */
|
|
VGE_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP)
|
|
vge_init_locked(sc);
|
|
|
|
sc->suspended = 0;
|
|
VGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static int
|
|
vge_shutdown(dev)
|
|
device_t dev;
|
|
{
|
|
struct vge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
VGE_LOCK(sc);
|
|
vge_stop(sc);
|
|
VGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|