48ce317898
While aborts are typically cleaner than a full controller reset, many times an I/O timeout indicates other controller-level issues where aborts may not work. NVMe drivers for other operating systems are also defaulting to controller reset rather than aborts for timed out I/O. Sponsored by: Intel Reviewed by: carl
986 lines
24 KiB
C
986 lines
24 KiB
C
/*-
|
|
* Copyright (C) 2012 Intel Corporation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/ioccom.h>
|
|
#include <sys/smp.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include "nvme_private.h"
|
|
|
|
static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
|
|
struct nvme_async_event_request *aer);
|
|
|
|
static void
|
|
nvme_ctrlr_cb(void *arg, const struct nvme_completion *status)
|
|
{
|
|
struct nvme_completion *cpl = arg;
|
|
struct mtx *mtx;
|
|
|
|
/*
|
|
* Copy status into the argument passed by the caller, so that
|
|
* the caller can check the status to determine if the
|
|
* the request passed or failed.
|
|
*/
|
|
memcpy(cpl, status, sizeof(*cpl));
|
|
mtx = mtx_pool_find(mtxpool_sleep, cpl);
|
|
mtx_lock(mtx);
|
|
wakeup(cpl);
|
|
mtx_unlock(mtx);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
|
|
{
|
|
|
|
/* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
|
|
if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
|
|
ctrlr->resource_id = PCIR_BAR(2);
|
|
else
|
|
ctrlr->resource_id = PCIR_BAR(0);
|
|
|
|
ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
|
|
&ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
|
|
|
|
if(ctrlr->resource == NULL) {
|
|
device_printf(ctrlr->dev, "unable to allocate pci resource\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
|
|
ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
|
|
ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
|
|
|
|
/*
|
|
* The NVMe spec allows for the MSI-X table to be placed behind
|
|
* BAR 4/5, separate from the control/doorbell registers. Always
|
|
* try to map this bar, because it must be mapped prior to calling
|
|
* pci_alloc_msix(). If the table isn't behind BAR 4/5,
|
|
* bus_alloc_resource() will just return NULL which is OK.
|
|
*/
|
|
ctrlr->bar4_resource_id = PCIR_BAR(4);
|
|
ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
|
|
&ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef CHATHAM2
|
|
static int
|
|
nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
|
|
{
|
|
|
|
ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
|
|
ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
|
|
SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
|
|
RF_ACTIVE);
|
|
|
|
if(ctrlr->chatham_resource == NULL) {
|
|
device_printf(ctrlr->dev, "unable to alloc pci resource\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
|
|
ctrlr->chatham_bus_handle =
|
|
rman_get_bushandle(ctrlr->chatham_resource);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
|
|
{
|
|
uint64_t reg1, reg2, reg3;
|
|
uint64_t temp1, temp2;
|
|
uint32_t temp3;
|
|
uint32_t use_flash_timings = 0;
|
|
|
|
DELAY(10000);
|
|
|
|
temp3 = chatham_read_4(ctrlr, 0x8080);
|
|
|
|
device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
|
|
|
|
ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
|
|
ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
|
|
|
|
device_printf(ctrlr->dev, "Chatham size: %jd\n",
|
|
(intmax_t)ctrlr->chatham_size);
|
|
|
|
reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
|
|
|
|
TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
|
|
if (use_flash_timings) {
|
|
device_printf(ctrlr->dev, "Chatham: using flash timings\n");
|
|
temp1 = 0x00001b58000007d0LL;
|
|
temp2 = 0x000000cb00000131LL;
|
|
} else {
|
|
device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
|
|
temp1 = temp2 = 0x0LL;
|
|
}
|
|
|
|
chatham_write_8(ctrlr, 0x8000, reg1);
|
|
chatham_write_8(ctrlr, 0x8008, reg2);
|
|
chatham_write_8(ctrlr, 0x8010, reg3);
|
|
|
|
chatham_write_8(ctrlr, 0x8020, temp1);
|
|
temp3 = chatham_read_4(ctrlr, 0x8020);
|
|
|
|
chatham_write_8(ctrlr, 0x8028, temp2);
|
|
temp3 = chatham_read_4(ctrlr, 0x8028);
|
|
|
|
chatham_write_8(ctrlr, 0x8030, temp1);
|
|
chatham_write_8(ctrlr, 0x8038, temp2);
|
|
chatham_write_8(ctrlr, 0x8040, temp1);
|
|
chatham_write_8(ctrlr, 0x8048, temp2);
|
|
chatham_write_8(ctrlr, 0x8050, temp1);
|
|
chatham_write_8(ctrlr, 0x8058, temp2);
|
|
|
|
DELAY(10000);
|
|
}
|
|
|
|
static void
|
|
nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
|
|
{
|
|
struct nvme_controller_data *cdata;
|
|
|
|
cdata = &ctrlr->cdata;
|
|
|
|
cdata->vid = 0x8086;
|
|
cdata->ssvid = 0x2011;
|
|
|
|
/*
|
|
* Chatham2 puts garbage data in these fields when we
|
|
* invoke IDENTIFY_CONTROLLER, so we need to re-zero
|
|
* the fields before calling bcopy().
|
|
*/
|
|
memset(cdata->sn, 0, sizeof(cdata->sn));
|
|
memcpy(cdata->sn, "2012", strlen("2012"));
|
|
memset(cdata->mn, 0, sizeof(cdata->mn));
|
|
memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
|
|
memset(cdata->fr, 0, sizeof(cdata->fr));
|
|
memcpy(cdata->fr, "0", strlen("0"));
|
|
cdata->rab = 8;
|
|
cdata->aerl = 3;
|
|
cdata->lpa.ns_smart = 1;
|
|
cdata->sqes.min = 6;
|
|
cdata->sqes.max = 6;
|
|
cdata->sqes.min = 4;
|
|
cdata->sqes.max = 4;
|
|
cdata->nn = 1;
|
|
|
|
/* Chatham2 doesn't support DSM command */
|
|
cdata->oncs.dsm = 0;
|
|
|
|
cdata->vwc.present = 1;
|
|
}
|
|
#endif /* CHATHAM2 */
|
|
|
|
static void
|
|
nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
|
|
{
|
|
struct nvme_qpair *qpair;
|
|
uint32_t num_entries;
|
|
|
|
qpair = &ctrlr->adminq;
|
|
|
|
num_entries = NVME_ADMIN_ENTRIES;
|
|
TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
|
|
/*
|
|
* If admin_entries was overridden to an invalid value, revert it
|
|
* back to our default value.
|
|
*/
|
|
if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
|
|
num_entries > NVME_MAX_ADMIN_ENTRIES) {
|
|
printf("nvme: invalid hw.nvme.admin_entries=%d specified\n",
|
|
num_entries);
|
|
num_entries = NVME_ADMIN_ENTRIES;
|
|
}
|
|
|
|
/*
|
|
* The admin queue's max xfer size is treated differently than the
|
|
* max I/O xfer size. 16KB is sufficient here - maybe even less?
|
|
*/
|
|
nvme_qpair_construct(qpair,
|
|
0, /* qpair ID */
|
|
0, /* vector */
|
|
num_entries,
|
|
NVME_ADMIN_TRACKERS,
|
|
16*1024, /* max xfer size */
|
|
ctrlr);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
|
|
{
|
|
struct nvme_qpair *qpair;
|
|
union cap_lo_register cap_lo;
|
|
int i, num_entries, num_trackers;
|
|
|
|
num_entries = NVME_IO_ENTRIES;
|
|
TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
|
|
|
|
/*
|
|
* NVMe spec sets a hard limit of 64K max entries, but
|
|
* devices may specify a smaller limit, so we need to check
|
|
* the MQES field in the capabilities register.
|
|
*/
|
|
cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
|
|
num_entries = min(num_entries, cap_lo.bits.mqes+1);
|
|
|
|
num_trackers = NVME_IO_TRACKERS;
|
|
TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
|
|
|
|
num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
|
|
num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
|
|
/*
|
|
* No need to have more trackers than entries in the submit queue.
|
|
* Note also that for a queue size of N, we can only have (N-1)
|
|
* commands outstanding, hence the "-1" here.
|
|
*/
|
|
num_trackers = min(num_trackers, (num_entries-1));
|
|
|
|
ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
|
|
TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size);
|
|
/*
|
|
* Check that tunable doesn't specify a size greater than what our
|
|
* driver supports, and is an even PAGE_SIZE multiple.
|
|
*/
|
|
if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE ||
|
|
ctrlr->max_xfer_size % PAGE_SIZE)
|
|
ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
|
|
|
|
ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
|
|
M_NVME, M_ZERO | M_NOWAIT);
|
|
|
|
if (ctrlr->ioq == NULL)
|
|
return (ENOMEM);
|
|
|
|
for (i = 0; i < ctrlr->num_io_queues; i++) {
|
|
qpair = &ctrlr->ioq[i];
|
|
|
|
/*
|
|
* Admin queue has ID=0. IO queues start at ID=1 -
|
|
* hence the 'i+1' here.
|
|
*
|
|
* For I/O queues, use the controller-wide max_xfer_size
|
|
* calculated in nvme_attach().
|
|
*/
|
|
nvme_qpair_construct(qpair,
|
|
i+1, /* qpair ID */
|
|
ctrlr->msix_enabled ? i+1 : 0, /* vector */
|
|
num_entries,
|
|
num_trackers,
|
|
ctrlr->max_xfer_size,
|
|
ctrlr);
|
|
|
|
if (ctrlr->per_cpu_io_queues)
|
|
bus_bind_intr(ctrlr->dev, qpair->res, i);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
|
|
{
|
|
int ms_waited;
|
|
union cc_register cc;
|
|
union csts_register csts;
|
|
|
|
cc.raw = nvme_mmio_read_4(ctrlr, cc);
|
|
csts.raw = nvme_mmio_read_4(ctrlr, csts);
|
|
|
|
if (!cc.bits.en) {
|
|
device_printf(ctrlr->dev, "%s called with cc.en = 0\n",
|
|
__func__);
|
|
return (ENXIO);
|
|
}
|
|
|
|
ms_waited = 0;
|
|
|
|
while (!csts.bits.rdy) {
|
|
DELAY(1000);
|
|
if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
|
|
device_printf(ctrlr->dev, "controller did not become "
|
|
"ready within %d ms\n", ctrlr->ready_timeout_in_ms);
|
|
return (ENXIO);
|
|
}
|
|
csts.raw = nvme_mmio_read_4(ctrlr, csts);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_disable(struct nvme_controller *ctrlr)
|
|
{
|
|
union cc_register cc;
|
|
union csts_register csts;
|
|
|
|
cc.raw = nvme_mmio_read_4(ctrlr, cc);
|
|
csts.raw = nvme_mmio_read_4(ctrlr, csts);
|
|
|
|
if (cc.bits.en == 1 && csts.bits.rdy == 0)
|
|
nvme_ctrlr_wait_for_ready(ctrlr);
|
|
|
|
cc.bits.en = 0;
|
|
nvme_mmio_write_4(ctrlr, cc, cc.raw);
|
|
DELAY(5000);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_enable(struct nvme_controller *ctrlr)
|
|
{
|
|
union cc_register cc;
|
|
union csts_register csts;
|
|
union aqa_register aqa;
|
|
|
|
cc.raw = nvme_mmio_read_4(ctrlr, cc);
|
|
csts.raw = nvme_mmio_read_4(ctrlr, csts);
|
|
|
|
if (cc.bits.en == 1) {
|
|
if (csts.bits.rdy == 1)
|
|
return (0);
|
|
else
|
|
return (nvme_ctrlr_wait_for_ready(ctrlr));
|
|
}
|
|
|
|
nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
|
|
DELAY(5000);
|
|
nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
|
|
DELAY(5000);
|
|
|
|
aqa.raw = 0;
|
|
/* acqs and asqs are 0-based. */
|
|
aqa.bits.acqs = ctrlr->adminq.num_entries-1;
|
|
aqa.bits.asqs = ctrlr->adminq.num_entries-1;
|
|
nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
|
|
DELAY(5000);
|
|
|
|
cc.bits.en = 1;
|
|
cc.bits.css = 0;
|
|
cc.bits.ams = 0;
|
|
cc.bits.shn = 0;
|
|
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
|
|
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
|
|
|
|
/* This evaluates to 0, which is according to spec. */
|
|
cc.bits.mps = (PAGE_SIZE >> 13);
|
|
|
|
nvme_mmio_write_4(ctrlr, cc, cc.raw);
|
|
DELAY(5000);
|
|
|
|
return (nvme_ctrlr_wait_for_ready(ctrlr));
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
|
|
{
|
|
int i;
|
|
|
|
nvme_admin_qpair_disable(&ctrlr->adminq);
|
|
for (i = 0; i < ctrlr->num_io_queues; i++)
|
|
nvme_io_qpair_disable(&ctrlr->ioq[i]);
|
|
|
|
DELAY(100*1000);
|
|
|
|
nvme_ctrlr_disable(ctrlr);
|
|
return (nvme_ctrlr_enable(ctrlr));
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_reset(struct nvme_controller *ctrlr)
|
|
{
|
|
|
|
taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify(struct nvme_controller *ctrlr)
|
|
{
|
|
struct mtx *mtx;
|
|
struct nvme_completion cpl;
|
|
int status;
|
|
|
|
mtx = mtx_pool_find(mtxpool_sleep, &cpl);
|
|
|
|
mtx_lock(mtx);
|
|
nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
|
|
nvme_ctrlr_cb, &cpl);
|
|
status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
|
|
mtx_unlock(mtx);
|
|
if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
|
|
printf("nvme_identify_controller failed!\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
#ifdef CHATHAM2
|
|
if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
|
|
nvme_chatham_populate_cdata(ctrlr);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
|
|
{
|
|
struct mtx *mtx;
|
|
struct nvme_completion cpl;
|
|
int cq_allocated, sq_allocated, status;
|
|
|
|
mtx = mtx_pool_find(mtxpool_sleep, &cpl);
|
|
|
|
mtx_lock(mtx);
|
|
nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
|
|
nvme_ctrlr_cb, &cpl);
|
|
status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
|
|
mtx_unlock(mtx);
|
|
if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
|
|
printf("nvme_set_num_queues failed!\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Data in cdw0 is 0-based.
|
|
* Lower 16-bits indicate number of submission queues allocated.
|
|
* Upper 16-bits indicate number of completion queues allocated.
|
|
*/
|
|
sq_allocated = (cpl.cdw0 & 0xFFFF) + 1;
|
|
cq_allocated = (cpl.cdw0 >> 16) + 1;
|
|
|
|
/*
|
|
* Check that the controller was able to allocate the number of
|
|
* queues we requested. If not, revert to one IO queue.
|
|
*/
|
|
if (sq_allocated < ctrlr->num_io_queues ||
|
|
cq_allocated < ctrlr->num_io_queues) {
|
|
ctrlr->num_io_queues = 1;
|
|
ctrlr->per_cpu_io_queues = 0;
|
|
|
|
/* TODO: destroy extra queues that were created
|
|
* previously but now found to be not needed.
|
|
*/
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
|
|
{
|
|
struct mtx *mtx;
|
|
struct nvme_qpair *qpair;
|
|
struct nvme_completion cpl;
|
|
int i, status;
|
|
|
|
mtx = mtx_pool_find(mtxpool_sleep, &cpl);
|
|
|
|
for (i = 0; i < ctrlr->num_io_queues; i++) {
|
|
qpair = &ctrlr->ioq[i];
|
|
|
|
mtx_lock(mtx);
|
|
nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
|
|
nvme_ctrlr_cb, &cpl);
|
|
status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
|
|
mtx_unlock(mtx);
|
|
if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
|
|
printf("nvme_create_io_cq failed!\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
mtx_lock(mtx);
|
|
nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
|
|
nvme_ctrlr_cb, &cpl);
|
|
status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
|
|
mtx_unlock(mtx);
|
|
if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
|
|
printf("nvme_create_io_sq failed!\n");
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
|
|
{
|
|
struct nvme_namespace *ns;
|
|
int i, status;
|
|
|
|
for (i = 0; i < ctrlr->cdata.nn; i++) {
|
|
ns = &ctrlr->ns[i];
|
|
status = nvme_ns_construct(ns, i+1, ctrlr);
|
|
if (status != 0)
|
|
return (status);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
|
|
{
|
|
struct nvme_async_event_request *aer = arg;
|
|
|
|
if (cpl->sf_sc == NVME_SC_ABORTED_SQ_DELETION) {
|
|
/*
|
|
* This is simulated when controller is being shut down, to
|
|
* effectively abort outstanding asynchronous event requests
|
|
* and make sure all memory is freed. Do not repost the
|
|
* request in this case.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
nvme_notify_async_consumers(aer->ctrlr, cpl);
|
|
|
|
/* TODO: decode async event type based on status */
|
|
|
|
/*
|
|
* Repost another asynchronous event request to replace the one that
|
|
* just completed.
|
|
*/
|
|
printf("Asynchronous event occurred.\n");
|
|
nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
|
|
struct nvme_async_event_request *aer)
|
|
{
|
|
struct nvme_request *req;
|
|
|
|
aer->ctrlr = ctrlr;
|
|
req = nvme_allocate_request(NULL, 0, nvme_ctrlr_async_event_cb, aer);
|
|
aer->req = req;
|
|
|
|
/*
|
|
* Disable timeout here, since asynchronous event requests should by
|
|
* nature never be timed out.
|
|
*/
|
|
req->timeout = FALSE;
|
|
req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
|
|
nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
|
|
{
|
|
union nvme_critical_warning_state state;
|
|
struct nvme_async_event_request *aer;
|
|
uint32_t i;
|
|
|
|
state.raw = 0xFF;
|
|
state.bits.reserved = 0;
|
|
nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL);
|
|
|
|
/* aerl is a zero-based value, so we need to add 1 here. */
|
|
ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
|
|
|
|
/* Chatham doesn't support AERs. */
|
|
if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
|
|
ctrlr->num_aers = 0;
|
|
|
|
for (i = 0; i < ctrlr->num_aers; i++) {
|
|
aer = &ctrlr->aer[i];
|
|
nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
|
|
{
|
|
|
|
ctrlr->int_coal_time = 0;
|
|
TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
|
|
&ctrlr->int_coal_time);
|
|
|
|
ctrlr->int_coal_threshold = 0;
|
|
TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
|
|
&ctrlr->int_coal_threshold);
|
|
|
|
nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
|
|
ctrlr->int_coal_threshold, NULL, NULL);
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_start(void *ctrlr_arg)
|
|
{
|
|
struct nvme_controller *ctrlr = ctrlr_arg;
|
|
int i;
|
|
|
|
nvme_admin_qpair_enable(&ctrlr->adminq);
|
|
|
|
if (nvme_ctrlr_identify(ctrlr) != 0)
|
|
goto err;
|
|
|
|
if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0)
|
|
goto err;
|
|
|
|
if (nvme_ctrlr_create_qpairs(ctrlr) != 0)
|
|
goto err;
|
|
|
|
if (nvme_ctrlr_construct_namespaces(ctrlr) != 0)
|
|
goto err;
|
|
|
|
nvme_ctrlr_configure_aer(ctrlr);
|
|
nvme_ctrlr_configure_int_coalescing(ctrlr);
|
|
|
|
for (i = 0; i < ctrlr->num_io_queues; i++)
|
|
nvme_io_qpair_enable(&ctrlr->ioq[i]);
|
|
|
|
ctrlr->is_started = TRUE;
|
|
|
|
err:
|
|
|
|
if (ctrlr->num_start_attempts == 0) {
|
|
/*
|
|
* Initialize sysctls, even if controller failed to start, to
|
|
* assist with debugging admin queue pair. Only run this
|
|
* code on the initial start attempt though, and not
|
|
* subsequent start attempts due to controller-level resets.
|
|
*
|
|
*/
|
|
nvme_sysctl_initialize_ctrlr(ctrlr);
|
|
config_intrhook_disestablish(&ctrlr->config_hook);
|
|
}
|
|
|
|
ctrlr->num_start_attempts++;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_reset_task(void *arg, int pending)
|
|
{
|
|
struct nvme_controller *ctrlr = arg;
|
|
int status;
|
|
|
|
device_printf(ctrlr->dev, "resetting controller");
|
|
status = nvme_ctrlr_hw_reset(ctrlr);
|
|
/*
|
|
* Use pause instead of DELAY, so that we yield to any nvme interrupt
|
|
* handlers on this CPU that were blocked on a qpair lock. We want
|
|
* all nvme interrupts completed before proceeding with restarting the
|
|
* controller.
|
|
*
|
|
* XXX - any way to guarantee the interrupt handlers have quiesced?
|
|
*/
|
|
pause("nvmereset", hz / 10);
|
|
if (status == 0)
|
|
nvme_ctrlr_start(ctrlr);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_intx_handler(void *arg)
|
|
{
|
|
struct nvme_controller *ctrlr = arg;
|
|
|
|
nvme_mmio_write_4(ctrlr, intms, 1);
|
|
|
|
nvme_qpair_process_completions(&ctrlr->adminq);
|
|
|
|
if (ctrlr->ioq[0].cpl)
|
|
nvme_qpair_process_completions(&ctrlr->ioq[0]);
|
|
|
|
nvme_mmio_write_4(ctrlr, intmc, 1);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
|
|
{
|
|
|
|
ctrlr->num_io_queues = 1;
|
|
ctrlr->per_cpu_io_queues = 0;
|
|
ctrlr->rid = 0;
|
|
ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
|
|
&ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (ctrlr->res == NULL) {
|
|
device_printf(ctrlr->dev, "unable to allocate shared IRQ\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
bus_setup_intr(ctrlr->dev, ctrlr->res,
|
|
INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
|
|
ctrlr, &ctrlr->tag);
|
|
|
|
if (ctrlr->tag == NULL) {
|
|
device_printf(ctrlr->dev,
|
|
"unable to setup legacy interrupt handler\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
|
|
struct thread *td)
|
|
{
|
|
struct nvme_controller *ctrlr;
|
|
struct nvme_completion cpl;
|
|
struct mtx *mtx;
|
|
|
|
ctrlr = cdev->si_drv1;
|
|
|
|
switch (cmd) {
|
|
case NVME_IDENTIFY_CONTROLLER:
|
|
#ifdef CHATHAM2
|
|
/*
|
|
* Don't refresh data on Chatham, since Chatham returns
|
|
* garbage on IDENTIFY anyways.
|
|
*/
|
|
if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) {
|
|
memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
|
|
break;
|
|
}
|
|
#endif
|
|
/* Refresh data before returning to user. */
|
|
mtx = mtx_pool_find(mtxpool_sleep, &cpl);
|
|
mtx_lock(mtx);
|
|
nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
|
|
nvme_ctrlr_cb, &cpl);
|
|
msleep(&cpl, mtx, PRIBIO, "nvme_ioctl", 0);
|
|
mtx_unlock(mtx);
|
|
if (cpl.sf_sc || cpl.sf_sct)
|
|
return (ENXIO);
|
|
memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
|
|
break;
|
|
case NVME_RESET_CONTROLLER:
|
|
nvme_ctrlr_reset(ctrlr);
|
|
break;
|
|
default:
|
|
return (ENOTTY);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct cdevsw nvme_ctrlr_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_flags = 0,
|
|
.d_ioctl = nvme_ctrlr_ioctl
|
|
};
|
|
|
|
int
|
|
nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
|
|
{
|
|
union cap_lo_register cap_lo;
|
|
union cap_hi_register cap_hi;
|
|
int num_vectors, per_cpu_io_queues, status = 0;
|
|
int timeout_period;
|
|
|
|
ctrlr->dev = dev;
|
|
ctrlr->is_started = FALSE;
|
|
ctrlr->num_start_attempts = 0;
|
|
|
|
status = nvme_ctrlr_allocate_bar(ctrlr);
|
|
|
|
if (status != 0)
|
|
return (status);
|
|
|
|
#ifdef CHATHAM2
|
|
if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
|
|
status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
|
|
if (status != 0)
|
|
return (status);
|
|
nvme_ctrlr_setup_chatham(ctrlr);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Software emulators may set the doorbell stride to something
|
|
* other than zero, but this driver is not set up to handle that.
|
|
*/
|
|
cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
|
|
if (cap_hi.bits.dstrd != 0)
|
|
return (ENXIO);
|
|
|
|
/* Get ready timeout value from controller, in units of 500ms. */
|
|
cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
|
|
ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
|
|
|
|
timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
|
|
TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
|
|
timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
|
|
timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
|
|
ctrlr->timeout_period = timeout_period;
|
|
|
|
per_cpu_io_queues = 1;
|
|
TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
|
|
ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
|
|
|
|
if (ctrlr->per_cpu_io_queues)
|
|
ctrlr->num_io_queues = mp_ncpus;
|
|
else
|
|
ctrlr->num_io_queues = 1;
|
|
|
|
ctrlr->force_intx = 0;
|
|
TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
|
|
|
|
ctrlr->enable_aborts = 0;
|
|
TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
|
|
|
|
ctrlr->msix_enabled = 1;
|
|
|
|
if (ctrlr->force_intx) {
|
|
ctrlr->msix_enabled = 0;
|
|
goto intx;
|
|
}
|
|
|
|
/* One vector per IO queue, plus one vector for admin queue. */
|
|
num_vectors = ctrlr->num_io_queues + 1;
|
|
|
|
if (pci_msix_count(dev) < num_vectors) {
|
|
ctrlr->msix_enabled = 0;
|
|
goto intx;
|
|
}
|
|
|
|
if (pci_alloc_msix(dev, &num_vectors) != 0)
|
|
ctrlr->msix_enabled = 0;
|
|
|
|
intx:
|
|
|
|
if (!ctrlr->msix_enabled)
|
|
nvme_ctrlr_configure_intx(ctrlr);
|
|
|
|
nvme_ctrlr_construct_admin_qpair(ctrlr);
|
|
|
|
status = nvme_ctrlr_construct_io_qpairs(ctrlr);
|
|
|
|
if (status != 0)
|
|
return (status);
|
|
|
|
ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
|
|
"nvme%d", device_get_unit(dev));
|
|
|
|
if (ctrlr->cdev == NULL)
|
|
return (ENXIO);
|
|
|
|
ctrlr->cdev->si_drv1 = (void *)ctrlr;
|
|
|
|
TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
|
|
ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
|
|
taskqueue_thread_enqueue, &ctrlr->taskqueue);
|
|
taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
|
|
{
|
|
int i;
|
|
|
|
taskqueue_free(ctrlr->taskqueue);
|
|
|
|
for (i = 0; i < NVME_MAX_NAMESPACES; i++)
|
|
nvme_ns_destruct(&ctrlr->ns[i]);
|
|
|
|
if (ctrlr->cdev)
|
|
destroy_dev(ctrlr->cdev);
|
|
|
|
for (i = 0; i < ctrlr->num_io_queues; i++) {
|
|
nvme_io_qpair_destroy(&ctrlr->ioq[i]);
|
|
}
|
|
|
|
free(ctrlr->ioq, M_NVME);
|
|
|
|
nvme_admin_qpair_destroy(&ctrlr->adminq);
|
|
|
|
if (ctrlr->resource != NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
ctrlr->resource_id, ctrlr->resource);
|
|
}
|
|
|
|
if (ctrlr->bar4_resource != NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
ctrlr->bar4_resource_id, ctrlr->bar4_resource);
|
|
}
|
|
|
|
#ifdef CHATHAM2
|
|
if (ctrlr->chatham_resource != NULL) {
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
ctrlr->chatham_resource_id, ctrlr->chatham_resource);
|
|
}
|
|
#endif
|
|
|
|
if (ctrlr->tag)
|
|
bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
|
|
|
|
if (ctrlr->res)
|
|
bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
|
|
rman_get_rid(ctrlr->res), ctrlr->res);
|
|
|
|
if (ctrlr->msix_enabled)
|
|
pci_release_msi(dev);
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
|
|
struct nvme_request *req)
|
|
{
|
|
|
|
nvme_qpair_submit_request(&ctrlr->adminq, req);
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
|
|
struct nvme_request *req)
|
|
{
|
|
struct nvme_qpair *qpair;
|
|
|
|
if (ctrlr->per_cpu_io_queues)
|
|
qpair = &ctrlr->ioq[curcpu];
|
|
else
|
|
qpair = &ctrlr->ioq[0];
|
|
|
|
nvme_qpair_submit_request(qpair, req);
|
|
}
|
|
|
|
device_t
|
|
nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
|
|
{
|
|
|
|
return (ctrlr->dev);
|
|
}
|
|
|
|
const struct nvme_controller_data *
|
|
nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
|
|
{
|
|
|
|
return (&ctrlr->cdata);
|
|
}
|