e2e4a0e02a
There's no need to perform the interrupt unbind while holding the blkback lock, and doing so leads to the following LOR: lock order reversal: (sleepable after non-sleepable) 1st 0xfffff8000802fe90 xbbd1 (xbbd1) @ /usr/src/sys/dev/xen/blkback/blkback.c:3423 2nd 0xffffffff81fdf890 intrsrc (intrsrc) @ /usr/src/sys/x86/x86/intr_machdep.c:224 stack backtrace: #0 0xffffffff80bdd993 at witness_debugger+0x73 #1 0xffffffff80bdd814 at witness_checkorder+0xe34 #2 0xffffffff80b7d798 at _sx_xlock+0x68 #3 0xffffffff811b3913 at intr_remove_handler+0x43 #4 0xffffffff811c63ef at xen_intr_unbind+0x10f #5 0xffffffff80a12ecf at xbb_disconnect+0x2f #6 0xffffffff80a12e54 at xbb_shutdown+0x1e4 #7 0xffffffff80a10be4 at xbb_frontend_changed+0x54 #8 0xffffffff80ed66a4 at xenbusb_back_otherend_changed+0x14 #9 0xffffffff80a2a382 at xenwatch_thread+0x182 #10 0xffffffff80b34164 at fork_exit+0x84 #11 0xffffffff8101ec9e at fork_trampoline+0xe Reported by: Nathan Friess <nathan.friess@gmail.com> Sponsored by: Citrix Systems R&D
3945 lines
105 KiB
C
3945 lines
105 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2009-2012 Spectra Logic Corporation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
* including a substantially similar Disclaimer requirement for further
|
|
* binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
*
|
|
* Authors: Justin T. Gibbs (Spectra Logic Corporation)
|
|
* Ken Merry (Spectra Logic Corporation)
|
|
*/
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/**
|
|
* \file blkback.c
|
|
*
|
|
* \brief Device driver supporting the vending of block storage from
|
|
* a FreeBSD domain to other domains.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/bio.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/devicestat.h>
|
|
#include <sys/disk.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/module.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/types.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/bitstring.h>
|
|
#include <sys/sdt.h>
|
|
|
|
#include <geom/geom.h>
|
|
|
|
#include <machine/_inttypes.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <xen/xen-os.h>
|
|
#include <xen/blkif.h>
|
|
#include <xen/gnttab.h>
|
|
#include <xen/xen_intr.h>
|
|
|
|
#include <xen/interface/event_channel.h>
|
|
#include <xen/interface/grant_table.h>
|
|
|
|
#include <xen/xenbus/xenbusvar.h>
|
|
|
|
/*--------------------------- Compile-time Tunables --------------------------*/
|
|
/**
|
|
* The maximum number of shared memory ring pages we will allow in a
|
|
* negotiated block-front/back communication channel. Allow enough
|
|
* ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
|
|
*/
|
|
#define XBB_MAX_RING_PAGES 32
|
|
|
|
/**
|
|
* The maximum number of outstanding request blocks (request headers plus
|
|
* additional segment blocks) we will allow in a negotiated block-front/back
|
|
* communication channel.
|
|
*/
|
|
#define XBB_MAX_REQUESTS \
|
|
__CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
|
|
|
|
/**
|
|
* \brief Define to force all I/O to be performed on memory owned by the
|
|
* backend device, with a copy-in/out to the remote domain's memory.
|
|
*
|
|
* \note This option is currently required when this driver's domain is
|
|
* operating in HVM mode on a system using an IOMMU.
|
|
*
|
|
* This driver uses Xen's grant table API to gain access to the memory of
|
|
* the remote domains it serves. When our domain is operating in PV mode,
|
|
* the grant table mechanism directly updates our domain's page table entries
|
|
* to point to the physical pages of the remote domain. This scheme guarantees
|
|
* that blkback and the backing devices it uses can safely perform DMA
|
|
* operations to satisfy requests. In HVM mode, Xen may use a HW IOMMU to
|
|
* insure that our domain cannot DMA to pages owned by another domain. As
|
|
* of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
|
|
* table API. For this reason, in HVM mode, we must bounce all requests into
|
|
* memory that is mapped into our domain at domain startup and thus has
|
|
* valid IOMMU mappings.
|
|
*/
|
|
#define XBB_USE_BOUNCE_BUFFERS
|
|
|
|
/**
|
|
* \brief Define to enable rudimentary request logging to the console.
|
|
*/
|
|
#undef XBB_DEBUG
|
|
|
|
/*---------------------------------- Macros ----------------------------------*/
|
|
/**
|
|
* Custom malloc type for all driver allocations.
|
|
*/
|
|
static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
|
|
|
|
#ifdef XBB_DEBUG
|
|
#define DPRINTF(fmt, args...) \
|
|
printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
|
|
#else
|
|
#define DPRINTF(fmt, args...) do {} while(0)
|
|
#endif
|
|
|
|
/**
|
|
* The maximum mapped region size per request we will allow in a negotiated
|
|
* block-front/back communication channel.
|
|
*/
|
|
#define XBB_MAX_REQUEST_SIZE \
|
|
MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
|
|
|
|
/**
|
|
* The maximum number of segments (within a request header and accompanying
|
|
* segment blocks) per request we will allow in a negotiated block-front/back
|
|
* communication channel.
|
|
*/
|
|
#define XBB_MAX_SEGMENTS_PER_REQUEST \
|
|
(MIN(UIO_MAXIOV, \
|
|
MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST, \
|
|
(XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
|
|
|
|
/**
|
|
* The maximum number of ring pages that we can allow per request list.
|
|
* We limit this to the maximum number of segments per request, because
|
|
* that is already a reasonable number of segments to aggregate. This
|
|
* number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
|
|
* because that would leave situations where we can't dispatch even one
|
|
* large request.
|
|
*/
|
|
#define XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
|
|
|
|
/*--------------------------- Forward Declarations ---------------------------*/
|
|
struct xbb_softc;
|
|
struct xbb_xen_req;
|
|
|
|
static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
|
|
...) __attribute__((format(printf, 3, 4)));
|
|
static int xbb_shutdown(struct xbb_softc *xbb);
|
|
|
|
/*------------------------------ Data Structures -----------------------------*/
|
|
|
|
STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
|
|
|
|
typedef enum {
|
|
XBB_REQLIST_NONE = 0x00,
|
|
XBB_REQLIST_MAPPED = 0x01
|
|
} xbb_reqlist_flags;
|
|
|
|
struct xbb_xen_reqlist {
|
|
/**
|
|
* Back reference to the parent block back instance for this
|
|
* request. Used during bio_done handling.
|
|
*/
|
|
struct xbb_softc *xbb;
|
|
|
|
/**
|
|
* BLKIF_OP code for this request.
|
|
*/
|
|
int operation;
|
|
|
|
/**
|
|
* Set to BLKIF_RSP_* to indicate request status.
|
|
*
|
|
* This field allows an error status to be recorded even if the
|
|
* delivery of this status must be deferred. Deferred reporting
|
|
* is necessary, for example, when an error is detected during
|
|
* completion processing of one bio when other bios for this
|
|
* request are still outstanding.
|
|
*/
|
|
int status;
|
|
|
|
/**
|
|
* Number of 512 byte sectors not transferred.
|
|
*/
|
|
int residual_512b_sectors;
|
|
|
|
/**
|
|
* Starting sector number of the first request in the list.
|
|
*/
|
|
off_t starting_sector_number;
|
|
|
|
/**
|
|
* If we're going to coalesce, the next contiguous sector would be
|
|
* this one.
|
|
*/
|
|
off_t next_contig_sector;
|
|
|
|
/**
|
|
* Number of child requests in the list.
|
|
*/
|
|
int num_children;
|
|
|
|
/**
|
|
* Number of I/O requests still pending on the backend.
|
|
*/
|
|
int pendcnt;
|
|
|
|
/**
|
|
* Total number of segments for requests in the list.
|
|
*/
|
|
int nr_segments;
|
|
|
|
/**
|
|
* Flags for this particular request list.
|
|
*/
|
|
xbb_reqlist_flags flags;
|
|
|
|
/**
|
|
* Kernel virtual address space reserved for this request
|
|
* list structure and used to map the remote domain's pages for
|
|
* this I/O, into our domain's address space.
|
|
*/
|
|
uint8_t *kva;
|
|
|
|
/**
|
|
* Base, pseudo-physical address, corresponding to the start
|
|
* of this request's kva region.
|
|
*/
|
|
uint64_t gnt_base;
|
|
|
|
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
/**
|
|
* Pre-allocated domain local memory used to proxy remote
|
|
* domain memory during I/O operations.
|
|
*/
|
|
uint8_t *bounce;
|
|
#endif
|
|
|
|
/**
|
|
* Array of grant handles (one per page) used to map this request.
|
|
*/
|
|
grant_handle_t *gnt_handles;
|
|
|
|
/**
|
|
* Device statistics request ordering type (ordered or simple).
|
|
*/
|
|
devstat_tag_type ds_tag_type;
|
|
|
|
/**
|
|
* Device statistics request type (read, write, no_data).
|
|
*/
|
|
devstat_trans_flags ds_trans_type;
|
|
|
|
/**
|
|
* The start time for this request.
|
|
*/
|
|
struct bintime ds_t0;
|
|
|
|
/**
|
|
* Linked list of contiguous requests with the same operation type.
|
|
*/
|
|
struct xbb_xen_req_list contig_req_list;
|
|
|
|
/**
|
|
* Linked list links used to aggregate idle requests in the
|
|
* request list free pool (xbb->reqlist_free_stailq) and pending
|
|
* requests waiting for execution (xbb->reqlist_pending_stailq).
|
|
*/
|
|
STAILQ_ENTRY(xbb_xen_reqlist) links;
|
|
};
|
|
|
|
STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
|
|
|
|
/**
|
|
* \brief Object tracking an in-flight I/O from a Xen VBD consumer.
|
|
*/
|
|
struct xbb_xen_req {
|
|
/**
|
|
* Linked list links used to aggregate requests into a reqlist
|
|
* and to store them in the request free pool.
|
|
*/
|
|
STAILQ_ENTRY(xbb_xen_req) links;
|
|
|
|
/**
|
|
* The remote domain's identifier for this I/O request.
|
|
*/
|
|
uint64_t id;
|
|
|
|
/**
|
|
* The number of pages currently mapped for this request.
|
|
*/
|
|
int nr_pages;
|
|
|
|
/**
|
|
* The number of 512 byte sectors comprising this requests.
|
|
*/
|
|
int nr_512b_sectors;
|
|
|
|
/**
|
|
* BLKIF_OP code for this request.
|
|
*/
|
|
int operation;
|
|
|
|
/**
|
|
* Storage used for non-native ring requests.
|
|
*/
|
|
blkif_request_t ring_req_storage;
|
|
|
|
/**
|
|
* Pointer to the Xen request in the ring.
|
|
*/
|
|
blkif_request_t *ring_req;
|
|
|
|
/**
|
|
* Consumer index for this request.
|
|
*/
|
|
RING_IDX req_ring_idx;
|
|
|
|
/**
|
|
* The start time for this request.
|
|
*/
|
|
struct bintime ds_t0;
|
|
|
|
/**
|
|
* Pointer back to our parent request list.
|
|
*/
|
|
struct xbb_xen_reqlist *reqlist;
|
|
};
|
|
SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
|
|
|
|
/**
|
|
* \brief Configuration data for the shared memory request ring
|
|
* used to communicate with the front-end client of this
|
|
* this driver.
|
|
*/
|
|
struct xbb_ring_config {
|
|
/** KVA address where ring memory is mapped. */
|
|
vm_offset_t va;
|
|
|
|
/** The pseudo-physical address where ring memory is mapped.*/
|
|
uint64_t gnt_addr;
|
|
|
|
/**
|
|
* Grant table handles, one per-ring page, returned by the
|
|
* hyperpervisor upon mapping of the ring and required to
|
|
* unmap it when a connection is torn down.
|
|
*/
|
|
grant_handle_t handle[XBB_MAX_RING_PAGES];
|
|
|
|
/**
|
|
* The device bus address returned by the hypervisor when
|
|
* mapping the ring and required to unmap it when a connection
|
|
* is torn down.
|
|
*/
|
|
uint64_t bus_addr[XBB_MAX_RING_PAGES];
|
|
|
|
/** The number of ring pages mapped for the current connection. */
|
|
u_int ring_pages;
|
|
|
|
/**
|
|
* The grant references, one per-ring page, supplied by the
|
|
* front-end, allowing us to reference the ring pages in the
|
|
* front-end's domain and to map these pages into our own domain.
|
|
*/
|
|
grant_ref_t ring_ref[XBB_MAX_RING_PAGES];
|
|
|
|
/** The interrupt driven even channel used to signal ring events. */
|
|
evtchn_port_t evtchn;
|
|
};
|
|
|
|
/**
|
|
* Per-instance connection state flags.
|
|
*/
|
|
typedef enum
|
|
{
|
|
/**
|
|
* The front-end requested a read-only mount of the
|
|
* back-end device/file.
|
|
*/
|
|
XBBF_READ_ONLY = 0x01,
|
|
|
|
/** Communication with the front-end has been established. */
|
|
XBBF_RING_CONNECTED = 0x02,
|
|
|
|
/**
|
|
* Front-end requests exist in the ring and are waiting for
|
|
* xbb_xen_req objects to free up.
|
|
*/
|
|
XBBF_RESOURCE_SHORTAGE = 0x04,
|
|
|
|
/** Connection teardown in progress. */
|
|
XBBF_SHUTDOWN = 0x08,
|
|
|
|
/** A thread is already performing shutdown processing. */
|
|
XBBF_IN_SHUTDOWN = 0x10
|
|
} xbb_flag_t;
|
|
|
|
/** Backend device type. */
|
|
typedef enum {
|
|
/** Backend type unknown. */
|
|
XBB_TYPE_NONE = 0x00,
|
|
|
|
/**
|
|
* Backend type disk (access via cdev switch
|
|
* strategy routine).
|
|
*/
|
|
XBB_TYPE_DISK = 0x01,
|
|
|
|
/** Backend type file (access vnode operations.). */
|
|
XBB_TYPE_FILE = 0x02
|
|
} xbb_type;
|
|
|
|
/**
|
|
* \brief Structure used to memoize information about a per-request
|
|
* scatter-gather list.
|
|
*
|
|
* The chief benefit of using this data structure is it avoids having
|
|
* to reparse the possibly discontiguous S/G list in the original
|
|
* request. Due to the way that the mapping of the memory backing an
|
|
* I/O transaction is handled by Xen, a second pass is unavoidable.
|
|
* At least this way the second walk is a simple array traversal.
|
|
*
|
|
* \note A single Scatter/Gather element in the block interface covers
|
|
* at most 1 machine page. In this context a sector (blkif
|
|
* nomenclature, not what I'd choose) is a 512b aligned unit
|
|
* of mapping within the machine page referenced by an S/G
|
|
* element.
|
|
*/
|
|
struct xbb_sg {
|
|
/** The number of 512b data chunks mapped in this S/G element. */
|
|
int16_t nsect;
|
|
|
|
/**
|
|
* The index (0 based) of the first 512b data chunk mapped
|
|
* in this S/G element.
|
|
*/
|
|
uint8_t first_sect;
|
|
|
|
/**
|
|
* The index (0 based) of the last 512b data chunk mapped
|
|
* in this S/G element.
|
|
*/
|
|
uint8_t last_sect;
|
|
};
|
|
|
|
/**
|
|
* Character device backend specific configuration data.
|
|
*/
|
|
struct xbb_dev_data {
|
|
/** Cdev used for device backend access. */
|
|
struct cdev *cdev;
|
|
|
|
/** Cdev switch used for device backend access. */
|
|
struct cdevsw *csw;
|
|
|
|
/** Used to hold a reference on opened cdev backend devices. */
|
|
int dev_ref;
|
|
};
|
|
|
|
/**
|
|
* File backend specific configuration data.
|
|
*/
|
|
struct xbb_file_data {
|
|
/** Credentials to use for vnode backed (file based) I/O. */
|
|
struct ucred *cred;
|
|
|
|
/**
|
|
* \brief Array of io vectors used to process file based I/O.
|
|
*
|
|
* Only a single file based request is outstanding per-xbb instance,
|
|
* so we only need one of these.
|
|
*/
|
|
struct iovec xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
|
|
/**
|
|
* \brief Array of io vectors used to handle bouncing of file reads.
|
|
*
|
|
* Vnode operations are free to modify uio data during their
|
|
* exectuion. In the case of a read with bounce buffering active,
|
|
* we need some of the data from the original uio in order to
|
|
* bounce-out the read data. This array serves as the temporary
|
|
* storage for this saved data.
|
|
*/
|
|
struct iovec saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
|
|
|
|
/**
|
|
* \brief Array of memoized bounce buffer kva offsets used
|
|
* in the file based backend.
|
|
*
|
|
* Due to the way that the mapping of the memory backing an
|
|
* I/O transaction is handled by Xen, a second pass through
|
|
* the request sg elements is unavoidable. We memoize the computed
|
|
* bounce address here to reduce the cost of the second walk.
|
|
*/
|
|
void *xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
|
|
#endif /* XBB_USE_BOUNCE_BUFFERS */
|
|
};
|
|
|
|
/**
|
|
* Collection of backend type specific data.
|
|
*/
|
|
union xbb_backend_data {
|
|
struct xbb_dev_data dev;
|
|
struct xbb_file_data file;
|
|
};
|
|
|
|
/**
|
|
* Function signature of backend specific I/O handlers.
|
|
*/
|
|
typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
|
|
struct xbb_xen_reqlist *reqlist, int operation,
|
|
int flags);
|
|
|
|
/**
|
|
* Per-instance configuration data.
|
|
*/
|
|
struct xbb_softc {
|
|
|
|
/**
|
|
* Task-queue used to process I/O requests.
|
|
*/
|
|
struct taskqueue *io_taskqueue;
|
|
|
|
/**
|
|
* Single "run the request queue" task enqueued
|
|
* on io_taskqueue.
|
|
*/
|
|
struct task io_task;
|
|
|
|
/** Device type for this instance. */
|
|
xbb_type device_type;
|
|
|
|
/** NewBus device corresponding to this instance. */
|
|
device_t dev;
|
|
|
|
/** Backend specific dispatch routine for this instance. */
|
|
xbb_dispatch_t dispatch_io;
|
|
|
|
/** The number of requests outstanding on the backend device/file. */
|
|
int active_request_count;
|
|
|
|
/** Free pool of request tracking structures. */
|
|
struct xbb_xen_req_list request_free_stailq;
|
|
|
|
/** Array, sized at connection time, of request tracking structures. */
|
|
struct xbb_xen_req *requests;
|
|
|
|
/** Free pool of request list structures. */
|
|
struct xbb_xen_reqlist_list reqlist_free_stailq;
|
|
|
|
/** List of pending request lists awaiting execution. */
|
|
struct xbb_xen_reqlist_list reqlist_pending_stailq;
|
|
|
|
/** Array, sized at connection time, of request list structures. */
|
|
struct xbb_xen_reqlist *request_lists;
|
|
|
|
/**
|
|
* Global pool of kva used for mapping remote domain ring
|
|
* and I/O transaction data.
|
|
*/
|
|
vm_offset_t kva;
|
|
|
|
/** Pseudo-physical address corresponding to kva. */
|
|
uint64_t gnt_base_addr;
|
|
|
|
/** The size of the global kva pool. */
|
|
int kva_size;
|
|
|
|
/** The size of the KVA area used for request lists. */
|
|
int reqlist_kva_size;
|
|
|
|
/** The number of pages of KVA used for request lists */
|
|
int reqlist_kva_pages;
|
|
|
|
/** Bitmap of free KVA pages */
|
|
bitstr_t *kva_free;
|
|
|
|
/**
|
|
* \brief Cached value of the front-end's domain id.
|
|
*
|
|
* This value is used at once for each mapped page in
|
|
* a transaction. We cache it to avoid incuring the
|
|
* cost of an ivar access every time this is needed.
|
|
*/
|
|
domid_t otherend_id;
|
|
|
|
/**
|
|
* \brief The blkif protocol abi in effect.
|
|
*
|
|
* There are situations where the back and front ends can
|
|
* have a different, native abi (e.g. intel x86_64 and
|
|
* 32bit x86 domains on the same machine). The back-end
|
|
* always accommodates the front-end's native abi. That
|
|
* value is pulled from the XenStore and recorded here.
|
|
*/
|
|
int abi;
|
|
|
|
/**
|
|
* \brief The maximum number of requests and request lists allowed
|
|
* to be in flight at a time.
|
|
*
|
|
* This value is negotiated via the XenStore.
|
|
*/
|
|
u_int max_requests;
|
|
|
|
/**
|
|
* \brief The maximum number of segments (1 page per segment)
|
|
* that can be mapped by a request.
|
|
*
|
|
* This value is negotiated via the XenStore.
|
|
*/
|
|
u_int max_request_segments;
|
|
|
|
/**
|
|
* \brief Maximum number of segments per request list.
|
|
*
|
|
* This value is derived from and will generally be larger than
|
|
* max_request_segments.
|
|
*/
|
|
u_int max_reqlist_segments;
|
|
|
|
/**
|
|
* The maximum size of any request to this back-end
|
|
* device.
|
|
*
|
|
* This value is negotiated via the XenStore.
|
|
*/
|
|
u_int max_request_size;
|
|
|
|
/**
|
|
* The maximum size of any request list. This is derived directly
|
|
* from max_reqlist_segments.
|
|
*/
|
|
u_int max_reqlist_size;
|
|
|
|
/** Various configuration and state bit flags. */
|
|
xbb_flag_t flags;
|
|
|
|
/** Ring mapping and interrupt configuration data. */
|
|
struct xbb_ring_config ring_config;
|
|
|
|
/** Runtime, cross-abi safe, structures for ring access. */
|
|
blkif_back_rings_t rings;
|
|
|
|
/** IRQ mapping for the communication ring event channel. */
|
|
xen_intr_handle_t xen_intr_handle;
|
|
|
|
/**
|
|
* \brief Backend access mode flags (e.g. write, or read-only).
|
|
*
|
|
* This value is passed to us by the front-end via the XenStore.
|
|
*/
|
|
char *dev_mode;
|
|
|
|
/**
|
|
* \brief Backend device type (e.g. "disk", "cdrom", "floppy").
|
|
*
|
|
* This value is passed to us by the front-end via the XenStore.
|
|
* Currently unused.
|
|
*/
|
|
char *dev_type;
|
|
|
|
/**
|
|
* \brief Backend device/file identifier.
|
|
*
|
|
* This value is passed to us by the front-end via the XenStore.
|
|
* We expect this to be a POSIX path indicating the file or
|
|
* device to open.
|
|
*/
|
|
char *dev_name;
|
|
|
|
/**
|
|
* Vnode corresponding to the backend device node or file
|
|
* we are acessing.
|
|
*/
|
|
struct vnode *vn;
|
|
|
|
union xbb_backend_data backend;
|
|
|
|
/** The native sector size of the backend. */
|
|
u_int sector_size;
|
|
|
|
/** log2 of sector_size. */
|
|
u_int sector_size_shift;
|
|
|
|
/** Size in bytes of the backend device or file. */
|
|
off_t media_size;
|
|
|
|
/**
|
|
* \brief media_size expressed in terms of the backend native
|
|
* sector size.
|
|
*
|
|
* (e.g. xbb->media_size >> xbb->sector_size_shift).
|
|
*/
|
|
uint64_t media_num_sectors;
|
|
|
|
/**
|
|
* \brief Array of memoized scatter gather data computed during the
|
|
* conversion of blkif ring requests to internal xbb_xen_req
|
|
* structures.
|
|
*
|
|
* Ring processing is serialized so we only need one of these.
|
|
*/
|
|
struct xbb_sg xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
|
|
|
|
/**
|
|
* Temporary grant table map used in xbb_dispatch_io(). When
|
|
* XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
|
|
* stack could cause a stack overflow.
|
|
*/
|
|
struct gnttab_map_grant_ref maps[XBB_MAX_SEGMENTS_PER_REQLIST];
|
|
|
|
/** Mutex protecting per-instance data. */
|
|
struct mtx lock;
|
|
|
|
/**
|
|
* Resource representing allocated physical address space
|
|
* associated with our per-instance kva region.
|
|
*/
|
|
struct resource *pseudo_phys_res;
|
|
|
|
/** Resource id for allocated physical address space. */
|
|
int pseudo_phys_res_id;
|
|
|
|
/**
|
|
* I/O statistics from BlockBack dispatch down. These are
|
|
* coalesced requests, and we start them right before execution.
|
|
*/
|
|
struct devstat *xbb_stats;
|
|
|
|
/**
|
|
* I/O statistics coming into BlockBack. These are the requests as
|
|
* we get them from BlockFront. They are started as soon as we
|
|
* receive a request, and completed when the I/O is complete.
|
|
*/
|
|
struct devstat *xbb_stats_in;
|
|
|
|
/** Disable sending flush to the backend */
|
|
int disable_flush;
|
|
|
|
/** Send a real flush for every N flush requests */
|
|
int flush_interval;
|
|
|
|
/** Count of flush requests in the interval */
|
|
int flush_count;
|
|
|
|
/** Don't coalesce requests if this is set */
|
|
int no_coalesce_reqs;
|
|
|
|
/** Number of requests we have received */
|
|
uint64_t reqs_received;
|
|
|
|
/** Number of requests we have completed*/
|
|
uint64_t reqs_completed;
|
|
|
|
/** Number of requests we queued but not pushed*/
|
|
uint64_t reqs_queued_for_completion;
|
|
|
|
/** Number of requests we completed with an error status*/
|
|
uint64_t reqs_completed_with_error;
|
|
|
|
/** How many forced dispatches (i.e. without coalescing) have happened */
|
|
uint64_t forced_dispatch;
|
|
|
|
/** How many normal dispatches have happened */
|
|
uint64_t normal_dispatch;
|
|
|
|
/** How many total dispatches have happened */
|
|
uint64_t total_dispatch;
|
|
|
|
/** How many times we have run out of KVA */
|
|
uint64_t kva_shortages;
|
|
|
|
/** How many times we have run out of request structures */
|
|
uint64_t request_shortages;
|
|
|
|
/** Watch to wait for hotplug script execution */
|
|
struct xs_watch hotplug_watch;
|
|
|
|
/** Got the needed data from hotplug scripts? */
|
|
bool hotplug_done;
|
|
};
|
|
|
|
/*---------------------------- Request Processing ----------------------------*/
|
|
/**
|
|
* Allocate an internal transaction tracking structure from the free pool.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*
|
|
* \return On success, a pointer to the allocated xbb_xen_req structure.
|
|
* Otherwise NULL.
|
|
*/
|
|
static inline struct xbb_xen_req *
|
|
xbb_get_req(struct xbb_softc *xbb)
|
|
{
|
|
struct xbb_xen_req *req;
|
|
|
|
req = NULL;
|
|
|
|
mtx_assert(&xbb->lock, MA_OWNED);
|
|
|
|
if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
|
|
STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
|
|
xbb->active_request_count++;
|
|
}
|
|
|
|
return (req);
|
|
}
|
|
|
|
/**
|
|
* Return an allocated transaction tracking structure to the free pool.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param req The request structure to free.
|
|
*/
|
|
static inline void
|
|
xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
|
|
{
|
|
mtx_assert(&xbb->lock, MA_OWNED);
|
|
|
|
STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
|
|
xbb->active_request_count--;
|
|
|
|
KASSERT(xbb->active_request_count >= 0,
|
|
("xbb_release_req: negative active count"));
|
|
}
|
|
|
|
/**
|
|
* Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param req_list The list of requests to free.
|
|
* \param nreqs The number of items in the list.
|
|
*/
|
|
static inline void
|
|
xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
|
|
int nreqs)
|
|
{
|
|
mtx_assert(&xbb->lock, MA_OWNED);
|
|
|
|
STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
|
|
xbb->active_request_count -= nreqs;
|
|
|
|
KASSERT(xbb->active_request_count >= 0,
|
|
("xbb_release_reqs: negative active count"));
|
|
}
|
|
|
|
/**
|
|
* Given a page index and 512b sector offset within that page,
|
|
* calculate an offset into a request's kva region.
|
|
*
|
|
* \param reqlist The request structure whose kva region will be accessed.
|
|
* \param pagenr The page index used to compute the kva offset.
|
|
* \param sector The 512b sector index used to compute the page relative
|
|
* kva offset.
|
|
*
|
|
* \return The computed global KVA offset.
|
|
*/
|
|
static inline uint8_t *
|
|
xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
|
|
{
|
|
return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
|
|
}
|
|
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
/**
|
|
* Given a page index and 512b sector offset within that page,
|
|
* calculate an offset into a request's local bounce memory region.
|
|
*
|
|
* \param reqlist The request structure whose bounce region will be accessed.
|
|
* \param pagenr The page index used to compute the bounce offset.
|
|
* \param sector The 512b sector index used to compute the page relative
|
|
* bounce offset.
|
|
*
|
|
* \return The computed global bounce buffer address.
|
|
*/
|
|
static inline uint8_t *
|
|
xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
|
|
{
|
|
return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Given a page number and 512b sector offset within that page,
|
|
* calculate an offset into the request's memory region that the
|
|
* underlying backend device/file should use for I/O.
|
|
*
|
|
* \param reqlist The request structure whose I/O region will be accessed.
|
|
* \param pagenr The page index used to compute the I/O offset.
|
|
* \param sector The 512b sector index used to compute the page relative
|
|
* I/O offset.
|
|
*
|
|
* \return The computed global I/O address.
|
|
*
|
|
* Depending on configuration, this will either be a local bounce buffer
|
|
* or a pointer to the memory mapped in from the front-end domain for
|
|
* this request.
|
|
*/
|
|
static inline uint8_t *
|
|
xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
|
|
{
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
|
|
#else
|
|
return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Given a page index and 512b sector offset within that page, calculate
|
|
* an offset into the local pseudo-physical address space used to map a
|
|
* front-end's request data into a request.
|
|
*
|
|
* \param reqlist The request list structure whose pseudo-physical region
|
|
* will be accessed.
|
|
* \param pagenr The page index used to compute the pseudo-physical offset.
|
|
* \param sector The 512b sector index used to compute the page relative
|
|
* pseudo-physical offset.
|
|
*
|
|
* \return The computed global pseudo-phsyical address.
|
|
*
|
|
* Depending on configuration, this will either be a local bounce buffer
|
|
* or a pointer to the memory mapped in from the front-end domain for
|
|
* this request.
|
|
*/
|
|
static inline uintptr_t
|
|
xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
|
|
{
|
|
struct xbb_softc *xbb;
|
|
|
|
xbb = reqlist->xbb;
|
|
|
|
return ((uintptr_t)(xbb->gnt_base_addr +
|
|
(uintptr_t)(reqlist->kva - xbb->kva) +
|
|
(PAGE_SIZE * pagenr) + (sector << 9)));
|
|
}
|
|
|
|
/**
|
|
* Get Kernel Virtual Address space for mapping requests.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param nr_pages Number of pages needed.
|
|
* \param check_only If set, check for free KVA but don't allocate it.
|
|
* \param have_lock If set, xbb lock is already held.
|
|
*
|
|
* \return On success, a pointer to the allocated KVA region. Otherwise NULL.
|
|
*
|
|
* Note: This should be unnecessary once we have either chaining or
|
|
* scatter/gather support for struct bio. At that point we'll be able to
|
|
* put multiple addresses and lengths in one bio/bio chain and won't need
|
|
* to map everything into one virtual segment.
|
|
*/
|
|
static uint8_t *
|
|
xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
|
|
{
|
|
int first_clear;
|
|
int num_clear;
|
|
uint8_t *free_kva;
|
|
int i;
|
|
|
|
KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
|
|
|
|
first_clear = 0;
|
|
free_kva = NULL;
|
|
|
|
mtx_lock(&xbb->lock);
|
|
|
|
/*
|
|
* Look for the first available page. If there are none, we're done.
|
|
*/
|
|
bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
|
|
|
|
if (first_clear == -1)
|
|
goto bailout;
|
|
|
|
/*
|
|
* Starting at the first available page, look for consecutive free
|
|
* pages that will satisfy the user's request.
|
|
*/
|
|
for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
|
|
/*
|
|
* If this is true, the page is used, so we have to reset
|
|
* the number of clear pages and the first clear page
|
|
* (since it pointed to a region with an insufficient number
|
|
* of clear pages).
|
|
*/
|
|
if (bit_test(xbb->kva_free, i)) {
|
|
num_clear = 0;
|
|
first_clear = -1;
|
|
continue;
|
|
}
|
|
|
|
if (first_clear == -1)
|
|
first_clear = i;
|
|
|
|
/*
|
|
* If this is true, we've found a large enough free region
|
|
* to satisfy the request.
|
|
*/
|
|
if (++num_clear == nr_pages) {
|
|
|
|
bit_nset(xbb->kva_free, first_clear,
|
|
first_clear + nr_pages - 1);
|
|
|
|
free_kva = xbb->kva +
|
|
(uint8_t *)((intptr_t)first_clear * PAGE_SIZE);
|
|
|
|
KASSERT(free_kva >= (uint8_t *)xbb->kva &&
|
|
free_kva + (nr_pages * PAGE_SIZE) <=
|
|
(uint8_t *)xbb->ring_config.va,
|
|
("Free KVA %p len %d out of range, "
|
|
"kva = %#jx, ring VA = %#jx\n", free_kva,
|
|
nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
|
|
(uintmax_t)xbb->ring_config.va));
|
|
break;
|
|
}
|
|
}
|
|
|
|
bailout:
|
|
|
|
if (free_kva == NULL) {
|
|
xbb->flags |= XBBF_RESOURCE_SHORTAGE;
|
|
xbb->kva_shortages++;
|
|
}
|
|
|
|
mtx_unlock(&xbb->lock);
|
|
|
|
return (free_kva);
|
|
}
|
|
|
|
/**
|
|
* Free allocated KVA.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param kva_ptr Pointer to allocated KVA region.
|
|
* \param nr_pages Number of pages in the KVA region.
|
|
*/
|
|
static void
|
|
xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
|
|
{
|
|
intptr_t start_page;
|
|
|
|
mtx_assert(&xbb->lock, MA_OWNED);
|
|
|
|
start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
|
|
bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
|
|
|
|
}
|
|
|
|
/**
|
|
* Unmap the front-end pages associated with this I/O request.
|
|
*
|
|
* \param req The request structure to unmap.
|
|
*/
|
|
static void
|
|
xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
|
|
{
|
|
struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
|
|
u_int i;
|
|
u_int invcount;
|
|
int error;
|
|
|
|
invcount = 0;
|
|
for (i = 0; i < reqlist->nr_segments; i++) {
|
|
|
|
if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
|
|
continue;
|
|
|
|
unmap[invcount].host_addr = xbb_get_gntaddr(reqlist, i, 0);
|
|
unmap[invcount].dev_bus_addr = 0;
|
|
unmap[invcount].handle = reqlist->gnt_handles[i];
|
|
reqlist->gnt_handles[i] = GRANT_REF_INVALID;
|
|
invcount++;
|
|
}
|
|
|
|
error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
|
|
unmap, invcount);
|
|
KASSERT(error == 0, ("Grant table operation failed"));
|
|
}
|
|
|
|
/**
|
|
* Allocate an internal transaction tracking structure from the free pool.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*
|
|
* \return On success, a pointer to the allocated xbb_xen_reqlist structure.
|
|
* Otherwise NULL.
|
|
*/
|
|
static inline struct xbb_xen_reqlist *
|
|
xbb_get_reqlist(struct xbb_softc *xbb)
|
|
{
|
|
struct xbb_xen_reqlist *reqlist;
|
|
|
|
reqlist = NULL;
|
|
|
|
mtx_assert(&xbb->lock, MA_OWNED);
|
|
|
|
if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
|
|
|
|
STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
|
|
reqlist->flags = XBB_REQLIST_NONE;
|
|
reqlist->kva = NULL;
|
|
reqlist->status = BLKIF_RSP_OKAY;
|
|
reqlist->residual_512b_sectors = 0;
|
|
reqlist->num_children = 0;
|
|
reqlist->nr_segments = 0;
|
|
STAILQ_INIT(&reqlist->contig_req_list);
|
|
}
|
|
|
|
return (reqlist);
|
|
}
|
|
|
|
/**
|
|
* Return an allocated transaction tracking structure to the free pool.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param req The request list structure to free.
|
|
* \param wakeup If set, wakeup the work thread if freeing this reqlist
|
|
* during a resource shortage condition.
|
|
*/
|
|
static inline void
|
|
xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
|
|
int wakeup)
|
|
{
|
|
|
|
mtx_assert(&xbb->lock, MA_OWNED);
|
|
|
|
if (wakeup) {
|
|
wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
|
|
xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
|
|
}
|
|
|
|
if (reqlist->kva != NULL)
|
|
xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
|
|
|
|
xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
|
|
|
|
STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
|
|
|
|
if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
|
|
/*
|
|
* Shutdown is in progress. See if we can
|
|
* progress further now that one more request
|
|
* has completed and been returned to the
|
|
* free pool.
|
|
*/
|
|
xbb_shutdown(xbb);
|
|
}
|
|
|
|
if (wakeup != 0)
|
|
taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
|
|
}
|
|
|
|
/**
|
|
* Request resources and do basic request setup.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param reqlist Pointer to reqlist pointer.
|
|
* \param ring_req Pointer to a block ring request.
|
|
* \param ring_index The ring index of this request.
|
|
*
|
|
* \return 0 for success, non-zero for failure.
|
|
*/
|
|
static int
|
|
xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
|
|
blkif_request_t *ring_req, RING_IDX ring_idx)
|
|
{
|
|
struct xbb_xen_reqlist *nreqlist;
|
|
struct xbb_xen_req *nreq;
|
|
|
|
nreqlist = NULL;
|
|
nreq = NULL;
|
|
|
|
mtx_lock(&xbb->lock);
|
|
|
|
/*
|
|
* We don't allow new resources to be allocated if we're in the
|
|
* process of shutting down.
|
|
*/
|
|
if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
|
|
mtx_unlock(&xbb->lock);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Allocate a reqlist if the caller doesn't have one already.
|
|
*/
|
|
if (*reqlist == NULL) {
|
|
nreqlist = xbb_get_reqlist(xbb);
|
|
if (nreqlist == NULL)
|
|
goto bailout_error;
|
|
}
|
|
|
|
/* We always allocate a request. */
|
|
nreq = xbb_get_req(xbb);
|
|
if (nreq == NULL)
|
|
goto bailout_error;
|
|
|
|
mtx_unlock(&xbb->lock);
|
|
|
|
if (*reqlist == NULL) {
|
|
*reqlist = nreqlist;
|
|
nreqlist->operation = ring_req->operation;
|
|
nreqlist->starting_sector_number = ring_req->sector_number;
|
|
STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
|
|
links);
|
|
}
|
|
|
|
nreq->reqlist = *reqlist;
|
|
nreq->req_ring_idx = ring_idx;
|
|
nreq->id = ring_req->id;
|
|
nreq->operation = ring_req->operation;
|
|
|
|
if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
|
|
bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
|
|
nreq->ring_req = &nreq->ring_req_storage;
|
|
} else {
|
|
nreq->ring_req = ring_req;
|
|
}
|
|
|
|
binuptime(&nreq->ds_t0);
|
|
devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
|
|
STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
|
|
(*reqlist)->num_children++;
|
|
(*reqlist)->nr_segments += ring_req->nr_segments;
|
|
|
|
return (0);
|
|
|
|
bailout_error:
|
|
|
|
/*
|
|
* We're out of resources, so set the shortage flag. The next time
|
|
* a request is released, we'll try waking up the work thread to
|
|
* see if we can allocate more resources.
|
|
*/
|
|
xbb->flags |= XBBF_RESOURCE_SHORTAGE;
|
|
xbb->request_shortages++;
|
|
|
|
if (nreq != NULL)
|
|
xbb_release_req(xbb, nreq);
|
|
|
|
if (nreqlist != NULL)
|
|
xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
|
|
|
|
mtx_unlock(&xbb->lock);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/**
|
|
* Create and queue a response to a blkif request.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param req The request structure to which to respond.
|
|
* \param status The status code to report. See BLKIF_RSP_*
|
|
* in sys/xen/interface/io/blkif.h.
|
|
*/
|
|
static void
|
|
xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
|
|
{
|
|
blkif_response_t *resp;
|
|
|
|
/*
|
|
* The mutex is required here, and should be held across this call
|
|
* until after the subsequent call to xbb_push_responses(). This
|
|
* is to guarantee that another context won't queue responses and
|
|
* push them while we're active.
|
|
*
|
|
* That could lead to the other end being notified of responses
|
|
* before the resources have been freed on this end. The other end
|
|
* would then be able to queue additional I/O, and we may run out
|
|
* of resources because we haven't freed them all yet.
|
|
*/
|
|
mtx_assert(&xbb->lock, MA_OWNED);
|
|
|
|
/*
|
|
* Place on the response ring for the relevant domain.
|
|
* For now, only the spacing between entries is different
|
|
* in the different ABIs, not the response entry layout.
|
|
*/
|
|
switch (xbb->abi) {
|
|
case BLKIF_PROTOCOL_NATIVE:
|
|
resp = RING_GET_RESPONSE(&xbb->rings.native,
|
|
xbb->rings.native.rsp_prod_pvt);
|
|
break;
|
|
case BLKIF_PROTOCOL_X86_32:
|
|
resp = (blkif_response_t *)
|
|
RING_GET_RESPONSE(&xbb->rings.x86_32,
|
|
xbb->rings.x86_32.rsp_prod_pvt);
|
|
break;
|
|
case BLKIF_PROTOCOL_X86_64:
|
|
resp = (blkif_response_t *)
|
|
RING_GET_RESPONSE(&xbb->rings.x86_64,
|
|
xbb->rings.x86_64.rsp_prod_pvt);
|
|
break;
|
|
default:
|
|
panic("Unexpected blkif protocol ABI.");
|
|
}
|
|
|
|
resp->id = req->id;
|
|
resp->operation = req->operation;
|
|
resp->status = status;
|
|
|
|
if (status != BLKIF_RSP_OKAY)
|
|
xbb->reqs_completed_with_error++;
|
|
|
|
xbb->rings.common.rsp_prod_pvt++;
|
|
|
|
xbb->reqs_queued_for_completion++;
|
|
|
|
}
|
|
|
|
/**
|
|
* Send queued responses to blkif requests.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param run_taskqueue Flag that is set to 1 if the taskqueue
|
|
* should be run, 0 if it does not need to be run.
|
|
* \param notify Flag that is set to 1 if the other end should be
|
|
* notified via irq, 0 if the other end should not be
|
|
* notified.
|
|
*/
|
|
static void
|
|
xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
|
|
{
|
|
int more_to_do;
|
|
|
|
/*
|
|
* The mutex is required here.
|
|
*/
|
|
mtx_assert(&xbb->lock, MA_OWNED);
|
|
|
|
more_to_do = 0;
|
|
|
|
RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
|
|
|
|
if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
|
|
|
|
/*
|
|
* Tail check for pending requests. Allows frontend to avoid
|
|
* notifications if requests are already in flight (lower
|
|
* overheads and promotes batching).
|
|
*/
|
|
RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
|
|
} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
|
|
|
|
more_to_do = 1;
|
|
}
|
|
|
|
xbb->reqs_completed += xbb->reqs_queued_for_completion;
|
|
xbb->reqs_queued_for_completion = 0;
|
|
|
|
*run_taskqueue = more_to_do;
|
|
}
|
|
|
|
/**
|
|
* Complete a request list.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param reqlist Allocated internal request list structure.
|
|
*/
|
|
static void
|
|
xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
|
|
{
|
|
struct xbb_xen_req *nreq;
|
|
off_t sectors_sent;
|
|
int notify, run_taskqueue;
|
|
|
|
sectors_sent = 0;
|
|
|
|
if (reqlist->flags & XBB_REQLIST_MAPPED)
|
|
xbb_unmap_reqlist(reqlist);
|
|
|
|
mtx_lock(&xbb->lock);
|
|
|
|
/*
|
|
* All I/O is done, send the response. A lock is not necessary
|
|
* to protect the request list, because all requests have
|
|
* completed. Therefore this is the only context accessing this
|
|
* reqlist right now. However, in order to make sure that no one
|
|
* else queues responses onto the queue or pushes them to the other
|
|
* side while we're active, we need to hold the lock across the
|
|
* calls to xbb_queue_response() and xbb_push_responses().
|
|
*/
|
|
STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
|
|
off_t cur_sectors_sent;
|
|
|
|
/* Put this response on the ring, but don't push yet */
|
|
xbb_queue_response(xbb, nreq, reqlist->status);
|
|
|
|
/* We don't report bytes sent if there is an error. */
|
|
if (reqlist->status == BLKIF_RSP_OKAY)
|
|
cur_sectors_sent = nreq->nr_512b_sectors;
|
|
else
|
|
cur_sectors_sent = 0;
|
|
|
|
sectors_sent += cur_sectors_sent;
|
|
|
|
devstat_end_transaction(xbb->xbb_stats_in,
|
|
/*bytes*/cur_sectors_sent << 9,
|
|
reqlist->ds_tag_type,
|
|
reqlist->ds_trans_type,
|
|
/*now*/NULL,
|
|
/*then*/&nreq->ds_t0);
|
|
}
|
|
|
|
/*
|
|
* Take out any sectors not sent. If we wind up negative (which
|
|
* might happen if an error is reported as well as a residual), just
|
|
* report 0 sectors sent.
|
|
*/
|
|
sectors_sent -= reqlist->residual_512b_sectors;
|
|
if (sectors_sent < 0)
|
|
sectors_sent = 0;
|
|
|
|
devstat_end_transaction(xbb->xbb_stats,
|
|
/*bytes*/ sectors_sent << 9,
|
|
reqlist->ds_tag_type,
|
|
reqlist->ds_trans_type,
|
|
/*now*/NULL,
|
|
/*then*/&reqlist->ds_t0);
|
|
|
|
xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
|
|
|
|
xbb_push_responses(xbb, &run_taskqueue, ¬ify);
|
|
|
|
mtx_unlock(&xbb->lock);
|
|
|
|
if (run_taskqueue)
|
|
taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
|
|
|
|
if (notify)
|
|
xen_intr_signal(xbb->xen_intr_handle);
|
|
}
|
|
|
|
/**
|
|
* Completion handler for buffer I/O requests issued by the device
|
|
* backend driver.
|
|
*
|
|
* \param bio The buffer I/O request on which to perform completion
|
|
* processing.
|
|
*/
|
|
static void
|
|
xbb_bio_done(struct bio *bio)
|
|
{
|
|
struct xbb_softc *xbb;
|
|
struct xbb_xen_reqlist *reqlist;
|
|
|
|
reqlist = bio->bio_caller1;
|
|
xbb = reqlist->xbb;
|
|
|
|
reqlist->residual_512b_sectors += bio->bio_resid >> 9;
|
|
|
|
/*
|
|
* This is a bit imprecise. With aggregated I/O a single
|
|
* request list can contain multiple front-end requests and
|
|
* a multiple bios may point to a single request. By carefully
|
|
* walking the request list, we could map residuals and errors
|
|
* back to the original front-end request, but the interface
|
|
* isn't sufficiently rich for us to properly report the error.
|
|
* So, we just treat the entire request list as having failed if an
|
|
* error occurs on any part. And, if an error occurs, we treat
|
|
* the amount of data transferred as 0.
|
|
*
|
|
* For residuals, we report it on the overall aggregated device,
|
|
* but not on the individual requests, since we don't currently
|
|
* do the work to determine which front-end request to which the
|
|
* residual applies.
|
|
*/
|
|
if (bio->bio_error) {
|
|
DPRINTF("BIO returned error %d for operation on device %s\n",
|
|
bio->bio_error, xbb->dev_name);
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
|
|
if (bio->bio_error == ENXIO
|
|
&& xenbus_get_state(xbb->dev) == XenbusStateConnected) {
|
|
|
|
/*
|
|
* Backend device has disappeared. Signal the
|
|
* front-end that we (the device proxy) want to
|
|
* go away.
|
|
*/
|
|
xenbus_set_state(xbb->dev, XenbusStateClosing);
|
|
}
|
|
}
|
|
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
if (bio->bio_cmd == BIO_READ) {
|
|
vm_offset_t kva_offset;
|
|
|
|
kva_offset = (vm_offset_t)bio->bio_data
|
|
- (vm_offset_t)reqlist->bounce;
|
|
memcpy((uint8_t *)reqlist->kva + kva_offset,
|
|
bio->bio_data, bio->bio_bcount);
|
|
}
|
|
#endif /* XBB_USE_BOUNCE_BUFFERS */
|
|
|
|
/*
|
|
* Decrement the pending count for the request list. When we're
|
|
* done with the requests, send status back for all of them.
|
|
*/
|
|
if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
|
|
xbb_complete_reqlist(xbb, reqlist);
|
|
|
|
g_destroy_bio(bio);
|
|
}
|
|
|
|
/**
|
|
* Parse a blkif request into an internal request structure and send
|
|
* it to the backend for processing.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param reqlist Allocated internal request list structure.
|
|
*
|
|
* \return On success, 0. For resource shortages, non-zero.
|
|
*
|
|
* This routine performs the backend common aspects of request parsing
|
|
* including compiling an internal request structure, parsing the S/G
|
|
* list and any secondary ring requests in which they may reside, and
|
|
* the mapping of front-end I/O pages into our domain.
|
|
*/
|
|
static int
|
|
xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
|
|
{
|
|
struct xbb_sg *xbb_sg;
|
|
struct gnttab_map_grant_ref *map;
|
|
struct blkif_request_segment *sg;
|
|
struct blkif_request_segment *last_block_sg;
|
|
struct xbb_xen_req *nreq;
|
|
u_int nseg;
|
|
u_int seg_idx;
|
|
u_int block_segs;
|
|
int nr_sects;
|
|
int total_sects;
|
|
int operation;
|
|
uint8_t bio_flags;
|
|
int error;
|
|
|
|
reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
|
|
bio_flags = 0;
|
|
total_sects = 0;
|
|
nr_sects = 0;
|
|
|
|
/*
|
|
* First determine whether we have enough free KVA to satisfy this
|
|
* request list. If not, tell xbb_run_queue() so it can go to
|
|
* sleep until we have more KVA.
|
|
*/
|
|
reqlist->kva = NULL;
|
|
if (reqlist->nr_segments != 0) {
|
|
reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
|
|
if (reqlist->kva == NULL) {
|
|
/*
|
|
* If we're out of KVA, return ENOMEM.
|
|
*/
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
|
|
binuptime(&reqlist->ds_t0);
|
|
devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
|
|
|
|
switch (reqlist->operation) {
|
|
case BLKIF_OP_WRITE_BARRIER:
|
|
bio_flags |= BIO_ORDERED;
|
|
reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
|
|
/* FALLTHROUGH */
|
|
case BLKIF_OP_WRITE:
|
|
operation = BIO_WRITE;
|
|
reqlist->ds_trans_type = DEVSTAT_WRITE;
|
|
if ((xbb->flags & XBBF_READ_ONLY) != 0) {
|
|
DPRINTF("Attempt to write to read only device %s\n",
|
|
xbb->dev_name);
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
goto send_response;
|
|
}
|
|
break;
|
|
case BLKIF_OP_READ:
|
|
operation = BIO_READ;
|
|
reqlist->ds_trans_type = DEVSTAT_READ;
|
|
break;
|
|
case BLKIF_OP_FLUSH_DISKCACHE:
|
|
/*
|
|
* If this is true, the user has requested that we disable
|
|
* flush support. So we just complete the requests
|
|
* successfully.
|
|
*/
|
|
if (xbb->disable_flush != 0) {
|
|
goto send_response;
|
|
}
|
|
|
|
/*
|
|
* The user has requested that we only send a real flush
|
|
* for every N flush requests. So keep count, and either
|
|
* complete the request immediately or queue it for the
|
|
* backend.
|
|
*/
|
|
if (xbb->flush_interval != 0) {
|
|
if (++(xbb->flush_count) < xbb->flush_interval) {
|
|
goto send_response;
|
|
} else
|
|
xbb->flush_count = 0;
|
|
}
|
|
|
|
operation = BIO_FLUSH;
|
|
reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
|
|
reqlist->ds_trans_type = DEVSTAT_NO_DATA;
|
|
goto do_dispatch;
|
|
/*NOTREACHED*/
|
|
default:
|
|
DPRINTF("error: unknown block io operation [%d]\n",
|
|
reqlist->operation);
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
goto send_response;
|
|
}
|
|
|
|
reqlist->xbb = xbb;
|
|
xbb_sg = xbb->xbb_sgs;
|
|
map = xbb->maps;
|
|
seg_idx = 0;
|
|
|
|
STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
|
|
blkif_request_t *ring_req;
|
|
RING_IDX req_ring_idx;
|
|
u_int req_seg_idx;
|
|
|
|
ring_req = nreq->ring_req;
|
|
req_ring_idx = nreq->req_ring_idx;
|
|
nr_sects = 0;
|
|
nseg = ring_req->nr_segments;
|
|
nreq->nr_pages = nseg;
|
|
nreq->nr_512b_sectors = 0;
|
|
req_seg_idx = 0;
|
|
sg = NULL;
|
|
|
|
/* Check that number of segments is sane. */
|
|
if (__predict_false(nseg == 0)
|
|
|| __predict_false(nseg > xbb->max_request_segments)) {
|
|
DPRINTF("Bad number of segments in request (%d)\n",
|
|
nseg);
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
goto send_response;
|
|
}
|
|
|
|
block_segs = nseg;
|
|
sg = ring_req->seg;
|
|
last_block_sg = sg + block_segs;
|
|
|
|
while (sg < last_block_sg) {
|
|
KASSERT(seg_idx <
|
|
XBB_MAX_SEGMENTS_PER_REQLIST,
|
|
("seg_idx %d is too large, max "
|
|
"segs %d\n", seg_idx,
|
|
XBB_MAX_SEGMENTS_PER_REQLIST));
|
|
|
|
xbb_sg->first_sect = sg->first_sect;
|
|
xbb_sg->last_sect = sg->last_sect;
|
|
xbb_sg->nsect =
|
|
(int8_t)(sg->last_sect -
|
|
sg->first_sect + 1);
|
|
|
|
if ((sg->last_sect >= (PAGE_SIZE >> 9))
|
|
|| (xbb_sg->nsect <= 0)) {
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
goto send_response;
|
|
}
|
|
|
|
nr_sects += xbb_sg->nsect;
|
|
map->host_addr = xbb_get_gntaddr(reqlist,
|
|
seg_idx, /*sector*/0);
|
|
KASSERT(map->host_addr + PAGE_SIZE <=
|
|
xbb->ring_config.gnt_addr,
|
|
("Host address %#jx len %d overlaps "
|
|
"ring address %#jx\n",
|
|
(uintmax_t)map->host_addr, PAGE_SIZE,
|
|
(uintmax_t)xbb->ring_config.gnt_addr));
|
|
|
|
map->flags = GNTMAP_host_map;
|
|
map->ref = sg->gref;
|
|
map->dom = xbb->otherend_id;
|
|
if (operation == BIO_WRITE)
|
|
map->flags |= GNTMAP_readonly;
|
|
sg++;
|
|
map++;
|
|
xbb_sg++;
|
|
seg_idx++;
|
|
req_seg_idx++;
|
|
}
|
|
|
|
/* Convert to the disk's sector size */
|
|
nreq->nr_512b_sectors = nr_sects;
|
|
nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
|
|
total_sects += nr_sects;
|
|
|
|
if ((nreq->nr_512b_sectors &
|
|
((xbb->sector_size >> 9) - 1)) != 0) {
|
|
device_printf(xbb->dev, "%s: I/O size (%d) is not "
|
|
"a multiple of the backing store sector "
|
|
"size (%d)\n", __func__,
|
|
nreq->nr_512b_sectors << 9,
|
|
xbb->sector_size);
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
goto send_response;
|
|
}
|
|
}
|
|
|
|
error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
|
|
xbb->maps, reqlist->nr_segments);
|
|
if (error != 0)
|
|
panic("Grant table operation failed (%d)", error);
|
|
|
|
reqlist->flags |= XBB_REQLIST_MAPPED;
|
|
|
|
for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
|
|
seg_idx++, map++){
|
|
|
|
if (__predict_false(map->status != 0)) {
|
|
DPRINTF("invalid buffer -- could not remap "
|
|
"it (%d)\n", map->status);
|
|
DPRINTF("Mapping(%d): Host Addr 0x%"PRIx64", flags "
|
|
"0x%x ref 0x%x, dom %d\n", seg_idx,
|
|
map->host_addr, map->flags, map->ref,
|
|
map->dom);
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
goto send_response;
|
|
}
|
|
|
|
reqlist->gnt_handles[seg_idx] = map->handle;
|
|
}
|
|
if (reqlist->starting_sector_number + total_sects >
|
|
xbb->media_num_sectors) {
|
|
|
|
DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
|
|
"extends past end of device %s\n",
|
|
operation == BIO_READ ? "read" : "write",
|
|
reqlist->starting_sector_number,
|
|
reqlist->starting_sector_number + total_sects,
|
|
xbb->dev_name);
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
goto send_response;
|
|
}
|
|
|
|
do_dispatch:
|
|
|
|
error = xbb->dispatch_io(xbb,
|
|
reqlist,
|
|
operation,
|
|
bio_flags);
|
|
|
|
if (error != 0) {
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
goto send_response;
|
|
}
|
|
|
|
return (0);
|
|
|
|
send_response:
|
|
|
|
xbb_complete_reqlist(xbb, reqlist);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline int
|
|
xbb_count_sects(blkif_request_t *ring_req)
|
|
{
|
|
int i;
|
|
int cur_size = 0;
|
|
|
|
for (i = 0; i < ring_req->nr_segments; i++) {
|
|
int nsect;
|
|
|
|
nsect = (int8_t)(ring_req->seg[i].last_sect -
|
|
ring_req->seg[i].first_sect + 1);
|
|
if (nsect <= 0)
|
|
break;
|
|
|
|
cur_size += nsect;
|
|
}
|
|
|
|
return (cur_size);
|
|
}
|
|
|
|
/**
|
|
* Process incoming requests from the shared communication ring in response
|
|
* to a signal on the ring's event channel.
|
|
*
|
|
* \param context Callback argument registerd during task initialization -
|
|
* the xbb_softc for this instance.
|
|
* \param pending The number of taskqueue_enqueue events that have
|
|
* occurred since this handler was last run.
|
|
*/
|
|
static void
|
|
xbb_run_queue(void *context, int pending)
|
|
{
|
|
struct xbb_softc *xbb;
|
|
blkif_back_rings_t *rings;
|
|
RING_IDX rp;
|
|
uint64_t cur_sector;
|
|
int cur_operation;
|
|
struct xbb_xen_reqlist *reqlist;
|
|
|
|
|
|
xbb = (struct xbb_softc *)context;
|
|
rings = &xbb->rings;
|
|
|
|
/*
|
|
* Work gather and dispatch loop. Note that we have a bias here
|
|
* towards gathering I/O sent by blockfront. We first gather up
|
|
* everything in the ring, as long as we have resources. Then we
|
|
* dispatch one request, and then attempt to gather up any
|
|
* additional requests that have come in while we were dispatching
|
|
* the request.
|
|
*
|
|
* This allows us to get a clearer picture (via devstat) of how
|
|
* many requests blockfront is queueing to us at any given time.
|
|
*/
|
|
for (;;) {
|
|
int retval;
|
|
|
|
/*
|
|
* Initialize reqlist to the last element in the pending
|
|
* queue, if there is one. This allows us to add more
|
|
* requests to that request list, if we have room.
|
|
*/
|
|
reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
|
|
xbb_xen_reqlist, links);
|
|
if (reqlist != NULL) {
|
|
cur_sector = reqlist->next_contig_sector;
|
|
cur_operation = reqlist->operation;
|
|
} else {
|
|
cur_operation = 0;
|
|
cur_sector = 0;
|
|
}
|
|
|
|
/*
|
|
* Cache req_prod to avoid accessing a cache line shared
|
|
* with the frontend.
|
|
*/
|
|
rp = rings->common.sring->req_prod;
|
|
|
|
/* Ensure we see queued requests up to 'rp'. */
|
|
rmb();
|
|
|
|
/**
|
|
* Run so long as there is work to consume and the generation
|
|
* of a response will not overflow the ring.
|
|
*
|
|
* @note There's a 1 to 1 relationship between requests and
|
|
* responses, so an overflow should never occur. This
|
|
* test is to protect our domain from digesting bogus
|
|
* data. Shouldn't we log this?
|
|
*/
|
|
while (rings->common.req_cons != rp
|
|
&& RING_REQUEST_CONS_OVERFLOW(&rings->common,
|
|
rings->common.req_cons) == 0){
|
|
blkif_request_t ring_req_storage;
|
|
blkif_request_t *ring_req;
|
|
int cur_size;
|
|
|
|
switch (xbb->abi) {
|
|
case BLKIF_PROTOCOL_NATIVE:
|
|
ring_req = RING_GET_REQUEST(&xbb->rings.native,
|
|
rings->common.req_cons);
|
|
break;
|
|
case BLKIF_PROTOCOL_X86_32:
|
|
{
|
|
struct blkif_x86_32_request *ring_req32;
|
|
|
|
ring_req32 = RING_GET_REQUEST(
|
|
&xbb->rings.x86_32, rings->common.req_cons);
|
|
blkif_get_x86_32_req(&ring_req_storage,
|
|
ring_req32);
|
|
ring_req = &ring_req_storage;
|
|
break;
|
|
}
|
|
case BLKIF_PROTOCOL_X86_64:
|
|
{
|
|
struct blkif_x86_64_request *ring_req64;
|
|
|
|
ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
|
|
rings->common.req_cons);
|
|
blkif_get_x86_64_req(&ring_req_storage,
|
|
ring_req64);
|
|
ring_req = &ring_req_storage;
|
|
break;
|
|
}
|
|
default:
|
|
panic("Unexpected blkif protocol ABI.");
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Check for situations that would require closing
|
|
* off this I/O for further coalescing:
|
|
* - Coalescing is turned off.
|
|
* - Current I/O is out of sequence with the previous
|
|
* I/O.
|
|
* - Coalesced I/O would be too large.
|
|
*/
|
|
if ((reqlist != NULL)
|
|
&& ((xbb->no_coalesce_reqs != 0)
|
|
|| ((xbb->no_coalesce_reqs == 0)
|
|
&& ((ring_req->sector_number != cur_sector)
|
|
|| (ring_req->operation != cur_operation)
|
|
|| ((ring_req->nr_segments + reqlist->nr_segments) >
|
|
xbb->max_reqlist_segments))))) {
|
|
reqlist = NULL;
|
|
}
|
|
|
|
/*
|
|
* Grab and check for all resources in one shot.
|
|
* If we can't get all of the resources we need,
|
|
* the shortage is noted and the thread will get
|
|
* woken up when more resources are available.
|
|
*/
|
|
retval = xbb_get_resources(xbb, &reqlist, ring_req,
|
|
xbb->rings.common.req_cons);
|
|
|
|
if (retval != 0) {
|
|
/*
|
|
* Resource shortage has been recorded.
|
|
* We'll be scheduled to run once a request
|
|
* object frees up due to a completion.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Signify that we can overwrite this request with
|
|
* a response by incrementing our consumer index.
|
|
* The response won't be generated until after
|
|
* we've already consumed all necessary data out
|
|
* of the version of the request in the ring buffer
|
|
* (for native mode). We must update the consumer
|
|
* index before issuing back-end I/O so there is
|
|
* no possibility that it will complete and a
|
|
* response be generated before we make room in
|
|
* the queue for that response.
|
|
*/
|
|
xbb->rings.common.req_cons++;
|
|
xbb->reqs_received++;
|
|
|
|
cur_size = xbb_count_sects(ring_req);
|
|
cur_sector = ring_req->sector_number + cur_size;
|
|
reqlist->next_contig_sector = cur_sector;
|
|
cur_operation = ring_req->operation;
|
|
}
|
|
|
|
/* Check for I/O to dispatch */
|
|
reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
|
|
if (reqlist == NULL) {
|
|
/*
|
|
* We're out of work to do, put the task queue to
|
|
* sleep.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Grab the first request off the queue and attempt
|
|
* to dispatch it.
|
|
*/
|
|
STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
|
|
|
|
retval = xbb_dispatch_io(xbb, reqlist);
|
|
if (retval != 0) {
|
|
/*
|
|
* xbb_dispatch_io() returns non-zero only when
|
|
* there is a resource shortage. If that's the
|
|
* case, re-queue this request on the head of the
|
|
* queue, and go to sleep until we have more
|
|
* resources.
|
|
*/
|
|
STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
|
|
reqlist, links);
|
|
break;
|
|
} else {
|
|
/*
|
|
* If we still have anything on the queue after
|
|
* removing the head entry, that is because we
|
|
* met one of the criteria to create a new
|
|
* request list (outlined above), and we'll call
|
|
* that a forced dispatch for statistical purposes.
|
|
*
|
|
* Otherwise, if there is only one element on the
|
|
* queue, we coalesced everything available on
|
|
* the ring and we'll call that a normal dispatch.
|
|
*/
|
|
reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
|
|
|
|
if (reqlist != NULL)
|
|
xbb->forced_dispatch++;
|
|
else
|
|
xbb->normal_dispatch++;
|
|
|
|
xbb->total_dispatch++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Interrupt handler bound to the shared ring's event channel.
|
|
*
|
|
* \param arg Callback argument registerd during event channel
|
|
* binding - the xbb_softc for this instance.
|
|
*/
|
|
static int
|
|
xbb_filter(void *arg)
|
|
{
|
|
struct xbb_softc *xbb;
|
|
|
|
/* Defer to taskqueue thread. */
|
|
xbb = (struct xbb_softc *)arg;
|
|
taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
|
|
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
SDT_PROVIDER_DEFINE(xbb);
|
|
SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
|
|
SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
|
|
"uint64_t");
|
|
SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
|
|
"uint64_t", "uint64_t");
|
|
|
|
/*----------------------------- Backend Handlers -----------------------------*/
|
|
/**
|
|
* Backend handler for character device access.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param reqlist Allocated internal request list structure.
|
|
* \param operation BIO_* I/O operation code.
|
|
* \param bio_flags Additional bio_flag data to pass to any generated
|
|
* bios (e.g. BIO_ORDERED)..
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static int
|
|
xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
|
|
int operation, int bio_flags)
|
|
{
|
|
struct xbb_dev_data *dev_data;
|
|
struct bio *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
|
|
off_t bio_offset;
|
|
struct bio *bio;
|
|
struct xbb_sg *xbb_sg;
|
|
u_int nbio;
|
|
u_int bio_idx;
|
|
u_int nseg;
|
|
u_int seg_idx;
|
|
int error;
|
|
|
|
dev_data = &xbb->backend.dev;
|
|
bio_offset = (off_t)reqlist->starting_sector_number
|
|
<< xbb->sector_size_shift;
|
|
error = 0;
|
|
nbio = 0;
|
|
bio_idx = 0;
|
|
|
|
if (operation == BIO_FLUSH) {
|
|
bio = g_new_bio();
|
|
if (__predict_false(bio == NULL)) {
|
|
DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
|
|
error = ENOMEM;
|
|
return (error);
|
|
}
|
|
|
|
bio->bio_cmd = BIO_FLUSH;
|
|
bio->bio_flags |= BIO_ORDERED;
|
|
bio->bio_dev = dev_data->cdev;
|
|
bio->bio_offset = 0;
|
|
bio->bio_data = 0;
|
|
bio->bio_done = xbb_bio_done;
|
|
bio->bio_caller1 = reqlist;
|
|
bio->bio_pblkno = 0;
|
|
|
|
reqlist->pendcnt = 1;
|
|
|
|
SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
|
|
device_get_unit(xbb->dev));
|
|
|
|
(*dev_data->csw->d_strategy)(bio);
|
|
|
|
return (0);
|
|
}
|
|
|
|
xbb_sg = xbb->xbb_sgs;
|
|
bio = NULL;
|
|
nseg = reqlist->nr_segments;
|
|
|
|
for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
|
|
|
|
/*
|
|
* KVA will not be contiguous, so any additional
|
|
* I/O will need to be represented in a new bio.
|
|
*/
|
|
if ((bio != NULL)
|
|
&& (xbb_sg->first_sect != 0)) {
|
|
if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
|
|
printf("%s: Discontiguous I/O request "
|
|
"from domain %d ends on "
|
|
"non-sector boundary\n",
|
|
__func__, xbb->otherend_id);
|
|
error = EINVAL;
|
|
goto fail_free_bios;
|
|
}
|
|
bio = NULL;
|
|
}
|
|
|
|
if (bio == NULL) {
|
|
/*
|
|
* Make sure that the start of this bio is
|
|
* aligned to a device sector.
|
|
*/
|
|
if ((bio_offset & (xbb->sector_size - 1)) != 0){
|
|
printf("%s: Misaligned I/O request "
|
|
"from domain %d\n", __func__,
|
|
xbb->otherend_id);
|
|
error = EINVAL;
|
|
goto fail_free_bios;
|
|
}
|
|
|
|
bio = bios[nbio++] = g_new_bio();
|
|
if (__predict_false(bio == NULL)) {
|
|
error = ENOMEM;
|
|
goto fail_free_bios;
|
|
}
|
|
bio->bio_cmd = operation;
|
|
bio->bio_flags |= bio_flags;
|
|
bio->bio_dev = dev_data->cdev;
|
|
bio->bio_offset = bio_offset;
|
|
bio->bio_data = xbb_reqlist_ioaddr(reqlist, seg_idx,
|
|
xbb_sg->first_sect);
|
|
bio->bio_done = xbb_bio_done;
|
|
bio->bio_caller1 = reqlist;
|
|
bio->bio_pblkno = bio_offset >> xbb->sector_size_shift;
|
|
}
|
|
|
|
bio->bio_length += xbb_sg->nsect << 9;
|
|
bio->bio_bcount = bio->bio_length;
|
|
bio_offset += xbb_sg->nsect << 9;
|
|
|
|
if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
|
|
|
|
if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
|
|
printf("%s: Discontiguous I/O request "
|
|
"from domain %d ends on "
|
|
"non-sector boundary\n",
|
|
__func__, xbb->otherend_id);
|
|
error = EINVAL;
|
|
goto fail_free_bios;
|
|
}
|
|
/*
|
|
* KVA will not be contiguous, so any additional
|
|
* I/O will need to be represented in a new bio.
|
|
*/
|
|
bio = NULL;
|
|
}
|
|
}
|
|
|
|
reqlist->pendcnt = nbio;
|
|
|
|
for (bio_idx = 0; bio_idx < nbio; bio_idx++)
|
|
{
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
vm_offset_t kva_offset;
|
|
|
|
kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
|
|
- (vm_offset_t)reqlist->bounce;
|
|
if (operation == BIO_WRITE) {
|
|
memcpy(bios[bio_idx]->bio_data,
|
|
(uint8_t *)reqlist->kva + kva_offset,
|
|
bios[bio_idx]->bio_bcount);
|
|
}
|
|
#endif
|
|
if (operation == BIO_READ) {
|
|
SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
|
|
device_get_unit(xbb->dev),
|
|
bios[bio_idx]->bio_offset,
|
|
bios[bio_idx]->bio_length);
|
|
} else if (operation == BIO_WRITE) {
|
|
SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
|
|
device_get_unit(xbb->dev),
|
|
bios[bio_idx]->bio_offset,
|
|
bios[bio_idx]->bio_length);
|
|
}
|
|
(*dev_data->csw->d_strategy)(bios[bio_idx]);
|
|
}
|
|
|
|
return (error);
|
|
|
|
fail_free_bios:
|
|
for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
|
|
g_destroy_bio(bios[bio_idx]);
|
|
|
|
return (error);
|
|
}
|
|
|
|
SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
|
|
SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
|
|
"uint64_t");
|
|
SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
|
|
"uint64_t", "uint64_t");
|
|
|
|
/**
|
|
* Backend handler for file access.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param reqlist Allocated internal request list.
|
|
* \param operation BIO_* I/O operation code.
|
|
* \param flags Additional bio_flag data to pass to any generated bios
|
|
* (e.g. BIO_ORDERED)..
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static int
|
|
xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
|
|
int operation, int flags)
|
|
{
|
|
struct xbb_file_data *file_data;
|
|
u_int seg_idx;
|
|
u_int nseg;
|
|
struct uio xuio;
|
|
struct xbb_sg *xbb_sg;
|
|
struct iovec *xiovec;
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
void **p_vaddr;
|
|
int saved_uio_iovcnt;
|
|
#endif /* XBB_USE_BOUNCE_BUFFERS */
|
|
int error;
|
|
|
|
file_data = &xbb->backend.file;
|
|
error = 0;
|
|
bzero(&xuio, sizeof(xuio));
|
|
|
|
switch (operation) {
|
|
case BIO_READ:
|
|
xuio.uio_rw = UIO_READ;
|
|
break;
|
|
case BIO_WRITE:
|
|
xuio.uio_rw = UIO_WRITE;
|
|
break;
|
|
case BIO_FLUSH: {
|
|
struct mount *mountpoint;
|
|
|
|
SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
|
|
device_get_unit(xbb->dev));
|
|
|
|
(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
|
|
|
|
vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
|
|
error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
|
|
VOP_UNLOCK(xbb->vn, 0);
|
|
|
|
vn_finished_write(mountpoint);
|
|
|
|
goto bailout_send_response;
|
|
/* NOTREACHED */
|
|
}
|
|
default:
|
|
panic("invalid operation %d", operation);
|
|
/* NOTREACHED */
|
|
}
|
|
xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
|
|
<< xbb->sector_size_shift;
|
|
xuio.uio_segflg = UIO_SYSSPACE;
|
|
xuio.uio_iov = file_data->xiovecs;
|
|
xuio.uio_iovcnt = 0;
|
|
xbb_sg = xbb->xbb_sgs;
|
|
nseg = reqlist->nr_segments;
|
|
|
|
for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
|
|
|
|
/*
|
|
* If the first sector is not 0, the KVA will
|
|
* not be contiguous and we'll need to go on
|
|
* to another segment.
|
|
*/
|
|
if (xbb_sg->first_sect != 0)
|
|
xiovec = NULL;
|
|
|
|
if (xiovec == NULL) {
|
|
xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
|
|
xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
|
|
seg_idx, xbb_sg->first_sect);
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
/*
|
|
* Store the address of the incoming
|
|
* buffer at this particular offset
|
|
* as well, so we can do the copy
|
|
* later without having to do more
|
|
* work to recalculate this address.
|
|
*/
|
|
p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
|
|
*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
|
|
xbb_sg->first_sect);
|
|
#endif /* XBB_USE_BOUNCE_BUFFERS */
|
|
xiovec->iov_len = 0;
|
|
xuio.uio_iovcnt++;
|
|
}
|
|
|
|
xiovec->iov_len += xbb_sg->nsect << 9;
|
|
|
|
xuio.uio_resid += xbb_sg->nsect << 9;
|
|
|
|
/*
|
|
* If the last sector is not the full page
|
|
* size count, the next segment will not be
|
|
* contiguous in KVA and we need a new iovec.
|
|
*/
|
|
if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
|
|
xiovec = NULL;
|
|
}
|
|
|
|
xuio.uio_td = curthread;
|
|
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
saved_uio_iovcnt = xuio.uio_iovcnt;
|
|
|
|
if (operation == BIO_WRITE) {
|
|
/* Copy the write data to the local buffer. */
|
|
for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
|
|
xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
|
|
seg_idx++, xiovec++, p_vaddr++) {
|
|
|
|
memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
|
|
}
|
|
} else {
|
|
/*
|
|
* We only need to save off the iovecs in the case of a
|
|
* read, because the copy for the read happens after the
|
|
* VOP_READ(). (The uio will get modified in that call
|
|
* sequence.)
|
|
*/
|
|
memcpy(file_data->saved_xiovecs, xuio.uio_iov,
|
|
xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
|
|
}
|
|
#endif /* XBB_USE_BOUNCE_BUFFERS */
|
|
|
|
switch (operation) {
|
|
case BIO_READ:
|
|
|
|
SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
|
|
device_get_unit(xbb->dev), xuio.uio_offset,
|
|
xuio.uio_resid);
|
|
|
|
vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
|
|
|
|
/*
|
|
* UFS pays attention to IO_DIRECT for reads. If the
|
|
* DIRECTIO option is configured into the kernel, it calls
|
|
* ffs_rawread(). But that only works for single-segment
|
|
* uios with user space addresses. In our case, with a
|
|
* kernel uio, it still reads into the buffer cache, but it
|
|
* will just try to release the buffer from the cache later
|
|
* on in ffs_read().
|
|
*
|
|
* ZFS does not pay attention to IO_DIRECT for reads.
|
|
*
|
|
* UFS does not pay attention to IO_SYNC for reads.
|
|
*
|
|
* ZFS pays attention to IO_SYNC (which translates into the
|
|
* Solaris define FRSYNC for zfs_read()) for reads. It
|
|
* attempts to sync the file before reading.
|
|
*
|
|
* So, to attempt to provide some barrier semantics in the
|
|
* BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
|
|
*/
|
|
error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
|
|
(IO_DIRECT|IO_SYNC) : 0, file_data->cred);
|
|
|
|
VOP_UNLOCK(xbb->vn, 0);
|
|
break;
|
|
case BIO_WRITE: {
|
|
struct mount *mountpoint;
|
|
|
|
SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
|
|
device_get_unit(xbb->dev), xuio.uio_offset,
|
|
xuio.uio_resid);
|
|
|
|
(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
|
|
|
|
vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
|
|
|
|
/*
|
|
* UFS pays attention to IO_DIRECT for writes. The write
|
|
* is done asynchronously. (Normally the write would just
|
|
* get put into cache.
|
|
*
|
|
* UFS pays attention to IO_SYNC for writes. It will
|
|
* attempt to write the buffer out synchronously if that
|
|
* flag is set.
|
|
*
|
|
* ZFS does not pay attention to IO_DIRECT for writes.
|
|
*
|
|
* ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
|
|
* for writes. It will flush the transaction from the
|
|
* cache before returning.
|
|
*
|
|
* So if we've got the BIO_ORDERED flag set, we want
|
|
* IO_SYNC in either the UFS or ZFS case.
|
|
*/
|
|
error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
|
|
IO_SYNC : 0, file_data->cred);
|
|
VOP_UNLOCK(xbb->vn, 0);
|
|
|
|
vn_finished_write(mountpoint);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
panic("invalid operation %d", operation);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
/* We only need to copy here for read operations */
|
|
if (operation == BIO_READ) {
|
|
|
|
for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
|
|
xiovec = file_data->saved_xiovecs;
|
|
seg_idx < saved_uio_iovcnt; seg_idx++,
|
|
xiovec++, p_vaddr++) {
|
|
|
|
/*
|
|
* Note that we have to use the copy of the
|
|
* io vector we made above. uiomove() modifies
|
|
* the uio and its referenced vector as uiomove
|
|
* performs the copy, so we can't rely on any
|
|
* state from the original uio.
|
|
*/
|
|
memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
|
|
}
|
|
}
|
|
#endif /* XBB_USE_BOUNCE_BUFFERS */
|
|
|
|
bailout_send_response:
|
|
|
|
if (error != 0)
|
|
reqlist->status = BLKIF_RSP_ERROR;
|
|
|
|
xbb_complete_reqlist(xbb, reqlist);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*--------------------------- Backend Configuration --------------------------*/
|
|
/**
|
|
* Close and cleanup any backend device/file specific state for this
|
|
* block back instance.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*/
|
|
static void
|
|
xbb_close_backend(struct xbb_softc *xbb)
|
|
{
|
|
DROP_GIANT();
|
|
DPRINTF("closing dev=%s\n", xbb->dev_name);
|
|
if (xbb->vn) {
|
|
int flags = FREAD;
|
|
|
|
if ((xbb->flags & XBBF_READ_ONLY) == 0)
|
|
flags |= FWRITE;
|
|
|
|
switch (xbb->device_type) {
|
|
case XBB_TYPE_DISK:
|
|
if (xbb->backend.dev.csw) {
|
|
dev_relthread(xbb->backend.dev.cdev,
|
|
xbb->backend.dev.dev_ref);
|
|
xbb->backend.dev.csw = NULL;
|
|
xbb->backend.dev.cdev = NULL;
|
|
}
|
|
break;
|
|
case XBB_TYPE_FILE:
|
|
break;
|
|
case XBB_TYPE_NONE:
|
|
default:
|
|
panic("Unexpected backend type.");
|
|
break;
|
|
}
|
|
|
|
(void)vn_close(xbb->vn, flags, NOCRED, curthread);
|
|
xbb->vn = NULL;
|
|
|
|
switch (xbb->device_type) {
|
|
case XBB_TYPE_DISK:
|
|
break;
|
|
case XBB_TYPE_FILE:
|
|
if (xbb->backend.file.cred != NULL) {
|
|
crfree(xbb->backend.file.cred);
|
|
xbb->backend.file.cred = NULL;
|
|
}
|
|
break;
|
|
case XBB_TYPE_NONE:
|
|
default:
|
|
panic("Unexpected backend type.");
|
|
break;
|
|
}
|
|
}
|
|
PICKUP_GIANT();
|
|
}
|
|
|
|
/**
|
|
* Open a character device to be used for backend I/O.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static int
|
|
xbb_open_dev(struct xbb_softc *xbb)
|
|
{
|
|
struct vattr vattr;
|
|
struct cdev *dev;
|
|
struct cdevsw *devsw;
|
|
int error;
|
|
|
|
xbb->device_type = XBB_TYPE_DISK;
|
|
xbb->dispatch_io = xbb_dispatch_dev;
|
|
xbb->backend.dev.cdev = xbb->vn->v_rdev;
|
|
xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
|
|
&xbb->backend.dev.dev_ref);
|
|
if (xbb->backend.dev.csw == NULL)
|
|
panic("Unable to retrieve device switch");
|
|
|
|
error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
|
|
if (error) {
|
|
xenbus_dev_fatal(xbb->dev, error, "error getting "
|
|
"vnode attributes for device %s",
|
|
xbb->dev_name);
|
|
return (error);
|
|
}
|
|
|
|
|
|
dev = xbb->vn->v_rdev;
|
|
devsw = dev->si_devsw;
|
|
if (!devsw->d_ioctl) {
|
|
xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
|
|
"device %s!", xbb->dev_name);
|
|
return (ENODEV);
|
|
}
|
|
|
|
error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
|
|
(caddr_t)&xbb->sector_size, FREAD,
|
|
curthread);
|
|
if (error) {
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"error calling ioctl DIOCGSECTORSIZE "
|
|
"for device %s", xbb->dev_name);
|
|
return (error);
|
|
}
|
|
|
|
error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
|
|
(caddr_t)&xbb->media_size, FREAD,
|
|
curthread);
|
|
if (error) {
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"error calling ioctl DIOCGMEDIASIZE "
|
|
"for device %s", xbb->dev_name);
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Open a file to be used for backend I/O.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static int
|
|
xbb_open_file(struct xbb_softc *xbb)
|
|
{
|
|
struct xbb_file_data *file_data;
|
|
struct vattr vattr;
|
|
int error;
|
|
|
|
file_data = &xbb->backend.file;
|
|
xbb->device_type = XBB_TYPE_FILE;
|
|
xbb->dispatch_io = xbb_dispatch_file;
|
|
error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
|
|
if (error != 0) {
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"error calling VOP_GETATTR()"
|
|
"for file %s", xbb->dev_name);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Verify that we have the ability to upgrade to exclusive
|
|
* access on this file so we can trap errors at open instead
|
|
* of reporting them during first access.
|
|
*/
|
|
if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
|
|
vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
|
|
if (xbb->vn->v_iflag & VI_DOOMED) {
|
|
error = EBADF;
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"error locking file %s",
|
|
xbb->dev_name);
|
|
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
file_data->cred = crhold(curthread->td_ucred);
|
|
xbb->media_size = vattr.va_size;
|
|
|
|
/*
|
|
* XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
|
|
* With ZFS, it is 131072 bytes. Block sizes that large don't work
|
|
* with disklabel and UFS on FreeBSD at least. Large block sizes
|
|
* may not work with other OSes as well. So just export a sector
|
|
* size of 512 bytes, which should work with any OS or
|
|
* application. Since our backing is a file, any block size will
|
|
* work fine for the backing store.
|
|
*/
|
|
#if 0
|
|
xbb->sector_size = vattr.va_blocksize;
|
|
#endif
|
|
xbb->sector_size = 512;
|
|
|
|
/*
|
|
* Sanity check. The media size has to be at least one
|
|
* sector long.
|
|
*/
|
|
if (xbb->media_size < xbb->sector_size) {
|
|
error = EINVAL;
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"file %s size %ju < block size %u",
|
|
xbb->dev_name,
|
|
(uintmax_t)xbb->media_size,
|
|
xbb->sector_size);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/**
|
|
* Open the backend provider for this connection.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static int
|
|
xbb_open_backend(struct xbb_softc *xbb)
|
|
{
|
|
struct nameidata nd;
|
|
int flags;
|
|
int error;
|
|
|
|
flags = FREAD;
|
|
error = 0;
|
|
|
|
DPRINTF("opening dev=%s\n", xbb->dev_name);
|
|
|
|
if (rootvnode == NULL) {
|
|
xenbus_dev_fatal(xbb->dev, ENOENT,
|
|
"Root file system not mounted");
|
|
return (ENOENT);
|
|
}
|
|
|
|
if ((xbb->flags & XBBF_READ_ONLY) == 0)
|
|
flags |= FWRITE;
|
|
|
|
pwd_ensure_dirs();
|
|
|
|
again:
|
|
NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
|
|
error = vn_open(&nd, &flags, 0, NULL);
|
|
if (error) {
|
|
/*
|
|
* This is the only reasonable guess we can make as far as
|
|
* path if the user doesn't give us a fully qualified path.
|
|
* If they want to specify a file, they need to specify the
|
|
* full path.
|
|
*/
|
|
if (xbb->dev_name[0] != '/') {
|
|
char *dev_path = "/dev/";
|
|
char *dev_name;
|
|
|
|
/* Try adding device path at beginning of name */
|
|
dev_name = malloc(strlen(xbb->dev_name)
|
|
+ strlen(dev_path) + 1,
|
|
M_XENBLOCKBACK, M_NOWAIT);
|
|
if (dev_name) {
|
|
sprintf(dev_name, "%s%s", dev_path,
|
|
xbb->dev_name);
|
|
free(xbb->dev_name, M_XENBLOCKBACK);
|
|
xbb->dev_name = dev_name;
|
|
goto again;
|
|
}
|
|
}
|
|
xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
|
|
xbb->dev_name);
|
|
return (error);
|
|
}
|
|
|
|
NDFREE(&nd, NDF_ONLY_PNBUF);
|
|
|
|
xbb->vn = nd.ni_vp;
|
|
|
|
/* We only support disks and files. */
|
|
if (vn_isdisk(xbb->vn, &error)) {
|
|
error = xbb_open_dev(xbb);
|
|
} else if (xbb->vn->v_type == VREG) {
|
|
error = xbb_open_file(xbb);
|
|
} else {
|
|
error = EINVAL;
|
|
xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
|
|
"or file", xbb->dev_name);
|
|
}
|
|
VOP_UNLOCK(xbb->vn, 0);
|
|
|
|
if (error != 0) {
|
|
xbb_close_backend(xbb);
|
|
return (error);
|
|
}
|
|
|
|
xbb->sector_size_shift = fls(xbb->sector_size) - 1;
|
|
xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
|
|
|
|
DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
|
|
(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
|
|
xbb->dev_name, xbb->sector_size, xbb->media_size);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*------------------------ Inter-Domain Communication ------------------------*/
|
|
/**
|
|
* Free dynamically allocated KVA or pseudo-physical address allocations.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*/
|
|
static void
|
|
xbb_free_communication_mem(struct xbb_softc *xbb)
|
|
{
|
|
if (xbb->kva != 0) {
|
|
if (xbb->pseudo_phys_res != NULL) {
|
|
xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
|
|
xbb->pseudo_phys_res);
|
|
xbb->pseudo_phys_res = NULL;
|
|
}
|
|
}
|
|
xbb->kva = 0;
|
|
xbb->gnt_base_addr = 0;
|
|
if (xbb->kva_free != NULL) {
|
|
free(xbb->kva_free, M_XENBLOCKBACK);
|
|
xbb->kva_free = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Cleanup all inter-domain communication mechanisms.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*/
|
|
static int
|
|
xbb_disconnect(struct xbb_softc *xbb)
|
|
{
|
|
struct gnttab_unmap_grant_ref ops[XBB_MAX_RING_PAGES];
|
|
struct gnttab_unmap_grant_ref *op;
|
|
u_int ring_idx;
|
|
int error;
|
|
|
|
DPRINTF("\n");
|
|
|
|
if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
|
|
return (0);
|
|
|
|
mtx_unlock(&xbb->lock);
|
|
xen_intr_unbind(&xbb->xen_intr_handle);
|
|
taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
|
|
mtx_lock(&xbb->lock);
|
|
|
|
/*
|
|
* No new interrupts can generate work, but we must wait
|
|
* for all currently active requests to drain.
|
|
*/
|
|
if (xbb->active_request_count != 0)
|
|
return (EAGAIN);
|
|
|
|
for (ring_idx = 0, op = ops;
|
|
ring_idx < xbb->ring_config.ring_pages;
|
|
ring_idx++, op++) {
|
|
|
|
op->host_addr = xbb->ring_config.gnt_addr
|
|
+ (ring_idx * PAGE_SIZE);
|
|
op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
|
|
op->handle = xbb->ring_config.handle[ring_idx];
|
|
}
|
|
|
|
error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
|
|
xbb->ring_config.ring_pages);
|
|
if (error != 0)
|
|
panic("Grant table op failed (%d)", error);
|
|
|
|
xbb_free_communication_mem(xbb);
|
|
|
|
if (xbb->requests != NULL) {
|
|
free(xbb->requests, M_XENBLOCKBACK);
|
|
xbb->requests = NULL;
|
|
}
|
|
|
|
if (xbb->request_lists != NULL) {
|
|
struct xbb_xen_reqlist *reqlist;
|
|
int i;
|
|
|
|
/* There is one request list for ever allocated request. */
|
|
for (i = 0, reqlist = xbb->request_lists;
|
|
i < xbb->max_requests; i++, reqlist++){
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
if (reqlist->bounce != NULL) {
|
|
free(reqlist->bounce, M_XENBLOCKBACK);
|
|
reqlist->bounce = NULL;
|
|
}
|
|
#endif
|
|
if (reqlist->gnt_handles != NULL) {
|
|
free(reqlist->gnt_handles, M_XENBLOCKBACK);
|
|
reqlist->gnt_handles = NULL;
|
|
}
|
|
}
|
|
free(xbb->request_lists, M_XENBLOCKBACK);
|
|
xbb->request_lists = NULL;
|
|
}
|
|
|
|
xbb->flags &= ~XBBF_RING_CONNECTED;
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Map shared memory ring into domain local address space, initialize
|
|
* ring control structures, and bind an interrupt to the event channel
|
|
* used to notify us of ring changes.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*/
|
|
static int
|
|
xbb_connect_ring(struct xbb_softc *xbb)
|
|
{
|
|
struct gnttab_map_grant_ref gnts[XBB_MAX_RING_PAGES];
|
|
struct gnttab_map_grant_ref *gnt;
|
|
u_int ring_idx;
|
|
int error;
|
|
|
|
if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Kva for our ring is at the tail of the region of kva allocated
|
|
* by xbb_alloc_communication_mem().
|
|
*/
|
|
xbb->ring_config.va = xbb->kva
|
|
+ (xbb->kva_size
|
|
- (xbb->ring_config.ring_pages * PAGE_SIZE));
|
|
xbb->ring_config.gnt_addr = xbb->gnt_base_addr
|
|
+ (xbb->kva_size
|
|
- (xbb->ring_config.ring_pages * PAGE_SIZE));
|
|
|
|
for (ring_idx = 0, gnt = gnts;
|
|
ring_idx < xbb->ring_config.ring_pages;
|
|
ring_idx++, gnt++) {
|
|
|
|
gnt->host_addr = xbb->ring_config.gnt_addr
|
|
+ (ring_idx * PAGE_SIZE);
|
|
gnt->flags = GNTMAP_host_map;
|
|
gnt->ref = xbb->ring_config.ring_ref[ring_idx];
|
|
gnt->dom = xbb->otherend_id;
|
|
}
|
|
|
|
error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
|
|
xbb->ring_config.ring_pages);
|
|
if (error)
|
|
panic("blkback: Ring page grant table op failed (%d)", error);
|
|
|
|
for (ring_idx = 0, gnt = gnts;
|
|
ring_idx < xbb->ring_config.ring_pages;
|
|
ring_idx++, gnt++) {
|
|
if (gnt->status != 0) {
|
|
xbb->ring_config.va = 0;
|
|
xenbus_dev_fatal(xbb->dev, EACCES,
|
|
"Ring shared page mapping failed. "
|
|
"Status %d.", gnt->status);
|
|
return (EACCES);
|
|
}
|
|
xbb->ring_config.handle[ring_idx] = gnt->handle;
|
|
xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
|
|
}
|
|
|
|
/* Initialize the ring based on ABI. */
|
|
switch (xbb->abi) {
|
|
case BLKIF_PROTOCOL_NATIVE:
|
|
{
|
|
blkif_sring_t *sring;
|
|
sring = (blkif_sring_t *)xbb->ring_config.va;
|
|
BACK_RING_INIT(&xbb->rings.native, sring,
|
|
xbb->ring_config.ring_pages * PAGE_SIZE);
|
|
break;
|
|
}
|
|
case BLKIF_PROTOCOL_X86_32:
|
|
{
|
|
blkif_x86_32_sring_t *sring_x86_32;
|
|
sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
|
|
BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
|
|
xbb->ring_config.ring_pages * PAGE_SIZE);
|
|
break;
|
|
}
|
|
case BLKIF_PROTOCOL_X86_64:
|
|
{
|
|
blkif_x86_64_sring_t *sring_x86_64;
|
|
sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
|
|
BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
|
|
xbb->ring_config.ring_pages * PAGE_SIZE);
|
|
break;
|
|
}
|
|
default:
|
|
panic("Unexpected blkif protocol ABI.");
|
|
}
|
|
|
|
xbb->flags |= XBBF_RING_CONNECTED;
|
|
|
|
error = xen_intr_bind_remote_port(xbb->dev,
|
|
xbb->otherend_id,
|
|
xbb->ring_config.evtchn,
|
|
xbb_filter,
|
|
/*ithread_handler*/NULL,
|
|
/*arg*/xbb,
|
|
INTR_TYPE_BIO | INTR_MPSAFE,
|
|
&xbb->xen_intr_handle);
|
|
if (error) {
|
|
(void)xbb_disconnect(xbb);
|
|
xenbus_dev_fatal(xbb->dev, error, "binding event channel");
|
|
return (error);
|
|
}
|
|
|
|
DPRINTF("rings connected!\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Size KVA and pseudo-physical address allocations based on negotiated
|
|
* values for the size and number of I/O requests, and the size of our
|
|
* communication ring.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*
|
|
* These address spaces are used to dynamically map pages in the
|
|
* front-end's domain into our own.
|
|
*/
|
|
static int
|
|
xbb_alloc_communication_mem(struct xbb_softc *xbb)
|
|
{
|
|
xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
|
|
xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
|
|
xbb->kva_size = xbb->reqlist_kva_size +
|
|
(xbb->ring_config.ring_pages * PAGE_SIZE);
|
|
|
|
xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages, M_XENBLOCKBACK, M_NOWAIT);
|
|
if (xbb->kva_free == NULL)
|
|
return (ENOMEM);
|
|
|
|
DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
|
|
device_get_nameunit(xbb->dev), xbb->kva_size,
|
|
xbb->reqlist_kva_size);
|
|
/*
|
|
* Reserve a range of pseudo physical memory that we can map
|
|
* into kva. These pages will only be backed by machine
|
|
* pages ("real memory") during the lifetime of front-end requests
|
|
* via grant table operations.
|
|
*/
|
|
xbb->pseudo_phys_res_id = 0;
|
|
xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
|
|
xbb->kva_size);
|
|
if (xbb->pseudo_phys_res == NULL) {
|
|
xbb->kva = 0;
|
|
return (ENOMEM);
|
|
}
|
|
xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
|
|
xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
|
|
|
|
DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
|
|
device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
|
|
(uintmax_t)xbb->gnt_base_addr);
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Collect front-end information from the XenStore.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*/
|
|
static int
|
|
xbb_collect_frontend_info(struct xbb_softc *xbb)
|
|
{
|
|
char protocol_abi[64];
|
|
const char *otherend_path;
|
|
int error;
|
|
u_int ring_idx;
|
|
u_int ring_page_order;
|
|
size_t ring_size;
|
|
|
|
otherend_path = xenbus_get_otherend_path(xbb->dev);
|
|
|
|
/*
|
|
* Protocol defaults valid even if all negotiation fails.
|
|
*/
|
|
xbb->ring_config.ring_pages = 1;
|
|
xbb->max_request_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
|
|
xbb->max_request_size = xbb->max_request_segments * PAGE_SIZE;
|
|
|
|
/*
|
|
* Mandatory data (used in all versions of the protocol) first.
|
|
*/
|
|
error = xs_scanf(XST_NIL, otherend_path,
|
|
"event-channel", NULL, "%" PRIu32,
|
|
&xbb->ring_config.evtchn);
|
|
if (error != 0) {
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"Unable to retrieve event-channel information "
|
|
"from frontend %s. Unable to connect.",
|
|
xenbus_get_otherend_path(xbb->dev));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* These fields are initialized to legacy protocol defaults
|
|
* so we only need to fail if reading the updated value succeeds
|
|
* and the new value is outside of its allowed range.
|
|
*
|
|
* \note xs_gather() returns on the first encountered error, so
|
|
* we must use independent calls in order to guarantee
|
|
* we don't miss information in a sparsly populated front-end
|
|
* tree.
|
|
*
|
|
* \note xs_scanf() does not update variables for unmatched
|
|
* fields.
|
|
*/
|
|
ring_page_order = 0;
|
|
xbb->max_requests = 32;
|
|
|
|
(void)xs_scanf(XST_NIL, otherend_path,
|
|
"ring-page-order", NULL, "%u",
|
|
&ring_page_order);
|
|
xbb->ring_config.ring_pages = 1 << ring_page_order;
|
|
ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
|
|
xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
|
|
|
|
if (xbb->ring_config.ring_pages > XBB_MAX_RING_PAGES) {
|
|
xenbus_dev_fatal(xbb->dev, EINVAL,
|
|
"Front-end specified ring-pages of %u "
|
|
"exceeds backend limit of %u. "
|
|
"Unable to connect.",
|
|
xbb->ring_config.ring_pages,
|
|
XBB_MAX_RING_PAGES);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (xbb->ring_config.ring_pages == 1) {
|
|
error = xs_gather(XST_NIL, otherend_path,
|
|
"ring-ref", "%" PRIu32,
|
|
&xbb->ring_config.ring_ref[0],
|
|
NULL);
|
|
if (error != 0) {
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"Unable to retrieve ring information "
|
|
"from frontend %s. Unable to "
|
|
"connect.",
|
|
xenbus_get_otherend_path(xbb->dev));
|
|
return (error);
|
|
}
|
|
} else {
|
|
/* Multi-page ring format. */
|
|
for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
|
|
ring_idx++) {
|
|
char ring_ref_name[]= "ring_refXX";
|
|
|
|
snprintf(ring_ref_name, sizeof(ring_ref_name),
|
|
"ring-ref%u", ring_idx);
|
|
error = xs_scanf(XST_NIL, otherend_path,
|
|
ring_ref_name, NULL, "%" PRIu32,
|
|
&xbb->ring_config.ring_ref[ring_idx]);
|
|
if (error != 0) {
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"Failed to retriev grant "
|
|
"reference for page %u of "
|
|
"shared ring. Unable "
|
|
"to connect.", ring_idx);
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
|
|
error = xs_gather(XST_NIL, otherend_path,
|
|
"protocol", "%63s", protocol_abi,
|
|
NULL);
|
|
if (error != 0
|
|
|| !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
|
|
/*
|
|
* Assume native if the frontend has not
|
|
* published ABI data or it has published and
|
|
* matches our own ABI.
|
|
*/
|
|
xbb->abi = BLKIF_PROTOCOL_NATIVE;
|
|
} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
|
|
|
|
xbb->abi = BLKIF_PROTOCOL_X86_32;
|
|
} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
|
|
|
|
xbb->abi = BLKIF_PROTOCOL_X86_64;
|
|
} else {
|
|
|
|
xenbus_dev_fatal(xbb->dev, EINVAL,
|
|
"Unknown protocol ABI (%s) published by "
|
|
"frontend. Unable to connect.", protocol_abi);
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Allocate per-request data structures given request size and number
|
|
* information negotiated with the front-end.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*/
|
|
static int
|
|
xbb_alloc_requests(struct xbb_softc *xbb)
|
|
{
|
|
struct xbb_xen_req *req;
|
|
struct xbb_xen_req *last_req;
|
|
|
|
/*
|
|
* Allocate request book keeping datastructures.
|
|
*/
|
|
xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
|
|
M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
|
|
if (xbb->requests == NULL) {
|
|
xenbus_dev_fatal(xbb->dev, ENOMEM,
|
|
"Unable to allocate request structures");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
req = xbb->requests;
|
|
last_req = &xbb->requests[xbb->max_requests - 1];
|
|
STAILQ_INIT(&xbb->request_free_stailq);
|
|
while (req <= last_req) {
|
|
STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
|
|
req++;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
xbb_alloc_request_lists(struct xbb_softc *xbb)
|
|
{
|
|
struct xbb_xen_reqlist *reqlist;
|
|
int i;
|
|
|
|
/*
|
|
* If no requests can be merged, we need 1 request list per
|
|
* in flight request.
|
|
*/
|
|
xbb->request_lists = malloc(xbb->max_requests *
|
|
sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
|
|
if (xbb->request_lists == NULL) {
|
|
xenbus_dev_fatal(xbb->dev, ENOMEM,
|
|
"Unable to allocate request list structures");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
STAILQ_INIT(&xbb->reqlist_free_stailq);
|
|
STAILQ_INIT(&xbb->reqlist_pending_stailq);
|
|
for (i = 0; i < xbb->max_requests; i++) {
|
|
int seg;
|
|
|
|
reqlist = &xbb->request_lists[i];
|
|
|
|
reqlist->xbb = xbb;
|
|
|
|
#ifdef XBB_USE_BOUNCE_BUFFERS
|
|
reqlist->bounce = malloc(xbb->max_reqlist_size,
|
|
M_XENBLOCKBACK, M_NOWAIT);
|
|
if (reqlist->bounce == NULL) {
|
|
xenbus_dev_fatal(xbb->dev, ENOMEM,
|
|
"Unable to allocate request "
|
|
"bounce buffers");
|
|
return (ENOMEM);
|
|
}
|
|
#endif /* XBB_USE_BOUNCE_BUFFERS */
|
|
|
|
reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
|
|
sizeof(*reqlist->gnt_handles),
|
|
M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
|
|
if (reqlist->gnt_handles == NULL) {
|
|
xenbus_dev_fatal(xbb->dev, ENOMEM,
|
|
"Unable to allocate request "
|
|
"grant references");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
|
|
reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
|
|
|
|
STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Supply information about the physical device to the frontend
|
|
* via XenBus.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*/
|
|
static int
|
|
xbb_publish_backend_info(struct xbb_softc *xbb)
|
|
{
|
|
struct xs_transaction xst;
|
|
const char *our_path;
|
|
const char *leaf;
|
|
int error;
|
|
|
|
our_path = xenbus_get_node(xbb->dev);
|
|
while (1) {
|
|
error = xs_transaction_start(&xst);
|
|
if (error != 0) {
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"Error publishing backend info "
|
|
"(start transaction)");
|
|
return (error);
|
|
}
|
|
|
|
leaf = "sectors";
|
|
error = xs_printf(xst, our_path, leaf,
|
|
"%"PRIu64, xbb->media_num_sectors);
|
|
if (error != 0)
|
|
break;
|
|
|
|
/* XXX Support all VBD attributes here. */
|
|
leaf = "info";
|
|
error = xs_printf(xst, our_path, leaf, "%u",
|
|
xbb->flags & XBBF_READ_ONLY
|
|
? VDISK_READONLY : 0);
|
|
if (error != 0)
|
|
break;
|
|
|
|
leaf = "sector-size";
|
|
error = xs_printf(xst, our_path, leaf, "%u",
|
|
xbb->sector_size);
|
|
if (error != 0)
|
|
break;
|
|
|
|
error = xs_transaction_end(xst, 0);
|
|
if (error == 0) {
|
|
return (0);
|
|
} else if (error != EAGAIN) {
|
|
xenbus_dev_fatal(xbb->dev, error, "ending transaction");
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
|
|
our_path, leaf);
|
|
xs_transaction_end(xst, 1);
|
|
return (error);
|
|
}
|
|
|
|
/**
|
|
* Connect to our blkfront peer now that it has completed publishing
|
|
* its configuration into the XenStore.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*/
|
|
static void
|
|
xbb_connect(struct xbb_softc *xbb)
|
|
{
|
|
int error;
|
|
|
|
if (!xbb->hotplug_done ||
|
|
(xenbus_get_state(xbb->dev) != XenbusStateInitWait) ||
|
|
(xbb_collect_frontend_info(xbb) != 0))
|
|
return;
|
|
|
|
xbb->flags &= ~XBBF_SHUTDOWN;
|
|
|
|
/*
|
|
* We limit the maximum number of reqlist segments to the maximum
|
|
* number of segments in the ring, or our absolute maximum,
|
|
* whichever is smaller.
|
|
*/
|
|
xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
|
|
xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
|
|
|
|
/*
|
|
* The maximum size is simply a function of the number of segments
|
|
* we can handle.
|
|
*/
|
|
xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
|
|
|
|
/* Allocate resources whose size depends on front-end configuration. */
|
|
error = xbb_alloc_communication_mem(xbb);
|
|
if (error != 0) {
|
|
xenbus_dev_fatal(xbb->dev, error,
|
|
"Unable to allocate communication memory");
|
|
return;
|
|
}
|
|
|
|
error = xbb_alloc_requests(xbb);
|
|
if (error != 0) {
|
|
/* Specific errors are reported by xbb_alloc_requests(). */
|
|
return;
|
|
}
|
|
|
|
error = xbb_alloc_request_lists(xbb);
|
|
if (error != 0) {
|
|
/* Specific errors are reported by xbb_alloc_request_lists(). */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Connect communication channel.
|
|
*/
|
|
error = xbb_connect_ring(xbb);
|
|
if (error != 0) {
|
|
/* Specific errors are reported by xbb_connect_ring(). */
|
|
return;
|
|
}
|
|
|
|
if (xbb_publish_backend_info(xbb) != 0) {
|
|
/*
|
|
* If we can't publish our data, we cannot participate
|
|
* in this connection, and waiting for a front-end state
|
|
* change will not help the situation.
|
|
*/
|
|
(void)xbb_disconnect(xbb);
|
|
return;
|
|
}
|
|
|
|
/* Ready for I/O. */
|
|
xenbus_set_state(xbb->dev, XenbusStateConnected);
|
|
}
|
|
|
|
/*-------------------------- Device Teardown Support -------------------------*/
|
|
/**
|
|
* Perform device shutdown functions.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
*
|
|
* Mark this instance as shutting down, wait for any active I/O on the
|
|
* backend device/file to drain, disconnect from the front-end, and notify
|
|
* any waiters (e.g. a thread invoking our detach method) that detach can
|
|
* now proceed.
|
|
*/
|
|
static int
|
|
xbb_shutdown(struct xbb_softc *xbb)
|
|
{
|
|
XenbusState frontState;
|
|
int error;
|
|
|
|
DPRINTF("\n");
|
|
|
|
/*
|
|
* Due to the need to drop our mutex during some
|
|
* xenbus operations, it is possible for two threads
|
|
* to attempt to close out shutdown processing at
|
|
* the same time. Tell the caller that hits this
|
|
* race to try back later.
|
|
*/
|
|
if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
|
|
return (EAGAIN);
|
|
|
|
xbb->flags |= XBBF_IN_SHUTDOWN;
|
|
mtx_unlock(&xbb->lock);
|
|
|
|
if (xbb->hotplug_watch.node != NULL) {
|
|
xs_unregister_watch(&xbb->hotplug_watch);
|
|
free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
|
|
xbb->hotplug_watch.node = NULL;
|
|
}
|
|
xbb->hotplug_done = false;
|
|
|
|
if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
|
|
xenbus_set_state(xbb->dev, XenbusStateClosing);
|
|
|
|
frontState = xenbus_get_otherend_state(xbb->dev);
|
|
mtx_lock(&xbb->lock);
|
|
xbb->flags &= ~XBBF_IN_SHUTDOWN;
|
|
|
|
/* Wait for the frontend to disconnect (if it's connected). */
|
|
if (frontState == XenbusStateConnected)
|
|
return (EAGAIN);
|
|
|
|
DPRINTF("\n");
|
|
|
|
/* Indicate shutdown is in progress. */
|
|
xbb->flags |= XBBF_SHUTDOWN;
|
|
|
|
/* Disconnect from the front-end. */
|
|
error = xbb_disconnect(xbb);
|
|
if (error != 0) {
|
|
/*
|
|
* Requests still outstanding. We'll be called again
|
|
* once they complete.
|
|
*/
|
|
KASSERT(error == EAGAIN,
|
|
("%s: Unexpected xbb_disconnect() failure %d",
|
|
__func__, error));
|
|
|
|
return (error);
|
|
}
|
|
|
|
DPRINTF("\n");
|
|
|
|
/* Indicate to xbb_detach() that is it safe to proceed. */
|
|
wakeup(xbb);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Report an attach time error to the console and Xen, and cleanup
|
|
* this instance by forcing immediate detach processing.
|
|
*
|
|
* \param xbb Per-instance xbb configuration structure.
|
|
* \param err Errno describing the error.
|
|
* \param fmt Printf style format and arguments
|
|
*/
|
|
static void
|
|
xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_list ap_hotplug;
|
|
|
|
va_start(ap, fmt);
|
|
va_copy(ap_hotplug, ap);
|
|
xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
|
|
"hotplug-error", fmt, ap_hotplug);
|
|
va_end(ap_hotplug);
|
|
xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
|
|
"hotplug-status", "error");
|
|
|
|
xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
|
|
va_end(ap);
|
|
|
|
xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
|
|
"online", "0");
|
|
mtx_lock(&xbb->lock);
|
|
xbb_shutdown(xbb);
|
|
mtx_unlock(&xbb->lock);
|
|
}
|
|
|
|
/*---------------------------- NewBus Entrypoints ----------------------------*/
|
|
/**
|
|
* Inspect a XenBus device and claim it if is of the appropriate type.
|
|
*
|
|
* \param dev NewBus device object representing a candidate XenBus device.
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static int
|
|
xbb_probe(device_t dev)
|
|
{
|
|
|
|
if (!strcmp(xenbus_get_type(dev), "vbd")) {
|
|
device_set_desc(dev, "Backend Virtual Block Device");
|
|
device_quiet(dev);
|
|
return (0);
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/**
|
|
* Setup sysctl variables to control various Block Back parameters.
|
|
*
|
|
* \param xbb Xen Block Back softc.
|
|
*
|
|
*/
|
|
static void
|
|
xbb_setup_sysctl(struct xbb_softc *xbb)
|
|
{
|
|
struct sysctl_ctx_list *sysctl_ctx = NULL;
|
|
struct sysctl_oid *sysctl_tree = NULL;
|
|
|
|
sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
|
|
if (sysctl_ctx == NULL)
|
|
return;
|
|
|
|
sysctl_tree = device_get_sysctl_tree(xbb->dev);
|
|
if (sysctl_tree == NULL)
|
|
return;
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
|
|
"fake the flush command");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
|
|
"send a real flush for N flush requests");
|
|
|
|
SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
|
|
"Don't coalesce contiguous requests");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"reqs_received", CTLFLAG_RW, &xbb->reqs_received,
|
|
"how many I/O requests we have received");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
|
|
"how many I/O requests have been completed");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"reqs_queued_for_completion", CTLFLAG_RW,
|
|
&xbb->reqs_queued_for_completion,
|
|
"how many I/O requests queued but not yet pushed");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"reqs_completed_with_error", CTLFLAG_RW,
|
|
&xbb->reqs_completed_with_error,
|
|
"how many I/O requests completed with error status");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
|
|
"how many I/O dispatches were forced");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
|
|
"how many I/O dispatches were normal");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
|
|
"total number of I/O dispatches");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
|
|
"how many times we have run out of KVA");
|
|
|
|
SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"request_shortages", CTLFLAG_RW,
|
|
&xbb->request_shortages,
|
|
"how many times we have run out of requests");
|
|
|
|
SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
|
|
"maximum outstanding requests (negotiated)");
|
|
|
|
SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"max_request_segments", CTLFLAG_RD,
|
|
&xbb->max_request_segments, 0,
|
|
"maximum number of pages per requests (negotiated)");
|
|
|
|
SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"max_request_size", CTLFLAG_RD,
|
|
&xbb->max_request_size, 0,
|
|
"maximum size in bytes of a request (negotiated)");
|
|
|
|
SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
|
|
"ring_pages", CTLFLAG_RD,
|
|
&xbb->ring_config.ring_pages, 0,
|
|
"communication channel pages (negotiated)");
|
|
}
|
|
|
|
static void
|
|
xbb_attach_disk(struct xs_watch *watch, const char **vec, unsigned int len)
|
|
{
|
|
device_t dev;
|
|
struct xbb_softc *xbb;
|
|
int error;
|
|
|
|
dev = (device_t) watch->callback_data;
|
|
xbb = device_get_softc(dev);
|
|
|
|
error = xs_gather(XST_NIL, xenbus_get_node(dev), "physical-device-path",
|
|
NULL, &xbb->dev_name, NULL);
|
|
if (error != 0)
|
|
return;
|
|
|
|
xs_unregister_watch(watch);
|
|
free(watch->node, M_XENBLOCKBACK);
|
|
watch->node = NULL;
|
|
|
|
/* Collect physical device information. */
|
|
error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
|
|
"device-type", NULL, &xbb->dev_type,
|
|
NULL);
|
|
if (error != 0)
|
|
xbb->dev_type = NULL;
|
|
|
|
error = xs_gather(XST_NIL, xenbus_get_node(dev),
|
|
"mode", NULL, &xbb->dev_mode,
|
|
NULL);
|
|
if (error != 0) {
|
|
xbb_attach_failed(xbb, error, "reading backend fields at %s",
|
|
xenbus_get_node(dev));
|
|
return;
|
|
}
|
|
|
|
/* Parse fopen style mode flags. */
|
|
if (strchr(xbb->dev_mode, 'w') == NULL)
|
|
xbb->flags |= XBBF_READ_ONLY;
|
|
|
|
/*
|
|
* Verify the physical device is present and can support
|
|
* the desired I/O mode.
|
|
*/
|
|
error = xbb_open_backend(xbb);
|
|
if (error != 0) {
|
|
xbb_attach_failed(xbb, error, "Unable to open %s",
|
|
xbb->dev_name);
|
|
return;
|
|
}
|
|
|
|
/* Use devstat(9) for recording statistics. */
|
|
xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
|
|
xbb->sector_size,
|
|
DEVSTAT_ALL_SUPPORTED,
|
|
DEVSTAT_TYPE_DIRECT
|
|
| DEVSTAT_TYPE_IF_OTHER,
|
|
DEVSTAT_PRIORITY_OTHER);
|
|
|
|
xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
|
|
xbb->sector_size,
|
|
DEVSTAT_ALL_SUPPORTED,
|
|
DEVSTAT_TYPE_DIRECT
|
|
| DEVSTAT_TYPE_IF_OTHER,
|
|
DEVSTAT_PRIORITY_OTHER);
|
|
/*
|
|
* Setup sysctl variables.
|
|
*/
|
|
xbb_setup_sysctl(xbb);
|
|
|
|
/*
|
|
* Create a taskqueue for doing work that must occur from a
|
|
* thread context.
|
|
*/
|
|
xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
|
|
M_NOWAIT,
|
|
taskqueue_thread_enqueue,
|
|
/*contxt*/&xbb->io_taskqueue);
|
|
if (xbb->io_taskqueue == NULL) {
|
|
xbb_attach_failed(xbb, error, "Unable to create taskqueue");
|
|
return;
|
|
}
|
|
|
|
taskqueue_start_threads(&xbb->io_taskqueue,
|
|
/*num threads*/1,
|
|
/*priority*/PWAIT,
|
|
/*thread name*/
|
|
"%s taskq", device_get_nameunit(dev));
|
|
|
|
/* Update hot-plug status to satisfy xend. */
|
|
error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
|
|
"hotplug-status", "connected");
|
|
if (error) {
|
|
xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
|
|
xenbus_get_node(xbb->dev));
|
|
return;
|
|
}
|
|
|
|
xbb->hotplug_done = true;
|
|
|
|
/* The front end might be waiting for the backend, attach if so. */
|
|
if (xenbus_get_otherend_state(xbb->dev) == XenbusStateInitialised)
|
|
xbb_connect(xbb);
|
|
}
|
|
|
|
/**
|
|
* Attach to a XenBus device that has been claimed by our probe routine.
|
|
*
|
|
* \param dev NewBus device object representing this Xen Block Back instance.
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static int
|
|
xbb_attach(device_t dev)
|
|
{
|
|
struct xbb_softc *xbb;
|
|
int error;
|
|
u_int max_ring_page_order;
|
|
struct sbuf *watch_path;
|
|
|
|
DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
|
|
|
|
/*
|
|
* Basic initialization.
|
|
* After this block it is safe to call xbb_detach()
|
|
* to clean up any allocated data for this instance.
|
|
*/
|
|
xbb = device_get_softc(dev);
|
|
xbb->dev = dev;
|
|
xbb->otherend_id = xenbus_get_otherend_id(dev);
|
|
TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
|
|
mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
|
|
|
|
/*
|
|
* Publish protocol capabilities for consumption by the
|
|
* front-end.
|
|
*/
|
|
error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
|
|
"feature-barrier", "1");
|
|
if (error) {
|
|
xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
|
|
xenbus_get_node(xbb->dev));
|
|
return (error);
|
|
}
|
|
|
|
error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
|
|
"feature-flush-cache", "1");
|
|
if (error) {
|
|
xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
|
|
xenbus_get_node(xbb->dev));
|
|
return (error);
|
|
}
|
|
|
|
max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
|
|
error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
|
|
"max-ring-page-order", "%u", max_ring_page_order);
|
|
if (error) {
|
|
xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
|
|
xenbus_get_node(xbb->dev));
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* We need to wait for hotplug script execution before
|
|
* moving forward.
|
|
*/
|
|
KASSERT(!xbb->hotplug_done, ("Hotplug scripts already executed"));
|
|
watch_path = xs_join(xenbus_get_node(xbb->dev), "physical-device-path");
|
|
xbb->hotplug_watch.callback_data = (uintptr_t)dev;
|
|
xbb->hotplug_watch.callback = xbb_attach_disk;
|
|
KASSERT(xbb->hotplug_watch.node == NULL, ("watch node already setup"));
|
|
xbb->hotplug_watch.node = strdup(sbuf_data(watch_path), M_XENBLOCKBACK);
|
|
sbuf_delete(watch_path);
|
|
error = xs_register_watch(&xbb->hotplug_watch);
|
|
if (error != 0) {
|
|
xbb_attach_failed(xbb, error, "failed to create watch on %s",
|
|
xbb->hotplug_watch.node);
|
|
free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
|
|
return (error);
|
|
}
|
|
|
|
/* Tell the toolstack blkback has attached. */
|
|
xenbus_set_state(dev, XenbusStateInitWait);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Detach from a block back device instance.
|
|
*
|
|
* \param dev NewBus device object representing this Xen Block Back instance.
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*
|
|
* \note A block back device may be detached at any time in its life-cycle,
|
|
* including part way through the attach process. For this reason,
|
|
* initialization order and the initialization state checks in this
|
|
* routine must be carefully coupled so that attach time failures
|
|
* are gracefully handled.
|
|
*/
|
|
static int
|
|
xbb_detach(device_t dev)
|
|
{
|
|
struct xbb_softc *xbb;
|
|
|
|
DPRINTF("\n");
|
|
|
|
xbb = device_get_softc(dev);
|
|
mtx_lock(&xbb->lock);
|
|
while (xbb_shutdown(xbb) == EAGAIN) {
|
|
msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
|
|
"xbb_shutdown", 0);
|
|
}
|
|
mtx_unlock(&xbb->lock);
|
|
|
|
DPRINTF("\n");
|
|
|
|
if (xbb->io_taskqueue != NULL)
|
|
taskqueue_free(xbb->io_taskqueue);
|
|
|
|
if (xbb->xbb_stats != NULL)
|
|
devstat_remove_entry(xbb->xbb_stats);
|
|
|
|
if (xbb->xbb_stats_in != NULL)
|
|
devstat_remove_entry(xbb->xbb_stats_in);
|
|
|
|
xbb_close_backend(xbb);
|
|
|
|
if (xbb->dev_mode != NULL) {
|
|
free(xbb->dev_mode, M_XENSTORE);
|
|
xbb->dev_mode = NULL;
|
|
}
|
|
|
|
if (xbb->dev_type != NULL) {
|
|
free(xbb->dev_type, M_XENSTORE);
|
|
xbb->dev_type = NULL;
|
|
}
|
|
|
|
if (xbb->dev_name != NULL) {
|
|
free(xbb->dev_name, M_XENSTORE);
|
|
xbb->dev_name = NULL;
|
|
}
|
|
|
|
mtx_destroy(&xbb->lock);
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Prepare this block back device for suspension of this VM.
|
|
*
|
|
* \param dev NewBus device object representing this Xen Block Back instance.
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static int
|
|
xbb_suspend(device_t dev)
|
|
{
|
|
#ifdef NOT_YET
|
|
struct xbb_softc *sc = device_get_softc(dev);
|
|
|
|
/* Prevent new requests being issued until we fix things up. */
|
|
mtx_lock(&sc->xb_io_lock);
|
|
sc->connected = BLKIF_STATE_SUSPENDED;
|
|
mtx_unlock(&sc->xb_io_lock);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Perform any processing required to recover from a suspended state.
|
|
*
|
|
* \param dev NewBus device object representing this Xen Block Back instance.
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static int
|
|
xbb_resume(device_t dev)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* Handle state changes expressed via the XenStore by our front-end peer.
|
|
*
|
|
* \param dev NewBus device object representing this Xen
|
|
* Block Back instance.
|
|
* \param frontend_state The new state of the front-end.
|
|
*
|
|
* \return 0 for success, errno codes for failure.
|
|
*/
|
|
static void
|
|
xbb_frontend_changed(device_t dev, XenbusState frontend_state)
|
|
{
|
|
struct xbb_softc *xbb = device_get_softc(dev);
|
|
|
|
DPRINTF("frontend_state=%s, xbb_state=%s\n",
|
|
xenbus_strstate(frontend_state),
|
|
xenbus_strstate(xenbus_get_state(xbb->dev)));
|
|
|
|
switch (frontend_state) {
|
|
case XenbusStateInitialising:
|
|
break;
|
|
case XenbusStateInitialised:
|
|
case XenbusStateConnected:
|
|
xbb_connect(xbb);
|
|
break;
|
|
case XenbusStateClosing:
|
|
case XenbusStateClosed:
|
|
mtx_lock(&xbb->lock);
|
|
xbb_shutdown(xbb);
|
|
mtx_unlock(&xbb->lock);
|
|
if (frontend_state == XenbusStateClosed)
|
|
xenbus_set_state(xbb->dev, XenbusStateClosed);
|
|
break;
|
|
default:
|
|
xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
|
|
frontend_state);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*---------------------------- NewBus Registration ---------------------------*/
|
|
static device_method_t xbb_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, xbb_probe),
|
|
DEVMETHOD(device_attach, xbb_attach),
|
|
DEVMETHOD(device_detach, xbb_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
DEVMETHOD(device_suspend, xbb_suspend),
|
|
DEVMETHOD(device_resume, xbb_resume),
|
|
|
|
/* Xenbus interface */
|
|
DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t xbb_driver = {
|
|
"xbbd",
|
|
xbb_methods,
|
|
sizeof(struct xbb_softc),
|
|
};
|
|
devclass_t xbb_devclass;
|
|
|
|
DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
|