6b3a9a0f3d
semantic patch: @@ expression rights, r; @@ - cap_rights_init(&rights, r) + cap_rights_init_one(&rights, r)
1049 lines
25 KiB
C
1049 lines
25 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2007 Roman Divacky
|
|
* Copyright (c) 2014 Dmitry Chagin
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_compat.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/capsicum.h>
|
|
#include <sys/types.h>
|
|
#include <sys/user.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/filio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/event.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/specialfd.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/timespec.h>
|
|
#include <sys/eventfd.h>
|
|
|
|
#ifdef COMPAT_LINUX32
|
|
#include <machine/../linux32/linux.h>
|
|
#include <machine/../linux32/linux32_proto.h>
|
|
#else
|
|
#include <machine/../linux/linux.h>
|
|
#include <machine/../linux/linux_proto.h>
|
|
#endif
|
|
|
|
#include <compat/linux/linux_emul.h>
|
|
#include <compat/linux/linux_event.h>
|
|
#include <compat/linux/linux_file.h>
|
|
#include <compat/linux/linux_timer.h>
|
|
#include <compat/linux/linux_util.h>
|
|
|
|
/*
|
|
* epoll defines 'struct epoll_event' with the field 'data' as 64 bits
|
|
* on all architectures. But on 32 bit architectures BSD 'struct kevent' only
|
|
* has 32 bit opaque pointer as 'udata' field. So we can't pass epoll supplied
|
|
* data verbatuim. Therefore we allocate 64-bit memory block to pass
|
|
* user supplied data for every file descriptor.
|
|
*/
|
|
|
|
typedef uint64_t epoll_udata_t;
|
|
|
|
struct epoll_emuldata {
|
|
uint32_t fdc; /* epoll udata max index */
|
|
epoll_udata_t udata[1]; /* epoll user data vector */
|
|
};
|
|
|
|
#define EPOLL_DEF_SZ 16
|
|
#define EPOLL_SIZE(fdn) \
|
|
(sizeof(struct epoll_emuldata)+(fdn) * sizeof(epoll_udata_t))
|
|
|
|
struct epoll_event {
|
|
uint32_t events;
|
|
epoll_udata_t data;
|
|
}
|
|
#if defined(__amd64__)
|
|
__attribute__((packed))
|
|
#endif
|
|
;
|
|
|
|
#define LINUX_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
|
|
|
|
static void epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata);
|
|
static int epoll_to_kevent(struct thread *td, int fd,
|
|
struct epoll_event *l_event, struct kevent *kevent,
|
|
int *nkevents);
|
|
static void kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event);
|
|
static int epoll_kev_copyout(void *arg, struct kevent *kevp, int count);
|
|
static int epoll_kev_copyin(void *arg, struct kevent *kevp, int count);
|
|
static int epoll_register_kevent(struct thread *td, struct file *epfp,
|
|
int fd, int filter, unsigned int flags);
|
|
static int epoll_fd_registered(struct thread *td, struct file *epfp,
|
|
int fd);
|
|
static int epoll_delete_all_events(struct thread *td, struct file *epfp,
|
|
int fd);
|
|
|
|
struct epoll_copyin_args {
|
|
struct kevent *changelist;
|
|
};
|
|
|
|
struct epoll_copyout_args {
|
|
struct epoll_event *leventlist;
|
|
struct proc *p;
|
|
uint32_t count;
|
|
int error;
|
|
};
|
|
|
|
/* timerfd */
|
|
typedef uint64_t timerfd_t;
|
|
|
|
static fo_rdwr_t timerfd_read;
|
|
static fo_ioctl_t timerfd_ioctl;
|
|
static fo_poll_t timerfd_poll;
|
|
static fo_kqfilter_t timerfd_kqfilter;
|
|
static fo_stat_t timerfd_stat;
|
|
static fo_close_t timerfd_close;
|
|
static fo_fill_kinfo_t timerfd_fill_kinfo;
|
|
|
|
static struct fileops timerfdops = {
|
|
.fo_read = timerfd_read,
|
|
.fo_write = invfo_rdwr,
|
|
.fo_truncate = invfo_truncate,
|
|
.fo_ioctl = timerfd_ioctl,
|
|
.fo_poll = timerfd_poll,
|
|
.fo_kqfilter = timerfd_kqfilter,
|
|
.fo_stat = timerfd_stat,
|
|
.fo_close = timerfd_close,
|
|
.fo_chmod = invfo_chmod,
|
|
.fo_chown = invfo_chown,
|
|
.fo_sendfile = invfo_sendfile,
|
|
.fo_fill_kinfo = timerfd_fill_kinfo,
|
|
.fo_flags = DFLAG_PASSABLE
|
|
};
|
|
|
|
static void filt_timerfddetach(struct knote *kn);
|
|
static int filt_timerfdread(struct knote *kn, long hint);
|
|
|
|
static struct filterops timerfd_rfiltops = {
|
|
.f_isfd = 1,
|
|
.f_detach = filt_timerfddetach,
|
|
.f_event = filt_timerfdread
|
|
};
|
|
|
|
struct timerfd {
|
|
clockid_t tfd_clockid;
|
|
struct itimerspec tfd_time;
|
|
struct callout tfd_callout;
|
|
timerfd_t tfd_count;
|
|
bool tfd_canceled;
|
|
struct selinfo tfd_sel;
|
|
struct mtx tfd_lock;
|
|
};
|
|
|
|
static void linux_timerfd_expire(void *);
|
|
static void linux_timerfd_curval(struct timerfd *, struct itimerspec *);
|
|
|
|
static void
|
|
epoll_fd_install(struct thread *td, int fd, epoll_udata_t udata)
|
|
{
|
|
struct linux_pemuldata *pem;
|
|
struct epoll_emuldata *emd;
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
|
|
pem = pem_find(p);
|
|
KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
|
|
|
|
LINUX_PEM_XLOCK(pem);
|
|
if (pem->epoll == NULL) {
|
|
emd = malloc(EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
|
|
emd->fdc = fd;
|
|
pem->epoll = emd;
|
|
} else {
|
|
emd = pem->epoll;
|
|
if (fd > emd->fdc) {
|
|
emd = realloc(emd, EPOLL_SIZE(fd), M_EPOLL, M_WAITOK);
|
|
emd->fdc = fd;
|
|
pem->epoll = emd;
|
|
}
|
|
}
|
|
emd->udata[fd] = udata;
|
|
LINUX_PEM_XUNLOCK(pem);
|
|
}
|
|
|
|
static int
|
|
epoll_create_common(struct thread *td, int flags)
|
|
{
|
|
int error;
|
|
|
|
error = kern_kqueue(td, flags, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
epoll_fd_install(td, EPOLL_DEF_SZ, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_epoll_create(struct thread *td, struct linux_epoll_create_args *args)
|
|
{
|
|
|
|
/*
|
|
* args->size is unused. Linux just tests it
|
|
* and then forgets it as well.
|
|
*/
|
|
if (args->size <= 0)
|
|
return (EINVAL);
|
|
|
|
return (epoll_create_common(td, 0));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
linux_epoll_create1(struct thread *td, struct linux_epoll_create1_args *args)
|
|
{
|
|
int flags;
|
|
|
|
if ((args->flags & ~(LINUX_O_CLOEXEC)) != 0)
|
|
return (EINVAL);
|
|
|
|
flags = 0;
|
|
if ((args->flags & LINUX_O_CLOEXEC) != 0)
|
|
flags |= O_CLOEXEC;
|
|
|
|
return (epoll_create_common(td, flags));
|
|
}
|
|
|
|
/* Structure converting function from epoll to kevent. */
|
|
static int
|
|
epoll_to_kevent(struct thread *td, int fd, struct epoll_event *l_event,
|
|
struct kevent *kevent, int *nkevents)
|
|
{
|
|
uint32_t levents = l_event->events;
|
|
struct linux_pemuldata *pem;
|
|
struct proc *p;
|
|
unsigned short kev_flags = EV_ADD | EV_ENABLE;
|
|
|
|
/* flags related to how event is registered */
|
|
if ((levents & LINUX_EPOLLONESHOT) != 0)
|
|
kev_flags |= EV_DISPATCH;
|
|
if ((levents & LINUX_EPOLLET) != 0)
|
|
kev_flags |= EV_CLEAR;
|
|
if ((levents & LINUX_EPOLLERR) != 0)
|
|
kev_flags |= EV_ERROR;
|
|
if ((levents & LINUX_EPOLLRDHUP) != 0)
|
|
kev_flags |= EV_EOF;
|
|
|
|
/* flags related to what event is registered */
|
|
if ((levents & LINUX_EPOLL_EVRD) != 0) {
|
|
EV_SET(kevent++, fd, EVFILT_READ, kev_flags, 0, 0, 0);
|
|
++(*nkevents);
|
|
}
|
|
if ((levents & LINUX_EPOLL_EVWR) != 0) {
|
|
EV_SET(kevent++, fd, EVFILT_WRITE, kev_flags, 0, 0, 0);
|
|
++(*nkevents);
|
|
}
|
|
/* zero event mask is legal */
|
|
if ((levents & (LINUX_EPOLL_EVRD | LINUX_EPOLL_EVWR)) == 0) {
|
|
EV_SET(kevent++, fd, EVFILT_READ, EV_ADD|EV_DISABLE, 0, 0, 0);
|
|
++(*nkevents);
|
|
}
|
|
|
|
if ((levents & ~(LINUX_EPOLL_EVSUP)) != 0) {
|
|
p = td->td_proc;
|
|
|
|
pem = pem_find(p);
|
|
KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
|
|
KASSERT(pem->epoll != NULL, ("epoll proc epolldata not found.\n"));
|
|
|
|
LINUX_PEM_XLOCK(pem);
|
|
if ((pem->flags & LINUX_XUNSUP_EPOLL) == 0) {
|
|
pem->flags |= LINUX_XUNSUP_EPOLL;
|
|
LINUX_PEM_XUNLOCK(pem);
|
|
linux_msg(td, "epoll_ctl unsupported flags: 0x%x",
|
|
levents);
|
|
} else
|
|
LINUX_PEM_XUNLOCK(pem);
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Structure converting function from kevent to epoll. In a case
|
|
* this is called on error in registration we store the error in
|
|
* event->data and pick it up later in linux_epoll_ctl().
|
|
*/
|
|
static void
|
|
kevent_to_epoll(struct kevent *kevent, struct epoll_event *l_event)
|
|
{
|
|
|
|
if ((kevent->flags & EV_ERROR) != 0) {
|
|
l_event->events = LINUX_EPOLLERR;
|
|
return;
|
|
}
|
|
|
|
/* XXX EPOLLPRI, EPOLLHUP */
|
|
switch (kevent->filter) {
|
|
case EVFILT_READ:
|
|
l_event->events = LINUX_EPOLLIN;
|
|
if ((kevent->flags & EV_EOF) != 0)
|
|
l_event->events |= LINUX_EPOLLRDHUP;
|
|
break;
|
|
case EVFILT_WRITE:
|
|
l_event->events = LINUX_EPOLLOUT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copyout callback used by kevent. This converts kevent
|
|
* events to epoll events and copies them back to the
|
|
* userspace. This is also called on error on registering
|
|
* of the filter.
|
|
*/
|
|
static int
|
|
epoll_kev_copyout(void *arg, struct kevent *kevp, int count)
|
|
{
|
|
struct epoll_copyout_args *args;
|
|
struct linux_pemuldata *pem;
|
|
struct epoll_emuldata *emd;
|
|
struct epoll_event *eep;
|
|
int error, fd, i;
|
|
|
|
args = (struct epoll_copyout_args*) arg;
|
|
eep = malloc(sizeof(*eep) * count, M_EPOLL, M_WAITOK | M_ZERO);
|
|
|
|
pem = pem_find(args->p);
|
|
KASSERT(pem != NULL, ("epoll proc emuldata not found.\n"));
|
|
LINUX_PEM_SLOCK(pem);
|
|
emd = pem->epoll;
|
|
KASSERT(emd != NULL, ("epoll proc epolldata not found.\n"));
|
|
|
|
for (i = 0; i < count; i++) {
|
|
kevent_to_epoll(&kevp[i], &eep[i]);
|
|
|
|
fd = kevp[i].ident;
|
|
KASSERT(fd <= emd->fdc, ("epoll user data vector"
|
|
" is too small.\n"));
|
|
eep[i].data = emd->udata[fd];
|
|
}
|
|
LINUX_PEM_SUNLOCK(pem);
|
|
|
|
error = copyout(eep, args->leventlist, count * sizeof(*eep));
|
|
if (error == 0) {
|
|
args->leventlist += count;
|
|
args->count += count;
|
|
} else if (args->error == 0)
|
|
args->error = error;
|
|
|
|
free(eep, M_EPOLL);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Copyin callback used by kevent. This copies already
|
|
* converted filters from kernel memory to the kevent
|
|
* internal kernel memory. Hence the memcpy instead of
|
|
* copyin.
|
|
*/
|
|
static int
|
|
epoll_kev_copyin(void *arg, struct kevent *kevp, int count)
|
|
{
|
|
struct epoll_copyin_args *args;
|
|
|
|
args = (struct epoll_copyin_args*) arg;
|
|
|
|
memcpy(kevp, args->changelist, count * sizeof(*kevp));
|
|
args->changelist += count;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Load epoll filter, convert it to kevent filter
|
|
* and load it into kevent subsystem.
|
|
*/
|
|
int
|
|
linux_epoll_ctl(struct thread *td, struct linux_epoll_ctl_args *args)
|
|
{
|
|
struct file *epfp, *fp;
|
|
struct epoll_copyin_args ciargs;
|
|
struct kevent kev[2];
|
|
struct kevent_copyops k_ops = { &ciargs,
|
|
NULL,
|
|
epoll_kev_copyin};
|
|
struct epoll_event le;
|
|
cap_rights_t rights;
|
|
int nchanges = 0;
|
|
int error;
|
|
|
|
if (args->op != LINUX_EPOLL_CTL_DEL) {
|
|
error = copyin(args->event, &le, sizeof(le));
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
error = fget(td, args->epfd,
|
|
cap_rights_init_one(&rights, CAP_KQUEUE_CHANGE), &epfp);
|
|
if (error != 0)
|
|
return (error);
|
|
if (epfp->f_type != DTYPE_KQUEUE) {
|
|
error = EINVAL;
|
|
goto leave1;
|
|
}
|
|
|
|
/* Protect user data vector from incorrectly supplied fd. */
|
|
error = fget(td, args->fd,
|
|
cap_rights_init_one(&rights, CAP_POLL_EVENT), &fp);
|
|
if (error != 0)
|
|
goto leave1;
|
|
|
|
/* Linux disallows spying on himself */
|
|
if (epfp == fp) {
|
|
error = EINVAL;
|
|
goto leave0;
|
|
}
|
|
|
|
ciargs.changelist = kev;
|
|
|
|
if (args->op != LINUX_EPOLL_CTL_DEL) {
|
|
error = epoll_to_kevent(td, args->fd, &le, kev, &nchanges);
|
|
if (error != 0)
|
|
goto leave0;
|
|
}
|
|
|
|
switch (args->op) {
|
|
case LINUX_EPOLL_CTL_MOD:
|
|
error = epoll_delete_all_events(td, epfp, args->fd);
|
|
if (error != 0)
|
|
goto leave0;
|
|
break;
|
|
|
|
case LINUX_EPOLL_CTL_ADD:
|
|
if (epoll_fd_registered(td, epfp, args->fd)) {
|
|
error = EEXIST;
|
|
goto leave0;
|
|
}
|
|
break;
|
|
|
|
case LINUX_EPOLL_CTL_DEL:
|
|
/* CTL_DEL means unregister this fd with this epoll */
|
|
error = epoll_delete_all_events(td, epfp, args->fd);
|
|
goto leave0;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
goto leave0;
|
|
}
|
|
|
|
epoll_fd_install(td, args->fd, le.data);
|
|
|
|
error = kern_kevent_fp(td, epfp, nchanges, 0, &k_ops, NULL);
|
|
|
|
leave0:
|
|
fdrop(fp, td);
|
|
|
|
leave1:
|
|
fdrop(epfp, td);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Wait for a filter to be triggered on the epoll file descriptor.
|
|
*/
|
|
static int
|
|
linux_epoll_wait_common(struct thread *td, int epfd, struct epoll_event *events,
|
|
int maxevents, int timeout, sigset_t *uset)
|
|
{
|
|
struct epoll_copyout_args coargs;
|
|
struct kevent_copyops k_ops = { &coargs,
|
|
epoll_kev_copyout,
|
|
NULL};
|
|
struct timespec ts, *tsp;
|
|
cap_rights_t rights;
|
|
struct file *epfp;
|
|
sigset_t omask;
|
|
int error;
|
|
|
|
if (maxevents <= 0 || maxevents > LINUX_MAX_EVENTS)
|
|
return (EINVAL);
|
|
|
|
error = fget(td, epfd,
|
|
cap_rights_init_one(&rights, CAP_KQUEUE_EVENT), &epfp);
|
|
if (error != 0)
|
|
return (error);
|
|
if (epfp->f_type != DTYPE_KQUEUE) {
|
|
error = EINVAL;
|
|
goto leave;
|
|
}
|
|
if (uset != NULL) {
|
|
error = kern_sigprocmask(td, SIG_SETMASK, uset,
|
|
&omask, 0);
|
|
if (error != 0)
|
|
goto leave;
|
|
td->td_pflags |= TDP_OLDMASK;
|
|
/*
|
|
* Make sure that ast() is called on return to
|
|
* usermode and TDP_OLDMASK is cleared, restoring old
|
|
* sigmask.
|
|
*/
|
|
thread_lock(td);
|
|
td->td_flags |= TDF_ASTPENDING;
|
|
thread_unlock(td);
|
|
}
|
|
|
|
coargs.leventlist = events;
|
|
coargs.p = td->td_proc;
|
|
coargs.count = 0;
|
|
coargs.error = 0;
|
|
|
|
/*
|
|
* Linux epoll_wait(2) man page states that timeout of -1 causes caller
|
|
* to block indefinitely. Real implementation does it if any negative
|
|
* timeout value is passed.
|
|
*/
|
|
if (timeout >= 0) {
|
|
/* Convert from milliseconds to timespec. */
|
|
ts.tv_sec = timeout / 1000;
|
|
ts.tv_nsec = (timeout % 1000) * 1000000;
|
|
tsp = &ts;
|
|
} else {
|
|
tsp = NULL;
|
|
}
|
|
|
|
error = kern_kevent_fp(td, epfp, 0, maxevents, &k_ops, tsp);
|
|
if (error == 0 && coargs.error != 0)
|
|
error = coargs.error;
|
|
|
|
/*
|
|
* kern_kevent might return ENOMEM which is not expected from epoll_wait.
|
|
* Maybe we should translate that but I don't think it matters at all.
|
|
*/
|
|
if (error == 0)
|
|
td->td_retval[0] = coargs.count;
|
|
|
|
if (uset != NULL)
|
|
error = kern_sigprocmask(td, SIG_SETMASK, &omask,
|
|
NULL, 0);
|
|
leave:
|
|
fdrop(epfp, td);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_epoll_wait(struct thread *td, struct linux_epoll_wait_args *args)
|
|
{
|
|
|
|
return (linux_epoll_wait_common(td, args->epfd, args->events,
|
|
args->maxevents, args->timeout, NULL));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
linux_epoll_pwait(struct thread *td, struct linux_epoll_pwait_args *args)
|
|
{
|
|
sigset_t mask, *pmask;
|
|
l_sigset_t lmask;
|
|
int error;
|
|
|
|
if (args->mask != NULL) {
|
|
if (args->sigsetsize != sizeof(l_sigset_t))
|
|
return (EINVAL);
|
|
error = copyin(args->mask, &lmask, sizeof(l_sigset_t));
|
|
if (error != 0)
|
|
return (error);
|
|
linux_to_bsd_sigset(&lmask, &mask);
|
|
pmask = &mask;
|
|
} else
|
|
pmask = NULL;
|
|
return (linux_epoll_wait_common(td, args->epfd, args->events,
|
|
args->maxevents, args->timeout, pmask));
|
|
}
|
|
|
|
static int
|
|
epoll_register_kevent(struct thread *td, struct file *epfp, int fd, int filter,
|
|
unsigned int flags)
|
|
{
|
|
struct epoll_copyin_args ciargs;
|
|
struct kevent kev;
|
|
struct kevent_copyops k_ops = { &ciargs,
|
|
NULL,
|
|
epoll_kev_copyin};
|
|
|
|
ciargs.changelist = &kev;
|
|
EV_SET(&kev, fd, filter, flags, 0, 0, 0);
|
|
|
|
return (kern_kevent_fp(td, epfp, 1, 0, &k_ops, NULL));
|
|
}
|
|
|
|
static int
|
|
epoll_fd_registered(struct thread *td, struct file *epfp, int fd)
|
|
{
|
|
/*
|
|
* Set empty filter flags to avoid accidental modification of already
|
|
* registered events. In the case of event re-registration:
|
|
* 1. If event does not exists kevent() does nothing and returns ENOENT
|
|
* 2. If event does exists, it's enabled/disabled state is preserved
|
|
* but fflags, data and udata fields are overwritten. So we can not
|
|
* set socket lowats and store user's context pointer in udata.
|
|
*/
|
|
if (epoll_register_kevent(td, epfp, fd, EVFILT_READ, 0) != ENOENT ||
|
|
epoll_register_kevent(td, epfp, fd, EVFILT_WRITE, 0) != ENOENT)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
epoll_delete_all_events(struct thread *td, struct file *epfp, int fd)
|
|
{
|
|
int error1, error2;
|
|
|
|
error1 = epoll_register_kevent(td, epfp, fd, EVFILT_READ, EV_DELETE);
|
|
error2 = epoll_register_kevent(td, epfp, fd, EVFILT_WRITE, EV_DELETE);
|
|
|
|
/* return 0 if at least one result positive */
|
|
return (error1 == 0 ? 0 : error2);
|
|
}
|
|
|
|
#ifdef LINUX_LEGACY_SYSCALLS
|
|
int
|
|
linux_eventfd(struct thread *td, struct linux_eventfd_args *args)
|
|
{
|
|
struct specialfd_eventfd ae;
|
|
|
|
bzero(&ae, sizeof(ae));
|
|
ae.initval = args->initval;
|
|
return (kern_specialfd(td, SPECIALFD_EVENTFD, &ae));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
linux_eventfd2(struct thread *td, struct linux_eventfd2_args *args)
|
|
{
|
|
struct specialfd_eventfd ae;
|
|
int flags;
|
|
|
|
if ((args->flags & ~(LINUX_O_CLOEXEC | LINUX_O_NONBLOCK |
|
|
LINUX_EFD_SEMAPHORE)) != 0)
|
|
return (EINVAL);
|
|
flags = 0;
|
|
if ((args->flags & LINUX_O_CLOEXEC) != 0)
|
|
flags |= EFD_CLOEXEC;
|
|
if ((args->flags & LINUX_O_NONBLOCK) != 0)
|
|
flags |= EFD_NONBLOCK;
|
|
if ((args->flags & LINUX_EFD_SEMAPHORE) != 0)
|
|
flags |= EFD_SEMAPHORE;
|
|
|
|
bzero(&ae, sizeof(ae));
|
|
ae.flags = flags;
|
|
ae.initval = args->initval;
|
|
return (kern_specialfd(td, SPECIALFD_EVENTFD, &ae));
|
|
}
|
|
|
|
int
|
|
linux_timerfd_create(struct thread *td, struct linux_timerfd_create_args *args)
|
|
{
|
|
struct filedesc *fdp;
|
|
struct timerfd *tfd;
|
|
struct file *fp;
|
|
clockid_t clockid;
|
|
int fflags, fd, error;
|
|
|
|
if ((args->flags & ~LINUX_TFD_CREATE_FLAGS) != 0)
|
|
return (EINVAL);
|
|
|
|
error = linux_to_native_clockid(&clockid, args->clockid);
|
|
if (error != 0)
|
|
return (error);
|
|
if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC)
|
|
return (EINVAL);
|
|
|
|
fflags = 0;
|
|
if ((args->flags & LINUX_TFD_CLOEXEC) != 0)
|
|
fflags |= O_CLOEXEC;
|
|
|
|
fdp = td->td_proc->p_fd;
|
|
error = falloc(td, &fp, &fd, fflags);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
tfd = malloc(sizeof(*tfd), M_EPOLL, M_WAITOK | M_ZERO);
|
|
tfd->tfd_clockid = clockid;
|
|
mtx_init(&tfd->tfd_lock, "timerfd", NULL, MTX_DEF);
|
|
|
|
callout_init_mtx(&tfd->tfd_callout, &tfd->tfd_lock, 0);
|
|
knlist_init_mtx(&tfd->tfd_sel.si_note, &tfd->tfd_lock);
|
|
|
|
fflags = FREAD;
|
|
if ((args->flags & LINUX_O_NONBLOCK) != 0)
|
|
fflags |= FNONBLOCK;
|
|
|
|
finit(fp, fflags, DTYPE_LINUXTFD, tfd, &timerfdops);
|
|
fdrop(fp, td);
|
|
|
|
td->td_retval[0] = fd;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
timerfd_close(struct file *fp, struct thread *td)
|
|
{
|
|
struct timerfd *tfd;
|
|
|
|
tfd = fp->f_data;
|
|
if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
|
|
return (EINVAL);
|
|
|
|
timespecclear(&tfd->tfd_time.it_value);
|
|
timespecclear(&tfd->tfd_time.it_interval);
|
|
|
|
mtx_lock(&tfd->tfd_lock);
|
|
callout_drain(&tfd->tfd_callout);
|
|
mtx_unlock(&tfd->tfd_lock);
|
|
|
|
seldrain(&tfd->tfd_sel);
|
|
knlist_destroy(&tfd->tfd_sel.si_note);
|
|
|
|
fp->f_ops = &badfileops;
|
|
mtx_destroy(&tfd->tfd_lock);
|
|
free(tfd, M_EPOLL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
timerfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
|
|
int flags, struct thread *td)
|
|
{
|
|
struct timerfd *tfd;
|
|
timerfd_t count;
|
|
int error;
|
|
|
|
tfd = fp->f_data;
|
|
if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
|
|
return (EINVAL);
|
|
|
|
if (uio->uio_resid < sizeof(timerfd_t))
|
|
return (EINVAL);
|
|
|
|
error = 0;
|
|
mtx_lock(&tfd->tfd_lock);
|
|
retry:
|
|
if (tfd->tfd_canceled) {
|
|
tfd->tfd_count = 0;
|
|
mtx_unlock(&tfd->tfd_lock);
|
|
return (ECANCELED);
|
|
}
|
|
if (tfd->tfd_count == 0) {
|
|
if ((fp->f_flag & FNONBLOCK) != 0) {
|
|
mtx_unlock(&tfd->tfd_lock);
|
|
return (EAGAIN);
|
|
}
|
|
error = mtx_sleep(&tfd->tfd_count, &tfd->tfd_lock, PCATCH, "ltfdrd", 0);
|
|
if (error == 0)
|
|
goto retry;
|
|
}
|
|
if (error == 0) {
|
|
count = tfd->tfd_count;
|
|
tfd->tfd_count = 0;
|
|
mtx_unlock(&tfd->tfd_lock);
|
|
error = uiomove(&count, sizeof(timerfd_t), uio);
|
|
} else
|
|
mtx_unlock(&tfd->tfd_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
timerfd_poll(struct file *fp, int events, struct ucred *active_cred,
|
|
struct thread *td)
|
|
{
|
|
struct timerfd *tfd;
|
|
int revents = 0;
|
|
|
|
tfd = fp->f_data;
|
|
if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
|
|
return (POLLERR);
|
|
|
|
mtx_lock(&tfd->tfd_lock);
|
|
if ((events & (POLLIN|POLLRDNORM)) && tfd->tfd_count > 0)
|
|
revents |= events & (POLLIN|POLLRDNORM);
|
|
if (revents == 0)
|
|
selrecord(td, &tfd->tfd_sel);
|
|
mtx_unlock(&tfd->tfd_lock);
|
|
|
|
return (revents);
|
|
}
|
|
|
|
static int
|
|
timerfd_kqfilter(struct file *fp, struct knote *kn)
|
|
{
|
|
struct timerfd *tfd;
|
|
|
|
tfd = fp->f_data;
|
|
if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL)
|
|
return (EINVAL);
|
|
|
|
if (kn->kn_filter == EVFILT_READ)
|
|
kn->kn_fop = &timerfd_rfiltops;
|
|
else
|
|
return (EINVAL);
|
|
|
|
kn->kn_hook = tfd;
|
|
knlist_add(&tfd->tfd_sel.si_note, kn, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_timerfddetach(struct knote *kn)
|
|
{
|
|
struct timerfd *tfd = kn->kn_hook;
|
|
|
|
mtx_lock(&tfd->tfd_lock);
|
|
knlist_remove(&tfd->tfd_sel.si_note, kn, 1);
|
|
mtx_unlock(&tfd->tfd_lock);
|
|
}
|
|
|
|
static int
|
|
filt_timerfdread(struct knote *kn, long hint)
|
|
{
|
|
struct timerfd *tfd = kn->kn_hook;
|
|
|
|
return (tfd->tfd_count > 0);
|
|
}
|
|
|
|
static int
|
|
timerfd_ioctl(struct file *fp, u_long cmd, void *data,
|
|
struct ucred *active_cred, struct thread *td)
|
|
{
|
|
|
|
if (fp->f_data == NULL || fp->f_type != DTYPE_LINUXTFD)
|
|
return (EINVAL);
|
|
|
|
switch (cmd) {
|
|
case FIONBIO:
|
|
case FIOASYNC:
|
|
return (0);
|
|
}
|
|
|
|
return (ENOTTY);
|
|
}
|
|
|
|
static int
|
|
timerfd_stat(struct file *fp, struct stat *st, struct ucred *active_cred,
|
|
struct thread *td)
|
|
{
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
timerfd_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
|
|
{
|
|
|
|
kif->kf_type = KF_TYPE_UNKNOWN;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
linux_timerfd_clocktime(struct timerfd *tfd, struct timespec *ts)
|
|
{
|
|
|
|
if (tfd->tfd_clockid == CLOCK_REALTIME)
|
|
getnanotime(ts);
|
|
else /* CLOCK_MONOTONIC */
|
|
getnanouptime(ts);
|
|
}
|
|
|
|
static void
|
|
linux_timerfd_curval(struct timerfd *tfd, struct itimerspec *ots)
|
|
{
|
|
struct timespec cts;
|
|
|
|
linux_timerfd_clocktime(tfd, &cts);
|
|
*ots = tfd->tfd_time;
|
|
if (ots->it_value.tv_sec != 0 || ots->it_value.tv_nsec != 0) {
|
|
timespecsub(&ots->it_value, &cts, &ots->it_value);
|
|
if (ots->it_value.tv_sec < 0 ||
|
|
(ots->it_value.tv_sec == 0 &&
|
|
ots->it_value.tv_nsec == 0)) {
|
|
ots->it_value.tv_sec = 0;
|
|
ots->it_value.tv_nsec = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
linux_timerfd_gettime(struct thread *td, struct linux_timerfd_gettime_args *args)
|
|
{
|
|
struct l_itimerspec lots;
|
|
struct itimerspec ots;
|
|
struct timerfd *tfd;
|
|
struct file *fp;
|
|
int error;
|
|
|
|
error = fget(td, args->fd, &cap_read_rights, &fp);
|
|
if (error != 0)
|
|
return (error);
|
|
tfd = fp->f_data;
|
|
if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
mtx_lock(&tfd->tfd_lock);
|
|
linux_timerfd_curval(tfd, &ots);
|
|
mtx_unlock(&tfd->tfd_lock);
|
|
|
|
error = native_to_linux_itimerspec(&lots, &ots);
|
|
if (error == 0)
|
|
error = copyout(&lots, args->old_value, sizeof(lots));
|
|
|
|
out:
|
|
fdrop(fp, td);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
linux_timerfd_settime(struct thread *td, struct linux_timerfd_settime_args *args)
|
|
{
|
|
struct l_itimerspec lots;
|
|
struct itimerspec nts, ots;
|
|
struct timespec cts, ts;
|
|
struct timerfd *tfd;
|
|
struct timeval tv;
|
|
struct file *fp;
|
|
int error;
|
|
|
|
if ((args->flags & ~LINUX_TFD_SETTIME_FLAGS) != 0)
|
|
return (EINVAL);
|
|
|
|
error = copyin(args->new_value, &lots, sizeof(lots));
|
|
if (error != 0)
|
|
return (error);
|
|
error = linux_to_native_itimerspec(&nts, &lots);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = fget(td, args->fd, &cap_write_rights, &fp);
|
|
if (error != 0)
|
|
return (error);
|
|
tfd = fp->f_data;
|
|
if (fp->f_type != DTYPE_LINUXTFD || tfd == NULL) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
mtx_lock(&tfd->tfd_lock);
|
|
if (!timespecisset(&nts.it_value))
|
|
timespecclear(&nts.it_interval);
|
|
if (args->old_value != NULL)
|
|
linux_timerfd_curval(tfd, &ots);
|
|
|
|
tfd->tfd_time = nts;
|
|
if (timespecisset(&nts.it_value)) {
|
|
linux_timerfd_clocktime(tfd, &cts);
|
|
ts = nts.it_value;
|
|
if ((args->flags & LINUX_TFD_TIMER_ABSTIME) == 0) {
|
|
timespecadd(&tfd->tfd_time.it_value, &cts,
|
|
&tfd->tfd_time.it_value);
|
|
} else {
|
|
timespecsub(&ts, &cts, &ts);
|
|
}
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts);
|
|
callout_reset(&tfd->tfd_callout, tvtohz(&tv),
|
|
linux_timerfd_expire, tfd);
|
|
tfd->tfd_canceled = false;
|
|
} else {
|
|
tfd->tfd_canceled = true;
|
|
callout_stop(&tfd->tfd_callout);
|
|
}
|
|
mtx_unlock(&tfd->tfd_lock);
|
|
|
|
if (args->old_value != NULL) {
|
|
error = native_to_linux_itimerspec(&lots, &ots);
|
|
if (error == 0)
|
|
error = copyout(&lots, args->old_value, sizeof(lots));
|
|
}
|
|
|
|
out:
|
|
fdrop(fp, td);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
linux_timerfd_expire(void *arg)
|
|
{
|
|
struct timespec cts, ts;
|
|
struct timeval tv;
|
|
struct timerfd *tfd;
|
|
|
|
tfd = (struct timerfd *)arg;
|
|
|
|
linux_timerfd_clocktime(tfd, &cts);
|
|
if (timespeccmp(&cts, &tfd->tfd_time.it_value, >=)) {
|
|
if (timespecisset(&tfd->tfd_time.it_interval))
|
|
timespecadd(&tfd->tfd_time.it_value,
|
|
&tfd->tfd_time.it_interval,
|
|
&tfd->tfd_time.it_value);
|
|
else
|
|
/* single shot timer */
|
|
timespecclear(&tfd->tfd_time.it_value);
|
|
if (timespecisset(&tfd->tfd_time.it_value)) {
|
|
timespecsub(&tfd->tfd_time.it_value, &cts, &ts);
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts);
|
|
callout_reset(&tfd->tfd_callout, tvtohz(&tv),
|
|
linux_timerfd_expire, tfd);
|
|
}
|
|
tfd->tfd_count++;
|
|
KNOTE_LOCKED(&tfd->tfd_sel.si_note, 0);
|
|
selwakeup(&tfd->tfd_sel);
|
|
wakeup(&tfd->tfd_count);
|
|
} else if (timespecisset(&tfd->tfd_time.it_value)) {
|
|
timespecsub(&tfd->tfd_time.it_value, &cts, &ts);
|
|
TIMESPEC_TO_TIMEVAL(&tv, &ts);
|
|
callout_reset(&tfd->tfd_callout, tvtohz(&tv),
|
|
linux_timerfd_expire, tfd);
|
|
}
|
|
}
|