freebsd-nq/sys/net/rtsock.c
Alexander V. Chernikov d68cf57b7f Refactor rt_addrmsg() and rt_routemsg().
Summary:
* Refactor rt_addrmsg(): make V_rt_add_addr_allfibs decision locally.
* Fix rt_routemsg() and multipath by accepting nexthop instead of interface pointer.
* Refactor rtsock_routemsg(): avoid accessing rtentry fields directly.
* Simplify in_addprefix() by moving prefix search to a separate  function.

Reviewers: #network

Subscribers: imp, ae, bz

Differential Revision: https://reviews.freebsd.org/D28011
2021-01-07 19:38:19 +00:00

2324 lines
56 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)rtsock.c 8.7 (Berkeley) 10/12/95
* $FreeBSD$
*/
#include "opt_ddb.h"
#include "opt_route.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/domain.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/rmlock.h>
#include <sys/rwlock.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_llatbl.h>
#include <net/if_types.h>
#include <net/netisr.h>
#include <net/raw_cb.h>
#include <net/route.h>
#include <net/route/route_ctl.h>
#include <net/route/route_var.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip_carp.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#endif
#include <net/route/nhop.h>
#ifdef COMPAT_FREEBSD32
#include <sys/mount.h>
#include <compat/freebsd32/freebsd32.h>
struct if_msghdr32 {
uint16_t ifm_msglen;
uint8_t ifm_version;
uint8_t ifm_type;
int32_t ifm_addrs;
int32_t ifm_flags;
uint16_t ifm_index;
uint16_t _ifm_spare1;
struct if_data ifm_data;
};
struct if_msghdrl32 {
uint16_t ifm_msglen;
uint8_t ifm_version;
uint8_t ifm_type;
int32_t ifm_addrs;
int32_t ifm_flags;
uint16_t ifm_index;
uint16_t _ifm_spare1;
uint16_t ifm_len;
uint16_t ifm_data_off;
uint32_t _ifm_spare2;
struct if_data ifm_data;
};
struct ifa_msghdrl32 {
uint16_t ifam_msglen;
uint8_t ifam_version;
uint8_t ifam_type;
int32_t ifam_addrs;
int32_t ifam_flags;
uint16_t ifam_index;
uint16_t _ifam_spare1;
uint16_t ifam_len;
uint16_t ifam_data_off;
int32_t ifam_metric;
struct if_data ifam_data;
};
#define SA_SIZE32(sa) \
( (((struct sockaddr *)(sa))->sa_len == 0) ? \
sizeof(int) : \
1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
#endif /* COMPAT_FREEBSD32 */
MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
/* NB: these are not modified */
static struct sockaddr route_src = { 2, PF_ROUTE, };
static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, };
/* These are external hooks for CARP. */
int (*carp_get_vhid_p)(struct ifaddr *);
/*
* Used by rtsock/raw_input callback code to decide whether to filter the update
* notification to a socket bound to a particular FIB.
*/
#define RTS_FILTER_FIB M_PROTO8
typedef struct {
int ip_count; /* attached w/ AF_INET */
int ip6_count; /* attached w/ AF_INET6 */
int any_count; /* total attached */
} route_cb_t;
VNET_DEFINE_STATIC(route_cb_t, route_cb);
#define V_route_cb VNET(route_cb)
struct mtx rtsock_mtx;
MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
#define RTSOCK_LOCK() mtx_lock(&rtsock_mtx)
#define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
#define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED)
SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
struct walkarg {
int family;
int w_tmemsize;
int w_op, w_arg;
caddr_t w_tmem;
struct sysctl_req *w_req;
struct sockaddr *dst;
struct sockaddr *mask;
};
static void rts_input(struct mbuf *m);
static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
struct walkarg *w, int *plen);
static int rt_xaddrs(caddr_t cp, caddr_t cplim,
struct rt_addrinfo *rtinfo);
static int sysctl_dumpentry(struct rtentry *rt, void *vw);
static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh,
uint32_t weight, struct walkarg *w);
static int sysctl_iflist(int af, struct walkarg *w);
static int sysctl_ifmalist(int af, struct walkarg *w);
static int route_output(struct mbuf *m, struct socket *so, ...);
static void rt_getmetrics(const struct rtentry *rt,
const struct nhop_object *nh, struct rt_metrics *out);
static void rt_dispatch(struct mbuf *, sa_family_t);
static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
struct rt_msghdr *rtm, struct rib_cmd_info *rc);
static int update_rtm_from_rc(struct rt_addrinfo *info,
struct rt_msghdr **prtm, int alloc_len,
struct rib_cmd_info *rc, struct nhop_object *nh);
static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
struct mbuf *m, sa_family_t saf, u_int fibnum,
int rtm_errno);
static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host,
const struct sockaddr *rt_dst);
static struct netisr_handler rtsock_nh = {
.nh_name = "rtsock",
.nh_handler = rts_input,
.nh_proto = NETISR_ROUTE,
.nh_policy = NETISR_POLICY_SOURCE,
};
static int
sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
{
int error, qlimit;
netisr_getqlimit(&rtsock_nh, &qlimit);
error = sysctl_handle_int(oidp, &qlimit, 0, req);
if (error || !req->newptr)
return (error);
if (qlimit < 1)
return (EINVAL);
return (netisr_setqlimit(&rtsock_nh, qlimit));
}
SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
0, 0, sysctl_route_netisr_maxqlen, "I",
"maximum routing socket dispatch queue length");
static void
vnet_rts_init(void)
{
int tmp;
if (IS_DEFAULT_VNET(curvnet)) {
if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
rtsock_nh.nh_qlimit = tmp;
netisr_register(&rtsock_nh);
}
#ifdef VIMAGE
else
netisr_register_vnet(&rtsock_nh);
#endif
}
VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
vnet_rts_init, 0);
#ifdef VIMAGE
static void
vnet_rts_uninit(void)
{
netisr_unregister_vnet(&rtsock_nh);
}
VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
vnet_rts_uninit, 0);
#endif
static int
raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
struct rawcb *rp)
{
int fibnum;
KASSERT(m != NULL, ("%s: m is NULL", __func__));
KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
/* No filtering requested. */
if ((m->m_flags & RTS_FILTER_FIB) == 0)
return (0);
/* Check if it is a rts and the fib matches the one of the socket. */
fibnum = M_GETFIB(m);
if (proto->sp_family != PF_ROUTE ||
rp->rcb_socket == NULL ||
rp->rcb_socket->so_fibnum == fibnum)
return (0);
/* Filtering requested and no match, the socket shall be skipped. */
return (1);
}
static void
rts_input(struct mbuf *m)
{
struct sockproto route_proto;
unsigned short *family;
struct m_tag *tag;
route_proto.sp_family = PF_ROUTE;
tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
if (tag != NULL) {
family = (unsigned short *)(tag + 1);
route_proto.sp_protocol = *family;
m_tag_delete(m, tag);
} else
route_proto.sp_protocol = 0;
raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
}
/*
* It really doesn't make any sense at all for this code to share much
* with raw_usrreq.c, since its functionality is so restricted. XXX
*/
static void
rts_abort(struct socket *so)
{
raw_usrreqs.pru_abort(so);
}
static void
rts_close(struct socket *so)
{
raw_usrreqs.pru_close(so);
}
/* pru_accept is EOPNOTSUPP */
static int
rts_attach(struct socket *so, int proto, struct thread *td)
{
struct rawcb *rp;
int error;
KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
/* XXX */
rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
so->so_pcb = (caddr_t)rp;
so->so_fibnum = td->td_proc->p_fibnum;
error = raw_attach(so, proto);
rp = sotorawcb(so);
if (error) {
so->so_pcb = NULL;
free(rp, M_PCB);
return error;
}
RTSOCK_LOCK();
switch(rp->rcb_proto.sp_protocol) {
case AF_INET:
V_route_cb.ip_count++;
break;
case AF_INET6:
V_route_cb.ip6_count++;
break;
}
V_route_cb.any_count++;
RTSOCK_UNLOCK();
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
return 0;
}
static int
rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
}
static int
rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
}
/* pru_connect2 is EOPNOTSUPP */
/* pru_control is EOPNOTSUPP */
static void
rts_detach(struct socket *so)
{
struct rawcb *rp = sotorawcb(so);
KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
RTSOCK_LOCK();
switch(rp->rcb_proto.sp_protocol) {
case AF_INET:
V_route_cb.ip_count--;
break;
case AF_INET6:
V_route_cb.ip6_count--;
break;
}
V_route_cb.any_count--;
RTSOCK_UNLOCK();
raw_usrreqs.pru_detach(so);
}
static int
rts_disconnect(struct socket *so)
{
return (raw_usrreqs.pru_disconnect(so));
}
/* pru_listen is EOPNOTSUPP */
static int
rts_peeraddr(struct socket *so, struct sockaddr **nam)
{
return (raw_usrreqs.pru_peeraddr(so, nam));
}
/* pru_rcvd is EOPNOTSUPP */
/* pru_rcvoob is EOPNOTSUPP */
static int
rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct thread *td)
{
return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
}
/* pru_sense is null */
static int
rts_shutdown(struct socket *so)
{
return (raw_usrreqs.pru_shutdown(so));
}
static int
rts_sockaddr(struct socket *so, struct sockaddr **nam)
{
return (raw_usrreqs.pru_sockaddr(so, nam));
}
static struct pr_usrreqs route_usrreqs = {
.pru_abort = rts_abort,
.pru_attach = rts_attach,
.pru_bind = rts_bind,
.pru_connect = rts_connect,
.pru_detach = rts_detach,
.pru_disconnect = rts_disconnect,
.pru_peeraddr = rts_peeraddr,
.pru_send = rts_send,
.pru_shutdown = rts_shutdown,
.pru_sockaddr = rts_sockaddr,
.pru_close = rts_close,
};
#ifndef _SOCKADDR_UNION_DEFINED
#define _SOCKADDR_UNION_DEFINED
/*
* The union of all possible address formats we handle.
*/
union sockaddr_union {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
};
#endif /* _SOCKADDR_UNION_DEFINED */
static int
rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
{
#if defined(INET) || defined(INET6)
struct epoch_tracker et;
#endif
/* First, see if the returned address is part of the jail. */
if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
return (0);
}
switch (info->rti_info[RTAX_DST]->sa_family) {
#ifdef INET
case AF_INET:
{
struct in_addr ia;
struct ifaddr *ifa;
int found;
found = 0;
/*
* Try to find an address on the given outgoing interface
* that belongs to the jail.
*/
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa;
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
ia = ((struct sockaddr_in *)sa)->sin_addr;
if (prison_check_ip4(cred, &ia) == 0) {
found = 1;
break;
}
}
NET_EPOCH_EXIT(et);
if (!found) {
/*
* As a last resort return the 'default' jail address.
*/
ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
sin_addr;
if (prison_get_ip4(cred, &ia) != 0)
return (ESRCH);
}
bzero(&saun->sin, sizeof(struct sockaddr_in));
saun->sin.sin_len = sizeof(struct sockaddr_in);
saun->sin.sin_family = AF_INET;
saun->sin.sin_addr.s_addr = ia.s_addr;
info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
break;
}
#endif
#ifdef INET6
case AF_INET6:
{
struct in6_addr ia6;
struct ifaddr *ifa;
int found;
found = 0;
/*
* Try to find an address on the given outgoing interface
* that belongs to the jail.
*/
NET_EPOCH_ENTER(et);
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa;
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET6)
continue;
bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
&ia6, sizeof(struct in6_addr));
if (prison_check_ip6(cred, &ia6) == 0) {
found = 1;
break;
}
}
NET_EPOCH_EXIT(et);
if (!found) {
/*
* As a last resort return the 'default' jail address.
*/
ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
sin6_addr;
if (prison_get_ip6(cred, &ia6) != 0)
return (ESRCH);
}
bzero(&saun->sin6, sizeof(struct sockaddr_in6));
saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
saun->sin6.sin6_family = AF_INET6;
bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
if (sa6_recoverscope(&saun->sin6) != 0)
return (ESRCH);
info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
break;
}
#endif
default:
return (ESRCH);
}
return (0);
}
/*
* Fills in @info based on userland-provided @rtm message.
*
* Returns 0 on success.
*/
static int
fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info)
{
int error;
sa_family_t saf;
rtm->rtm_pid = curproc->p_pid;
info->rti_addrs = rtm->rtm_addrs;
info->rti_mflags = rtm->rtm_inits;
info->rti_rmx = &rtm->rtm_rmx;
/*
* rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
* link-local address because rtrequest requires addresses with
* embedded scope id.
*/
if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
return (EINVAL);
if (rtm->rtm_flags & RTF_RNH_LOCKED)
return (EINVAL);
info->rti_flags = rtm->rtm_flags;
if (info->rti_info[RTAX_DST] == NULL ||
info->rti_info[RTAX_DST]->sa_family >= AF_MAX ||
(info->rti_info[RTAX_GATEWAY] != NULL &&
info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
return (EINVAL);
saf = info->rti_info[RTAX_DST]->sa_family;
/*
* Verify that the caller has the appropriate privilege; RTM_GET
* is the only operation the non-superuser is allowed.
*/
if (rtm->rtm_type != RTM_GET) {
error = priv_check(curthread, PRIV_NET_ROUTE);
if (error != 0)
return (error);
}
/*
* The given gateway address may be an interface address.
* For example, issuing a "route change" command on a route
* entry that was created from a tunnel, and the gateway
* address given is the local end point. In this case the
* RTF_GATEWAY flag must be cleared or the destination will
* not be reachable even though there is no error message.
*/
if (info->rti_info[RTAX_GATEWAY] != NULL &&
info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
struct rt_addrinfo ginfo;
struct sockaddr *gdst;
struct sockaddr_storage ss;
bzero(&ginfo, sizeof(ginfo));
bzero(&ss, sizeof(ss));
ss.ss_len = sizeof(ss);
ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss;
gdst = info->rti_info[RTAX_GATEWAY];
/*
* A host route through the loopback interface is
* installed for each interface adddress. In pre 8.0
* releases the interface address of a PPP link type
* is not reachable locally. This behavior is fixed as
* part of the new L2/L3 redesign and rewrite work. The
* signature of this interface address route is the
* AF_LINK sa_family type of the gateway, and the
* rt_ifp has the IFF_LOOPBACK flag set.
*/
if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) {
if (ss.ss_family == AF_LINK &&
ginfo.rti_ifp->if_flags & IFF_LOOPBACK) {
info->rti_flags &= ~RTF_GATEWAY;
info->rti_flags |= RTF_GWFLAG_COMPAT;
}
rib_free_info(&ginfo);
}
}
return (0);
}
static struct nhop_object *
select_nhop(struct nhop_object *nh, const struct sockaddr *gw)
{
if (!NH_IS_NHGRP(nh))
return (nh);
#ifdef ROUTE_MPATH
struct weightened_nhop *wn;
uint32_t num_nhops;
wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
if (gw == NULL)
return (wn[0].nh);
for (int i = 0; i < num_nhops; i++) {
if (match_nhop_gw(wn[i].nh, gw))
return (wn[i].nh);
}
#endif
return (NULL);
}
/*
* Handles RTM_GET message from routing socket, returning matching rt.
*
* Returns:
* 0 on success, with locked and referenced matching rt in @rt_nrt
* errno of failure
*/
static int
handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
struct rt_msghdr *rtm, struct rib_cmd_info *rc)
{
RIB_RLOCK_TRACKER;
struct rib_head *rnh;
struct nhop_object *nh;
sa_family_t saf;
saf = info->rti_info[RTAX_DST]->sa_family;
rnh = rt_tables_get_rnh(fibnum, saf);
if (rnh == NULL)
return (EAFNOSUPPORT);
RIB_RLOCK(rnh);
if (info->rti_info[RTAX_NETMASK] == NULL) {
/*
* Provide longest prefix match for
* address lookup (no mask).
* 'route -n get addr'
*/
rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr(
info->rti_info[RTAX_DST], &rnh->head);
} else
rc->rc_rt = (struct rtentry *) rnh->rnh_lookup(
info->rti_info[RTAX_DST],
info->rti_info[RTAX_NETMASK], &rnh->head);
if (rc->rc_rt == NULL) {
RIB_RUNLOCK(rnh);
return (ESRCH);
}
nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
if (nh == NULL) {
RIB_RUNLOCK(rnh);
return (ESRCH);
}
/*
* If performing proxied L2 entry insertion, and
* the actual PPP host entry is found, perform
* another search to retrieve the prefix route of
* the local end point of the PPP link.
* TODO: move this logic to userland.
*/
if (rtm->rtm_flags & RTF_ANNOUNCE) {
struct sockaddr laddr;
if (nh->nh_ifp != NULL &&
nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
struct ifaddr *ifa;
ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
RT_ALL_FIBS);
if (ifa != NULL)
rt_maskedcopy(ifa->ifa_addr,
&laddr,
ifa->ifa_netmask);
} else
rt_maskedcopy(nh->nh_ifa->ifa_addr,
&laddr,
nh->nh_ifa->ifa_netmask);
/*
* refactor rt and no lock operation necessary
*/
rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr,
&rnh->head);
if (rc->rc_rt == NULL) {
RIB_RUNLOCK(rnh);
return (ESRCH);
}
nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
if (nh == NULL) {
RIB_RUNLOCK(rnh);
return (ESRCH);
}
}
rc->rc_nh_new = nh;
rc->rc_nh_weight = rc->rc_rt->rt_weight;
RIB_RUNLOCK(rnh);
return (0);
}
static void
init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask)
{
#ifdef INET
if (family == AF_INET) {
struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
bzero(dst4, sizeof(struct sockaddr_in));
bzero(mask4, sizeof(struct sockaddr_in));
dst4->sin_family = AF_INET;
dst4->sin_len = sizeof(struct sockaddr_in);
mask4->sin_family = AF_INET;
mask4->sin_len = sizeof(struct sockaddr_in);
}
#endif
#ifdef INET6
if (family == AF_INET6) {
struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
bzero(dst6, sizeof(struct sockaddr_in6));
bzero(mask6, sizeof(struct sockaddr_in6));
dst6->sin6_family = AF_INET6;
dst6->sin6_len = sizeof(struct sockaddr_in6);
mask6->sin6_family = AF_INET6;
mask6->sin6_len = sizeof(struct sockaddr_in6);
}
#endif
}
static void
export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst,
struct sockaddr *mask)
{
#ifdef INET
if (dst->sa_family == AF_INET) {
struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
uint32_t scopeid = 0;
rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr,
&scopeid);
return;
}
#endif
#ifdef INET6
if (dst->sa_family == AF_INET6) {
struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
uint32_t scopeid = 0;
rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr,
&mask6->sin6_addr, &scopeid);
dst6->sin6_scope_id = scopeid;
return;
}
#endif
}
/*
* Update sockaddrs, flags, etc in @prtm based on @rc data.
* rtm can be reallocated.
*
* Returns 0 on success, along with pointer to (potentially reallocated)
* rtm.
*
*/
static int
update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm,
int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh)
{
struct walkarg w;
union sockaddr_union saun;
struct rt_msghdr *rtm, *orig_rtm = NULL;
struct ifnet *ifp;
int error, len;
rtm = *prtm;
union sockaddr_union sa_dst, sa_mask;
int family = info->rti_info[RTAX_DST]->sa_family;
init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa);
export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa);
info->rti_info[RTAX_DST] = &sa_dst.sa;
info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa;
info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
info->rti_info[RTAX_GENMASK] = 0;
ifp = nh->nh_ifp;
if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
if (ifp) {
info->rti_info[RTAX_IFP] =
ifp->if_addr->ifa_addr;
error = rtm_get_jailed(info, ifp, nh,
&saun, curthread->td_ucred);
if (error != 0)
return (error);
if (ifp->if_flags & IFF_POINTOPOINT)
info->rti_info[RTAX_BRD] =
nh->nh_ifa->ifa_dstaddr;
rtm->rtm_index = ifp->if_index;
} else {
info->rti_info[RTAX_IFP] = NULL;
info->rti_info[RTAX_IFA] = NULL;
}
} else if (ifp != NULL)
rtm->rtm_index = ifp->if_index;
/* Check if we need to realloc storage */
rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
if (len > alloc_len) {
struct rt_msghdr *tmp_rtm;
tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
if (tmp_rtm == NULL)
return (ENOBUFS);
bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
orig_rtm = rtm;
rtm = tmp_rtm;
alloc_len = len;
/*
* Delay freeing original rtm as info contains
* data referencing it.
*/
}
w.w_tmem = (caddr_t)rtm;
w.w_tmemsize = alloc_len;
rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh);
if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
rtm->rtm_flags = RTF_GATEWAY |
(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx);
rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight;
rtm->rtm_addrs = info->rti_addrs;
if (orig_rtm != NULL)
free(orig_rtm, M_TEMP);
*prtm = rtm;
return (0);
}
#ifdef ROUTE_MPATH
static void
save_del_notification(struct rib_cmd_info *rc, void *_cbdata)
{
struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
if (rc->rc_cmd == RTM_DELETE)
*rc_new = *rc;
}
static void
save_add_notification(struct rib_cmd_info *rc, void *_cbdata)
{
struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
if (rc->rc_cmd == RTM_ADD)
*rc_new = *rc;
}
#endif
/*ARGSUSED*/
static int
route_output(struct mbuf *m, struct socket *so, ...)
{
struct rt_msghdr *rtm = NULL;
struct rtentry *rt = NULL;
struct rt_addrinfo info;
struct epoch_tracker et;
#ifdef INET6
struct sockaddr_storage ss;
struct sockaddr_in6 *sin6;
int i, rti_need_deembed = 0;
#endif
int alloc_len = 0, len, error = 0, fibnum;
sa_family_t saf = AF_UNSPEC;
struct walkarg w;
struct rib_cmd_info rc;
struct nhop_object *nh;
fibnum = so->so_fibnum;
#define senderr(e) { error = e; goto flush;}
if (m == NULL || ((m->m_len < sizeof(long)) &&
(m = m_pullup(m, sizeof(long))) == NULL))
return (ENOBUFS);
if ((m->m_flags & M_PKTHDR) == 0)
panic("route_output");
NET_EPOCH_ENTER(et);
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_msghdr *)->rtm_msglen)
senderr(EINVAL);
/*
* Most of current messages are in range 200-240 bytes,
* minimize possible re-allocation on reply using larger size
* buffer aligned on 1k boundaty.
*/
alloc_len = roundup2(len, 1024);
if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL)
senderr(ENOBUFS);
m_copydata(m, 0, len, (caddr_t)rtm);
bzero(&info, sizeof(info));
bzero(&w, sizeof(w));
nh = NULL;
if (rtm->rtm_version != RTM_VERSION) {
/* Do not touch message since format is unknown */
free(rtm, M_TEMP);
rtm = NULL;
senderr(EPROTONOSUPPORT);
}
/*
* Starting from here, it is possible
* to alter original message and insert
* caller PID and error value.
*/
if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) {
senderr(error);
}
saf = info.rti_info[RTAX_DST]->sa_family;
/* support for new ARP code */
if (rtm->rtm_flags & RTF_LLDATA) {
error = lla_rt_output(rtm, &info);
#ifdef INET6
if (error == 0)
rti_need_deembed = 1;
#endif
goto flush;
}
switch (rtm->rtm_type) {
case RTM_ADD:
case RTM_CHANGE:
if (rtm->rtm_type == RTM_ADD) {
if (info.rti_info[RTAX_GATEWAY] == NULL)
senderr(EINVAL);
}
error = rib_action(fibnum, rtm->rtm_type, &info, &rc);
if (error == 0) {
#ifdef INET6
rti_need_deembed = 1;
#endif
#ifdef ROUTE_MPATH
if (NH_IS_NHGRP(rc.rc_nh_new) ||
(rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) {
struct rib_cmd_info rc_simple = {};
rib_decompose_notification(&rc,
save_add_notification, (void *)&rc_simple);
rc = rc_simple;
}
#endif
nh = rc.rc_nh_new;
rtm->rtm_index = nh->nh_ifp->if_index;
rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh);
}
break;
case RTM_DELETE:
error = rib_action(fibnum, RTM_DELETE, &info, &rc);
if (error == 0) {
#ifdef ROUTE_MPATH
if (NH_IS_NHGRP(rc.rc_nh_old) ||
(rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) {
struct rib_cmd_info rc_simple = {};
rib_decompose_notification(&rc,
save_del_notification, (void *)&rc_simple);
rc = rc_simple;
}
#endif
nh = rc.rc_nh_old;
goto report;
}
#ifdef INET6
/* rt_msg2() will not be used when RTM_DELETE fails. */
rti_need_deembed = 1;
#endif
break;
case RTM_GET:
error = handle_rtm_get(&info, fibnum, rtm, &rc);
if (error != 0)
senderr(error);
nh = rc.rc_nh_new;
report:
if (!can_export_rte(curthread->td_ucred,
info.rti_info[RTAX_NETMASK] == NULL,
info.rti_info[RTAX_DST])) {
senderr(ESRCH);
}
error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh);
/*
* Note that some sockaddr pointers may have changed to
* point to memory outsize @rtm. Some may be pointing
* to the on-stack variables.
* Given that, any pointer in @info CANNOT BE USED.
*/
/*
* scopeid deembedding has been performed while
* writing updated rtm in rtsock_msg_buffer().
* With that in mind, skip deembedding procedure below.
*/
#ifdef INET6
rti_need_deembed = 0;
#endif
if (error != 0)
senderr(error);
break;
default:
senderr(EOPNOTSUPP);
}
flush:
NET_EPOCH_EXIT(et);
rt = NULL;
#ifdef INET6
if (rtm != NULL) {
if (rti_need_deembed) {
/* sin6_scope_id is recovered before sending rtm. */
sin6 = (struct sockaddr_in6 *)&ss;
for (i = 0; i < RTAX_MAX; i++) {
if (info.rti_info[i] == NULL)
continue;
if (info.rti_info[i]->sa_family != AF_INET6)
continue;
bcopy(info.rti_info[i], sin6, sizeof(*sin6));
if (sa6_recoverscope(sin6) == 0)
bcopy(sin6, info.rti_info[i],
sizeof(*sin6));
}
}
}
#endif
send_rtm_reply(so, rtm, m, saf, fibnum, error);
return (error);
}
/*
* Sends the prepared reply message in @rtm to all rtsock clients.
* Frees @m and @rtm.
*
*/
static void
send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
sa_family_t saf, u_int fibnum, int rtm_errno)
{
struct rawcb *rp = NULL;
/*
* Check to see if we don't want our own messages.
*/
if ((so->so_options & SO_USELOOPBACK) == 0) {
if (V_route_cb.any_count <= 1) {
if (rtm != NULL)
free(rtm, M_TEMP);
m_freem(m);
return;
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm != NULL) {
if (rtm_errno!= 0)
rtm->rtm_errno = rtm_errno;
else
rtm->rtm_flags |= RTF_DONE;
m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen)
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
free(rtm, M_TEMP);
}
if (m != NULL) {
M_SETFIB(m, fibnum);
m->m_flags |= RTS_FILTER_FIB;
if (rp) {
/*
* XXX insure we don't get a copy by
* invalidating our protocol
*/
unsigned short family = rp->rcb_proto.sp_family;
rp->rcb_proto.sp_family = 0;
rt_dispatch(m, saf);
rp->rcb_proto.sp_family = family;
} else
rt_dispatch(m, saf);
}
}
static void
rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh,
struct rt_metrics *out)
{
bzero(out, sizeof(*out));
out->rmx_mtu = nh->nh_mtu;
out->rmx_weight = rt->rt_weight;
out->rmx_nhidx = nhop_get_idx(nh);
/* Kernel -> userland timebase conversion. */
out->rmx_expire = rt->rt_expire ?
rt->rt_expire - time_uptime + time_second : 0;
}
/*
* Extract the addresses of the passed sockaddrs.
* Do a little sanity checking so as to avoid bad memory references.
* This data is derived straight from userland.
*/
static int
rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
{
struct sockaddr *sa;
int i;
for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0)
continue;
sa = (struct sockaddr *)cp;
/*
* It won't fit.
*/
if (cp + sa->sa_len > cplim)
return (EINVAL);
/*
* there are no more.. quit now
* If there are more bits, they are in error.
* I've seen this. route(1) can evidently generate these.
* This causes kernel to core dump.
* for compatibility, If we see this, point to a safe address.
*/
if (sa->sa_len == 0) {
rtinfo->rti_info[i] = &sa_zero;
return (0); /* should be EINVAL but for compat */
}
/* accept it */
#ifdef INET6
if (sa->sa_family == AF_INET6)
sa6_embedscope((struct sockaddr_in6 *)sa,
V_ip6_use_defzone);
#endif
rtinfo->rti_info[i] = sa;
cp += SA_SIZE(sa);
}
return (0);
}
/*
* Fill in @dmask with valid netmask leaving original @smask
* intact. Mostly used with radix netmasks.
*/
struct sockaddr *
rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
struct sockaddr_storage *dmask)
{
if (dst == NULL || smask == NULL)
return (NULL);
memset(dmask, 0, dst->sa_len);
memcpy(dmask, smask, smask->sa_len);
dmask->ss_len = dst->sa_len;
dmask->ss_family = dst->sa_family;
return ((struct sockaddr *)dmask);
}
/*
* Writes information related to @rtinfo object to newly-allocated mbuf.
* Assumes MCLBYTES is enough to construct any message.
* Used for OS notifications of vaious events (if/ifa announces,etc)
*
* Returns allocated mbuf or NULL on failure.
*/
static struct mbuf *
rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
{
struct sockaddr_storage ss;
struct rt_msghdr *rtm;
struct mbuf *m;
int i;
struct sockaddr *sa;
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
int len, dlen;
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
case RTM_DELMADDR:
case RTM_NEWMADDR:
len = sizeof(struct ifma_msghdr);
break;
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
case RTM_IFANNOUNCE:
case RTM_IEEE80211:
len = sizeof(struct if_announcemsghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
/* XXXGL: can we use MJUMPAGESIZE cluster here? */
KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
if (len > MHLEN)
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
else
m = m_gethdr(M_NOWAIT, MT_DATA);
if (m == NULL)
return (m);
m->m_pkthdr.len = m->m_len = len;
rtm = mtod(m, struct rt_msghdr *);
bzero((caddr_t)rtm, len);
for (i = 0; i < RTAX_MAX; i++) {
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = SA_SIZE(sa);
KASSERT(dlen <= sizeof(ss),
("%s: sockaddr size overflow", __func__));
bzero(&ss, sizeof(ss));
bcopy(sa, &ss, sa->sa_len);
sa = (struct sockaddr *)&ss;
#ifdef INET6
if (sa->sa_family == AF_INET6) {
sin6 = (struct sockaddr_in6 *)sa;
(void)sa6_recoverscope(sin6);
}
#endif
m_copyback(m, len, dlen, (caddr_t)sa);
len += dlen;
}
if (m->m_pkthdr.len != len) {
m_freem(m);
return (NULL);
}
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
return (m);
}
/*
* Writes information related to @rtinfo object to preallocated buffer.
* Stores needed size in @plen. If @w is NULL, calculates size without
* writing.
* Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
*
* Returns 0 on success.
*
*/
static int
rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
{
struct sockaddr_storage ss;
int len, buflen = 0, dlen, i;
caddr_t cp = NULL;
struct rt_msghdr *rtm = NULL;
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
#ifdef COMPAT_FREEBSD32
bool compat32 = false;
#endif
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
if (w != NULL && w->w_op == NET_RT_IFLISTL) {
#ifdef COMPAT_FREEBSD32
if (w->w_req->flags & SCTL_MASK32) {
len = sizeof(struct ifa_msghdrl32);
compat32 = true;
} else
#endif
len = sizeof(struct ifa_msghdrl);
} else
len = sizeof(struct ifa_msghdr);
break;
case RTM_IFINFO:
#ifdef COMPAT_FREEBSD32
if (w != NULL && w->w_req->flags & SCTL_MASK32) {
if (w->w_op == NET_RT_IFLISTL)
len = sizeof(struct if_msghdrl32);
else
len = sizeof(struct if_msghdr32);
compat32 = true;
break;
}
#endif
if (w != NULL && w->w_op == NET_RT_IFLISTL)
len = sizeof(struct if_msghdrl);
else
len = sizeof(struct if_msghdr);
break;
case RTM_NEWMADDR:
len = sizeof(struct ifma_msghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
if (w != NULL) {
rtm = (struct rt_msghdr *)w->w_tmem;
buflen = w->w_tmemsize - len;
cp = (caddr_t)w->w_tmem + len;
}
rtinfo->rti_addrs = 0;
for (i = 0; i < RTAX_MAX; i++) {
struct sockaddr *sa;
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
#ifdef COMPAT_FREEBSD32
if (compat32)
dlen = SA_SIZE32(sa);
else
#endif
dlen = SA_SIZE(sa);
if (cp != NULL && buflen >= dlen) {
KASSERT(dlen <= sizeof(ss),
("%s: sockaddr size overflow", __func__));
bzero(&ss, sizeof(ss));
bcopy(sa, &ss, sa->sa_len);
sa = (struct sockaddr *)&ss;
#ifdef INET6
if (sa->sa_family == AF_INET6) {
sin6 = (struct sockaddr_in6 *)sa;
(void)sa6_recoverscope(sin6);
}
#endif
bcopy((caddr_t)sa, cp, (unsigned)dlen);
cp += dlen;
buflen -= dlen;
} else if (cp != NULL) {
/*
* Buffer too small. Count needed size
* and return with error.
*/
cp = NULL;
}
len += dlen;
}
if (cp != NULL) {
dlen = ALIGN(len) - len;
if (buflen < dlen)
cp = NULL;
else {
bzero(cp, dlen);
cp += dlen;
buflen -= dlen;
}
}
len = ALIGN(len);
if (cp != NULL) {
/* fill header iff buffer is large enough */
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = len;
}
*plen = len;
if (w != NULL && cp == NULL)
return (ENOBUFS);
return (0);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that a redirect has occurred, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
int fibnum)
{
struct rt_msghdr *rtm;
struct mbuf *m;
struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
if (V_route_cb.any_count == 0)
return;
m = rtsock_msg_mbuf(type, rtinfo);
if (m == NULL)
return;
if (fibnum != RT_ALL_FIBS) {
KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
"of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
M_SETFIB(m, fibnum);
m->m_flags |= RTS_FILTER_FIB;
}
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_flags = RTF_DONE | flags;
rtm->rtm_errno = error;
rtm->rtm_addrs = rtinfo->rti_addrs;
rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
}
void
rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
{
rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
rt_ifmsg(struct ifnet *ifp)
{
struct if_msghdr *ifm;
struct mbuf *m;
struct rt_addrinfo info;
if (V_route_cb.any_count == 0)
return;
bzero((caddr_t)&info, sizeof(info));
m = rtsock_msg_mbuf(RTM_IFINFO, &info);
if (m == NULL)
return;
ifm = mtod(m, struct if_msghdr *);
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
if_data_copy(ifp, &ifm->ifm_data);
ifm->ifm_addrs = 0;
rt_dispatch(m, AF_UNSPEC);
}
/*
* Announce interface address arrival/withdraw.
* Please do not call directly, use rt_addrmsg().
* Assume input data to be valid.
* Returns 0 on success.
*/
int
rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
{
struct rt_addrinfo info;
struct sockaddr *sa;
int ncmd;
struct mbuf *m;
struct ifa_msghdr *ifam;
struct ifnet *ifp = ifa->ifa_ifp;
struct sockaddr_storage ss;
if (V_route_cb.any_count == 0)
return (0);
ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
return (ENOBUFS);
ifam = mtod(m, struct ifa_msghdr *);
ifam->ifam_index = ifp->if_index;
ifam->ifam_metric = ifa->ifa_ifp->if_metric;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_addrs = info.rti_addrs;
if (fibnum != RT_ALL_FIBS) {
M_SETFIB(m, fibnum);
m->m_flags |= RTS_FILTER_FIB;
}
rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
return (0);
}
/*
* Announce route addition/removal to rtsock based on @rt data.
* Callers are advives to use rt_routemsg() instead of using this
* function directly.
* Assume @rt data is consistent.
*
* Returns 0 on success.
*/
int
rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh,
int fibnum)
{
union sockaddr_union dst, mask;
struct rt_addrinfo info;
if (V_route_cb.any_count == 0)
return (0);
int family = rt_get_family(rt);
init_sockaddrs_family(family, &dst.sa, &mask.sa);
export_rtaddrs(rt, &dst.sa, &mask.sa);
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_DST] = &dst.sa;
info.rti_info[RTAX_NETMASK] = &mask.sa;
info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh);
info.rti_ifp = nh->nh_ifp;
return (rtsock_routemsg_info(cmd, &info, fibnum));
}
int
rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
{
struct rt_msghdr *rtm;
struct sockaddr *sa;
struct mbuf *m;
if (V_route_cb.any_count == 0)
return (0);
if (info->rti_flags & RTF_HOST)
info->rti_info[RTAX_NETMASK] = NULL;
m = rtsock_msg_mbuf(cmd, info);
if (m == NULL)
return (ENOBUFS);
if (fibnum != RT_ALL_FIBS) {
KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
"of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
M_SETFIB(m, fibnum);
m->m_flags |= RTS_FILTER_FIB;
}
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_addrs = info->rti_addrs;
if (info->rti_ifp != NULL)
rtm->rtm_index = info->rti_ifp->if_index;
/* Add RTF_DONE to indicate command 'completion' required by API */
info->rti_flags |= RTF_DONE;
/* Reported routes has to be up */
if (cmd == RTM_ADD || cmd == RTM_CHANGE)
info->rti_flags |= RTF_UP;
rtm->rtm_flags = info->rti_flags;
sa = info->rti_info[RTAX_DST];
rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
return (0);
}
/*
* This is the analogue to the rt_newaddrmsg which performs the same
* function but for multicast group memberhips. This is easier since
* there is no route state to worry about.
*/
void
rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
{
struct rt_addrinfo info;
struct mbuf *m = NULL;
struct ifnet *ifp = ifma->ifma_ifp;
struct ifma_msghdr *ifmam;
if (V_route_cb.any_count == 0)
return;
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
if (ifp && ifp->if_addr)
info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
else
info.rti_info[RTAX_IFP] = NULL;
/*
* If a link-layer address is present, present it as a ``gateway''
* (similarly to how ARP entries, e.g., are presented).
*/
info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
m = rtsock_msg_mbuf(cmd, &info);
if (m == NULL)
return;
ifmam = mtod(m, struct ifma_msghdr *);
KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
__func__));
ifmam->ifmam_index = ifp->if_index;
ifmam->ifmam_addrs = info.rti_addrs;
rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
}
static struct mbuf *
rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
struct rt_addrinfo *info)
{
struct if_announcemsghdr *ifan;
struct mbuf *m;
if (V_route_cb.any_count == 0)
return NULL;
bzero((caddr_t)info, sizeof(*info));
m = rtsock_msg_mbuf(type, info);
if (m != NULL) {
ifan = mtod(m, struct if_announcemsghdr *);
ifan->ifan_index = ifp->if_index;
strlcpy(ifan->ifan_name, ifp->if_xname,
sizeof(ifan->ifan_name));
ifan->ifan_what = what;
}
return m;
}
/*
* This is called to generate routing socket messages indicating
* IEEE80211 wireless events.
* XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
*/
void
rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
{
struct mbuf *m;
struct rt_addrinfo info;
m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
if (m != NULL) {
/*
* Append the ieee80211 data. Try to stick it in the
* mbuf containing the ifannounce msg; otherwise allocate
* a new mbuf and append.
*
* NB: we assume m is a single mbuf.
*/
if (data_len > M_TRAILINGSPACE(m)) {
struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
if (n == NULL) {
m_freem(m);
return;
}
bcopy(data, mtod(n, void *), data_len);
n->m_len = data_len;
m->m_next = n;
} else if (data_len > 0) {
bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
m->m_len += data_len;
}
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len += data_len;
mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
rt_dispatch(m, AF_UNSPEC);
}
}
/*
* This is called to generate routing socket messages indicating
* network interface arrival and departure.
*/
void
rt_ifannouncemsg(struct ifnet *ifp, int what)
{
struct mbuf *m;
struct rt_addrinfo info;
m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
if (m != NULL)
rt_dispatch(m, AF_UNSPEC);
}
static void
rt_dispatch(struct mbuf *m, sa_family_t saf)
{
struct m_tag *tag;
/*
* Preserve the family from the sockaddr, if any, in an m_tag for
* use when injecting the mbuf into the routing socket buffer from
* the netisr.
*/
if (saf != AF_UNSPEC) {
tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
M_NOWAIT);
if (tag == NULL) {
m_freem(m);
return;
}
*(unsigned short *)(tag + 1) = saf;
m_tag_prepend(m, tag);
}
#ifdef VIMAGE
if (V_loif)
m->m_pkthdr.rcvif = V_loif;
else {
m_freem(m);
return;
}
#endif
netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */
}
/*
* Checks if rte can be exported v.r.t jails/vnets.
*
* Returns 1 if it can, 0 otherwise.
*/
static bool
can_export_rte(struct ucred *td_ucred, bool rt_is_host,
const struct sockaddr *rt_dst)
{
if ((!rt_is_host) ? jailed_without_vnet(td_ucred)
: prison_if(td_ucred, rt_dst) != 0)
return (false);
return (true);
}
/*
* This is used in dumping the kernel table via sysctl().
*/
static int
sysctl_dumpentry(struct rtentry *rt, void *vw)
{
struct walkarg *w = vw;
struct nhop_object *nh;
int error = 0;
NET_EPOCH_ASSERT();
export_rtaddrs(rt, w->dst, w->mask);
if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst))
return (0);
nh = rt_get_raw_nhop(rt);
#ifdef ROUTE_MPATH
if (NH_IS_NHGRP(nh)) {
struct weightened_nhop *wn;
uint32_t num_nhops;
wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
for (int i = 0; i < num_nhops; i++) {
error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w);
if (error != 0)
return (error);
}
} else
#endif
error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w);
return (0);
}
static int
sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight,
struct walkarg *w)
{
struct rt_addrinfo info;
int error = 0, size;
uint32_t rtflags;
rtflags = nhop_get_rtflags(nh);
if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg))
return (0);
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_DST] = w->dst;
info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask;
info.rti_info[RTAX_GENMASK] = 0;
if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
}
if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
return (error);
if (w->w_req && w->w_tmem) {
struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
bzero(&rtm->rtm_index,
sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
/*
* rte flags may consist of RTF_HOST (duplicated in nhop rtflags)
* and RTF_UP (if entry is linked, which is always true here).
* Given that, use nhop rtflags & add RTF_UP.
*/
rtm->rtm_flags = rtflags | RTF_UP;
if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
rtm->rtm_flags = RTF_GATEWAY |
(rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
rt_getmetrics(rt, nh, &rtm->rtm_rmx);
rtm->rtm_rmx.rmx_weight = weight;
rtm->rtm_index = nh->nh_ifp->if_index;
rtm->rtm_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
return (error);
}
return (error);
}
static int
sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
struct rt_addrinfo *info, struct walkarg *w, int len)
{
struct if_msghdrl *ifm;
struct if_data *ifd;
ifm = (struct if_msghdrl *)w->w_tmem;
#ifdef COMPAT_FREEBSD32
if (w->w_req->flags & SCTL_MASK32) {
struct if_msghdrl32 *ifm32;
ifm32 = (struct if_msghdrl32 *)ifm;
ifm32->ifm_addrs = info->rti_addrs;
ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm32->ifm_index = ifp->if_index;
ifm32->_ifm_spare1 = 0;
ifm32->ifm_len = sizeof(*ifm32);
ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
ifm32->_ifm_spare2 = 0;
ifd = &ifm32->ifm_data;
} else
#endif
{
ifm->ifm_addrs = info->rti_addrs;
ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm->ifm_index = ifp->if_index;
ifm->_ifm_spare1 = 0;
ifm->ifm_len = sizeof(*ifm);
ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
ifm->_ifm_spare2 = 0;
ifd = &ifm->ifm_data;
}
memcpy(ifd, src_ifd, sizeof(*ifd));
return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
}
static int
sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
struct rt_addrinfo *info, struct walkarg *w, int len)
{
struct if_msghdr *ifm;
struct if_data *ifd;
ifm = (struct if_msghdr *)w->w_tmem;
#ifdef COMPAT_FREEBSD32
if (w->w_req->flags & SCTL_MASK32) {
struct if_msghdr32 *ifm32;
ifm32 = (struct if_msghdr32 *)ifm;
ifm32->ifm_addrs = info->rti_addrs;
ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm32->ifm_index = ifp->if_index;
ifm32->_ifm_spare1 = 0;
ifd = &ifm32->ifm_data;
} else
#endif
{
ifm->ifm_addrs = info->rti_addrs;
ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm->ifm_index = ifp->if_index;
ifm->_ifm_spare1 = 0;
ifd = &ifm->ifm_data;
}
memcpy(ifd, src_ifd, sizeof(*ifd));
return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
}
static int
sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
struct walkarg *w, int len)
{
struct ifa_msghdrl *ifam;
struct if_data *ifd;
ifam = (struct ifa_msghdrl *)w->w_tmem;
#ifdef COMPAT_FREEBSD32
if (w->w_req->flags & SCTL_MASK32) {
struct ifa_msghdrl32 *ifam32;
ifam32 = (struct ifa_msghdrl32 *)ifam;
ifam32->ifam_addrs = info->rti_addrs;
ifam32->ifam_flags = ifa->ifa_flags;
ifam32->ifam_index = ifa->ifa_ifp->if_index;
ifam32->_ifam_spare1 = 0;
ifam32->ifam_len = sizeof(*ifam32);
ifam32->ifam_data_off =
offsetof(struct ifa_msghdrl32, ifam_data);
ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
ifd = &ifam32->ifam_data;
} else
#endif
{
ifam->ifam_addrs = info->rti_addrs;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->_ifam_spare1 = 0;
ifam->ifam_len = sizeof(*ifam);
ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
ifam->ifam_metric = ifa->ifa_ifp->if_metric;
ifd = &ifam->ifam_data;
}
bzero(ifd, sizeof(*ifd));
ifd->ifi_datalen = sizeof(struct if_data);
ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
/* Fixup if_data carp(4) vhid. */
if (carp_get_vhid_p != NULL)
ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
}
static int
sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
struct walkarg *w, int len)
{
struct ifa_msghdr *ifam;
ifam = (struct ifa_msghdr *)w->w_tmem;
ifam->ifam_addrs = info->rti_addrs;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->_ifam_spare1 = 0;
ifam->ifam_metric = ifa->ifa_ifp->if_metric;
return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
}
static int
sysctl_iflist(int af, struct walkarg *w)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct if_data ifd;
struct rt_addrinfo info;
int len, error = 0;
struct sockaddr_storage ss;
bzero((caddr_t)&info, sizeof(info));
bzero(&ifd, sizeof(ifd));
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
if_data_copy(ifp, &ifd);
ifa = ifp->if_addr;
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
if (error != 0)
goto done;
info.rti_info[RTAX_IFP] = NULL;
if (w->w_req && w->w_tmem) {
if (w->w_op == NET_RT_IFLISTL)
error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
len);
else
error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
len);
if (error)
goto done;
}
while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
if (af && af != ifa->ifa_addr->sa_family)
continue;
if (prison_if(w->w_req->td->td_ucred,
ifa->ifa_addr) != 0)
continue;
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
ifa->ifa_addr, ifa->ifa_netmask, &ss);
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
if (error != 0)
goto done;
if (w->w_req && w->w_tmem) {
if (w->w_op == NET_RT_IFLISTL)
error = sysctl_iflist_ifaml(ifa, &info,
w, len);
else
error = sysctl_iflist_ifam(ifa, &info,
w, len);
if (error)
goto done;
}
}
info.rti_info[RTAX_IFA] = NULL;
info.rti_info[RTAX_NETMASK] = NULL;
info.rti_info[RTAX_BRD] = NULL;
}
done:
return (error);
}
static int
sysctl_ifmalist(int af, struct walkarg *w)
{
struct rt_addrinfo info;
struct ifaddr *ifa;
struct ifmultiaddr *ifma;
struct ifnet *ifp;
int error, len;
NET_EPOCH_ASSERT();
error = 0;
bzero((caddr_t)&info, sizeof(info));
CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
ifa = ifp->if_addr;
info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (af && af != ifma->ifma_addr->sa_family)
continue;
if (prison_if(w->w_req->td->td_ucred,
ifma->ifma_addr) != 0)
continue;
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
info.rti_info[RTAX_GATEWAY] =
(ifma->ifma_addr->sa_family != AF_LINK) ?
ifma->ifma_lladdr : NULL;
error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
if (error != 0)
break;
if (w->w_req && w->w_tmem) {
struct ifma_msghdr *ifmam;
ifmam = (struct ifma_msghdr *)w->w_tmem;
ifmam->ifmam_index = ifma->ifma_ifp->if_index;
ifmam->ifmam_flags = 0;
ifmam->ifmam_addrs = info.rti_addrs;
ifmam->_ifmam_spare1 = 0;
error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
if (error != 0)
break;
}
}
if (error != 0)
break;
}
return (error);
}
static void
rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w)
{
union sockaddr_union sa_dst, sa_mask;
w->family = family;
w->dst = (struct sockaddr *)&sa_dst;
w->mask = (struct sockaddr *)&sa_mask;
init_sockaddrs_family(family, w->dst, w->mask);
rib_walk(fibnum, family, false, sysctl_dumpentry, w);
}
static int
sysctl_rtsock(SYSCTL_HANDLER_ARGS)
{
struct epoch_tracker et;
int *name = (int *)arg1;
u_int namelen = arg2;
struct rib_head *rnh = NULL; /* silence compiler. */
int i, lim, error = EINVAL;
int fib = 0;
u_char af;
struct walkarg w;
name ++;
namelen--;
if (req->newptr)
return (EPERM);
if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) {
if (namelen == 3)
fib = req->td->td_proc->p_fibnum;
else if (namelen == 4)
fib = (name[3] == RT_ALL_FIBS) ?
req->td->td_proc->p_fibnum : name[3];
else
return ((namelen < 3) ? EISDIR : ENOTDIR);
if (fib < 0 || fib >= rt_numfibs)
return (EINVAL);
} else if (namelen != 3)
return ((namelen < 3) ? EISDIR : ENOTDIR);
af = name[0];
if (af > AF_MAX)
return (EINVAL);
bzero(&w, sizeof(w));
w.w_op = name[1];
w.w_arg = name[2];
w.w_req = req;
error = sysctl_wire_old_buffer(req, 0);
if (error)
return (error);
/*
* Allocate reply buffer in advance.
* All rtsock messages has maximum length of u_short.
*/
w.w_tmemsize = 65536;
w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
NET_EPOCH_ENTER(et);
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_FLAGS:
if (af == 0) { /* dump all tables */
i = 1;
lim = AF_MAX;
} else /* dump only one table */
i = lim = af;
/*
* take care of llinfo entries, the caller must
* specify an AF
*/
if (w.w_op == NET_RT_FLAGS &&
(w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
if (af != 0)
error = lltable_sysctl_dumparp(af, w.w_req);
else
error = EINVAL;
break;
}
/*
* take care of routing entries
*/
for (error = 0; error == 0 && i <= lim; i++) {
rnh = rt_tables_get_rnh(fib, i);
if (rnh != NULL) {
rtable_sysctl_dump(fib, i, &w);
} else if (af != 0)
error = EAFNOSUPPORT;
}
break;
case NET_RT_NHOP:
case NET_RT_NHGRP:
/* Allow dumping one specific af/fib at a time */
if (namelen < 4) {
error = EINVAL;
break;
}
fib = name[3];
if (fib < 0 || fib > rt_numfibs) {
error = EINVAL;
break;
}
rnh = rt_tables_get_rnh(fib, af);
if (rnh == NULL) {
error = EAFNOSUPPORT;
break;
}
if (w.w_op == NET_RT_NHOP)
error = nhops_dump_sysctl(rnh, w.w_req);
else
#ifdef ROUTE_MPATH
error = nhgrp_dump_sysctl(rnh, w.w_req);
#else
error = ENOTSUP;
#endif
break;
case NET_RT_IFLIST:
case NET_RT_IFLISTL:
error = sysctl_iflist(af, &w);
break;
case NET_RT_IFMALIST:
error = sysctl_ifmalist(af, &w);
break;
}
NET_EPOCH_EXIT(et);
free(w.w_tmem, M_TEMP);
return (error);
}
static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
sysctl_rtsock, "Return route tables and interface/address lists");
/*
* Definitions of protocols supported in the ROUTE domain.
*/
static struct domain routedomain; /* or at least forward */
static struct protosw routesw[] = {
{
.pr_type = SOCK_RAW,
.pr_domain = &routedomain,
.pr_flags = PR_ATOMIC|PR_ADDR,
.pr_output = route_output,
.pr_ctlinput = raw_ctlinput,
.pr_init = raw_init,
.pr_usrreqs = &route_usrreqs
}
};
static struct domain routedomain = {
.dom_family = PF_ROUTE,
.dom_name = "route",
.dom_protosw = routesw,
.dom_protoswNPROTOSW = &routesw[nitems(routesw)]
};
VNET_DOMAIN_SET(route);