freebsd-nq/lib/Analysis/ProfileInfoLoaderPass.cpp
2009-10-14 17:57:32 +00:00

296 lines
10 KiB
C++

//===- ProfileInfoLoaderPass.cpp - LLVM Pass to load profile info ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a concrete implementation of profiling information that
// loads the information from a profile dump file.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "profile-loader"
#include "llvm/BasicBlock.h"
#include "llvm/InstrTypes.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Analysis/ProfileInfoLoader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Format.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallSet.h"
#include <set>
using namespace llvm;
STATISTIC(NumEdgesRead, "The # of edges read.");
static cl::opt<std::string>
ProfileInfoFilename("profile-info-file", cl::init("llvmprof.out"),
cl::value_desc("filename"),
cl::desc("Profile file loaded by -profile-loader"));
namespace {
class VISIBILITY_HIDDEN LoaderPass : public ModulePass, public ProfileInfo {
std::string Filename;
std::set<Edge> SpanningTree;
std::set<const BasicBlock*> BBisUnvisited;
unsigned ReadCount;
public:
static char ID; // Class identification, replacement for typeinfo
explicit LoaderPass(const std::string &filename = "")
: ModulePass(&ID), Filename(filename) {
if (filename.empty()) Filename = ProfileInfoFilename;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
virtual const char *getPassName() const {
return "Profiling information loader";
}
// recurseBasicBlock() - Calculates the edge weights for as much basic
// blocks as possbile.
virtual void recurseBasicBlock(const BasicBlock *BB);
virtual void readEdgeOrRemember(Edge, Edge&, unsigned &, unsigned &);
virtual void readEdge(ProfileInfo::Edge, std::vector<unsigned>&);
/// run - Load the profile information from the specified file.
virtual bool runOnModule(Module &M);
};
} // End of anonymous namespace
char LoaderPass::ID = 0;
static RegisterPass<LoaderPass>
X("profile-loader", "Load profile information from llvmprof.out", false, true);
static RegisterAnalysisGroup<ProfileInfo> Y(X);
ModulePass *llvm::createProfileLoaderPass() { return new LoaderPass(); }
/// createProfileLoaderPass - This function returns a Pass that loads the
/// profiling information for the module from the specified filename, making it
/// available to the optimizers.
Pass *llvm::createProfileLoaderPass(const std::string &Filename) {
return new LoaderPass(Filename);
}
void LoaderPass::readEdgeOrRemember(Edge edge, Edge &tocalc,
unsigned &uncalc, unsigned &count) {
double w;
if ((w = getEdgeWeight(edge)) == MissingValue) {
tocalc = edge;
uncalc++;
} else {
count+=w;
}
}
// recurseBasicBlock - Visits all neighbours of a block and then tries to
// calculate the missing edge values.
void LoaderPass::recurseBasicBlock(const BasicBlock *BB) {
// break recursion if already visited
if (BBisUnvisited.find(BB) == BBisUnvisited.end()) return;
BBisUnvisited.erase(BB);
if (!BB) return;
for (succ_const_iterator bbi = succ_begin(BB), bbe = succ_end(BB);
bbi != bbe; ++bbi) {
recurseBasicBlock(*bbi);
}
for (pred_const_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
bbi != bbe; ++bbi) {
recurseBasicBlock(*bbi);
}
Edge edgetocalc;
unsigned uncalculated = 0;
// collect weights of all incoming and outgoing edges, rememer edges that
// have no value
unsigned incount = 0;
SmallSet<const BasicBlock*,8> pred_visited;
pred_const_iterator bbi = pred_begin(BB), bbe = pred_end(BB);
if (bbi==bbe) {
readEdgeOrRemember(getEdge(0, BB),edgetocalc,uncalculated,incount);
}
for (;bbi != bbe; ++bbi) {
if (pred_visited.insert(*bbi)) {
readEdgeOrRemember(getEdge(*bbi, BB),edgetocalc,uncalculated,incount);
}
}
unsigned outcount = 0;
SmallSet<const BasicBlock*,8> succ_visited;
succ_const_iterator sbbi = succ_begin(BB), sbbe = succ_end(BB);
if (sbbi==sbbe) {
readEdgeOrRemember(getEdge(BB, 0),edgetocalc,uncalculated,outcount);
}
for (;sbbi != sbbe; ++sbbi) {
if (succ_visited.insert(*sbbi)) {
readEdgeOrRemember(getEdge(BB, *sbbi),edgetocalc,uncalculated,outcount);
}
}
// if exactly one edge weight was missing, calculate it and remove it from
// spanning tree
if (uncalculated == 1) {
if (incount < outcount) {
EdgeInformation[BB->getParent()][edgetocalc] = outcount-incount;
} else {
EdgeInformation[BB->getParent()][edgetocalc] = incount-outcount;
}
DEBUG(errs() << "--Calc Edge Counter for " << edgetocalc << ": "
<< format("%g", getEdgeWeight(edgetocalc)) << "\n");
SpanningTree.erase(edgetocalc);
}
}
void LoaderPass::readEdge(ProfileInfo::Edge e,
std::vector<unsigned> &ECs) {
if (ReadCount < ECs.size()) {
double weight = ECs[ReadCount++];
if (weight != ProfileInfoLoader::Uncounted) {
// Here the data realm changes from the unsigned of the file to the
// double of the ProfileInfo. This conversion is save because we know
// that everything thats representable in unsinged is also representable
// in double.
EdgeInformation[getFunction(e)][e] += (double)weight;
DEBUG(errs() << "--Read Edge Counter for " << e
<< " (# "<< (ReadCount-1) << "): "
<< (unsigned)getEdgeWeight(e) << "\n");
} else {
// This happens only if reading optimal profiling information, not when
// reading regular profiling information.
SpanningTree.insert(e);
}
}
}
bool LoaderPass::runOnModule(Module &M) {
ProfileInfoLoader PIL("profile-loader", Filename, M);
EdgeInformation.clear();
std::vector<unsigned> Counters = PIL.getRawEdgeCounts();
if (Counters.size() > 0) {
ReadCount = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
if (F->isDeclaration()) continue;
DEBUG(errs()<<"Working on "<<F->getNameStr()<<"\n");
readEdge(getEdge(0,&F->getEntryBlock()), Counters);
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
TerminatorInst *TI = BB->getTerminator();
for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
readEdge(getEdge(BB,TI->getSuccessor(s)), Counters);
}
}
}
if (ReadCount != Counters.size()) {
errs() << "WARNING: profile information is inconsistent with "
<< "the current program!\n";
}
NumEdgesRead = ReadCount;
}
Counters = PIL.getRawOptimalEdgeCounts();
if (Counters.size() > 0) {
ReadCount = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
if (F->isDeclaration()) continue;
DEBUG(errs()<<"Working on "<<F->getNameStr()<<"\n");
readEdge(getEdge(0,&F->getEntryBlock()), Counters);
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
TerminatorInst *TI = BB->getTerminator();
if (TI->getNumSuccessors() == 0) {
readEdge(getEdge(BB,0), Counters);
}
for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
readEdge(getEdge(BB,TI->getSuccessor(s)), Counters);
}
}
while (SpanningTree.size() > 0) {
#if 0
unsigned size = SpanningTree.size();
#endif
BBisUnvisited.clear();
for (std::set<Edge>::iterator ei = SpanningTree.begin(),
ee = SpanningTree.end(); ei != ee; ++ei) {
BBisUnvisited.insert(ei->first);
BBisUnvisited.insert(ei->second);
}
while (BBisUnvisited.size() > 0) {
recurseBasicBlock(*BBisUnvisited.begin());
}
#if 0
if (SpanningTree.size() == size) {
DEBUG(errs()<<"{");
for (std::set<Edge>::iterator ei = SpanningTree.begin(),
ee = SpanningTree.end(); ei != ee; ++ei) {
DEBUG(errs()<<"("<<(ei->first?ei->first->getName():"0")<<","
<<(ei->second?ei->second->getName():"0")<<"),");
}
assert(0 && "No edge calculated!");
}
#endif
}
}
if (ReadCount != Counters.size()) {
errs() << "WARNING: profile information is inconsistent with "
<< "the current program!\n";
}
NumEdgesRead = ReadCount;
}
BlockInformation.clear();
Counters = PIL.getRawBlockCounts();
if (Counters.size() > 0) {
ReadCount = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
if (F->isDeclaration()) continue;
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
if (ReadCount < Counters.size())
// Here the data realm changes from the unsigned of the file to the
// double of the ProfileInfo. This conversion is save because we know
// that everything thats representable in unsinged is also
// representable in double.
BlockInformation[F][BB] = (double)Counters[ReadCount++];
}
if (ReadCount != Counters.size()) {
errs() << "WARNING: profile information is inconsistent with "
<< "the current program!\n";
}
}
FunctionInformation.clear();
Counters = PIL.getRawFunctionCounts();
if (Counters.size() > 0) {
ReadCount = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
if (F->isDeclaration()) continue;
if (ReadCount < Counters.size())
// Here the data realm changes from the unsigned of the file to the
// double of the ProfileInfo. This conversion is save because we know
// that everything thats representable in unsinged is also
// representable in double.
FunctionInformation[F] = (double)Counters[ReadCount++];
}
if (ReadCount != Counters.size()) {
errs() << "WARNING: profile information is inconsistent with "
<< "the current program!\n";
}
}
return false;
}