b439e431bf
passing a pointer to an opaque clockframe structure and requiring the MD code to supply CLKF_FOO() macros to extract needed values out of the opaque structure, just pass the needed values directly. In practice this means passing the pair (usermode, pc) to hardclock() and profclock() and passing the boolean (usermode) to hardclock_cpu() and hardclock_process(). Other details: - Axe clockframe and CLKF_FOO() macros on all architectures. Basically, all the archs were taking a trapframe and converting it into a clockframe one way or another. Now they can just extract the PC and usermode values directly out of the trapframe and pass it to fooclock(). - Renamed hardclock_process() to hardclock_cpu() as the latter is more accurate. - On Alpha, we now run profclock() at hz (profhz == hz) rather than at the slower stathz. - On Alpha, for the TurboLaser machines that don't have an 8254 timecounter, call hardclock() directly. This removes an extra conditional check from every clock interrupt on Alpha on the BSP. There is probably room for even further pruning here by changing Alpha to use the simplified timecounter we use on x86 with the lapic timer since we don't get interrupts from the 8254 on Alpha anyway. - On x86, clkintr() shouldn't ever be called now unless using_lapic_timer is false, so add a KASSERT() to that affect and remove a condition to slightly optimize the non-lapic case. - Change prototypeof arm_handler_execute() so that it's first arg is a trapframe pointer rather than a void pointer for clarity. - Use KCOUNT macro in profclock() to lookup the kernel profiling bucket. Tested on: alpha, amd64, arm, i386, ia64, sparc64 Reviewed by: bde (mostly)
434 lines
11 KiB
C
434 lines
11 KiB
C
/* $FreeBSD$ */
|
|
/* $NetBSD: interrupt.c,v 1.23 1998/02/24 07:38:01 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Keith Bostic, Chris G. Demetriou
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
/*-
|
|
* Additional Copyright (c) 1997 by Matthew Jacob for NASA/Ames Research Center.
|
|
* Redistribute and modify at will, leaving only this additional copyright
|
|
* notice.
|
|
*/
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/clock.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/fpu.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/intr.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/sapicvar.h>
|
|
#include <machine/smp.h>
|
|
|
|
#ifdef EVCNT_COUNTERS
|
|
struct evcnt clock_intr_evcnt; /* event counter for clock intrs. */
|
|
#else
|
|
#include <sys/interrupt.h>
|
|
#include <machine/intrcnt.h>
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#ifdef SMP
|
|
extern int mp_ipi_test;
|
|
#endif
|
|
|
|
volatile int mc_expected, mc_received;
|
|
|
|
static void
|
|
dummy_perf(unsigned long vector, struct trapframe *tf)
|
|
{
|
|
printf("performance interrupt!\n");
|
|
}
|
|
|
|
void (*perf_irq)(unsigned long, struct trapframe *) = dummy_perf;
|
|
|
|
static unsigned int ints[MAXCPU];
|
|
SYSCTL_OPAQUE(_debug, OID_AUTO, ints, CTLFLAG_RW, &ints, sizeof(ints), "IU",
|
|
"");
|
|
|
|
static unsigned int clks[MAXCPU];
|
|
#ifdef SMP
|
|
SYSCTL_OPAQUE(_debug, OID_AUTO, clks, CTLFLAG_RW, &clks, sizeof(clks), "IU",
|
|
"");
|
|
#else
|
|
SYSCTL_INT(_debug, OID_AUTO, clks, CTLFLAG_RW, clks, 0, "");
|
|
#endif
|
|
|
|
#ifdef SMP
|
|
static unsigned int asts[MAXCPU];
|
|
SYSCTL_OPAQUE(_debug, OID_AUTO, asts, CTLFLAG_RW, &asts, sizeof(asts), "IU",
|
|
"");
|
|
|
|
static unsigned int rdvs[MAXCPU];
|
|
SYSCTL_OPAQUE(_debug, OID_AUTO, rdvs, CTLFLAG_RW, &rdvs, sizeof(rdvs), "IU",
|
|
"");
|
|
#endif
|
|
|
|
SYSCTL_NODE(_debug, OID_AUTO, clock, CTLFLAG_RW, 0, "clock statistics");
|
|
|
|
static int adjust_edges = 0;
|
|
SYSCTL_INT(_debug_clock, OID_AUTO, adjust_edges, CTLFLAG_RD,
|
|
&adjust_edges, 0, "Number of times ITC got more than 12.5% behind");
|
|
|
|
static int adjust_excess = 0;
|
|
SYSCTL_INT(_debug_clock, OID_AUTO, adjust_excess, CTLFLAG_RD,
|
|
&adjust_excess, 0, "Total number of ignored ITC interrupts");
|
|
|
|
static int adjust_lost = 0;
|
|
SYSCTL_INT(_debug_clock, OID_AUTO, adjust_lost, CTLFLAG_RD,
|
|
&adjust_lost, 0, "Total number of lost ITC interrupts");
|
|
|
|
static int adjust_ticks = 0;
|
|
SYSCTL_INT(_debug_clock, OID_AUTO, adjust_ticks, CTLFLAG_RD,
|
|
&adjust_ticks, 0, "Total number of ITC interrupts with adjustment");
|
|
|
|
int
|
|
interrupt(u_int64_t vector, struct trapframe *tf)
|
|
{
|
|
struct thread *td;
|
|
volatile struct ia64_interrupt_block *ib = IA64_INTERRUPT_BLOCK;
|
|
uint64_t adj, clk, itc;
|
|
int64_t delta;
|
|
int count;
|
|
|
|
ia64_set_fpsr(IA64_FPSR_DEFAULT);
|
|
|
|
td = curthread;
|
|
atomic_add_int(&td->td_intr_nesting_level, 1);
|
|
|
|
/*
|
|
* Handle ExtINT interrupts by generating an INTA cycle to
|
|
* read the vector.
|
|
*/
|
|
if (vector == 0) {
|
|
vector = ib->ib_inta;
|
|
printf("ExtINT interrupt: vector=%ld\n", vector);
|
|
if (vector == 15)
|
|
goto stray;
|
|
}
|
|
|
|
if (vector == CLOCK_VECTOR) {/* clock interrupt */
|
|
/* CTR0(KTR_INTR, "clock interrupt"); */
|
|
|
|
PCPU_LAZY_INC(cnt.v_intr);
|
|
#ifdef EVCNT_COUNTERS
|
|
clock_intr_evcnt.ev_count++;
|
|
#else
|
|
intrcnt[INTRCNT_CLOCK]++;
|
|
#endif
|
|
clks[PCPU_GET(cpuid)]++;
|
|
|
|
critical_enter();
|
|
|
|
adj = PCPU_GET(clockadj);
|
|
itc = ia64_get_itc();
|
|
ia64_set_itm(itc + ia64_clock_reload - adj);
|
|
clk = PCPU_GET(clock);
|
|
delta = itc - clk;
|
|
count = 0;
|
|
while (delta >= ia64_clock_reload) {
|
|
/* Only the BSP runs the real clock */
|
|
if (PCPU_GET(cpuid) == 0)
|
|
hardclock(TRAPF_USERMODE(tf), TRAPF_PC(tf));
|
|
else
|
|
hardclock_cpu(TRAPF_USERMODE(tf));
|
|
if (profprocs != 0)
|
|
profclock(TRAPF_USERMODE(tf), TRAPF_PC(tf));
|
|
statclock(TRAPF_USERMODE(tf));
|
|
delta -= ia64_clock_reload;
|
|
clk += ia64_clock_reload;
|
|
if (adj != 0)
|
|
adjust_ticks++;
|
|
count++;
|
|
}
|
|
if (count > 0) {
|
|
adjust_lost += count - 1;
|
|
if (delta > (ia64_clock_reload >> 3)) {
|
|
if (adj == 0)
|
|
adjust_edges++;
|
|
adj = ia64_clock_reload >> 4;
|
|
} else
|
|
adj = 0;
|
|
} else {
|
|
adj = 0;
|
|
adjust_excess++;
|
|
}
|
|
PCPU_SET(clock, clk);
|
|
PCPU_SET(clockadj, adj);
|
|
|
|
critical_exit();
|
|
|
|
#ifdef SMP
|
|
} else if (vector == ipi_vector[IPI_AST]) {
|
|
asts[PCPU_GET(cpuid)]++;
|
|
CTR1(KTR_SMP, "IPI_AST, cpuid=%d", PCPU_GET(cpuid));
|
|
} else if (vector == ipi_vector[IPI_HIGH_FP]) {
|
|
struct thread *thr = PCPU_GET(fpcurthread);
|
|
if (thr != NULL) {
|
|
mtx_lock_spin(&thr->td_md.md_highfp_mtx);
|
|
save_high_fp(&thr->td_pcb->pcb_high_fp);
|
|
thr->td_pcb->pcb_fpcpu = NULL;
|
|
PCPU_SET(fpcurthread, NULL);
|
|
mtx_unlock_spin(&thr->td_md.md_highfp_mtx);
|
|
}
|
|
} else if (vector == ipi_vector[IPI_RENDEZVOUS]) {
|
|
rdvs[PCPU_GET(cpuid)]++;
|
|
CTR1(KTR_SMP, "IPI_RENDEZVOUS, cpuid=%d", PCPU_GET(cpuid));
|
|
smp_rendezvous_action();
|
|
} else if (vector == ipi_vector[IPI_STOP]) {
|
|
u_int32_t mybit = PCPU_GET(cpumask);
|
|
|
|
CTR1(KTR_SMP, "IPI_STOP, cpuid=%d", PCPU_GET(cpuid));
|
|
savectx(PCPU_GET(pcb));
|
|
stopped_cpus |= mybit;
|
|
while ((started_cpus & mybit) == 0)
|
|
/* spin */;
|
|
started_cpus &= ~mybit;
|
|
stopped_cpus &= ~mybit;
|
|
if (PCPU_GET(cpuid) == 0 && cpustop_restartfunc != NULL) {
|
|
void (*f)(void) = cpustop_restartfunc;
|
|
cpustop_restartfunc = NULL;
|
|
(*f)();
|
|
}
|
|
} else if (vector == ipi_vector[IPI_TEST]) {
|
|
CTR1(KTR_SMP, "IPI_TEST, cpuid=%d", PCPU_GET(cpuid));
|
|
mp_ipi_test++;
|
|
#endif
|
|
} else {
|
|
ints[PCPU_GET(cpuid)]++;
|
|
ia64_dispatch_intr(tf, vector);
|
|
}
|
|
|
|
stray:
|
|
atomic_subtract_int(&td->td_intr_nesting_level, 1);
|
|
return (TRAPF_USERMODE(tf));
|
|
}
|
|
|
|
/*
|
|
* Hardware irqs have vectors starting at this offset.
|
|
*/
|
|
#define IA64_HARDWARE_IRQ_BASE 0x20
|
|
|
|
struct ia64_intr {
|
|
struct intr_event *event; /* interrupt event */
|
|
volatile long *cntp; /* interrupt counter */
|
|
};
|
|
|
|
static struct mtx ia64_intrs_lock;
|
|
static struct ia64_intr *ia64_intrs[256];
|
|
|
|
extern struct sapic *ia64_sapics[];
|
|
extern int ia64_sapic_count;
|
|
|
|
static void
|
|
ithds_init(void *dummy)
|
|
{
|
|
|
|
mtx_init(&ia64_intrs_lock, "intr table", NULL, MTX_SPIN);
|
|
}
|
|
SYSINIT(ithds_init, SI_SUB_INTR, SI_ORDER_SECOND, ithds_init, NULL);
|
|
|
|
static void
|
|
ia64_send_eoi(uintptr_t vector)
|
|
{
|
|
int irq, i;
|
|
|
|
irq = vector - IA64_HARDWARE_IRQ_BASE;
|
|
for (i = 0; i < ia64_sapic_count; i++) {
|
|
struct sapic *sa = ia64_sapics[i];
|
|
if (irq >= sa->sa_base && irq <= sa->sa_limit)
|
|
sapic_eoi(sa, vector);
|
|
}
|
|
}
|
|
|
|
int
|
|
ia64_setup_intr(const char *name, int irq, driver_intr_t handler, void *arg,
|
|
enum intr_type flags, void **cookiep, volatile long *cntp)
|
|
{
|
|
struct ia64_intr *i;
|
|
int errcode;
|
|
intptr_t vector = irq + IA64_HARDWARE_IRQ_BASE;
|
|
char *intrname;
|
|
|
|
/*
|
|
* XXX - Can we have more than one device on a vector? If so, we have
|
|
* a race condition here that needs to be worked around similar to
|
|
* the fashion done in the i386 inthand_add() function.
|
|
*/
|
|
|
|
/* First, check for an existing hash table entry for this vector. */
|
|
mtx_lock_spin(&ia64_intrs_lock);
|
|
i = ia64_intrs[vector];
|
|
mtx_unlock_spin(&ia64_intrs_lock);
|
|
|
|
if (i == NULL) {
|
|
/* None was found, so create an entry. */
|
|
i = malloc(sizeof(struct ia64_intr), M_DEVBUF, M_NOWAIT);
|
|
if (i == NULL)
|
|
return ENOMEM;
|
|
if (cntp == NULL)
|
|
i->cntp = intrcnt + irq + INTRCNT_ISA_IRQ;
|
|
else
|
|
i->cntp = cntp;
|
|
if (name != NULL && *name != '\0') {
|
|
/* XXX needs abstraction. Too error phrone. */
|
|
intrname = intrnames + (irq + INTRCNT_ISA_IRQ) *
|
|
INTRNAME_LEN;
|
|
memset(intrname, ' ', INTRNAME_LEN - 1);
|
|
bcopy(name, intrname, strlen(name));
|
|
}
|
|
errcode = intr_event_create(&i->event, (void *)vector, 0,
|
|
(void (*)(void *))ia64_send_eoi, "intr:");
|
|
if (errcode) {
|
|
free(i, M_DEVBUF);
|
|
return errcode;
|
|
}
|
|
|
|
mtx_lock_spin(&ia64_intrs_lock);
|
|
ia64_intrs[vector] = i;
|
|
mtx_unlock_spin(&ia64_intrs_lock);
|
|
}
|
|
|
|
/* Second, add this handler. */
|
|
errcode = intr_event_add_handler(i->event, name, handler, arg,
|
|
intr_priority(flags), flags, cookiep);
|
|
if (errcode)
|
|
return errcode;
|
|
|
|
return (sapic_enable(irq, vector));
|
|
}
|
|
|
|
int
|
|
ia64_teardown_intr(void *cookie)
|
|
{
|
|
|
|
return (intr_event_remove_handler(cookie));
|
|
}
|
|
|
|
void
|
|
ia64_dispatch_intr(void *frame, unsigned long vector)
|
|
{
|
|
struct ia64_intr *i;
|
|
struct intr_event *ie; /* our interrupt event */
|
|
struct intr_handler *ih;
|
|
int error, thread;
|
|
|
|
/*
|
|
* Find the interrupt thread for this vector.
|
|
*/
|
|
i = ia64_intrs[vector];
|
|
if (i == NULL)
|
|
return; /* no event for this vector */
|
|
|
|
if (i->cntp)
|
|
atomic_add_long(i->cntp, 1);
|
|
|
|
ie = i->event;
|
|
KASSERT(ie != NULL, ("interrupt vector without an event"));
|
|
|
|
/*
|
|
* As an optimization, if an event has no handlers, don't
|
|
* schedule it to run.
|
|
*/
|
|
if (TAILQ_EMPTY(&ie->ie_handlers))
|
|
return;
|
|
|
|
/*
|
|
* Execute all fast interrupt handlers directly without Giant. Note
|
|
* that this means that any fast interrupt handler must be MP safe.
|
|
*/
|
|
thread = 0;
|
|
critical_enter();
|
|
TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
|
|
if (!(ih->ih_flags & IH_FAST)) {
|
|
thread = 1;
|
|
continue;
|
|
}
|
|
CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
|
|
ih->ih_handler, ih->ih_argument, ih->ih_name);
|
|
ih->ih_handler(ih->ih_argument);
|
|
}
|
|
critical_exit();
|
|
|
|
if (thread) {
|
|
error = intr_event_schedule_thread(ie);
|
|
KASSERT(error == 0, ("got an impossible stray interrupt"));
|
|
} else
|
|
ia64_send_eoi(vector);
|
|
}
|
|
|
|
#ifdef DDB
|
|
|
|
static void
|
|
db_show_vector(int vector)
|
|
{
|
|
int irq, i;
|
|
|
|
irq = vector - IA64_HARDWARE_IRQ_BASE;
|
|
for (i = 0; i < ia64_sapic_count; i++) {
|
|
struct sapic *sa = ia64_sapics[i];
|
|
if (irq >= sa->sa_base && irq <= sa->sa_limit)
|
|
sapic_print(sa, irq - sa->sa_base);
|
|
}
|
|
}
|
|
|
|
DB_SHOW_COMMAND(irq, db_show_irq)
|
|
{
|
|
int vector;
|
|
|
|
if (have_addr) {
|
|
vector = ((addr >> 4) % 16) * 10 + (addr % 16);
|
|
db_show_vector(vector);
|
|
} else {
|
|
for (vector = IA64_HARDWARE_IRQ_BASE;
|
|
vector < IA64_HARDWARE_IRQ_BASE + 64; vector++)
|
|
db_show_vector(vector);
|
|
}
|
|
}
|
|
|
|
#endif
|