freebsd-nq/sys/ufs/lfs/lfs_segment.c
David Greenman 0d94caffca These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.

The majority of the merged VM/cache work is by John Dyson.

The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.

vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme.  The scheme is almost fully compatible with the old filesystem
interface.  Significant improvement in the number of opportunities for write
clustering.

vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache.  Fixup of vfs_cluster to eliminate the bogus pagemove stuff.

vm_object.c:
Yet more improvements in the collapse code.  Elimination of some windows that
can cause list corruption.

vm_pageout.c:
Fixed it, it really works better now.  Somehow in 2.0, some "enhancements"
broke the code.  This code has been reworked from the ground-up.

vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.

pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.

vm_glue.c
Much simpler and more effective swapping code.  No more gratuitous swapping.

proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.

swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency.  Now the
code doesn't need it anymore.

machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.

machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.

ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache.  Add "bypass" support for sneaking in on
busy buffers.

Submitted by:	John Dyson and David Greenman
1995-01-09 16:06:02 +00:00

1200 lines
31 KiB
C

/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_segment.c 8.5 (Berkeley) 1/4/94
* $Id: lfs_segment.c,v 1.6 1995/01/04 23:46:32 gibbs Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/kernel.h>
#include <sys/resourcevar.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/vnode.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/fifofs/fifo.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
extern int count_lock_queue __P((void));
#define MAX_ACTIVE 10
#define MAX_IO_BUFS 256
#define MAX_IO_SIZE (1024*512)
int lfs_total_io_size;
int lfs_total_io_count;
volatile int lfs_total_free_count;
int lfs_free_needed;
int lfs_in_buffer_reclaim;
struct lfs_freebuf {
int size;
caddr_t address;
} lfs_freebufs[MAX_IO_BUFS];
void
lfs_free_buffer( caddr_t address, int size) {
lfs_freebufs[lfs_total_free_count].address = address;
lfs_freebufs[lfs_total_free_count].size = size;
++lfs_total_free_count;
if( lfs_free_needed) {
wakeup((caddr_t) &lfs_free_needed);
lfs_free_needed = 0;
}
}
void
lfs_reclaim_buffers() {
int i,s;
int reclaimed = 0;
if( lfs_in_buffer_reclaim)
return;
lfs_in_buffer_reclaim = 1;
s = splhigh();
for(i=0;i<lfs_total_free_count;i++) {
reclaimed = 1;
if( lfs_freebufs[i].address ){
splx(s);
free(lfs_freebufs[i].address, M_SEGMENT);
s = splhigh();
}
lfs_total_io_size -= lfs_freebufs[i].size;
lfs_total_io_count -= 1;
}
lfs_in_buffer_reclaim = 0;
lfs_total_free_count = 0;
splx(s);
if( reclaimed) {
wakeup((caddr_t) &lfs_free_needed);
}
}
caddr_t
lfs_alloc_buffer(int size) {
int s;
caddr_t rtval;
if( lfs_total_free_count)
lfs_reclaim_buffers();
s = splhigh(); /* XXX can't this just be splbio?? */
while( ((lfs_total_io_count+1) >= MAX_IO_BUFS) ||
(lfs_total_io_size >= MAX_IO_SIZE)) {
lfs_free_needed = 1;
tsleep(&lfs_free_needed, PRIBIO, "lfsalc", 0);
splx(s);
lfs_reclaim_buffers();
s = splhigh();
}
splx(s);
lfs_total_io_size += size;
lfs_total_io_count += 1;
rtval = malloc(size, M_SEGMENT, M_WAITOK);
return rtval;
}
/*
* Determine if it's OK to start a partial in this segment, or if we need
* to go on to a new segment.
*/
#define LFS_PARTIAL_FITS(fs) \
((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
1 << (fs)->lfs_fsbtodb)
void lfs_callback __P((struct buf *));
void lfs_gather __P((struct lfs *, struct segment *,
struct vnode *, int (*) __P((struct lfs *, struct buf *))));
int lfs_gatherblock __P((struct segment *, struct buf *, int *));
void lfs_iset __P((struct inode *, daddr_t, time_t));
int lfs_match_data __P((struct lfs *, struct buf *));
int lfs_match_dindir __P((struct lfs *, struct buf *));
int lfs_match_indir __P((struct lfs *, struct buf *));
int lfs_match_tindir __P((struct lfs *, struct buf *));
void lfs_newseg __P((struct lfs *));
void lfs_shellsort __P((struct buf **, daddr_t *, register int));
void lfs_supercallback __P((struct buf *));
void lfs_updatemeta __P((struct segment *));
void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
int lfs_writeseg __P((struct lfs *, struct segment *));
void lfs_writesuper __P((struct lfs *));
void lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
struct segment *sp, int dirops));
int lfs_allclean_wakeup; /* Cleaner wakeup address. */
/* Statistics Counters */
#define DOSTATS
struct lfs_stats lfs_stats;
/* op values to lfs_writevnodes */
#define VN_REG 0
#define VN_DIROP 1
#define VN_EMPTY 2
/*
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
*/
int
lfs_vflush(vp)
struct vnode *vp;
{
struct inode *ip;
struct lfs *fs;
struct segment *sp;
int error;
fs = VFSTOUFS(vp->v_mount)->um_lfs;
/* XXX
* lfs_segwrite uses lfs_writevnodes to flush dirty vnodes.
* lfs_writevnodes (by way of a check with lfs_vref) passes over
* locked vnodes. Since we usually come here with vp locked, anytime
* we just happen to call lfs_vflush and we are past the "MAX_ACTIVE"
* threshold, we used to call lfs_seqwrite and assume it would take
* care of the problem... but of course it didn't. Now the question
* remains, is this the right thing to do, or should lfs_seqwrite or
* lfs_writevnodes be fixed to handle locked vnodes??
*/
if (fs->lfs_nactive > MAX_ACTIVE){
error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
if(error)
return(error);
}
lfs_seglock(fs, SEGM_SYNC);
sp = fs->lfs_sp;
ip = VTOI(vp);
if (vp->v_dirtyblkhd.lh_first == NULL)
lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
do {
do {
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
} while (lfs_writeinode(fs, sp, ip));
} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
if (vp->v_dirtyblkhd.lh_first != NULL)
panic("lfs_vflush: dirty bufs!!!\n");
#ifdef DOSTATS
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
#endif
lfs_segunlock(fs);
return (0);
}
void
lfs_writevnodes(fs, mp, sp, op)
struct lfs *fs;
struct mount *mp;
struct segment *sp;
int op;
{
struct inode *ip;
struct vnode *vp;
loop:
for (vp = mp->mnt_vnodelist.lh_first;
vp != NULL;
vp = vp->v_mntvnodes.le_next) {
/*
* If the vnode that we are about to sync is no longer
* associated with this mount point, start over.
*/
if (vp->v_mount != mp)
goto loop;
/* XXX ignore dirops for now
if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
op != VN_DIROP && (vp->v_flag & VDIROP))
continue;
*/
if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
continue;
if (vp->v_type == VNON)
continue;
if (lfs_vref(vp))
continue;
/*
* Write the inode/file if dirty and it's not the
* the IFILE.
*/
ip = VTOI(vp);
if ((ip->i_flag &
(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
vp->v_dirtyblkhd.lh_first != NULL) &&
ip->i_number != LFS_IFILE_INUM) {
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
(void) lfs_writeinode(fs, sp, ip);
}
vp->v_flag &= ~VDIROP;
lfs_vunref(vp);
}
}
int
lfs_segwrite(mp, flags)
struct mount *mp;
int flags; /* Do a checkpoint. */
{
struct buf *bp;
struct inode *ip;
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
SEGUSE *segusep;
daddr_t ibno;
CLEANERINFO *cip;
int clean, do_ckp, error, i;
fs = VFSTOUFS(mp)->um_lfs;
/*
* If we have fewer than 2 clean segments, wait until cleaner
* writes.
*/
do {
LFS_CLEANERINFO(cip, fs, bp);
clean = cip->clean;
brelse(bp);
if (clean <= 2) {
printf("lfs_segwrite: ran out of clean segments, waiting for cleaner\n");
wakeup(&lfs_allclean_wakeup);
if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
"lfs writer", 0))
return (error);
}
} while (clean <= 2 );
/*
* Allocate a segment structure and enough space to hold pointers to
* the maximum possible number of buffers which can be described in a
* single summary block.
*/
do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
sp = fs->lfs_sp;
lfs_writevnodes(fs, mp, sp, VN_REG);
/* XXX ignore ordering of dirops for now */
/* XXX
fs->lfs_writer = 1;
if (fs->lfs_dirops && (error =
tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
free(sp->bpp, M_SEGMENT);
free(sp, M_SEGMENT);
fs->lfs_writer = 0;
return (error);
}
lfs_writevnodes(fs, mp, sp, VN_DIROP);
*/
/*
* If we are doing a checkpoint, mark everything since the
* last checkpoint as no longer ACTIVE.
*/
if (do_ckp)
for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
--ibno >= fs->lfs_cleansz; ) {
if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
NOCRED, &bp))
panic("lfs: ifile read");
segusep = (SEGUSE *)bp->b_data;
for (i = fs->lfs_sepb; i--; segusep++)
segusep->su_flags &= ~SEGUSE_ACTIVE;
error = VOP_BWRITE(bp);
}
if (do_ckp || fs->lfs_doifile) {
redo:
vp = fs->lfs_ivnode;
while (vget(vp, 1));
ip = VTOI(vp);
if (vp->v_dirtyblkhd.lh_first != NULL)
lfs_writefile(fs, sp, vp);
(void)lfs_writeinode(fs, sp, ip);
vput(vp);
if (lfs_writeseg(fs, sp) && do_ckp)
goto redo;
} else
(void) lfs_writeseg(fs, sp);
/*
* If the I/O count is non-zero, sleep until it reaches zero. At the
* moment, the user's process hangs around so we can sleep.
*/
/* XXX ignore dirops for now
fs->lfs_writer = 0;
fs->lfs_doifile = 0;
wakeup(&fs->lfs_dirops);
*/
#ifdef DOSTATS
++lfs_stats.nwrites;
if (sp->seg_flags & SEGM_SYNC)
++lfs_stats.nsync_writes;
if (sp->seg_flags & SEGM_CKP)
++lfs_stats.ncheckpoints;
#endif
lfs_segunlock(fs);
return (0);
}
/*
* Write the dirty blocks associated with a vnode.
*/
void
lfs_writefile(fs, sp, vp)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
{
struct buf *bp;
struct finfo *fip;
IFILE *ifp;
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(struct finfo))
(void) lfs_writeseg(fs, sp);
sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
fip = sp->fip;
fip->fi_nblocks = 0;
fip->fi_ino = VTOI(vp)->i_number;
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
fip->fi_version = ifp->if_version;
brelse(bp);
/*
* It may not be necessary to write the meta-data blocks at this point,
* as the roll-forward recovery code should be able to reconstruct the
* list.
*/
lfs_gather(fs, sp, vp, lfs_match_data);
lfs_gather(fs, sp, vp, lfs_match_indir);
lfs_gather(fs, sp, vp, lfs_match_dindir);
#ifdef TRIPLE
lfs_gather(fs, sp, vp, lfs_match_tindir);
#endif
fip = sp->fip;
if (fip->fi_nblocks != 0) {
sp->fip =
(struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
sizeof(daddr_t) * (fip->fi_nblocks - 1));
sp->start_lbp = &sp->fip->fi_blocks[0];
} else {
sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
--((SEGSUM *)(sp->segsum))->ss_nfinfo;
}
}
int
lfs_writeinode(fs, sp, ip)
struct lfs *fs;
struct segment *sp;
struct inode *ip;
{
struct buf *bp, *ibp;
IFILE *ifp;
SEGUSE *sup;
daddr_t daddr;
ino_t ino;
int error, i, ndx;
int redo_ifile = 0;
if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
return(0);
/* Allocate a new inode block if necessary. */
if (sp->ibp == NULL) {
/* Allocate a new segment if necessary. */
if (sp->seg_bytes_left < fs->lfs_bsize ||
sp->sum_bytes_left < sizeof(daddr_t))
(void) lfs_writeseg(fs, sp);
/* Get next inode block. */
daddr = fs->lfs_offset;
fs->lfs_offset += fsbtodb(fs, 1);
sp->ibp = *sp->cbpp++ =
lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
fs->lfs_bsize);
/* Zero out inode numbers */
for (i = 0; i < INOPB(fs); ++i)
((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
++sp->start_bpp;
fs->lfs_avail -= fsbtodb(fs, 1);
/* Set remaining space counters. */
sp->seg_bytes_left -= fs->lfs_bsize;
sp->sum_bytes_left -= sizeof(daddr_t);
ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
sp->ninodes / INOPB(fs) - 1;
((daddr_t *)(sp->segsum))[ndx] = daddr;
}
/* Update the inode times and copy the inode onto the inode page. */
if (ip->i_flag & IN_MODIFIED)
--fs->lfs_uinodes;
ITIMES(ip, &time, &time);
ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
bp = sp->ibp;
((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
/* Increment inode count in segment summary block. */
++((SEGSUM *)(sp->segsum))->ss_ninos;
/* If this page is full, set flag to allocate a new page. */
if (++sp->ninodes % INOPB(fs) == 0)
sp->ibp = NULL;
/*
* If updating the ifile, update the super-block. Update the disk
* address and access times for this inode in the ifile.
*/
ino = ip->i_number;
if (ino == LFS_IFILE_INUM) {
daddr = fs->lfs_idaddr;
fs->lfs_idaddr = bp->b_blkno;
} else {
LFS_IENTRY(ifp, fs, ino, ibp);
daddr = ifp->if_daddr;
ifp->if_daddr = bp->b_blkno;
error = VOP_BWRITE(ibp);
}
/*
* No need to update segment usage if there was no former inode address
* or if the last inode address is in the current partial segment.
*/
if (daddr != LFS_UNUSED_DADDR &&
!(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < sizeof(struct dinode)) {
/* XXX -- Change to a panic. */
printf("lfs: negative bytes (segment %d)\n",
datosn(fs, daddr));
panic("negative bytes");
}
#endif
sup->su_nbytes -= sizeof(struct dinode);
redo_ifile =
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
error = VOP_BWRITE(bp);
}
return (redo_ifile);
}
int
lfs_gatherblock(sp, bp, sptr)
struct segment *sp;
struct buf *bp;
int *sptr;
{
struct lfs *fs;
int version;
/*
* If full, finish this segment. We may be doing I/O, so
* release and reacquire the splbio().
*/
#ifdef DIAGNOSTIC
if (sp->vp == NULL)
panic ("lfs_gatherblock: Null vp in segment");
#endif
fs = sp->fs;
if (sp->sum_bytes_left < sizeof(daddr_t) ||
sp->seg_bytes_left < fs->lfs_bsize) {
if (sptr)
splx(*sptr);
lfs_updatemeta(sp);
version = sp->fip->fi_version;
(void) lfs_writeseg(fs, sp);
sp->fip->fi_version = version;
sp->fip->fi_ino = VTOI(sp->vp)->i_number;
/* Add the current file to the segment summary. */
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
sp->sum_bytes_left -=
sizeof(struct finfo) - sizeof(daddr_t);
if (sptr)
*sptr = splbio();
return(1);
}
/* Insert into the buffer list, update the FINFO block. */
bp->b_flags |= B_GATHERED;
*sp->cbpp++ = bp;
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
sp->sum_bytes_left -= sizeof(daddr_t);
sp->seg_bytes_left -= fs->lfs_bsize;
return(0);
}
void
lfs_gather(fs, sp, vp, match)
struct lfs *fs;
struct segment *sp;
struct vnode *vp;
int (*match) __P((struct lfs *, struct buf *));
{
struct buf *bp;
int s;
sp->vp = vp;
s = splbio();
loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
if (bp->b_flags & B_BUSY || !match(fs, bp) ||
bp->b_flags & B_GATHERED)
continue;
#ifdef DIAGNOSTIC
if (!(bp->b_flags & B_DELWRI))
panic("lfs_gather: bp not B_DELWRI");
if (!(bp->b_flags & B_LOCKED))
panic("lfs_gather: bp not B_LOCKED");
#endif
if (lfs_gatherblock(sp, bp, &s))
goto loop;
}
splx(s);
lfs_updatemeta(sp);
sp->vp = NULL;
}
/*
* Update the metadata that points to the blocks listed in the FINFO
* array.
*/
void
lfs_updatemeta(sp)
struct segment *sp;
{
SEGUSE *sup;
struct buf *bp;
struct lfs *fs;
struct vnode *vp;
struct indir a[NIADDR + 2], *ap;
struct inode *ip;
daddr_t daddr, lbn, off;
int db_per_fsb, error, i, nblocks, num;
vp = sp->vp;
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
if (vp == NULL || nblocks == 0)
return;
/* Sort the blocks. */
if (!(sp->seg_flags & SEGM_CLEAN))
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
/*
* Assign disk addresses, and update references to the logical
* block and the segment usage information.
*/
fs = sp->fs;
db_per_fsb = fsbtodb(fs, 1);
for (i = nblocks; i--; ++sp->start_bpp) {
lbn = *sp->start_lbp++;
(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
fs->lfs_offset += db_per_fsb;
if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
panic("lfs_updatemeta: ufs_bmaparray %d", error);
ip = VTOI(vp);
switch (num) {
case 0:
ip->i_db[lbn] = off;
break;
case 1:
ip->i_ib[a[0].in_off] = off;
break;
default:
ap = &a[num - 1];
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
panic("lfs_updatemeta: bread bno %d",
ap->in_lbn);
/*
* Bread may create a new indirect block which needs
* to get counted for the inode.
*/
if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
printf ("Updatemeta allocating indirect block: shouldn't happen\n");
ip->i_blocks += btodb(fs->lfs_bsize);
fs->lfs_bfree -= btodb(fs->lfs_bsize);
}
((daddr_t *)bp->b_data)[ap->in_off] = off;
VOP_BWRITE(bp);
}
/* Update segment usage information. */
if (daddr != UNASSIGNED &&
!(daddr >= fs->lfs_lastpseg && daddr <= off)) {
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
#ifdef DIAGNOSTIC
if (sup->su_nbytes < fs->lfs_bsize) {
/* XXX -- Change to a panic. */
printf("lfs: negative bytes (segment %d)\n",
datosn(fs, daddr));
panic ("Negative Bytes");
}
#endif
sup->su_nbytes -= fs->lfs_bsize;
error = VOP_BWRITE(bp);
}
}
}
/*
* Start a new segment.
*/
int
lfs_initseg(fs)
struct lfs *fs;
{
struct segment *sp;
SEGUSE *sup;
SEGSUM *ssp;
struct buf *bp;
int repeat;
sp = fs->lfs_sp;
repeat = 0;
/* Advance to the next segment. */
if (!LFS_PARTIAL_FITS(fs)) {
/* Wake up any cleaning procs waiting on this file system. */
wakeup(&lfs_allclean_wakeup);
lfs_newseg(fs);
repeat = 1;
fs->lfs_offset = fs->lfs_curseg;
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
/*
* If the segment contains a superblock, update the offset
* and summary address to skip over it.
*/
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
sp->seg_bytes_left -= LFS_SBPAD;
}
brelse(bp);
} else {
sp->seg_number = datosn(fs, fs->lfs_curseg);
sp->seg_bytes_left = (fs->lfs_dbpseg -
(fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
}
fs->lfs_lastpseg = fs->lfs_offset;
sp->fs = fs;
sp->ibp = NULL;
sp->ninodes = 0;
/* Get a new buffer for SEGSUM and enter it into the buffer list. */
sp->cbpp = sp->bpp;
*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
LFS_SUMMARY_SIZE);
sp->segsum = (*sp->cbpp)->b_data;
bzero(sp->segsum, LFS_SUMMARY_SIZE);
sp->start_bpp = ++sp->cbpp;
fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
/* Set point to SEGSUM, initialize it. */
ssp = sp->segsum;
ssp->ss_next = fs->lfs_nextseg;
ssp->ss_nfinfo = ssp->ss_ninos = 0;
/* Set pointer to first FINFO, initialize it. */
sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
sp->fip->fi_nblocks = 0;
sp->start_lbp = &sp->fip->fi_blocks[0];
sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
return(repeat);
}
/*
* Return the next segment to write.
*/
void
lfs_newseg(fs)
struct lfs *fs;
{
CLEANERINFO *cip;
SEGUSE *sup;
struct buf *bp;
int curseg, isdirty, sn;
LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
sup->su_nbytes = 0;
sup->su_nsums = 0;
sup->su_ninos = 0;
(void) VOP_BWRITE(bp);
LFS_CLEANERINFO(cip, fs, bp);
--cip->clean;
++cip->dirty;
(void) VOP_BWRITE(bp);
fs->lfs_lastseg = fs->lfs_curseg;
fs->lfs_curseg = fs->lfs_nextseg;
for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
sn = (sn + 1) % fs->lfs_nseg;
if (sn == curseg)
panic("lfs_nextseg: no clean segments");
LFS_SEGENTRY(sup, fs, sn, bp);
isdirty = sup->su_flags & SEGUSE_DIRTY;
brelse(bp);
if (!isdirty)
break;
}
++fs->lfs_nactive;
fs->lfs_nextseg = sntoda(fs, sn);
#ifdef DOSTATS
++lfs_stats.segsused;
#endif
}
int
lfs_writeseg(fs, sp)
struct lfs *fs;
struct segment *sp;
{
extern int locked_queue_count;
struct buf **bpp, *bp, *cbp;
SEGUSE *sup;
SEGSUM *ssp;
dev_t i_dev;
size_t size;
u_long *datap, *dp;
int ch_per_blk, do_again, i, nblocks, num, s;
int (*strategy)__P((struct vop_strategy_args *));
struct vop_strategy_args vop_strategy_a;
u_short ninos;
char *p;
/*
* If there are no buffers other than the segment summary to write
* and it is not a checkpoint, don't do anything. On a checkpoint,
* even if there aren't any buffers, you need to write the superblock.
*/
if ((nblocks = sp->cbpp - sp->bpp) == 1)
return (0);
ssp = (SEGSUM *)sp->segsum;
/* Update the segment usage information. */
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
sup->su_nbytes += LFS_SUMMARY_SIZE;
sup->su_lastmod = time.tv_sec;
sup->su_ninos += ninos;
++sup->su_nsums;
do_again = !(bp->b_flags & B_GATHERED);
(void)VOP_BWRITE(bp);
/*
* Compute checksum across data and then across summary; the first
* block (the summary block) is skipped. Set the create time here
* so that it's guaranteed to be later than the inode mod times.
*
* XXX
* Fix this to do it inline, instead of malloc/copy.
*/
datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
if ((*++bpp)->b_flags & B_INVAL) {
if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
panic("lfs_writeseg: copyin failed");
} else
*dp++ = ((u_long *)(*bpp)->b_data)[0];
}
ssp->ss_create = time.tv_sec;
ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
ssp->ss_sumsum =
cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
free(datap, M_SEGMENT);
#ifdef DIAGNOSTIC
if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
panic("lfs_writeseg: No diskspace for summary");
#endif
fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
/*
* When we simply write the blocks we lose a rotation for every block
* written. To avoid this problem, we allocate memory in chunks, copy
* the buffers into the chunk and write the chunk. MAXPHYS is the
* largest size I/O devices can handle.
* When the data is copied to the chunk, turn off the the B_LOCKED bit
* and brelse the buffer (which will move them to the LRU list). Add
* the B_CALL flag to the buffer header so we can count I/O's for the
* checkpoints and so we can release the allocated memory.
*
* XXX
* This should be removed if the new virtual memory system allows us to
* easily make the buffers contiguous in kernel memory and if that's
* fast enough.
*/
ch_per_blk = MAXPHYS / fs->lfs_bsize;
for (bpp = sp->bpp, i = nblocks; i;) {
num = ch_per_blk;
if (num > i)
num = i;
i -= num;
size = num * fs->lfs_bsize;
cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
(*bpp)->b_blkno, size);
cbp->b_dev = i_dev;
cbp->b_flags |= B_ASYNC | B_BUSY;
s = splbio();
++fs->lfs_iocount;
for (p = cbp->b_data; num--;) {
bp = *bpp++;
/*
* Fake buffers from the cleaner are marked as B_INVAL.
* We need to copy the data from user space rather than
* from the buffer indicated.
* XXX == what do I do on an error?
*/
if (bp->b_flags & B_INVAL) {
if (copyin(bp->b_saveaddr, p, bp->b_bcount))
panic("lfs_writeseg: copyin failed");
} else
bcopy(bp->b_data, p, bp->b_bcount);
p += bp->b_bcount;
if (bp->b_flags & B_LOCKED)
--locked_queue_count;
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
B_LOCKED | B_GATHERED);
if (bp->b_flags & B_CALL) {
/* if B_CALL, it was created with newbuf */
if (!(bp->b_flags & B_INVAL))
lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE));
relpbuf(bp);
} else {
bremfree(bp);
bp->b_flags |= B_DONE;
reassignbuf(bp, bp->b_vp);
brelse(bp);
}
}
cbp->b_bcount = p - (char *)cbp->b_data;
++cbp->b_vp->v_numoutput;
splx(s);
/*
* XXXX This is a gross and disgusting hack. Since these
* buffers are physically addressed, they hang off the
* device vnode (devvp). As a result, they have no way
* of getting to the LFS superblock or lfs structure to
* keep track of the number of I/O's pending. So, I am
* going to stuff the fs into the saveaddr field of
* the buffer (yuk).
*/
cbp->b_saveaddr = (caddr_t)fs;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = cbp;
(strategy)(&vop_strategy_a);
}
/*
* XXX
* Vinvalbuf can move locked buffers off the locked queue
* and we have no way of knowing about this. So, after
* doing a big write, we recalculate how many bufers are
* really still left on the locked queue.
*/
locked_queue_count = count_lock_queue();
wakeup(&locked_queue_count);
#ifdef DOSTATS
++lfs_stats.psegwrites;
lfs_stats.blocktot += nblocks - 1;
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
++lfs_stats.psyncwrites;
if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
++lfs_stats.pcleanwrites;
lfs_stats.cleanblocks += nblocks - 1;
}
#endif
return (lfs_initseg(fs) || do_again);
}
void
lfs_writesuper(fs)
struct lfs *fs;
{
struct buf *bp;
dev_t i_dev;
int (*strategy) __P((struct vop_strategy_args *));
int s;
struct vop_strategy_args vop_strategy_a;
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
/* Checksum the superblock and copy it into a buffer. */
fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
LFS_SBPAD);
*(struct lfs *)bp->b_data = *fs;
/* XXX Toggle between first two superblocks; for now just write first */
bp->b_dev = i_dev;
bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
bp->b_iodone = lfs_supercallback;
vop_strategy_a.a_desc = VDESC(vop_strategy);
vop_strategy_a.a_bp = bp;
s = splbio();
++bp->b_vp->v_numoutput;
splx(s);
(strategy)(&vop_strategy_a);
}
/*
* Logical block number match routines used when traversing the dirty block
* chain.
*/
int
lfs_match_data(fs, bp)
struct lfs *fs;
struct buf *bp;
{
return (bp->b_lblkno >= 0);
}
int
lfs_match_indir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
}
int
lfs_match_dindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
}
int
lfs_match_tindir(fs, bp)
struct lfs *fs;
struct buf *bp;
{
int lbn;
lbn = bp->b_lblkno;
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
}
/*
* Allocate a new buffer header.
*/
struct buf *
lfs_newbuf(vp, daddr, size)
struct vnode *vp;
daddr_t daddr;
size_t size;
{
struct buf *bp;
size_t nbytes;
nbytes = roundup(size, DEV_BSIZE);
bp = getpbuf();
if (nbytes)
bp->b_data = lfs_alloc_buffer( nbytes);
bp->b_bufsize = size;
bp->b_bcount = size;
bp->b_lblkno = daddr;
bp->b_blkno = daddr;
bp->b_error = 0;
bp->b_resid = 0;
bp->b_iodone = lfs_callback;
bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
return (bp);
}
void
lfs_callback(bp)
struct buf *bp;
{
struct lfs *fs;
fs = (struct lfs *)bp->b_saveaddr;
#ifdef DIAGNOSTIC
if (fs->lfs_iocount == 0)
panic("lfs_callback: zero iocount\n");
#endif
if (--fs->lfs_iocount == 0)
wakeup(&fs->lfs_iocount);
lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE));
relpbuf(bp);
}
void
lfs_supercallback(bp)
struct buf *bp;
{
if( bp->b_data)
lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE));
relpbuf(bp);
}
/*
* Shellsort (diminishing increment sort) from Data Structures and
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
* see also Knuth Vol. 3, page 84. The increments are selected from
* formula (8), page 95. Roughly O(N^3/2).
*/
/*
* This is our own private copy of shellsort because we want to sort
* two parallel arrays (the array of buffer pointers and the array of
* logical block numbers) simultaneously. Note that we cast the array
* of logical block numbers to a unsigned in this routine so that the
* negative block numbers (meta data blocks) sort AFTER the data blocks.
*/
void
lfs_shellsort(bp_array, lb_array, nmemb)
struct buf **bp_array;
daddr_t *lb_array;
register int nmemb;
{
static int __rsshell_increments[] = { 4, 1, 0 };
register int incr, *incrp, t1, t2;
struct buf *bp_temp;
u_long lb_temp;
for (incrp = __rsshell_increments; incr = *incrp++;)
for (t1 = incr; t1 < nmemb; ++t1)
for (t2 = t1 - incr; t2 >= 0;)
if (lb_array[t2] > lb_array[t2 + incr]) {
lb_temp = lb_array[t2];
lb_array[t2] = lb_array[t2 + incr];
lb_array[t2 + incr] = lb_temp;
bp_temp = bp_array[t2];
bp_array[t2] = bp_array[t2 + incr];
bp_array[t2 + incr] = bp_temp;
t2 -= incr;
} else
break;
}
/*
* Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
*/
int
lfs_vref(vp)
register struct vnode *vp;
{
if ((vp->v_flag & VXLOCK) ||
(vp->v_usecount == 0 &&
vp->v_freelist.tqe_prev == (struct vnode **)0xdeadb))
return(1);
return (vget(vp, 0));
}
void
lfs_vunref(vp)
register struct vnode *vp;
{
/*
* This is vrele except that we do not want to VOP_INACTIVE
* this vnode. Rather than inline vrele here, we flag the vnode
* to tell lfs_inactive not to run on this vnode. Not as gross as
* a global.
*/
vp->v_flag |= VNINACT;
vrele(vp);
vp->v_flag &= ~VNINACT;
}