c214a270f5
This is required for FDT's standard "reg-io-width" property (similar to "reg-shift" property) found in many DTS files. This fixes operation on Altera Arria 10 SOC Development Kit, where standard ns8250 uart allows 4-byte access only. Reviewed by: kan, marcel Sponsored by: DARPA, AFRL Differential Revision: https://reviews.freebsd.org/D9785
822 lines
21 KiB
C
822 lines
21 KiB
C
/*-
|
|
* Copyright (c) 2003 Marcel Moolenaar
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/sysctl.h>
|
|
#include <machine/bus.h>
|
|
#include <sys/rman.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
#include <dev/uart/uart.h>
|
|
#include <dev/uart/uart_bus.h>
|
|
#include <dev/uart/uart_cpu.h>
|
|
#include <dev/uart/uart_ppstypes.h>
|
|
|
|
#include "uart_if.h"
|
|
|
|
devclass_t uart_devclass;
|
|
const char uart_driver_name[] = "uart";
|
|
|
|
SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs =
|
|
SLIST_HEAD_INITIALIZER(uart_sysdevs);
|
|
|
|
static MALLOC_DEFINE(M_UART, "UART", "UART driver");
|
|
|
|
#ifndef UART_POLL_FREQ
|
|
#define UART_POLL_FREQ 50
|
|
#endif
|
|
static int uart_poll_freq = UART_POLL_FREQ;
|
|
SYSCTL_INT(_debug, OID_AUTO, uart_poll_freq, CTLFLAG_RDTUN, &uart_poll_freq,
|
|
0, "UART poll frequency");
|
|
|
|
static int uart_force_poll;
|
|
SYSCTL_INT(_debug, OID_AUTO, uart_force_poll, CTLFLAG_RDTUN, &uart_force_poll,
|
|
0, "Force UART polling");
|
|
|
|
static inline int
|
|
uart_pps_mode_valid(int pps_mode)
|
|
{
|
|
int opt;
|
|
|
|
switch(pps_mode & UART_PPS_SIGNAL_MASK) {
|
|
case UART_PPS_DISABLED:
|
|
case UART_PPS_CTS:
|
|
case UART_PPS_DCD:
|
|
break;
|
|
default:
|
|
return (false);
|
|
}
|
|
|
|
opt = pps_mode & UART_PPS_OPTION_MASK;
|
|
if ((opt & ~(UART_PPS_INVERT_PULSE | UART_PPS_NARROW_PULSE)) != 0)
|
|
return (false);
|
|
|
|
return (true);
|
|
}
|
|
|
|
static void
|
|
uart_pps_print_mode(struct uart_softc *sc)
|
|
{
|
|
|
|
device_printf(sc->sc_dev, "PPS capture mode: ");
|
|
switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) {
|
|
case UART_PPS_DISABLED:
|
|
printf("disabled");
|
|
break;
|
|
case UART_PPS_CTS:
|
|
printf("CTS");
|
|
break;
|
|
case UART_PPS_DCD:
|
|
printf("DCD");
|
|
break;
|
|
default:
|
|
printf("invalid");
|
|
break;
|
|
}
|
|
if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
|
|
printf("-Inverted");
|
|
if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE)
|
|
printf("-NarrowPulse");
|
|
printf("\n");
|
|
}
|
|
|
|
static int
|
|
uart_pps_mode_sysctl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct uart_softc *sc;
|
|
int err, tmp;
|
|
|
|
sc = arg1;
|
|
tmp = sc->sc_pps_mode;
|
|
err = sysctl_handle_int(oidp, &tmp, 0, req);
|
|
if (err != 0 || req->newptr == NULL)
|
|
return (err);
|
|
if (!uart_pps_mode_valid(tmp))
|
|
return (EINVAL);
|
|
sc->sc_pps_mode = tmp;
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
uart_pps_process(struct uart_softc *sc, int ser_sig)
|
|
{
|
|
sbintime_t now;
|
|
int is_assert, pps_sig;
|
|
|
|
/* Which signal is configured as PPS? Early out if none. */
|
|
switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) {
|
|
case UART_PPS_CTS:
|
|
pps_sig = SER_CTS;
|
|
break;
|
|
case UART_PPS_DCD:
|
|
pps_sig = SER_DCD;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* Early out if there is no change in the signal configured as PPS. */
|
|
if ((ser_sig & SER_DELTA(pps_sig)) == 0)
|
|
return;
|
|
|
|
/*
|
|
* In narrow-pulse mode we need to synthesize both capture and clear
|
|
* events from a single "delta occurred" indication from the uart
|
|
* hardware because the pulse width is too narrow to reliably detect
|
|
* both edges. However, when the pulse width is close to our interrupt
|
|
* processing latency we might intermittantly catch both edges. To
|
|
* guard against generating spurious events when that happens, we use a
|
|
* separate timer to ensure at least half a second elapses before we
|
|
* generate another event.
|
|
*/
|
|
pps_capture(&sc->sc_pps);
|
|
if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
|
|
now = getsbinuptime();
|
|
if (now > sc->sc_pps_captime + 500 * SBT_1MS) {
|
|
sc->sc_pps_captime = now;
|
|
pps_event(&sc->sc_pps, PPS_CAPTUREASSERT);
|
|
pps_event(&sc->sc_pps, PPS_CAPTURECLEAR);
|
|
}
|
|
} else {
|
|
is_assert = ser_sig & pps_sig;
|
|
if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
|
|
is_assert = !is_assert;
|
|
pps_event(&sc->sc_pps, is_assert ? PPS_CAPTUREASSERT :
|
|
PPS_CAPTURECLEAR);
|
|
}
|
|
}
|
|
|
|
static void
|
|
uart_pps_init(struct uart_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid *tree;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->sc_dev);
|
|
tree = device_get_sysctl_tree(sc->sc_dev);
|
|
|
|
/*
|
|
* The historical default for pps capture mode is either DCD or CTS,
|
|
* depending on the UART_PPS_ON_CTS kernel option. Start with that,
|
|
* then try to fetch the tunable that overrides the mode for all uart
|
|
* devices, then try to fetch the sysctl-tunable that overrides the mode
|
|
* for one specific device.
|
|
*/
|
|
#ifdef UART_PPS_ON_CTS
|
|
sc->sc_pps_mode = UART_PPS_CTS;
|
|
#else
|
|
sc->sc_pps_mode = UART_PPS_DCD;
|
|
#endif
|
|
TUNABLE_INT_FETCH("hw.uart.pps_mode", &sc->sc_pps_mode);
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "pps_mode",
|
|
CTLTYPE_INT | CTLFLAG_RWTUN, sc, 0, uart_pps_mode_sysctl, "I",
|
|
"pulse mode: 0/1/2=disabled/CTS/DCD; "
|
|
"add 0x10 to invert, 0x20 for narrow pulse");
|
|
|
|
if (!uart_pps_mode_valid(sc->sc_pps_mode)) {
|
|
device_printf(sc->sc_dev,
|
|
"Invalid pps_mode 0x%02x configured; disabling PPS capture\n",
|
|
sc->sc_pps_mode);
|
|
sc->sc_pps_mode = UART_PPS_DISABLED;
|
|
} else if (bootverbose) {
|
|
uart_pps_print_mode(sc);
|
|
}
|
|
|
|
sc->sc_pps.ppscap = PPS_CAPTUREBOTH;
|
|
sc->sc_pps.driver_mtx = uart_tty_getlock(sc);
|
|
sc->sc_pps.driver_abi = PPS_ABI_VERSION;
|
|
pps_init_abi(&sc->sc_pps);
|
|
}
|
|
|
|
void
|
|
uart_add_sysdev(struct uart_devinfo *di)
|
|
{
|
|
SLIST_INSERT_HEAD(&uart_sysdevs, di, next);
|
|
}
|
|
|
|
const char *
|
|
uart_getname(struct uart_class *uc)
|
|
{
|
|
return ((uc != NULL) ? uc->name : NULL);
|
|
}
|
|
|
|
struct uart_ops *
|
|
uart_getops(struct uart_class *uc)
|
|
{
|
|
return ((uc != NULL) ? uc->uc_ops : NULL);
|
|
}
|
|
|
|
int
|
|
uart_getrange(struct uart_class *uc)
|
|
{
|
|
return ((uc != NULL) ? uc->uc_range : 0);
|
|
}
|
|
|
|
u_int
|
|
uart_getregshift(struct uart_class *uc)
|
|
{
|
|
return ((uc != NULL) ? uc->uc_rshift : 0);
|
|
}
|
|
|
|
u_int
|
|
uart_getregiowidth(struct uart_class *uc)
|
|
{
|
|
return ((uc != NULL) ? uc->uc_riowidth : 0);
|
|
}
|
|
|
|
/*
|
|
* Schedule a soft interrupt. We do this on the 0 to !0 transition
|
|
* of the TTY pending interrupt status.
|
|
*/
|
|
void
|
|
uart_sched_softih(struct uart_softc *sc, uint32_t ipend)
|
|
{
|
|
uint32_t new, old;
|
|
|
|
do {
|
|
old = sc->sc_ttypend;
|
|
new = old | ipend;
|
|
} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
|
|
|
|
if ((old & SER_INT_MASK) == 0)
|
|
swi_sched(sc->sc_softih, 0);
|
|
}
|
|
|
|
/*
|
|
* A break condition has been detected. We treat the break condition as
|
|
* a special case that should not happen during normal operation. When
|
|
* the break condition is to be passed to higher levels in the form of
|
|
* a NUL character, we really want the break to be in the right place in
|
|
* the input stream. The overhead to achieve that is not in relation to
|
|
* the exceptional nature of the break condition, so we permit ourselves
|
|
* to be sloppy.
|
|
*/
|
|
static __inline int
|
|
uart_intr_break(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
|
|
#if defined(KDB)
|
|
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
|
|
if (kdb_break())
|
|
return (0);
|
|
}
|
|
#endif
|
|
if (sc->sc_opened)
|
|
uart_sched_softih(sc, SER_INT_BREAK);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle a receiver overrun situation. We lost at least 1 byte in the
|
|
* input stream and it's our job to contain the situation. We grab as
|
|
* much of the data we can, but otherwise flush the receiver FIFO to
|
|
* create some breathing room. The net effect is that we avoid the
|
|
* overrun condition to happen for the next X characters, where X is
|
|
* related to the FIFO size at the cost of losing data right away.
|
|
* So, instead of having multiple overrun interrupts in close proximity
|
|
* to each other and possibly pessimizing UART interrupt latency for
|
|
* other UARTs in a multiport configuration, we create a longer segment
|
|
* of missing characters by freeing up the FIFO.
|
|
* Each overrun condition is marked in the input buffer by a token. The
|
|
* token represents the loss of at least one, but possible more bytes in
|
|
* the input stream.
|
|
*/
|
|
static __inline int
|
|
uart_intr_overrun(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
|
|
if (sc->sc_opened) {
|
|
UART_RECEIVE(sc);
|
|
if (uart_rx_put(sc, UART_STAT_OVERRUN))
|
|
sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
|
|
uart_sched_softih(sc, SER_INT_RXREADY);
|
|
}
|
|
UART_FLUSH(sc, UART_FLUSH_RECEIVER);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Received data ready.
|
|
*/
|
|
static __inline int
|
|
uart_intr_rxready(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
int rxp;
|
|
|
|
rxp = sc->sc_rxput;
|
|
UART_RECEIVE(sc);
|
|
#if defined(KDB)
|
|
if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
|
|
while (rxp != sc->sc_rxput) {
|
|
kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk);
|
|
if (rxp == sc->sc_rxbufsz)
|
|
rxp = 0;
|
|
}
|
|
}
|
|
#endif
|
|
if (sc->sc_opened)
|
|
uart_sched_softih(sc, SER_INT_RXREADY);
|
|
else
|
|
sc->sc_rxput = sc->sc_rxget; /* Ignore received data. */
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Line or modem status change (OOB signalling).
|
|
* We pass the signals to the software interrupt handler for further
|
|
* processing. Note that we merge the delta bits, but set the state
|
|
* bits. This is to avoid losing state transitions due to having more
|
|
* than 1 hardware interrupt between software interrupts.
|
|
*/
|
|
static __inline int
|
|
uart_intr_sigchg(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
int new, old, sig;
|
|
|
|
sig = UART_GETSIG(sc);
|
|
|
|
/*
|
|
* Time pulse counting support, invoked whenever the PPS parameters are
|
|
* currently set to capture either edge of the signal.
|
|
*/
|
|
if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) {
|
|
uart_pps_process(sc, sig);
|
|
}
|
|
|
|
/*
|
|
* Keep track of signal changes, even when the device is not
|
|
* opened. This allows us to inform upper layers about a
|
|
* possible loss of DCD and thus the existence of a (possibly)
|
|
* different connection when we have DCD back, during the time
|
|
* that the device was closed.
|
|
*/
|
|
do {
|
|
old = sc->sc_ttypend;
|
|
new = old & ~SER_MASK_STATE;
|
|
new |= sig & SER_INT_SIGMASK;
|
|
} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
|
|
|
|
if (sc->sc_opened)
|
|
uart_sched_softih(sc, SER_INT_SIGCHG);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* The transmitter can accept more data.
|
|
*/
|
|
static __inline int
|
|
uart_intr_txidle(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
|
|
if (sc->sc_txbusy) {
|
|
sc->sc_txbusy = 0;
|
|
uart_sched_softih(sc, SER_INT_TXIDLE);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
uart_intr(void *arg)
|
|
{
|
|
struct uart_softc *sc = arg;
|
|
int cnt, ipend, testintr;
|
|
|
|
if (sc->sc_leaving)
|
|
return (FILTER_STRAY);
|
|
|
|
cnt = 0;
|
|
testintr = sc->sc_testintr;
|
|
while ((!testintr || cnt < 20) && (ipend = UART_IPEND(sc)) != 0) {
|
|
cnt++;
|
|
if (ipend & SER_INT_OVERRUN)
|
|
uart_intr_overrun(sc);
|
|
if (ipend & SER_INT_BREAK)
|
|
uart_intr_break(sc);
|
|
if (ipend & SER_INT_RXREADY)
|
|
uart_intr_rxready(sc);
|
|
if (ipend & SER_INT_SIGCHG)
|
|
uart_intr_sigchg(sc);
|
|
if (ipend & SER_INT_TXIDLE)
|
|
uart_intr_txidle(sc);
|
|
}
|
|
|
|
if (sc->sc_polled) {
|
|
callout_reset(&sc->sc_timer, hz / uart_poll_freq,
|
|
(timeout_t *)uart_intr, sc);
|
|
}
|
|
|
|
return ((cnt == 0) ? FILTER_STRAY :
|
|
((testintr && cnt == 20) ? FILTER_SCHEDULE_THREAD :
|
|
FILTER_HANDLED));
|
|
}
|
|
|
|
serdev_intr_t *
|
|
uart_bus_ihand(device_t dev, int ipend)
|
|
{
|
|
|
|
switch (ipend) {
|
|
case SER_INT_BREAK:
|
|
return (uart_intr_break);
|
|
case SER_INT_OVERRUN:
|
|
return (uart_intr_overrun);
|
|
case SER_INT_RXREADY:
|
|
return (uart_intr_rxready);
|
|
case SER_INT_SIGCHG:
|
|
return (uart_intr_sigchg);
|
|
case SER_INT_TXIDLE:
|
|
return (uart_intr_txidle);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
int
|
|
uart_bus_ipend(device_t dev)
|
|
{
|
|
struct uart_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
return (UART_IPEND(sc));
|
|
}
|
|
|
|
int
|
|
uart_bus_sysdev(device_t dev)
|
|
{
|
|
struct uart_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
return ((sc->sc_sysdev != NULL) ? 1 : 0);
|
|
}
|
|
|
|
int
|
|
uart_bus_probe(device_t dev, int regshft, int regiowidth, int rclk, int rid, int chan)
|
|
{
|
|
struct uart_softc *sc;
|
|
struct uart_devinfo *sysdev;
|
|
int error;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/*
|
|
* All uart_class references are weak. Check that the needed
|
|
* class has been compiled-in. Fail if not.
|
|
*/
|
|
if (sc->sc_class == NULL)
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Initialize the instance. Note that the instance (=softc) does
|
|
* not necessarily match the hardware specific softc. We can't do
|
|
* anything about it now, because we may not attach to the device.
|
|
* Hardware drivers cannot use any of the class specific fields
|
|
* while probing.
|
|
*/
|
|
kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class);
|
|
sc->sc_dev = dev;
|
|
if (device_get_desc(dev) == NULL)
|
|
device_set_desc(dev, uart_getname(sc->sc_class));
|
|
|
|
/*
|
|
* Allocate the register resource. We assume that all UARTs have
|
|
* a single register window in either I/O port space or memory
|
|
* mapped I/O space. Any UART that needs multiple windows will
|
|
* consequently not be supported by this driver as-is. We try I/O
|
|
* port space first because that's the common case.
|
|
*/
|
|
sc->sc_rrid = rid;
|
|
sc->sc_rtype = SYS_RES_IOPORT;
|
|
sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
|
|
RF_ACTIVE);
|
|
if (sc->sc_rres == NULL) {
|
|
sc->sc_rrid = rid;
|
|
sc->sc_rtype = SYS_RES_MEMORY;
|
|
sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype,
|
|
&sc->sc_rrid, RF_ACTIVE);
|
|
if (sc->sc_rres == NULL)
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Fill in the bus access structure and compare this device with
|
|
* a possible console device and/or a debug port. We set the flags
|
|
* in the softc so that the hardware dependent probe can adjust
|
|
* accordingly. In general, you don't want to permanently disrupt
|
|
* console I/O.
|
|
*/
|
|
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
|
|
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
|
|
sc->sc_bas.chan = chan;
|
|
sc->sc_bas.regshft = regshft;
|
|
sc->sc_bas.regiowidth = regiowidth;
|
|
sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk;
|
|
|
|
SLIST_FOREACH(sysdev, &uart_sysdevs, next) {
|
|
if (chan == sysdev->bas.chan &&
|
|
uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) {
|
|
/* XXX check if ops matches class. */
|
|
sc->sc_sysdev = sysdev;
|
|
sysdev->bas.rclk = sc->sc_bas.rclk;
|
|
}
|
|
}
|
|
|
|
error = UART_PROBE(sc);
|
|
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
|
|
return ((error) ? error : BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
int
|
|
uart_bus_attach(device_t dev)
|
|
{
|
|
struct uart_softc *sc, *sc0;
|
|
const char *sep;
|
|
int error, filt;
|
|
|
|
/*
|
|
* The sc_class field defines the type of UART we're going to work
|
|
* with and thus the size of the softc. Replace the generic softc
|
|
* with one that matches the UART now that we're certain we handle
|
|
* the device.
|
|
*/
|
|
sc0 = device_get_softc(dev);
|
|
if (sc0->sc_class->size > device_get_driver(dev)->size) {
|
|
sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO);
|
|
bcopy(sc0, sc, sizeof(*sc));
|
|
device_set_softc(dev, sc);
|
|
} else
|
|
sc = sc0;
|
|
|
|
/*
|
|
* Now that we know the softc for this device, connect the back
|
|
* pointer from the sysdev for this device, if any
|
|
*/
|
|
if (sc->sc_sysdev != NULL)
|
|
sc->sc_sysdev->sc = sc;
|
|
|
|
/*
|
|
* Protect ourselves against interrupts while we're not completely
|
|
* finished attaching and initializing. We don't expect interrupts
|
|
* until after UART_ATTACH(), though.
|
|
*/
|
|
sc->sc_leaving = 1;
|
|
|
|
mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN);
|
|
if (sc->sc_hwmtx == NULL)
|
|
sc->sc_hwmtx = &sc->sc_hwmtx_s;
|
|
|
|
/*
|
|
* Re-allocate. We expect that the softc contains the information
|
|
* collected by uart_bus_probe() intact.
|
|
*/
|
|
sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
|
|
RF_ACTIVE);
|
|
if (sc->sc_rres == NULL) {
|
|
mtx_destroy(&sc->sc_hwmtx_s);
|
|
return (ENXIO);
|
|
}
|
|
sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
|
|
sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
|
|
|
|
/*
|
|
* Ensure there is room for at least three full FIFOs of data in the
|
|
* receive buffer (handles the case of low-level drivers with huge
|
|
* FIFOs), and also ensure that there is no less than the historical
|
|
* size of 384 bytes (handles the typical small-FIFO case).
|
|
*/
|
|
sc->sc_rxbufsz = MAX(384, sc->sc_rxfifosz * 3);
|
|
sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf),
|
|
M_UART, M_WAITOK);
|
|
sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf),
|
|
M_UART, M_WAITOK);
|
|
|
|
error = UART_ATTACH(sc);
|
|
if (error)
|
|
goto fail;
|
|
|
|
if (sc->sc_hwiflow || sc->sc_hwoflow) {
|
|
sep = "";
|
|
device_print_prettyname(dev);
|
|
if (sc->sc_hwiflow) {
|
|
printf("%sRTS iflow", sep);
|
|
sep = ", ";
|
|
}
|
|
if (sc->sc_hwoflow) {
|
|
printf("%sCTS oflow", sep);
|
|
sep = ", ";
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (sc->sc_sysdev != NULL) {
|
|
if (sc->sc_sysdev->baudrate == 0) {
|
|
if (UART_IOCTL(sc, UART_IOCTL_BAUD,
|
|
(intptr_t)&sc->sc_sysdev->baudrate) != 0)
|
|
sc->sc_sysdev->baudrate = -1;
|
|
}
|
|
switch (sc->sc_sysdev->type) {
|
|
case UART_DEV_CONSOLE:
|
|
device_printf(dev, "console");
|
|
break;
|
|
case UART_DEV_DBGPORT:
|
|
device_printf(dev, "debug port");
|
|
break;
|
|
case UART_DEV_KEYBOARD:
|
|
device_printf(dev, "keyboard");
|
|
break;
|
|
default:
|
|
device_printf(dev, "unknown system device");
|
|
break;
|
|
}
|
|
printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate,
|
|
"noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits,
|
|
sc->sc_sysdev->stopbits);
|
|
}
|
|
|
|
sc->sc_leaving = 0;
|
|
sc->sc_testintr = 1;
|
|
filt = uart_intr(sc);
|
|
sc->sc_testintr = 0;
|
|
|
|
/*
|
|
* Don't use interrupts if we couldn't clear any pending interrupt
|
|
* conditions. We may have broken H/W and polling is probably the
|
|
* safest thing to do.
|
|
*/
|
|
if (filt != FILTER_SCHEDULE_THREAD && !uart_force_poll) {
|
|
sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ,
|
|
&sc->sc_irid, RF_ACTIVE | RF_SHAREABLE);
|
|
}
|
|
if (sc->sc_ires != NULL) {
|
|
error = bus_setup_intr(dev, sc->sc_ires, INTR_TYPE_TTY,
|
|
uart_intr, NULL, sc, &sc->sc_icookie);
|
|
sc->sc_fastintr = (error == 0) ? 1 : 0;
|
|
|
|
if (!sc->sc_fastintr)
|
|
error = bus_setup_intr(dev, sc->sc_ires,
|
|
INTR_TYPE_TTY | INTR_MPSAFE, NULL,
|
|
(driver_intr_t *)uart_intr, sc, &sc->sc_icookie);
|
|
|
|
if (error) {
|
|
device_printf(dev, "could not activate interrupt\n");
|
|
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
|
|
sc->sc_ires);
|
|
sc->sc_ires = NULL;
|
|
}
|
|
}
|
|
if (sc->sc_ires == NULL) {
|
|
/* No interrupt resource. Force polled mode. */
|
|
sc->sc_polled = 1;
|
|
callout_init(&sc->sc_timer, 1);
|
|
callout_reset(&sc->sc_timer, hz / uart_poll_freq,
|
|
(timeout_t *)uart_intr, sc);
|
|
}
|
|
|
|
if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) {
|
|
sep = "";
|
|
device_print_prettyname(dev);
|
|
if (sc->sc_fastintr) {
|
|
printf("%sfast interrupt", sep);
|
|
sep = ", ";
|
|
}
|
|
if (sc->sc_polled) {
|
|
printf("%spolled mode (%dHz)", sep, uart_poll_freq);
|
|
sep = ", ";
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL) {
|
|
if ((error = sc->sc_sysdev->attach(sc)) != 0)
|
|
goto fail;
|
|
} else {
|
|
if ((error = uart_tty_attach(sc)) != 0)
|
|
goto fail;
|
|
uart_pps_init(sc);
|
|
}
|
|
|
|
if (sc->sc_sysdev != NULL)
|
|
sc->sc_sysdev->hwmtx = sc->sc_hwmtx;
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
free(sc->sc_txbuf, M_UART);
|
|
free(sc->sc_rxbuf, M_UART);
|
|
|
|
if (sc->sc_ires != NULL) {
|
|
bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
|
|
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
|
|
sc->sc_ires);
|
|
}
|
|
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
|
|
|
|
mtx_destroy(&sc->sc_hwmtx_s);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
uart_bus_detach(device_t dev)
|
|
{
|
|
struct uart_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
sc->sc_leaving = 1;
|
|
|
|
if (sc->sc_sysdev != NULL)
|
|
sc->sc_sysdev->hwmtx = NULL;
|
|
|
|
UART_DETACH(sc);
|
|
|
|
if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL)
|
|
(*sc->sc_sysdev->detach)(sc);
|
|
else
|
|
uart_tty_detach(sc);
|
|
|
|
free(sc->sc_txbuf, M_UART);
|
|
free(sc->sc_rxbuf, M_UART);
|
|
|
|
if (sc->sc_ires != NULL) {
|
|
bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
|
|
bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
|
|
sc->sc_ires);
|
|
}
|
|
bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
|
|
|
|
mtx_destroy(&sc->sc_hwmtx_s);
|
|
|
|
if (sc->sc_class->size > device_get_driver(dev)->size) {
|
|
device_set_softc(dev, NULL);
|
|
free(sc, M_UART);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
uart_bus_resume(device_t dev)
|
|
{
|
|
struct uart_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
return (UART_ATTACH(sc));
|
|
}
|
|
|
|
void
|
|
uart_grab(struct uart_devinfo *di)
|
|
{
|
|
|
|
if (di->sc)
|
|
UART_GRAB(di->sc);
|
|
}
|
|
|
|
void
|
|
uart_ungrab(struct uart_devinfo *di)
|
|
{
|
|
|
|
if (di->sc)
|
|
UART_UNGRAB(di->sc);
|
|
}
|