freebsd-nq/usr.bin/make/arch.c
Hartmut Brandt 5e0a7a4450 Almost complete rewrite of the archive code (except for the Makefile parsing
part). Archive handling was broken at least since the move from BSD ar/ranlib
to GNU binutils because of the different archive format. This rewrite fixes
this by making make to carry around the defines for all formats (it supports)
so it can support all of them independent of the actually used one. The
supported formats are: traditional BSD (this seems to come from V7 at least,
short names only and __.SYMDEF), BSD4.4 (long names with #1/ and __.SYMDEF)
and SysV (extra name table and //). The only format not supported are broken
traditional archives where the member names are truncated to 15 characters.

Errors in the archive are not ignored anymore, but cause make to stop with
an error message. The command line option -A causes these errors to become
non-fatal. This is almost compatible with previous usage except for the
error message printed in any case.

Use a type-safe intrusive list for the archive cache.

Reviewed by:	Max Okumoto <okumoto@ucsd.edu> (without new error handling)
2005-03-31 11:35:56 +00:00

1232 lines
33 KiB
C

/*-
* Copyright (c) 1988, 1989, 1990, 1993
* The Regents of the University of California. All rights reserved.
* Copyright (c) 1989 by Berkeley Softworks
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)arch.c 8.2 (Berkeley) 1/2/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* arch.c --
* Functions to manipulate libraries, archives and their members.
*
* Once again, cacheing/hashing comes into play in the manipulation
* of archives. The first time an archive is referenced, all of its members'
* headers are read and hashed and the archive closed again. All hashed
* archives are kept on a list which is searched each time an archive member
* is referenced.
*
* The interface to this module is:
* Arch_ParseArchive Given an archive specification, return a list
* of GNode's, one for each member in the spec.
* FAILURE is returned if the specification is
* invalid for some reason.
*
* Arch_Touch Alter the modification time of the archive
* member described by the given node to be
* the current time.
*
* Arch_TouchLib Update the modification time of the library
* described by the given node. This is special
* because it also updates the modification time
* of the library's table of contents.
*
* Arch_MTime Find the modification time of a member of
* an archive *in the archive*. The time is also
* placed in the member's GNode. Returns the
* modification time.
*
* Arch_MemTime Find the modification time of a member of
* an archive. Called when the member doesn't
* already exist. Looks in the archive for the
* modification time. Returns the modification
* time.
*
* Arch_FindLib Search for a library along a path. The
* library name in the GNode should be in
* -l<name> format.
*
* Arch_LibOODate Special function to decide if a library node
* is out-of-date.
*
* Arch_Init Initialize this module.
*/
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <ar.h>
#include <ctype.h>
#include <errno.h>
#include <inttypes.h>
#include <regex.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <utime.h>
#include "arch.h"
#include "buf.h"
#include "config.h"
#include "dir.h"
#include "globals.h"
#include "GNode.h"
#include "hash.h"
#include "make.h"
#include "targ.h"
#include "util.h"
#include "var.h"
typedef struct Arch {
char *name; /* Name of archive */
/*
* All the members of the archive described
* by <name, struct ar_hdr *> key/value pairs
*/
Hash_Table members;
TAILQ_ENTRY(Arch) link; /* link all cached archives */
} Arch;
/* Lst of archives we've already examined */
static TAILQ_HEAD(, Arch) archives = TAILQ_HEAD_INITIALIZER(archives);
/* size of the name field in the archive member header */
#define AR_NAMSIZ sizeof(((struct ar_hdr *)0)->ar_name)
/*
* This structure is used while reading/writing an archive
*/
struct arfile {
FILE *fp; /* archive file */
char *fname; /* name of the file */
struct ar_hdr hdr; /* current header */
char sname[AR_NAMSIZ + 1]; /* short name */
char *member; /* (long) member name */
size_t mlen; /* size of the above */
char *nametab; /* name table */
size_t nametablen; /* size of the table */
int64_t time; /* from ar_date */
uint64_t size; /* from ar_size */
off_t pos; /* header pos of current entry */
};
/*
* Name of the symbol table. The original BSD used "__.SYMDEF". Rumours go
* that this name may have a slash appended sometimes. Actually FreeBSD
* uses "/" which probably came from SVR4.
*/
#define SVR4_RANLIBMAG "/"
#define BSD_RANLIBMAG "__.SYMDEF"
/*
* Name of the filename table. The 4.4BSD ar format did not use this, but
* puts long filenames directly between the member header and the object
* file.
*/
#define SVR4_NAMEMAG "//"
#define BSD_NAMEMAG "ARFILENAMES/"
/*
* 44BSD long filename key. Use a local define here instead of relying
* on ar.h because we want this to continue working even when the
* definition is removed from ar.h.
*/
#define BSD_EXT1 "#1/"
#define BSD_EXT1LEN 3
/* if this is TRUE make archive errors fatal */
Boolean arch_fatal = TRUE;
/**
* ArchError
* An error happend while handling an archive. BSDmake traditionally
* ignored these errors. Now this is dependend on the global arch_fatal
* which, if true, makes these errors fatal and, if false, just emits an
* error message.
*/
#define ArchError(ARGS) do { \
if (arch_fatal) \
Fatal ARGS; \
else \
Error ARGS; \
} while (0)
/*-
*-----------------------------------------------------------------------
* Arch_ParseArchive --
* Parse the archive specification in the given line and find/create
* the nodes for the specified archive members, placing their nodes
* on the given list, given the pointer to the start of the
* specification, a Lst on which to place the nodes, and a context
* in which to expand variables.
*
* Results:
* SUCCESS if it was a valid specification. The linePtr is updated
* to point to the first non-space after the archive spec. The
* nodes for the members are placed on the given list.
*
* Side Effects:
* Some nodes may be created. The given list is extended.
*
*-----------------------------------------------------------------------
*/
ReturnStatus
Arch_ParseArchive(char **linePtr, Lst *nodeLst, GNode *ctxt)
{
char *cp; /* Pointer into line */
GNode *gn; /* New node */
char *libName; /* Library-part of specification */
char *memName; /* Member-part of specification */
char *nameBuf; /* temporary place for node name */
char saveChar; /* Ending delimiter of member-name */
Boolean subLibName; /* TRUE if libName should have/had
* variable substitution performed on it */
libName = *linePtr;
subLibName = FALSE;
for (cp = libName; *cp != '(' && *cp != '\0'; cp++) {
if (*cp == '$') {
/*
* Variable spec, so call the Var module to parse the
* puppy so we can safely advance beyond it...
*/
size_t length = 0;
Boolean freeIt;
char *result;
result = Var_Parse(cp, ctxt, TRUE, &length, &freeIt);
if (result == var_Error) {
return (FAILURE);
}
subLibName = TRUE;
if (freeIt) {
free(result);
}
cp += length - 1;
}
}
*cp++ = '\0';
if (subLibName) {
libName = Buf_Peel(Var_Subst(NULL, libName, ctxt, TRUE));
}
for (;;) {
/*
* First skip to the start of the member's name, mark that
* place and skip to the end of it (either white-space or
* a close paren).
*/
/*
* TRUE if need to substitute in memName
*/
Boolean doSubst = FALSE;
while (*cp != '\0' && *cp != ')' &&
isspace((unsigned char)*cp)) {
cp++;
}
memName = cp;
while (*cp != '\0' && *cp != ')' &&
!isspace((unsigned char)*cp)) {
if (*cp == '$') {
/*
* Variable spec, so call the Var module to
* parse the puppy so we can safely advance
* beyond it...
*/
size_t length = 0;
Boolean freeIt;
char *result;
result = Var_Parse(cp, ctxt, TRUE,
&length, &freeIt);
if (result == var_Error) {
return (FAILURE);
}
doSubst = TRUE;
if (freeIt) {
free(result);
}
cp += length;
} else {
cp++;
}
}
/*
* If the specification ends without a closing parenthesis,
* chances are there's something wrong (like a missing
* backslash), so it's better to return failure than allow
* such things to happen
*/
if (*cp == '\0') {
printf("No closing parenthesis in archive "
"specification\n");
return (FAILURE);
}
/*
* If we didn't move anywhere, we must be done
*/
if (cp == memName) {
break;
}
saveChar = *cp;
*cp = '\0';
/*
* XXX: This should be taken care of intelligently by
* SuffExpandChildren, both for the archive and the member
* portions.
*/
/*
* If member contains variables, try and substitute for them.
* This will slow down archive specs with dynamic sources, of
* course, since we'll be (non-)substituting them three times,
* but them's the breaks -- we need to do this since
* SuffExpandChildren calls us, otherwise we could assume the
* thing would be taken care of later.
*/
if (doSubst) {
char *buf;
char *sacrifice;
char *oldMemName = memName;
size_t sz;
Buffer *buf1;
/*
* Now form an archive spec and recurse to deal with
* nested variables and multi-word variable values....
* The results are just placed at the end of the
* nodeLst we're returning.
*/
buf1 = Var_Subst(NULL, memName, ctxt, TRUE);
memName = Buf_Data(buf1);
sz = strlen(memName) + strlen(libName) + 3;
buf = emalloc(sz);
snprintf(buf, sz, "%s(%s)", libName, memName);
sacrifice = buf;
if (strchr(memName, '$') &&
strcmp(memName, oldMemName) == 0) {
/*
* Must contain dynamic sources, so we can't
* deal with it now.
* Just create an ARCHV node for the thing and
* let SuffExpandChildren handle it...
*/
gn = Targ_FindNode(buf, TARG_CREATE);
if (gn == NULL) {
free(buf);
Buf_Destroy(buf1, FALSE);
return (FAILURE);
}
gn->type |= OP_ARCHV;
Lst_AtEnd(nodeLst, (void *)gn);
} else if (Arch_ParseArchive(&sacrifice, nodeLst,
ctxt) != SUCCESS) {
/*
* Error in nested call -- free buffer and
* return FAILURE ourselves.
*/
free(buf);
Buf_Destroy(buf1, FALSE);
return (FAILURE);
}
/* Free buffer and continue with our work. */
free(buf);
Buf_Destroy(buf1, FALSE);
} else if (Dir_HasWildcards(memName)) {
Lst members = Lst_Initializer(members);
char *member;
size_t sz = MAXPATHLEN;
size_t nsz;
nameBuf = emalloc(sz);
Path_Expand(memName, &dirSearchPath, &members);
while (!Lst_IsEmpty(&members)) {
member = Lst_DeQueue(&members);
nsz = strlen(libName) + strlen(member) + 3;
if (nsz > sz) {
sz = nsz * 2;
nameBuf = erealloc(nameBuf, sz);
}
snprintf(nameBuf, sz, "%s(%s)",
libName, member);
free(member);
gn = Targ_FindNode(nameBuf, TARG_CREATE);
if (gn == NULL) {
free(nameBuf);
/* XXXHB Lst_Destroy(&members) */
return (FAILURE);
}
/*
* We've found the node, but have to make sure
* the rest of the world knows it's an archive
* member, without having to constantly check
* for parentheses, so we type the thing with
* the OP_ARCHV bit before we place it on the
* end of the provided list.
*/
gn->type |= OP_ARCHV;
Lst_AtEnd(nodeLst, gn);
}
free(nameBuf);
} else {
size_t sz = strlen(libName) + strlen(memName) + 3;
nameBuf = emalloc(sz);
snprintf(nameBuf, sz, "%s(%s)", libName, memName);
gn = Targ_FindNode(nameBuf, TARG_CREATE);
free(nameBuf);
if (gn == NULL) {
return (FAILURE);
}
/*
* We've found the node, but have to make sure the
* rest of the world knows it's an archive member,
* without having to constantly check for parentheses,
* so we type the thing with the OP_ARCHV bit before
* we place it on the end of the provided list.
*/
gn->type |= OP_ARCHV;
Lst_AtEnd(nodeLst, gn);
}
if (doSubst) {
free(memName);
}
*cp = saveChar;
}
/*
* If substituted libName, free it now, since we need it no longer.
*/
if (subLibName) {
free(libName);
}
/*
* We promised the pointer would be set up at the next non-space, so
* we must advance cp there before setting *linePtr... (note that on
* entrance to the loop, cp is guaranteed to point at a ')')
*/
do {
cp++;
} while (*cp != '\0' && isspace((unsigned char)*cp));
*linePtr = cp;
return (SUCCESS);
}
/*
* Close an archive file an free all resources
*/
static void
ArchArchiveClose(struct arfile *ar)
{
if (ar->nametab != NULL)
free(ar->nametab);
free(ar->member);
if (ar->fp != NULL) {
if (fclose(ar->fp) == EOF)
ArchError(("%s: close error", ar->fname));
}
free(ar->fname);
free(ar);
}
/*
* Open an archive file.
*/
static struct arfile *
ArchArchiveOpen(const char *archive, const char *mode)
{
struct arfile *ar;
char magic[SARMAG];
ar = emalloc(sizeof(*ar));
ar->fname = estrdup(archive);
ar->mlen = 100;
ar->member = emalloc(ar->mlen);
ar->nametab = NULL;
ar->nametablen = 0;
if ((ar->fp = fopen(ar->fname, mode)) == NULL) {
DEBUGM(ARCH, ("%s", ar->fname));
ArchArchiveClose(ar);
return (NULL);
}
/* read MAGIC */
if (fread(magic, SARMAG, 1, ar->fp) != 1 ||
strncmp(magic, ARMAG, SARMAG) != 0) {
ArchError(("%s: bad archive magic\n", ar->fname));
ArchArchiveClose(ar);
return (NULL);
}
ar->pos = 0;
return (ar);
}
/*
* Read the next header from the archive. The return value will be +1 if
* the header is read successfully, 0 on EOF and -1 if an error happend.
* On a successful return sname contains the truncated member name and
* member the full name. hdr contains the member header. For the symbol table
* names of length 0 are returned. The entry for the file name table is never
* returned.
*/
static int
ArchArchiveNext(struct arfile *ar)
{
char *end;
int have_long_name;
u_long offs;
char *ptr;
size_t ret;
char buf[MAX(sizeof(ar->hdr.ar_size), sizeof(ar->hdr.ar_date)) + 1];
next:
/*
* Seek to the next header.
*/
if (ar->pos == 0) {
ar->pos = SARMAG;
} else {
ar->pos += sizeof(ar->hdr) + ar->size;
if (ar->size % 2 == 1)
ar->pos++;
}
if (fseeko(ar->fp, ar->pos, SEEK_SET) == -1) {
ArchError(("%s: cannot seek to %jd: %s", ar->fname,
(intmax_t)ar->pos, strerror(errno)));
return (-1);
}
/*
* Read next member header
*/
ret = fread(&ar->hdr, sizeof(ar->hdr), 1, ar->fp);
if (ret != 1) {
if (feof(ar->fp))
return (0);
ArchError(("%s: error reading member header: %s", ar->fname,
strerror(errno)));
return (-1);
}
if (strncmp(ar->hdr.ar_fmag, ARFMAG, sizeof(ar->hdr.ar_fmag)) != 0) {
ArchError(("%s: bad entry magic", ar->fname));
return (-1);
}
/*
* looks like a member - get name by stripping trailing spaces
* and NUL terminating.
*/
strncpy(ar->sname, ar->hdr.ar_name, AR_NAMSIZ);
ar->sname[AR_NAMSIZ] = '\0';
for (ptr = ar->sname + AR_NAMSIZ; ptr > ar->sname; ptr--)
if (ptr[-1] != ' ')
break;
*ptr = '\0';
/*
* Parse the size. All entries need to have a size. Be careful
* to not allow buffer overruns.
*/
strncpy(buf, ar->hdr.ar_size, sizeof(ar->hdr.ar_size));
buf[sizeof(ar->hdr.ar_size)] = '\0';
errno = 0;
ar->size = strtoumax(buf, &end, 10);
if (errno != 0 || strspn(end, " ") != strlen(end)) {
ArchError(("%s: bad size format in archive '%s'",
ar->fname, buf));
return (-1);
}
/*
* Look for the extended name table. Do this before parsing
* the date because this table doesn't need a date.
*/
if (strcmp(ar->sname, BSD_NAMEMAG) == 0 ||
strcmp(ar->sname, SVR4_NAMEMAG) == 0) {
/* filename table - read it in */
ar->nametablen = ar->size;
ar->nametab = emalloc(ar->nametablen);
ret = fread(ar->nametab, 1, ar->nametablen, ar->fp);
if (ret != ar->nametablen) {
if (ferror(ar->fp)) {
ArchError(("%s: cannot read nametab: %s",
ar->fname, strerror(errno)));
} else {
ArchError(("%s: cannot read nametab: "
"short read", ar->fname, strerror(errno)));
}
return (-1);
}
/*
* NUL terminate the entries. Entries are \n terminated
* and may have a trailing / or \.
*/
ptr = ar->nametab;
while (ptr < ar->nametab + ar->nametablen) {
if (*ptr == '\n') {
if (ptr[-1] == '/' || ptr[-1] == '\\')
ptr[-1] = '\0';
*ptr = '\0';
}
ptr++;
}
/* get next archive entry */
goto next;
}
/*
* Now parse the modification date. Be careful to not overrun
* buffers.
*/
strncpy(buf, ar->hdr.ar_date, sizeof(ar->hdr.ar_date));
buf[sizeof(ar->hdr.ar_date)] = '\0';
errno = 0;
ar->time = (int64_t)strtoll(buf, &end, 10);
if (errno != 0 || strspn(end, " ") != strlen(end)) {
ArchError(("%s: bad date format in archive '%s'",
ar->fname, buf));
return (-1);
}
/*
* Now check for the symbol table. This should really be the first
* entry, but we don't check this.
*/
if (strcmp(ar->sname, BSD_RANLIBMAG) == 0 ||
strcmp(ar->sname, SVR4_RANLIBMAG) == 0) {
/* symbol table - return a zero length name */
ar->member[0] = '\0';
ar->sname[0] = '\0';
return (1);
}
have_long_name = 0;
/*
* Look whether this is a long name. There are several variants
* of long names:
* "#1/12 " - 12 length of following filename
* "/17 " - index into name table
* " 17 " - index into name table
* Note that in the last case we must also check that there is no
* slash in the name because of filenames with leading spaces:
* " 777.o/ " - filename 777.o
*/
if (ar->sname[0] == '/' || (ar->sname[0] == ' ' &&
strchr(ar->sname, '/') == NULL)) {
/* SVR4 extended name */
errno = 0;
offs = strtoul(ar->sname + 1, &end, 10);
if (errno != 0 || *end != '\0' || offs >= ar->nametablen ||
end == ar->sname + 1) {
ArchError(("%s: bad extended name '%s'", ar->fname,
ar->sname));
return (-1);
}
/* fetch the name */
if (ar->mlen <= strlen(ar->nametab + offs)) {
ar->mlen = strlen(ar->nametab + offs) + 1;
ar->member = erealloc(ar->member, ar->mlen);
}
strcpy(ar->member, ar->nametab + offs);
have_long_name = 1;
} else if (strncmp(ar->sname, BSD_EXT1, BSD_EXT1LEN) == 0 &&
isdigit(ar->sname[BSD_EXT1LEN])) {
/* BSD4.4 extended name */
errno = 0;
offs = strtoul(ar->sname + BSD_EXT1LEN, &end, 10);
if (errno != 0 || *end != '\0' ||
end == ar->sname + BSD_EXT1LEN) {
ArchError(("%s: bad extended name '%s'", ar->fname,
ar->sname));
return (-1);
}
/* read it from the archive */
if (ar->mlen <= offs) {
ar->mlen = offs + 1;
ar->member = erealloc(ar->member, ar->mlen);
}
ret = fread(ar->member, 1, offs, ar->fp);
if (ret != offs) {
if (ferror(ar->fp)) {
ArchError(("%s: reading extended name: %s",
ar->fname, strerror(errno)));
} else {
ArchError(("%s: reading extended name: "
"short read", ar->fname));
}
return (-1);
}
ar->member[offs] = '\0';
have_long_name = 1;
}
/*
* Now remove the trailing slash that Svr4 puts at
* the end of the member name to support trailing spaces in names.
*/
if (ptr > ar->sname && ptr[-1] == '/')
*--ptr = '\0';
if (!have_long_name) {
if (strlen(ar->sname) >= ar->mlen) {
ar->mlen = strlen(ar->sname) + 1;
ar->member = erealloc(ar->member, ar->mlen);
}
strcpy(ar->member, ar->sname);
}
return (1);
}
/*
* Touch the current archive member by writing a new header with an
* updated timestamp. The return value is 0 for success and -1 for errors.
*/
static int
ArchArchiveTouch(struct arfile *ar, int64_t ts)
{
/* seek to our header */
if (fseeko(ar->fp, ar->pos, SEEK_SET) == -1) {
ArchError(("%s: cannot seek to %jd: %s", ar->fname,
(intmax_t)ar->pos, strerror(errno)));
return (-1);
}
/*
* change timestamp, be sure to not NUL-terminated it, but
* to fill with spaces.
*/
snprintf(ar->hdr.ar_date, sizeof(ar->hdr.ar_date), "%lld", ts);
memset(ar->hdr.ar_date + strlen(ar->hdr.ar_date),
' ', sizeof(ar->hdr.ar_date) - strlen(ar->hdr.ar_date));
if (fwrite(&ar->hdr, sizeof(ar->hdr), 1, ar->fp) != 1) {
ArchError(("%s: cannot touch: %s", ar->fname, strerror(errno)));
return (-1);
}
return (0);
}
/*-
*-----------------------------------------------------------------------
* ArchFindMember --
* Locate a member of an archive, given the path of the archive and
* the path of the desired member. If the archive is to be modified,
* the mode should be "r+", if not, it should be "r". The archive
* file is returned positioned at the correct header.
*
* Results:
* A struct arfile *, opened for reading and, possibly writing,
* positioned at the member's header, or NULL if the member was
* nonexistent.
*
*-----------------------------------------------------------------------
*/
static struct arfile *
ArchFindMember(const char *archive, const char *member, const char *mode)
{
struct arfile *ar;
const char *cp; /* Useful character pointer */
if ((ar = ArchArchiveOpen(archive, mode)) == NULL)
return (NULL);
/*
* Because of space constraints and similar things, files are archived
* using their final path components, not the entire thing, so we need
* to point 'member' to the final component, if there is one, to make
* the comparisons easier...
*/
if (member != NULL) {
cp = strrchr(member, '/');
if (cp != NULL) {
member = cp + 1;
}
}
while (ArchArchiveNext(ar) > 0) {
/*
* When comparing there are actually three cases:
* (1) the name fits into the limit og af_name,
* (2) the name is longer and the archive supports long names,
* (3) the name is longer and the archive doesn't support long
* names.
* Because we don't know whether the archive supports long
* names or not we need to be carefull.
*/
if (member == NULL) {
/* special case - symbol table */
if (ar->member[0] == '\0')
return (ar);
} else if (strlen(member) <= AR_NAMSIZ) {
/* case (1) */
if (strcmp(ar->member, member) == 0)
return (ar);
} else if (strcmp(ar->member, member) == 0) {
/* case (3) */
return (ar);
} else {
/* case (2) */
if (strlen(ar->member) == AR_NAMSIZ &&
strncmp(member, ar->member, AR_NAMSIZ) == 0)
return (ar);
}
}
/* not found */
ArchArchiveClose(ar);
return (NULL);
}
/*-
*-----------------------------------------------------------------------
* ArchStatMember --
* Locate a member of an archive, given the path of the archive and
* the path of the desired member, and a boolean representing whether
* or not the archive should be hashed (if not already hashed).
*
* Results:
* A pointer to the current struct ar_hdr structure for the member. Note
* That no position is returned, so this is not useful for touching
* archive members. This is mostly because we have no assurances that
* The archive will remain constant after we read all the headers, so
* there's not much point in remembering the position...
*
* Side Effects:
*
*-----------------------------------------------------------------------
*/
static int64_t
ArchStatMember(const char *archive, const char *member, Boolean hash)
{
struct arfile *arf;
int64_t ret;
int t;
char *cp; /* Useful character pointer */
Arch *ar; /* Archive descriptor */
Hash_Entry *he; /* Entry containing member's description */
char copy[AR_NAMSIZ + 1];
/*
* Because of space constraints and similar things, files are archived
* using their final path components, not the entire thing, so we need
* to point 'member' to the final component, if there is one, to make
* the comparisons easier...
*/
if (member != NULL) {
cp = strrchr(member, '/');
if (cp != NULL)
member = cp + 1;
}
TAILQ_FOREACH(ar, &archives, link) {
if (strcmp(archive, ar->name) == 0)
break;
}
if (ar == NULL) {
/* archive not found */
if (!hash) {
/*
* Caller doesn't want the thing hashed, just use
* ArchFindMember to read the header for the member
* out and close down the stream again.
*/
arf = ArchFindMember(archive, member, "r");
if (arf == NULL) {
return (INT64_MIN);
}
ret = arf->time;
ArchArchiveClose(arf);
return (ret);
}
/*
* We don't have this archive on the list yet, so we want to
* find out everything that's in it and cache it so we can get
* at it quickly.
*/
arf = ArchArchiveOpen(archive, "r");
if (arf == NULL) {
return (INT64_MIN);
}
/* create archive data structure */
ar = emalloc(sizeof(*ar));
ar->name = estrdup(archive);
Hash_InitTable(&ar->members, -1);
while ((t = ArchArchiveNext(arf)) > 0) {
he = Hash_CreateEntry(&ar->members, arf->member, NULL);
Hash_SetValue(he, emalloc(sizeof(int64_t)));
*(int64_t *)Hash_GetValue(he) = arf->time;
}
ArchArchiveClose(arf);
if (t < 0) {
/* error happend - throw away everything */
Hash_DeleteTable(&ar->members);
free(ar->name);
free(ar);
return (INT64_MIN);
}
TAILQ_INSERT_TAIL(&archives, ar, link);
}
/*
* Now that the archive has been read and cached, we can look into
* the hash table to find the desired member's header.
*/
he = Hash_FindEntry(&ar->members, member);
if (he != NULL)
return (*(int64_t *)Hash_GetValue (he));
if (member != NULL && strlen(member) > AR_NAMSIZ) {
/* Try truncated name */
strncpy(copy, member, AR_NAMSIZ);
copy[AR_NAMSIZ] = '\0';
if ((he = Hash_FindEntry(&ar->members, copy)) != NULL)
return (*(int64_t *)Hash_GetValue(he));
}
return (INT64_MIN);
}
/*-
*-----------------------------------------------------------------------
* Arch_Touch --
* Touch a member of an archive.
*
* Results:
* The 'time' field of the member's header is updated.
*
* Side Effects:
* The modification time of the entire archive is also changed.
* For a library, this could necessitate the re-ranlib'ing of the
* whole thing.
*
*-----------------------------------------------------------------------
*/
void
Arch_Touch(GNode *gn)
{
struct arfile *ar;
char *p1, *p2;
ar = ArchFindMember(Var_Value(ARCHIVE, gn, &p1),
Var_Value(TARGET, gn, &p2), "r+");
free(p1);
free(p2);
if (ar != NULL) {
ArchArchiveTouch(ar, (int64_t)now);
ArchArchiveClose(ar);
}
}
/*-
*-----------------------------------------------------------------------
* Arch_TouchLib --
* Given a node which represents a library, touch the thing, making
* sure that the table of contents also is touched.
*
* Results:
* None.
*
* Side Effects:
* Both the modification time of the library and of the RANLIBMAG
* member are set to 'now'.
*
*-----------------------------------------------------------------------
*/
void
Arch_TouchLib(GNode *gn)
{
struct arfile *ar; /* Open archive */
struct utimbuf times; /* Times for utime() call */
ar = ArchFindMember(gn->path, NULL, "r+");
if (ar != NULL) {
ArchArchiveTouch(ar, (int64_t)now);
ArchArchiveClose(ar);
times.actime = times.modtime = now;
utime(gn->path, &times);
}
}
/*-
*-----------------------------------------------------------------------
* Arch_MTime --
* Return the modification time of a member of an archive, given its
* name.
*
* Results:
* The modification time(seconds).
* XXXHB this should be a long.
*
* Side Effects:
* The mtime field of the given node is filled in with the value
* returned by the function.
*
*-----------------------------------------------------------------------
*/
int
Arch_MTime(GNode *gn)
{
int64_t mtime;
char *p1, *p2;
mtime = ArchStatMember(Var_Value(ARCHIVE, gn, &p1),
Var_Value(TARGET, gn, &p2), TRUE);
free(p1);
free(p2);
if (mtime == INT_MIN) {
mtime = 0;
}
gn->mtime = (int)mtime; /* XXX */
return (gn->mtime);
}
/*-
*-----------------------------------------------------------------------
* Arch_MemMTime --
* Given a non-existent archive member's node, get its modification
* time from its archived form, if it exists.
*
* Results:
* The modification time.
*
* Side Effects:
* The mtime field is filled in.
*
*-----------------------------------------------------------------------
*/
int
Arch_MemMTime(GNode *gn)
{
LstNode *ln;
GNode *pgn;
char *nameStart;
char *nameEnd;
for (ln = Lst_First(&gn->parents); ln != NULL; ln = Lst_Succ(ln)) {
pgn = Lst_Datum(ln);
if (pgn->type & OP_ARCHV) {
/*
* If the parent is an archive specification and is
* being made and its member's name matches the name of
* the node we were given, record the modification time
* of the parent in the child. We keep searching its
* parents in case some other parent requires this
* child to exist...
*/
nameStart = strchr(pgn->name, '(') + 1;
nameEnd = strchr(nameStart, ')');
if (pgn->make && strncmp(nameStart, gn->name,
nameEnd - nameStart) == 0) {
gn->mtime = Arch_MTime(pgn);
}
} else if (pgn->make) {
/*
* Something which isn't a library depends on the
* existence of this target, so it needs to exist.
*/
gn->mtime = 0;
break;
}
}
return (gn->mtime);
}
/*-
*-----------------------------------------------------------------------
* Arch_FindLib --
* Search for a named library along the given search path.
*
* Results:
* None.
*
* Side Effects:
* The node's 'path' field is set to the found path (including the
* actual file name, not -l...). If the system can handle the -L
* flag when linking (or we cannot find the library), we assume that
* the user has placed the .LIBRARIES variable in the final linking
* command (or the linker will know where to find it) and set the
* TARGET variable for this node to be the node's name. Otherwise,
* we set the TARGET variable to be the full path of the library,
* as returned by Dir_FindFile.
*
*-----------------------------------------------------------------------
*/
void
Arch_FindLib(GNode *gn, struct Path *path)
{
char *libName; /* file name for archive */
size_t sz;
sz = strlen(gn->name) + 4;
libName = emalloc(sz);
snprintf(libName, sz, "lib%s.a", &gn->name[2]);
gn->path = Path_FindFile(libName, path);
free(libName);
#ifdef LIBRARIES
Var_Set(TARGET, gn->name, gn);
#else
Var_Set(TARGET, gn->path == NULL ? gn->name : gn->path, gn);
#endif /* LIBRARIES */
}
/*-
*-----------------------------------------------------------------------
* Arch_LibOODate --
* Decide if a node with the OP_LIB attribute is out-of-date. Called
* from Make_OODate to make its life easier, with the library's
* graph node.
*
* There are several ways for a library to be out-of-date that are
* not available to ordinary files. In addition, there are ways
* that are open to regular files that are not available to
* libraries. A library that is only used as a source is never
* considered out-of-date by itself. This does not preclude the
* library's modification time from making its parent be out-of-date.
* A library will be considered out-of-date for any of these reasons,
* given that it is a target on a dependency line somewhere:
* Its modification time is less than that of one of its
* sources (gn->mtime < gn->cmtime).
* Its modification time is greater than the time at which the
* make began (i.e. it's been modified in the course
* of the make, probably by archiving).
* The modification time of one of its sources is greater than
* the one of its RANLIBMAG member (i.e. its table of contents
* is out-of-date). We don't compare of the archive time
* vs. TOC time because they can be too close. In my
* opinion we should not bother with the TOC at all since
* this is used by 'ar' rules that affect the data contents
* of the archive, not by ranlib rules, which affect the
* TOC.
*
* Results:
* TRUE if the library is out-of-date. FALSE otherwise.
*
* Side Effects:
* The library will be hashed if it hasn't been already.
*
*-----------------------------------------------------------------------
*/
Boolean
Arch_LibOODate(GNode *gn)
{
int64_t mtime; /* The table-of-contents's mod time */
if (OP_NOP(gn->type) && Lst_IsEmpty(&gn->children)) {
return (FALSE);
}
if (gn->mtime > now || gn->mtime < gn->cmtime) {
return (TRUE);
}
mtime = ArchStatMember(gn->path, NULL, FALSE);
if (mtime == INT64_MIN) {
/*
* Not found. A library w/o a table of contents is out-of-date
*/
if (DEBUG(ARCH) || DEBUG(MAKE)) {
Debug("No TOC...");
}
return (TRUE);
}
/* XXX choose one. */
if (DEBUG(ARCH) || DEBUG(MAKE)) {
Debug("TOC modified %s...", Targ_FmtTime(mtime));
}
return (gn->cmtime > mtime);
}