Andrey A. Chernov 72faa78f5b Use -lgnuregex properly
Install infopages
1995-01-12 01:30:34 +00:00

2238 lines
65 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Permuted index for GNU, with keywords in their context.
Copyright (C) 1990, 1991, 1993 Free Software Foundation, Inc.
Francois Pinard <pinard@iro.umontreal.ca>, 1988.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
const char *version_string = "GNU ptx version 0.3";
char *const copyright = "\
This program is free software; you can redistribute it and/or modify\n\
it under the terms of the GNU General Public License as published by\n\
the Free Software Foundation; either version 2, or (at your option)\n\
any later version.\n\
\n\
This program is distributed in the hope that it will be useful,\n\
but WITHOUT ANY WARRANTY; without even the implied warranty of\n\
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n\
GNU General Public License for more details.\n\
\n\
You should have received a copy of the GNU General Public License\n\
along with this program; if not, write to the Free Software\n\
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.\n";
/* Reallocation step when swallowing non regular files. The value is not
the actual reallocation step, but its base two logarithm. */
#define SWALLOW_REALLOC_LOG 12
/* Imported from "regex.c". */
#define Sword 1
#ifdef STDC_HEADERS
#include <stdlib.h>
#include <ctype.h>
#else /* not STDC_HEADERS */
/* These definitions work, for all 256 characters. */
#define isspace(c) ((c) == ' ' || (c) == '\t' || (c) == '\n')
#define isxdigit(c) \
(((unsigned char) (c) >= 'a' && (unsigned char) (c) <= 'f') \
|| ((unsigned char) (c) >= 'A' && (unsigned char) (c) <= 'F') \
|| ((unsigned char) (c) >= '0' && (unsigned char) (c) <= '9'))
#define islower(c) ((unsigned char) (c) >= 'a' && (unsigned char) (c) <= 'z')
#define isupper(c) ((unsigned char) (c) >= 'A' && (unsigned char) (c) <= 'Z')
#define isalpha(c) (islower (c) || isupper (c))
#define toupper(c) (islower (c) ? (c) - 'a' + 'A' : (c))
#endif /* not STDC_HEADERS */
#if !defined (isascii) || defined (STDC_HEADERS)
#undef isascii
#define isascii(c) 1
#endif
#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
#define ISODIGIT(c) ((c) >= '0' && (c) <= '7')
#define HEXTOBIN(c) ((c)>='a'&&(c)<='f' ? (c)-'a'+10 : (c)>='A'&&(c)<='F' ? (c)-'A'+10 : (c)-'0')
#define OCTTOBIN(c) ((c) - '0')
#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#if !defined(S_ISREG) && defined(S_IFREG)
#define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#else /* not HAVE_STRING_H */
#include <strings.h>
#define strchr index
#define strrchr rindex
#endif /* not HAVE_STRING_H */
#include "getopt.h"
#include <errno.h>
#ifndef errno
extern int errno;
#endif
#include "bumpalloc.h"
#include "diacrit.h"
#include "gnuregex.h"
#ifndef __STDC__
void *xmalloc ();
void *xrealloc ();
#else
void *xmalloc (int);
void *xrealloc (void *, int);
#endif
/* Global definitions. */
const char *program_name; /* name of this program */
static int show_help = 0; /* display usage information and exit */
static int show_version = 0; /* print the version and exit */
/* Program options. */
enum Format
{
DUMB_FORMAT, /* output for a dumb terminal */
ROFF_FORMAT, /* output for `troff' or `nroff' */
TEX_FORMAT, /* output for `TeX' or `LaTeX' */
UNKNOWN_FORMAT /* output format still unknown */
};
int gnu_extensions = 1; /* trigger all GNU extensions */
int auto_reference = 0; /* references are `file_name:line_number:' */
int input_reference = 0; /* references at beginning of input lines */
int right_reference = 0; /* output references after right context */
int line_width = 72; /* output line width in characters */
int gap_size = 3; /* number of spaces between output fields */
const char *truncation_string = "/";
/* string used to mark line truncations */
const char *macro_name = "xx"; /* macro name for roff or TeX output */
enum Format output_format = UNKNOWN_FORMAT;
/* output format */
int ignore_case = 0; /* fold lower to upper case for sorting */
const char *context_regex_string = NULL;
/* raw regex for end of context */
const char *word_regex_string = NULL;
/* raw regex for a keyword */
const char *break_file = NULL; /* name of the `Break characters' file */
const char *only_file = NULL; /* name of the `Only words' file */
const char *ignore_file = NULL; /* name of the `Ignore words' file */
/* A BLOCK delimit a region in memory of arbitrary size, like the copy of a
whole file. A WORD is something smaller, its length should fit in a
short integer. A WORD_TABLE may contain several WORDs. */
typedef struct
{
char *start; /* pointer to beginning of region */
char *end; /* pointer to end + 1 of region */
}
BLOCK;
typedef struct
{
char *start; /* pointer to beginning of region */
short size; /* length of the region */
}
WORD;
typedef struct
{
WORD *start; /* array of WORDs */
size_t length; /* number of entries */
}
WORD_TABLE;
/* Pattern description tables. */
/* For each character, provide its folded equivalent. */
unsigned char folded_chars[CHAR_SET_SIZE];
/* For each character, indicate if it is part of a word. */
char syntax_table[CHAR_SET_SIZE];
char *re_syntax_table = syntax_table;
/* Compiled regex for end of context. */
struct re_pattern_buffer *context_regex;
/* End of context pattern register indices. */
struct re_registers context_regs;
/* Compiled regex for a keyword. */
struct re_pattern_buffer *word_regex;
/* Keyword pattern register indices. */
struct re_registers word_regs;
/* A word characters fastmap is used only when no word regexp has been
provided. A word is then made up of a sequence of one or more characters
allowed by the fastmap. Contains !0 if character allowed in word. Not
only this is faster in most cases, but it simplifies the implementation
of the Break files. */
char word_fastmap[CHAR_SET_SIZE];
/* Maximum length of any word read. */
int maximum_word_length;
/* Maximum width of any reference used. */
int reference_max_width;
/* Ignore and Only word tables. */
WORD_TABLE ignore_table; /* table of words to ignore */
WORD_TABLE only_table; /* table of words to select */
#define ALLOC_NEW_WORD(table) \
BUMP_ALLOC ((table)->start, (table)->length, 8, WORD)
/* Source text table, and scanning macros. */
int number_input_files; /* number of text input files */
int total_line_count; /* total number of lines seen so far */
const char **input_file_name; /* array of text input file names */
int *file_line_count; /* array of `total_line_count' values at end */
BLOCK text_buffer; /* file to study */
char *text_buffer_maxend; /* allocated end of text_buffer */
/* SKIP_NON_WHITE used only for getting or skipping the reference. */
#define SKIP_NON_WHITE(cursor, limit) \
while (cursor < limit && !isspace(*cursor)) \
cursor++
#define SKIP_WHITE(cursor, limit) \
while (cursor < limit && isspace(*cursor)) \
cursor++
#define SKIP_WHITE_BACKWARDS(cursor, start) \
while (cursor > start && isspace(cursor[-1])) \
cursor--
#define SKIP_SOMETHING(cursor, limit) \
do \
if (word_regex_string) \
{ \
int count; \
count = re_match (word_regex, cursor, limit - cursor, 0, NULL); \
cursor += count <= 0 ? 1 : count; \
} \
else if (word_fastmap[(unsigned char) *cursor]) \
while (cursor < limit && word_fastmap[(unsigned char) *cursor]) \
cursor++; \
else \
cursor++; \
while (0)
/* Occurrences table.
The `keyword' pointer provides the central word, which is surrounded
by a left context and a right context. The `keyword' and `length'
field allow full 8-bit characters keys, even including NULs. At other
places in this program, the name `keyafter' refers to the keyword
followed by its right context.
The left context does not extend, towards the beginning of the file,
further than a distance given by the `left' value. This value is
relative to the keyword beginning, it is usually negative. This
insures that, except for white space, we will never have to backward
scan the source text, when it is time to generate the final output
lines.
The right context, indirectly attainable through the keyword end, does
not extend, towards the end of the file, further than a distance given
by the `right' value. This value is relative to the keyword
beginning, it is usually positive.
When automatic references are used, the `reference' value is the
overall line number in all input files read so far, in this case, it
is of type (int). When input references are used, the `reference'
value indicates the distance between the keyword beginning and the
start of the reference field, it is of type (DELTA) and usually
negative. */
typedef short DELTA; /* to hold displacement within one context */
typedef struct
{
WORD key; /* description of the keyword */
DELTA left; /* distance to left context start */
DELTA right; /* distance to right context end */
int reference; /* reference descriptor */
}
OCCURS;
/* The various OCCURS tables are indexed by the language. But the time
being, there is no such multiple language support. */
OCCURS *occurs_table[1]; /* all words retained from the read text */
size_t number_of_occurs[1]; /* number of used slots in occurs_table */
#define ALLOC_NEW_OCCURS(language) \
BUMP_ALLOC (occurs_table[language], number_of_occurs[language], 9, OCCURS)
/* Communication among output routines. */
/* Indicate if special output processing is requested for each character. */
char edited_flag[CHAR_SET_SIZE];
int half_line_width; /* half of line width, reference excluded */
int before_max_width; /* maximum width of before field */
int keyafter_max_width; /* maximum width of keyword-and-after field */
int truncation_string_length; /* length of string used to flag truncation */
/* When context is limited by lines, wraparound may happen on final output:
the `head' pointer gives access to some supplementary left context which
will be seen at the end of the output line, the `tail' pointer gives
access to some supplementary right context which will be seen at the
beginning of the output line. */
BLOCK tail; /* tail field */
int tail_truncation; /* flag truncation after the tail field */
BLOCK before; /* before field */
int before_truncation; /* flag truncation before the before field */
BLOCK keyafter; /* keyword-and-after field */
int keyafter_truncation; /* flag truncation after the keyafter field */
BLOCK head; /* head field */
int head_truncation; /* flag truncation before the head field */
BLOCK reference; /* reference field for input reference mode */
/* Miscellaneous routines. */
/*------------------------------------------------------.
| Duplicate string STRING, while evaluating \-escapes. |
`------------------------------------------------------*/
/* Loosely adapted from GNU shellutils printf.c code. */
char *
copy_unescaped_string (const char *string)
{
char *result; /* allocated result */
char *cursor; /* cursor in result */
int value; /* value of \nnn escape */
int length; /* length of \nnn escape */
result = xmalloc (strlen (string) + 1);
cursor = result;
while (*string)
if (*string == '\\')
{
string++;
switch (*string)
{
case 'x': /* \xhhh escape, 3 chars maximum */
value = 0;
for (length = 0, string++;
length < 3 && ISXDIGIT (*string);
length++, string++)
value = value * 16 + HEXTOBIN (*string);
if (length == 0)
{
*cursor++ = '\\';
*cursor++ = 'x';
}
else
*cursor++ = value;
break;
case '0': /* \0ooo escape, 3 chars maximum */
value = 0;
for (length = 0, string++;
length < 3 && ISODIGIT (*string);
length++, string++)
value = value * 8 + OCTTOBIN (*string);
*cursor++ = value;
break;
case 'a': /* alert */
#if __STDC__
*cursor++ = '\a';
#else
*cursor++ = 7;
#endif
string++;
break;
case 'b': /* backspace */
*cursor++ = '\b';
string++;
break;
case 'c': /* cancel the rest of the output */
while (*string)
string++;
break;
case 'f': /* form feed */
*cursor++ = '\f';
string++;
break;
case 'n': /* new line */
*cursor++ = '\n';
string++;
break;
case 'r': /* carriage return */
*cursor++ = '\r';
string++;
break;
case 't': /* horizontal tab */
*cursor++ = '\t';
string++;
break;
case 'v': /* vertical tab */
#if __STDC__
*cursor++ = '\v';
#else
*cursor++ = 11;
#endif
string++;
break;
default:
*cursor++ = '\\';
*cursor++ = *string++;
break;
}
}
else
*cursor++ = *string++;
*cursor = '\0';
return result;
}
/*-------------------------------------------------------------------.
| Compile the regex represented by STRING, diagnose and abort if any |
| error. Returns the compiled regex structure. |
`-------------------------------------------------------------------*/
struct re_pattern_buffer *
alloc_and_compile_regex (const char *string)
{
struct re_pattern_buffer *pattern; /* newly allocated structure */
const char *message; /* error message returned by regex.c */
pattern = (struct re_pattern_buffer *)
xmalloc (sizeof (struct re_pattern_buffer));
memset (pattern, 0, sizeof (struct re_pattern_buffer));
pattern->buffer = NULL;
pattern->allocated = 0;
pattern->translate = ignore_case ? (char *) folded_chars : NULL;
pattern->fastmap = (char *) xmalloc (CHAR_SET_SIZE);
message = re_compile_pattern (string, strlen (string), pattern);
if (message)
error (1, 0, "%s (for regexp `%s')", message, string);
/* The fastmap should be compiled before `re_match'. The following
call is not mandatory, because `re_search' is always called sooner,
and it compiles the fastmap if this has not been done yet. */
re_compile_fastmap (pattern);
/* Do not waste extra allocated space. */
if (pattern->allocated > pattern->used)
{
pattern->buffer
= (unsigned char *) xrealloc (pattern->buffer, pattern->used);
pattern->allocated = pattern->used;
}
return pattern;
}
/*------------------------------------------------------------------------.
| This will initialize various tables for pattern match and compiles some |
| regexps. |
`------------------------------------------------------------------------*/
void
initialize_regex (void)
{
int character; /* character value */
/* Initialize the regex syntax table. */
for (character = 0; character < CHAR_SET_SIZE; character++)
syntax_table[character] = isalpha (character) ? Sword : 0;
/* Initialize the case folding table. */
if (ignore_case)
for (character = 0; character < CHAR_SET_SIZE; character++)
folded_chars[character] = toupper (character);
/* Unless the user already provided a description of the end of line or
end of sentence sequence, select an end of line sequence to compile.
If the user provided an empty definition, thus disabling end of line
or sentence feature, make it NULL to speed up tests. If GNU
extensions are enabled, use end of sentence like in GNU emacs. If
disabled, use end of lines. */
if (context_regex_string)
{
if (!*context_regex_string)
context_regex_string = NULL;
}
else if (gnu_extensions && !input_reference)
context_regex_string = "[.?!][]\"')}]*\\($\\|\t\\| \\)[ \t\n]*";
else
context_regex_string = "\n";
if (context_regex_string)
context_regex = alloc_and_compile_regex (context_regex_string);
/* If the user has already provided a non-empty regexp to describe
words, compile it. Else, unless this has already been done through
a user provided Break character file, construct a fastmap of
characters that may appear in a word. If GNU extensions enabled,
include only letters of the underlying character set. If disabled,
include almost everything, even punctuations; stop only on white
space. */
if (word_regex_string && *word_regex_string)
word_regex = alloc_and_compile_regex (word_regex_string);
else if (!break_file)
if (gnu_extensions)
{
/* Simulate \w+. */
for (character = 0; character < CHAR_SET_SIZE; character++)
word_fastmap[character] = isalpha (character);
}
else
{
/* Simulate [^ \t\n]+. */
memset (word_fastmap, 1, CHAR_SET_SIZE);
word_fastmap[' '] = 0;
word_fastmap['\t'] = 0;
word_fastmap['\n'] = 0;
}
}
/*------------------------------------------------------------------------.
| This routine will attempt to swallow a whole file name FILE_NAME into a |
| contiguous region of memory and return a description of it into BLOCK. |
| Standard input is assumed whenever FILE_NAME is NULL, empty or "-". |
| |
| Previously, in some cases, white space compression was attempted while |
| inputting text. This was defeating some regexps like default end of |
| sentence, which checks for two consecutive spaces. If white space |
| compression is ever reinstated, it should be in output routines. |
`------------------------------------------------------------------------*/
void
swallow_file_in_memory (const char *file_name, BLOCK *block)
{
int file_handle; /* file descriptor number */
struct stat stat_block; /* stat block for file */
int allocated_length; /* allocated length of memory buffer */
int used_length; /* used length in memory buffer */
int read_length; /* number of character gotten on last read */
/* As special cases, a file name which is NULL or "-" indicates standard
input, which is already opened. In all other cases, open the file from
its name. */
if (!file_name || !*file_name || strcmp (file_name, "-") == 0)
file_handle = fileno (stdin);
else
if ((file_handle = open (file_name, O_RDONLY)) < 0)
error (1, errno, file_name);
/* If the file is a plain, regular file, allocate the memory buffer all at
once and swallow the file in one blow. In other cases, read the file
repeatedly in smaller chunks until we have it all, reallocating memory
once in a while, as we go. */
if (fstat (file_handle, &stat_block) < 0)
error (1, errno, file_name);
if (S_ISREG (stat_block.st_mode))
{
block->start = (char *) xmalloc ((int) stat_block.st_size);
if (read (file_handle, block->start, (int) stat_block.st_size)
!= stat_block.st_size)
error (1, errno, file_name);
block->end = block->start + stat_block.st_size;
}
else
{
block->start = (char *) xmalloc (1 << SWALLOW_REALLOC_LOG);
used_length = 0;
allocated_length = (1 << SWALLOW_REALLOC_LOG);
while ((read_length = read (file_handle,
block->start + used_length,
allocated_length - used_length)) > 0)
{
used_length += read_length;
if (used_length == allocated_length)
{
allocated_length += (1 << SWALLOW_REALLOC_LOG);
block->start
= (char *) xrealloc (block->start, allocated_length);
}
}
if (read_length < 0)
error (1, errno, file_name);
block->end = block->start + used_length;
}
/* Close the file, but only if it was not the standard input. */
if (file_handle != fileno (stdin))
close (file_handle);
}
/* Sort and search routines. */
/*--------------------------------------------------------------------------.
| Compare two words, FIRST and SECOND, and return 0 if they are identical. |
| Return less than 0 if the first word goes before the second; return |
| greater than 0 if the first word goes after the second. |
| |
| If a word is indeed a prefix of the other, the shorter should go first. |
`--------------------------------------------------------------------------*/
int
compare_words (const void *void_first, const void *void_second)
{
#define first ((WORD *) void_first)
#define second ((WORD *) void_second)
int length; /* minimum of two lengths */
int counter; /* cursor in words */
int value; /* value of comparison */
length = first->size < second->size ? first->size : second->size;
if (ignore_case)
{
for (counter = 0; counter < length; counter++)
{
value = (folded_chars [(unsigned char) (first->start[counter])]
- folded_chars [(unsigned char) (second->start[counter])]);
if (value != 0)
return value;
}
}
else
{
for (counter = 0; counter < length; counter++)
{
value = ((unsigned char) first->start[counter]
- (unsigned char) second->start[counter]);
if (value != 0)
return value;
}
}
return first->size - second->size;
#undef first
#undef second
}
/*-----------------------------------------------------------------------.
| Decides which of two OCCURS, FIRST or SECOND, should lexicographically |
| go first. In case of a tie, preserve the original order through a |
| pointer comparison. |
`-----------------------------------------------------------------------*/
int
compare_occurs (const void *void_first, const void *void_second)
{
#define first ((OCCURS *) void_first)
#define second ((OCCURS *) void_second)
int value;
value = compare_words (&first->key, &second->key);
return value == 0 ? first->key.start - second->key.start : value;
#undef first
#undef second
}
/*------------------------------------------------------------.
| Return !0 if WORD appears in TABLE. Uses a binary search. |
`------------------------------------------------------------*/
int
search_table (WORD *word, WORD_TABLE *table)
{
int lowest; /* current lowest possible index */
int highest; /* current highest possible index */
int middle; /* current middle index */
int value; /* value from last comparison */
lowest = 0;
highest = table->length - 1;
while (lowest <= highest)
{
middle = (lowest + highest) / 2;
value = compare_words (word, table->start + middle);
if (value < 0)
highest = middle - 1;
else if (value > 0)
lowest = middle + 1;
else
return 1;
}
return 0;
}
/*---------------------------------------------------------------------.
| Sort the whole occurs table in memory. Presumably, `qsort' does not |
| take intermediate copies or table elements, so the sort will be |
| stabilized throughout the comparison routine. |
`---------------------------------------------------------------------*/
void
sort_found_occurs (void)
{
/* Only one language for the time being. */
qsort (occurs_table[0], number_of_occurs[0], sizeof (OCCURS),
compare_occurs);
}
/* Parameter files reading routines. */
/*----------------------------------------------------------------------.
| Read a file named FILE_NAME, containing a set of break characters. |
| Build a content to the array word_fastmap in which all characters are |
| allowed except those found in the file. Characters may be repeated. |
`----------------------------------------------------------------------*/
void
digest_break_file (const char *file_name)
{
BLOCK file_contents; /* to receive a copy of the file */
char *cursor; /* cursor in file copy */
swallow_file_in_memory (file_name, &file_contents);
/* Make the fastmap and record the file contents in it. */
memset (word_fastmap, 1, CHAR_SET_SIZE);
for (cursor = file_contents.start; cursor < file_contents.end; cursor++)
word_fastmap[(unsigned char) *cursor] = 0;
if (!gnu_extensions)
{
/* If GNU extensions are enabled, the only way to avoid newline as
a break character is to write all the break characters in the
file with no newline at all, not even at the end of the file.
If disabled, spaces, tabs and newlines are always considered as
break characters even if not included in the break file. */
word_fastmap[' '] = 0;
word_fastmap['\t'] = 0;
word_fastmap['\n'] = 0;
}
/* Return the space of the file, which is no more required. */
free (file_contents.start);
}
/*-----------------------------------------------------------------------.
| Read a file named FILE_NAME, containing one word per line, then |
| construct in TABLE a table of WORD descriptors for them. The routine |
| swallows the whole file in memory; this is at the expense of space |
| needed for newlines, which are useless; however, the reading is fast. |
`-----------------------------------------------------------------------*/
void
digest_word_file (const char *file_name, WORD_TABLE *table)
{
BLOCK file_contents; /* to receive a copy of the file */
char *cursor; /* cursor in file copy */
char *word_start; /* start of the current word */
swallow_file_in_memory (file_name, &file_contents);
table->start = NULL;
table->length = 0;
/* Read the whole file. */
cursor = file_contents.start;
while (cursor < file_contents.end)
{
/* Read one line, and save the word in contains. */
word_start = cursor;
while (cursor < file_contents.end && *cursor != '\n')
cursor++;
/* Record the word in table if it is not empty. */
if (cursor > word_start)
{
ALLOC_NEW_WORD (table);
table->start[table->length].start = word_start;
table->start[table->length].size = cursor - word_start;
table->length++;
}
/* This test allows for an incomplete line at end of file. */
if (cursor < file_contents.end)
cursor++;
}
/* Finally, sort all the words read. */
qsort (table->start, table->length, (size_t) sizeof (WORD), compare_words);
}
/* Keyword recognition and selection. */
/*----------------------------------------------------------------------.
| For each keyword in the source text, constructs an OCCURS structure. |
`----------------------------------------------------------------------*/
void
find_occurs_in_text (void)
{
char *cursor; /* for scanning the source text */
char *scan; /* for scanning the source text also */
char *line_start; /* start of the current input line */
char *line_scan; /* newlines scanned until this point */
int reference_length; /* length of reference in input mode */
WORD possible_key; /* possible key, to ease searches */
OCCURS *occurs_cursor; /* current OCCURS under construction */
char *context_start; /* start of left context */
char *context_end; /* end of right context */
char *word_start; /* start of word */
char *word_end; /* end of word */
char *next_context_start; /* next start of left context */
/* reference_length is always used within `if (input_reference)'.
However, GNU C diagnoses that it may be used uninitialized. The
following assignment is merely to shut it up. */
reference_length = 0;
/* Tracking where lines start is helpful for reference processing. In
auto reference mode, this allows counting lines. In input reference
mode, this permits finding the beginning of the references.
The first line begins with the file, skip immediately this very first
reference in input reference mode, to help further rejection any word
found inside it. Also, unconditionally assigning these variable has
the happy effect of shutting up lint. */
line_start = text_buffer.start;
line_scan = line_start;
if (input_reference)
{
SKIP_NON_WHITE (line_scan, text_buffer.end);
reference_length = line_scan - line_start;
SKIP_WHITE (line_scan, text_buffer.end);
}
/* Process the whole buffer, one line or one sentence at a time. */
for (cursor = text_buffer.start;
cursor < text_buffer.end;
cursor = next_context_start)
{
/* `context_start' gets initialized before the processing of each
line, or once for the whole buffer if no end of line or sentence
sequence separator. */
context_start = cursor;
/* If a end of line or end of sentence sequence is defined and
non-empty, `next_context_start' will be recomputed to be the end of
each line or sentence, before each one is processed. If no such
sequence, then `next_context_start' is set at the end of the whole
buffer, which is then considered to be a single line or sentence.
This test also accounts for the case of an incomplete line or
sentence at the end of the buffer. */
if (context_regex_string
&& (re_search (context_regex, cursor, text_buffer.end - cursor,
0, text_buffer.end - cursor, &context_regs)
>= 0))
next_context_start = cursor + context_regs.end[0];
else
next_context_start = text_buffer.end;
/* Include the separator into the right context, but not any suffix
white space in this separator; this insures it will be seen in
output and will not take more space than necessary. */
context_end = next_context_start;
SKIP_WHITE_BACKWARDS (context_end, context_start);
/* Read and process a single input line or sentence, one word at a
time. */
while (1)
{
if (word_regex)
/* If a word regexp has been compiled, use it to skip at the
beginning of the next word. If there is no such word, exit
the loop. */
{
if (re_search (word_regex, cursor, context_end - cursor,
0, context_end - cursor, &word_regs)
< 0)
break;
word_start = cursor + word_regs.start[0];
word_end = cursor + word_regs.end[0];
}
else
/* Avoid re_search and use the fastmap to skip to the
beginning of the next word. If there is no more word in
the buffer, exit the loop. */
{
scan = cursor;
while (scan < context_end
&& !word_fastmap[(unsigned char) *scan])
scan++;
if (scan == context_end)
break;
word_start = scan;
while (scan < context_end
&& word_fastmap[(unsigned char) *scan])
scan++;
word_end = scan;
}
/* Skip right to the beginning of the found word. */
cursor = word_start;
/* Skip any zero length word. Just advance a single position,
then go fetch the next word. */
if (word_end == word_start)
{
cursor++;
continue;
}
/* This is a genuine, non empty word, so save it as a possible
key. Then skip over it. Also, maintain the maximum length of
all words read so far. It is mandatory to take the maximum
length of all words in the file, without considering if they
are actually kept or rejected, because backward jumps at output
generation time may fall in *any* word. */
possible_key.start = cursor;
possible_key.size = word_end - word_start;
cursor += possible_key.size;
if (possible_key.size > maximum_word_length)
maximum_word_length = possible_key.size;
/* In input reference mode, update `line_start' from its previous
value. Count the lines just in case auto reference mode is
also selected. If it happens that the word just matched is
indeed part of a reference; just ignore it. */
if (input_reference)
{
while (line_scan < possible_key.start)
if (*line_scan == '\n')
{
total_line_count++;
line_scan++;
line_start = line_scan;
SKIP_NON_WHITE (line_scan, text_buffer.end);
reference_length = line_scan - line_start;
}
else
line_scan++;
if (line_scan > possible_key.start)
continue;
}
/* Ignore the word if an `Ignore words' table exists and if it is
part of it. Also ignore the word if an `Only words' table and
if it is *not* part of it.
It is allowed that both tables be used at once, even if this
may look strange for now. Just ignore a word that would appear
in both. If regexps are eventually implemented for these
tables, the Ignore table could then reject words that would
have been previously accepted by the Only table. */
if (ignore_file && search_table (&possible_key, &ignore_table))
continue;
if (only_file && !search_table (&possible_key, &only_table))
continue;
/* A non-empty word has been found. First of all, insure
proper allocation of the next OCCURS, and make a pointer to
where it will be constructed. */
ALLOC_NEW_OCCURS (0);
occurs_cursor = occurs_table[0] + number_of_occurs[0];
/* Define the refence field, if any. */
if (auto_reference)
{
/* While auto referencing, update `line_start' from its
previous value, counting lines as we go. If input
referencing at the same time, `line_start' has been
advanced earlier, and the following loop is never really
executed. */
while (line_scan < possible_key.start)
if (*line_scan == '\n')
{
total_line_count++;
line_scan++;
line_start = line_scan;
SKIP_NON_WHITE (line_scan, text_buffer.end);
}
else
line_scan++;
occurs_cursor->reference = total_line_count;
}
else if (input_reference)
{
/* If only input referencing, `line_start' has been computed
earlier to detect the case the word matched would be part
of the reference. The reference position is simply the
value of `line_start'. */
occurs_cursor->reference
= (DELTA) (line_start - possible_key.start);
if (reference_length > reference_max_width)
reference_max_width = reference_length;
}
/* Exclude the reference from the context in simple cases. */
if (input_reference && line_start == context_start)
{
SKIP_NON_WHITE (context_start, context_end);
SKIP_WHITE (context_start, context_end);
}
/* Completes the OCCURS structure. */
occurs_cursor->key = possible_key;
occurs_cursor->left = context_start - possible_key.start;
occurs_cursor->right = context_end - possible_key.start;
number_of_occurs[0]++;
}
}
}
/* Formatting and actual output - service routines. */
/*-----------------------------------------.
| Prints some NUMBER of spaces on stdout. |
`-----------------------------------------*/
void
print_spaces (int number)
{
int counter;
for (counter = number; counter > 0; counter--)
putchar (' ');
}
/*-------------------------------------.
| Prints the field provided by FIELD. |
`-------------------------------------*/
void
print_field (BLOCK field)
{
char *cursor; /* Cursor in field to print */
int character; /* Current character */
int base; /* Base character, without diacritic */
int diacritic; /* Diacritic code for the character */
/* Whitespace is not really compressed. Instead, each white space
character (tab, vt, ht etc.) is printed as one single space. */
for (cursor = field.start; cursor < field.end; cursor++)
{
character = (unsigned char) *cursor;
if (edited_flag[character])
{
/* First check if this is a diacriticized character.
This works only for TeX. I do not know how diacriticized
letters work with `roff'. Please someone explain it to me! */
diacritic = todiac (character);
if (diacritic != 0 && output_format == TEX_FORMAT)
{
base = tobase (character);
switch (diacritic)
{
case 1: /* Latin diphthongs */
switch (base)
{
case 'o':
printf ("\\oe{}");
break;
case 'O':
printf ("\\OE{}");
break;
case 'a':
printf ("\\ae{}");
break;
case 'A':
printf ("\\AE{}");
break;
default:
putchar (' ');
}
break;
case 2: /* Acute accent */
printf ("\\'%s%c", (base == 'i' ? "\\" : ""), base);
break;
case 3: /* Grave accent */
printf ("\\`%s%c", (base == 'i' ? "\\" : ""), base);
break;
case 4: /* Circumflex accent */
printf ("\\^%s%c", (base == 'i' ? "\\" : ""), base);
break;
case 5: /* Diaeresis */
printf ("\\\"%s%c", (base == 'i' ? "\\" : ""), base);
break;
case 6: /* Tilde accent */
printf ("\\~%s%c", (base == 'i' ? "\\" : ""), base);
break;
case 7: /* Cedilla */
printf ("\\c{%c}", base);
break;
case 8: /* Small circle beneath */
switch (base)
{
case 'a':
printf ("\\aa{}");
break;
case 'A':
printf ("\\AA{}");
break;
default:
putchar (' ');
}
break;
case 9: /* Strike through */
switch (base)
{
case 'o':
printf ("\\o{}");
break;
case 'O':
printf ("\\O{}");
break;
default:
putchar (' ');
}
break;
}
}
else
/* This is not a diacritic character, so handle cases which are
really specific to `roff' or TeX. All white space processing
is done as the default case of this switch. */
switch (character)
{
case '"':
/* In roff output format, double any quote. */
putchar ('"');
putchar ('"');
break;
case '$':
case '%':
case '&':
case '#':
case '_':
/* In TeX output format, precede these with a backslash. */
putchar ('\\');
putchar (character);
break;
case '{':
case '}':
/* In TeX output format, precede these with a backslash and
force mathematical mode. */
printf ("$\\%c$", character);
break;
case '\\':
/* In TeX output mode, request production of a backslash. */
printf ("\\backslash{}");
break;
default:
/* Any other flagged character produces a single space. */
putchar (' ');
}
}
else
putchar (*cursor);
}
}
/* Formatting and actual output - planning routines. */
/*--------------------------------------------------------------------.
| From information collected from command line options and input file |
| readings, compute and fix some output parameter values. |
`--------------------------------------------------------------------*/
void
fix_output_parameters (void)
{
int file_index; /* index in text input file arrays */
int line_ordinal; /* line ordinal value for reference */
char ordinal_string[12]; /* edited line ordinal for reference */
int reference_width; /* width for the whole reference */
int character; /* character ordinal */
const char *cursor; /* cursor in some constant strings */
/* In auto reference mode, the maximum width of this field is
precomputed and subtracted from the overall line width. Add one for
the column which separate the file name from the line number. */
if (auto_reference)
{
reference_max_width = 0;
for (file_index = 0; file_index < number_input_files; file_index++)
{
line_ordinal = file_line_count[file_index] + 1;
if (file_index > 0)
line_ordinal -= file_line_count[file_index - 1];
sprintf (ordinal_string, "%d", line_ordinal);
reference_width = strlen (ordinal_string);
if (input_file_name[file_index])
reference_width += strlen (input_file_name[file_index]);
if (reference_width > reference_max_width)
reference_max_width = reference_width;
}
reference_max_width++;
reference.start = (char *) xmalloc (reference_max_width + 1);
}
/* If the reference appears to the left of the output line, reserve some
space for it right away, including one gap size. */
if ((auto_reference || input_reference) && !right_reference)
line_width -= reference_max_width + gap_size;
/* The output lines, minimally, will contain from left to right a left
context, a gap, and a keyword followed by the right context with no
special intervening gap. Half of the line width is dedicated to the
left context and the gap, the other half is dedicated to the keyword
and the right context; these values are computed once and for all here.
There also are tail and head wrap around fields, used when the keyword
is near the beginning or the end of the line, or when some long word
cannot fit in, but leave place from wrapped around shorter words. The
maximum width of these fields are recomputed separately for each line,
on a case by case basis. It is worth noting that it cannot happen that
both the tail and head fields are used at once. */
half_line_width = line_width / 2;
before_max_width = half_line_width - gap_size;
keyafter_max_width = half_line_width;
/* If truncation_string is the empty string, make it NULL to speed up
tests. In this case, truncation_string_length will never get used, so
there is no need to set it. */
if (truncation_string && *truncation_string)
truncation_string_length = strlen (truncation_string);
else
truncation_string = NULL;
if (gnu_extensions)
{
/* When flagging truncation at the left of the keyword, the
truncation mark goes at the beginning of the before field,
unless there is a head field, in which case the mark goes at the
left of the head field. When flagging truncation at the right
of the keyword, the mark goes at the end of the keyafter field,
unless there is a tail field, in which case the mark goes at the
end of the tail field. Only eight combination cases could arise
for truncation marks:
. None.
. One beginning the before field.
. One beginning the head field.
. One ending the keyafter field.
. One ending the tail field.
. One beginning the before field, another ending the keyafter field.
. One ending the tail field, another beginning the before field.
. One ending the keyafter field, another beginning the head field.
So, there is at most two truncation marks, which could appear both
on the left side of the center of the output line, both on the
right side, or one on either side. */
before_max_width -= 2 * truncation_string_length;
keyafter_max_width -= 2 * truncation_string_length;
}
else
{
/* I never figured out exactly how UNIX' ptx plans the output width
of its various fields. If GNU extensions are disabled, do not
try computing the field widths correctly; instead, use the
following formula, which does not completely imitate UNIX' ptx,
but almost. */
keyafter_max_width -= 2 * truncation_string_length + 1;
}
/* Compute which characters need special output processing. Initialize
by flagging any white space character. Some systems do not consider
form feed as a space character, but we do. */
for (character = 0; character < CHAR_SET_SIZE; character++)
edited_flag[character] = isspace (character);
edited_flag['\f'] = 1;
/* Complete the special character flagging according to selected output
format. */
switch (output_format)
{
case UNKNOWN_FORMAT:
/* Should never happen. */
case DUMB_FORMAT:
break;
case ROFF_FORMAT:
/* `Quote' characters should be doubled. */
edited_flag['"'] = 1;
break;
case TEX_FORMAT:
/* Various characters need special processing. */
for (cursor = "$%&#_{}\\"; *cursor; cursor++)
edited_flag[*cursor] = 1;
/* Any character with 8th bit set will print to a single space, unless
it is diacriticized. */
for (character = 0200; character < CHAR_SET_SIZE; character++)
edited_flag[character] = todiac (character) != 0;
break;
}
}
/*------------------------------------------------------------------.
| Compute the position and length of all the output fields, given a |
| pointer to some OCCURS. |
`------------------------------------------------------------------*/
void
define_all_fields (OCCURS *occurs)
{
int tail_max_width; /* allowable width of tail field */
int head_max_width; /* allowable width of head field */
char *cursor; /* running cursor in source text */
char *left_context_start; /* start of left context */
char *right_context_end; /* end of right context */
char *left_field_start; /* conservative start for `head'/`before' */
int file_index; /* index in text input file arrays */
const char *file_name; /* file name for reference */
int line_ordinal; /* line ordinal for reference */
/* Define `keyafter', start of left context and end of right context.
`keyafter' starts at the saved position for keyword and extend to the
right from the end of the keyword, eating separators or full words, but
not beyond maximum allowed width for `keyafter' field or limit for the
right context. Suffix spaces will be removed afterwards. */
keyafter.start = occurs->key.start;
keyafter.end = keyafter.start + occurs->key.size;
left_context_start = keyafter.start + occurs->left;
right_context_end = keyafter.start + occurs->right;
cursor = keyafter.end;
while (cursor < right_context_end
&& cursor <= keyafter.start + keyafter_max_width)
{
keyafter.end = cursor;
SKIP_SOMETHING (cursor, right_context_end);
}
if (cursor <= keyafter.start + keyafter_max_width)
keyafter.end = cursor;
keyafter_truncation = truncation_string && keyafter.end < right_context_end;
SKIP_WHITE_BACKWARDS (keyafter.end, keyafter.start);
/* When the left context is wide, it might take some time to catch up from
the left context boundary to the beginning of the `head' or `before'
fields. So, in this case, to speed the catchup, we jump back from the
keyword, using some secure distance, possibly falling in the middle of
a word. A secure backward jump would be at least half the maximum
width of a line, plus the size of the longest word met in the whole
input. We conclude this backward jump by a skip forward of at least
one word. In this manner, we should not inadvertently accept only part
of a word. From the reached point, when it will be time to fix the
beginning of `head' or `before' fields, we will skip forward words or
delimiters until we get sufficiently near. */
if (-occurs->left > half_line_width + maximum_word_length)
{
left_field_start
= keyafter.start - (half_line_width + maximum_word_length);
SKIP_SOMETHING (left_field_start, keyafter.start);
}
else
left_field_start = keyafter.start + occurs->left;
/* `before' certainly ends at the keyword, but not including separating
spaces. It starts after than the saved value for the left context, by
advancing it until it falls inside the maximum allowed width for the
before field. There will be no prefix spaces either. `before' only
advances by skipping single separators or whole words. */
before.start = left_field_start;
before.end = keyafter.start;
SKIP_WHITE_BACKWARDS (before.end, before.start);
while (before.start + before_max_width < before.end)
SKIP_SOMETHING (before.start, before.end);
if (truncation_string)
{
cursor = before.start;
SKIP_WHITE_BACKWARDS (cursor, text_buffer.start);
before_truncation = cursor > left_context_start;
}
else
before_truncation = 0;
SKIP_WHITE (before.start, text_buffer.end);
/* The tail could not take more columns than what has been left in the
left context field, and a gap is mandatory. It starts after the
right context, and does not contain prefixed spaces. It ends at
the end of line, the end of buffer or when the tail field is full,
whichever comes first. It cannot contain only part of a word, and
has no suffixed spaces. */
tail_max_width
= before_max_width - (before.end - before.start) - gap_size;
if (tail_max_width > 0)
{
tail.start = keyafter.end;
SKIP_WHITE (tail.start, text_buffer.end);
tail.end = tail.start;
cursor = tail.end;
while (cursor < right_context_end
&& cursor < tail.start + tail_max_width)
{
tail.end = cursor;
SKIP_SOMETHING (cursor, right_context_end);
}
if (cursor < tail.start + tail_max_width)
tail.end = cursor;
if (tail.end > tail.start)
{
keyafter_truncation = 0;
tail_truncation = truncation_string && tail.end < right_context_end;
}
else
tail_truncation = 0;
SKIP_WHITE_BACKWARDS (tail.end, tail.start);
}
else
{
/* No place left for a tail field. */
tail.start = NULL;
tail.end = NULL;
tail_truncation = 0;
}
/* `head' could not take more columns than what has been left in the right
context field, and a gap is mandatory. It ends before the left
context, and does not contain suffixed spaces. Its pointer is advanced
until the head field has shrunk to its allowed width. It cannot
contain only part of a word, and has no suffixed spaces. */
head_max_width
= keyafter_max_width - (keyafter.end - keyafter.start) - gap_size;
if (head_max_width > 0)
{
head.end = before.start;
SKIP_WHITE_BACKWARDS (head.end, text_buffer.start);
head.start = left_field_start;
while (head.start + head_max_width < head.end)
SKIP_SOMETHING (head.start, head.end);
if (head.end > head.start)
{
before_truncation = 0;
head_truncation = (truncation_string
&& head.start > left_context_start);
}
else
head_truncation = 0;
SKIP_WHITE (head.start, head.end);
}
else
{
/* No place left for a head field. */
head.start = NULL;
head.end = NULL;
head_truncation = 0;
}
if (auto_reference)
{
/* Construct the reference text in preallocated space from the file
name and the line number. Find out in which file the reference
occurred. Standard input yields an empty file name. Insure line
numbers are one based, even if they are computed zero based. */
file_index = 0;
while (file_line_count[file_index] < occurs->reference)
file_index++;
file_name = input_file_name[file_index];
if (!file_name)
file_name = "";
line_ordinal = occurs->reference + 1;
if (file_index > 0)
line_ordinal -= file_line_count[file_index - 1];
sprintf (reference.start, "%s:%d", file_name, line_ordinal);
reference.end = reference.start + strlen (reference.start);
}
else if (input_reference)
{
/* Reference starts at saved position for reference and extends right
until some white space is met. */
reference.start = keyafter.start + (DELTA) occurs->reference;
reference.end = reference.start;
SKIP_NON_WHITE (reference.end, right_context_end);
}
}
/* Formatting and actual output - control routines. */
/*----------------------------------------------------------------------.
| Output the current output fields as one line for `troff' or `nroff'. |
`----------------------------------------------------------------------*/
void
output_one_roff_line (void)
{
/* Output the `tail' field. */
printf (".%s \"", macro_name);
print_field (tail);
if (tail_truncation)
printf ("%s", truncation_string);
putchar ('"');
/* Output the `before' field. */
printf (" \"");
if (before_truncation)
printf ("%s", truncation_string);
print_field (before);
putchar ('"');
/* Output the `keyafter' field. */
printf (" \"");
print_field (keyafter);
if (keyafter_truncation)
printf ("%s", truncation_string);
putchar ('"');
/* Output the `head' field. */
printf (" \"");
if (head_truncation)
printf ("%s", truncation_string);
print_field (head);
putchar ('"');
/* Conditionally output the `reference' field. */
if (auto_reference || input_reference)
{
printf (" \"");
print_field (reference);
putchar ('"');
}
putchar ('\n');
}
/*---------------------------------------------------------.
| Output the current output fields as one line for `TeX'. |
`---------------------------------------------------------*/
void
output_one_tex_line (void)
{
BLOCK key; /* key field, isolated */
BLOCK after; /* after field, isolated */
char *cursor; /* running cursor in source text */
printf ("\\%s ", macro_name);
printf ("{");
print_field (tail);
printf ("}{");
print_field (before);
printf ("}{");
key.start = keyafter.start;
after.end = keyafter.end;
cursor = keyafter.start;
SKIP_SOMETHING (cursor, keyafter.end);
key.end = cursor;
after.start = cursor;
print_field (key);
printf ("}{");
print_field (after);
printf ("}{");
print_field (head);
printf ("}");
if (auto_reference || input_reference)
{
printf ("{");
print_field (reference);
printf ("}");
}
printf ("\n");
}
/*-------------------------------------------------------------------.
| Output the current output fields as one line for a dumb terminal. |
`-------------------------------------------------------------------*/
void
output_one_dumb_line (void)
{
if (!right_reference)
if (auto_reference)
{
/* Output the `reference' field, in such a way that GNU emacs
next-error will handle it. The ending colon is taken from the
gap which follows. */
print_field (reference);
putchar (':');
print_spaces (reference_max_width
+ gap_size
- (reference.end - reference.start)
- 1);
}
else
{
/* Output the `reference' field and its following gap. */
print_field (reference);
print_spaces (reference_max_width
+ gap_size
- (reference.end - reference.start));
}
if (tail.start < tail.end)
{
/* Output the `tail' field. */
print_field (tail);
if (tail_truncation)
printf ("%s", truncation_string);
print_spaces (half_line_width - gap_size
- (before.end - before.start)
- (before_truncation ? truncation_string_length : 0)
- (tail.end - tail.start)
- (tail_truncation ? truncation_string_length : 0));
}
else
print_spaces (half_line_width - gap_size
- (before.end - before.start)
- (before_truncation ? truncation_string_length : 0));
/* Output the `before' field. */
if (before_truncation)
printf ("%s", truncation_string);
print_field (before);
print_spaces (gap_size);
/* Output the `keyafter' field. */
print_field (keyafter);
if (keyafter_truncation)
printf ("%s", truncation_string);
if (head.start < head.end)
{
/* Output the `head' field. */
print_spaces (half_line_width
- (keyafter.end - keyafter.start)
- (keyafter_truncation ? truncation_string_length : 0)
- (head.end - head.start)
- (head_truncation ? truncation_string_length : 0));
if (head_truncation)
printf ("%s", truncation_string);
print_field (head);
}
else
if ((auto_reference || input_reference) && right_reference)
print_spaces (half_line_width
- (keyafter.end - keyafter.start)
- (keyafter_truncation ? truncation_string_length : 0));
if ((auto_reference || input_reference) && right_reference)
{
/* Output the `reference' field. */
print_spaces (gap_size);
print_field (reference);
}
printf ("\n");
}
/*------------------------------------------------------------------------.
| Scan the whole occurs table and, for each entry, output one line in the |
| appropriate format. |
`------------------------------------------------------------------------*/
void
generate_all_output (void)
{
int occurs_index; /* index of keyword entry being processed */
OCCURS *occurs_cursor; /* current keyword entry being processed */
/* The following assignments are useful to provide default values in case
line contexts or references are not used, in which case these variables
would never be computed. */
tail.start = NULL;
tail.end = NULL;
tail_truncation = 0;
head.start = NULL;
head.end = NULL;
head_truncation = 0;
/* Loop over all keyword occurrences. */
occurs_cursor = occurs_table[0];
for (occurs_index = 0; occurs_index < number_of_occurs[0]; occurs_index++)
{
/* Compute the exact size of every field and whenever truncation flags
are present or not. */
define_all_fields (occurs_cursor);
/* Produce one output line according to selected format. */
switch (output_format)
{
case UNKNOWN_FORMAT:
/* Should never happen. */
case DUMB_FORMAT:
output_one_dumb_line ();
break;
case ROFF_FORMAT:
output_one_roff_line ();
break;
case TEX_FORMAT:
output_one_tex_line ();
break;
}
/* Advance the cursor into the occurs table. */
occurs_cursor++;
}
}
/* Option decoding and main program. */
/*------------------------------------------------------.
| Print program identification and options, then exit. |
`------------------------------------------------------*/
void
usage (int status)
{
if (status != 0)
fprintf (stderr, "Try `%s --help' for more information.\n", program_name);
else
{
printf ("\
Usage: %s [OPTION]... [INPUT]... (without -G)\n\
or: %s -G [OPTION]... [INPUT [OUTPUT]]\n", program_name, program_name);
printf ("\
\n\
-A, --auto-reference output automatically generated references\n\
-C, --copyright display Copyright and copying conditions\n\
-G, --traditional behave more like System V `ptx'\n\
-F, --flag-truncation=STRING use STRING for flagging line truncations\n\
-M, --macro-name=STRING macro name to use instead of `xx'\n\
-O, --format=roff generate output as roff directives\n\
-R, --right-side-refs put references at right, not counted in -w\n\
-S, --sentence-regexp=REGEXP for end of lines or end of sentences\n\
-T, --format=tex generate output as TeX directives\n\
-W, --word-regexp=REGEXP use REGEXP to match each keyword\n\
-b, --break-file=FILE word break characters in this FILE\n\
-f, --ignore-case fold lower case to upper case for sorting\n\
-g, --gap-size=NUMBER gap size in columns between output fields\n\
-i, --ignore-file=FILE read ignore word list from FILE\n\
-o, --only-file=FILE read only word list from this FILE\n\
-r, --references first field of each line is a reference\n\
-t, --typeset-mode - not implemented -\n\
-w, --width=NUMBER output width in columns, reference excluded\n\
--help display this help and exit\n\
--version output version information and exit\n\
\n\
With no FILE or if FILE is -, read Standard Input. `-F /' by default.\n");
}
exit (status);
}
/*----------------------------------------------------------------------.
| Main program. Decode ARGC arguments passed through the ARGV array of |
| strings, then launch execution. |
`----------------------------------------------------------------------*/
/* Long options equivalences. */
const struct option long_options[] =
{
{"auto-reference", no_argument, NULL, 'A'},
{"break-file", required_argument, NULL, 'b'},
{"copyright", no_argument, NULL, 'C'},
{"flag-truncation", required_argument, NULL, 'F'},
{"ignore-case", no_argument, NULL, 'f'},
{"gap-size", required_argument, NULL, 'g'},
{"help", no_argument, &show_help, 1},
{"ignore-file", required_argument, NULL, 'i'},
{"macro-name", required_argument, NULL, 'M'},
{"only-file", required_argument, NULL, 'o'},
{"references", no_argument, NULL, 'r'},
{"right-side-refs", no_argument, NULL, 'R'},
{"format", required_argument, NULL, 10},
{"sentence-regexp", required_argument, NULL, 'S'},
{"traditional", no_argument, NULL, 'G'},
{"typeset-mode", no_argument, NULL, 't'},
{"version", no_argument, &show_version, 1},
{"width", required_argument, NULL, 'w'},
{"word-regexp", required_argument, NULL, 'W'},
{0, 0, 0, 0},
};
static char const* const format_args[] =
{
"roff", "tex", 0
};
int
main (int argc, char *const argv[])
{
int optchar; /* argument character */
extern int optind; /* index of argument */
extern char *optarg; /* value or argument */
int file_index; /* index in text input file arrays */
#ifdef HAVE_MCHECK
/* Use GNU malloc checking. It has proven to be useful! */
mcheck ();
#endif /* HAVE_MCHECK */
#ifdef STDC_HEADERS
#ifdef HAVE_SETCHRCLASS
setchrclass (NULL);
#endif
#endif
/* Decode program options. */
program_name = argv[0];
while ((optchar = getopt_long (argc, argv, "ACF:GM:ORS:TW:b:i:fg:o:trw:",
long_options, NULL)),
optchar != EOF)
{
switch (optchar)
{
default:
usage (1);
case 0:
break;
case 'C':
printf ("%s", copyright);
exit (0);
case 'G':
gnu_extensions = 0;
break;
case 'b':
break_file = optarg;
break;
case 'f':
ignore_case = 1;
break;
case 'g':
gap_size = atoi (optarg);
break;
case 'i':
ignore_file = optarg;
break;
case 'o':
only_file = optarg;
break;
case 'r':
input_reference = 1;
break;
case 't':
/* A decouvrir... */
break;
case 'w':
line_width = atoi (optarg);
break;
case 'A':
auto_reference = 1;
break;
case 'F':
truncation_string = copy_unescaped_string (optarg);
break;
case 'M':
macro_name = optarg;
break;
case 'O':
output_format = ROFF_FORMAT;
break;
case 'R':
right_reference = 1;
break;
case 'S':
context_regex_string = copy_unescaped_string (optarg);
break;
case 'T':
output_format = TEX_FORMAT;
break;
case 'W':
word_regex_string = copy_unescaped_string (optarg);
break;
case 10:
switch (argmatch (optarg, format_args))
{
default:
usage (1);
case 0:
output_format = ROFF_FORMAT;
break;
case 1:
output_format = TEX_FORMAT;
break;
}
}
}
/* Process trivial options. */
if (show_help)
usage (0);
if (show_version)
{
printf ("%s\n", version_string);
exit (0);
}
/* Change the default Ignore file if one is defined. */
#ifdef DEFAULT_IGNORE_FILE
if (!ignore_file)
ignore_file = DEFAULT_IGNORE_FILE;
#endif
/* Process remaining arguments. If GNU extensions are enabled, process
all arguments as input parameters. If disabled, accept at most two
arguments, the second of which is an output parameter. */
if (optind == argc)
{
/* No more argument simply means: read standard input. */
input_file_name = (const char **) xmalloc (sizeof (const char *));
file_line_count = (int *) xmalloc (sizeof (int));
number_input_files = 1;
input_file_name[0] = NULL;
}
else if (gnu_extensions)
{
number_input_files = argc - optind;
input_file_name
= (const char **) xmalloc (number_input_files * sizeof (const char *));
file_line_count
= (int *) xmalloc (number_input_files * sizeof (int));
for (file_index = 0; file_index < number_input_files; file_index++)
{
input_file_name[file_index] = argv[optind];
if (!*argv[optind] || strcmp (argv[optind], "-") == 0)
input_file_name[0] = NULL;
else
input_file_name[0] = argv[optind];
optind++;
}
}
else
{
/* There is one necessary input file. */
number_input_files = 1;
input_file_name = (const char **) xmalloc (sizeof (const char *));
file_line_count = (int *) xmalloc (sizeof (int));
if (!*argv[optind] || strcmp (argv[optind], "-") == 0)
input_file_name[0] = NULL;
else
input_file_name[0] = argv[optind];
optind++;
/* Redirect standard output, only if requested. */
if (optind < argc)
{
fclose (stdout);
if (fopen (argv[optind], "w") == NULL)
error (1, errno, argv[optind]);
optind++;
}
/* Diagnose any other argument as an error. */
if (optind < argc)
usage (1);
}
/* If the output format has not been explicitly selected, choose dumb
terminal format if GNU extensions are enabled, else `roff' format. */
if (output_format == UNKNOWN_FORMAT)
output_format = gnu_extensions ? DUMB_FORMAT : ROFF_FORMAT;
/* Initialize the main tables. */
initialize_regex ();
/* Read `Break character' file, if any. */
if (break_file)
digest_break_file (break_file);
/* Read `Ignore words' file and `Only words' files, if any. If any of
these files is empty, reset the name of the file to NULL, to avoid
unnecessary calls to search_table. */
if (ignore_file)
{
digest_word_file (ignore_file, &ignore_table);
if (ignore_table.length == 0)
ignore_file = NULL;
}
if (only_file)
{
digest_word_file (only_file, &only_table);
if (only_table.length == 0)
only_file = NULL;
}
/* Prepare to study all the input files. */
number_of_occurs[0] = 0;
total_line_count = 0;
maximum_word_length = 0;
reference_max_width = 0;
for (file_index = 0; file_index < number_input_files; file_index++)
{
/* Read the file in core, than study it. */
swallow_file_in_memory (input_file_name[file_index], &text_buffer);
find_occurs_in_text ();
/* Maintain for each file how many lines has been read so far when its
end is reached. Incrementing the count first is a simple kludge to
handle a possible incomplete line at end of file. */
total_line_count++;
file_line_count[file_index] = total_line_count;
}
/* Do the output process phase. */
sort_found_occurs ();
fix_output_parameters ();
generate_all_output ();
/* All done. */
exit (0);
}