freebsd-nq/include/sys/dmu.h
Matthew Ahrens aa755b3549
Set aside a metaslab for ZIL blocks
Mixing ZIL and normal allocations has several problems:

1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed.  This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.

2. When under moderate load, ZIL allocations are of 128KB.  If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more.  The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC.  All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading.  This can cause a significant performance
impact.

3. If the pool is very fragmented, there may be zero free chunks of
128KB or more.  In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.

These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.

This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class).  From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.

Log (ZIL) blocks can be allocated from the following locations.  Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)

The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.

On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes.  On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).

Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11389
2021-01-21 15:12:54 -08:00

1075 lines
39 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2012, Joyent, Inc. All rights reserved.
* Copyright 2014 HybridCluster. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
* Copyright 2013 Saso Kiselkov. All rights reserved.
* Copyright (c) 2017, Intel Corporation.
*/
/* Portions Copyright 2010 Robert Milkowski */
#ifndef _SYS_DMU_H
#define _SYS_DMU_H
/*
* This file describes the interface that the DMU provides for its
* consumers.
*
* The DMU also interacts with the SPA. That interface is described in
* dmu_spa.h.
*/
#include <sys/zfs_context.h>
#include <sys/inttypes.h>
#include <sys/cred.h>
#include <sys/fs/zfs.h>
#include <sys/zio_compress.h>
#include <sys/zio_priority.h>
#include <sys/uio.h>
#include <sys/zfs_file.h>
#ifdef __cplusplus
extern "C" {
#endif
struct page;
struct vnode;
struct spa;
struct zilog;
struct zio;
struct blkptr;
struct zap_cursor;
struct dsl_dataset;
struct dsl_pool;
struct dnode;
struct drr_begin;
struct drr_end;
struct zbookmark_phys;
struct spa;
struct nvlist;
struct arc_buf;
struct zio_prop;
struct sa_handle;
struct dsl_crypto_params;
struct locked_range;
typedef struct objset objset_t;
typedef struct dmu_tx dmu_tx_t;
typedef struct dsl_dir dsl_dir_t;
typedef struct dnode dnode_t;
typedef enum dmu_object_byteswap {
DMU_BSWAP_UINT8,
DMU_BSWAP_UINT16,
DMU_BSWAP_UINT32,
DMU_BSWAP_UINT64,
DMU_BSWAP_ZAP,
DMU_BSWAP_DNODE,
DMU_BSWAP_OBJSET,
DMU_BSWAP_ZNODE,
DMU_BSWAP_OLDACL,
DMU_BSWAP_ACL,
/*
* Allocating a new byteswap type number makes the on-disk format
* incompatible with any other format that uses the same number.
*
* Data can usually be structured to work with one of the
* DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
*/
DMU_BSWAP_NUMFUNCS
} dmu_object_byteswap_t;
#define DMU_OT_NEWTYPE 0x80
#define DMU_OT_METADATA 0x40
#define DMU_OT_ENCRYPTED 0x20
#define DMU_OT_BYTESWAP_MASK 0x1f
/*
* Defines a uint8_t object type. Object types specify if the data
* in the object is metadata (boolean) and how to byteswap the data
* (dmu_object_byteswap_t). All of the types created by this method
* are cached in the dbuf metadata cache.
*/
#define DMU_OT(byteswap, metadata, encrypted) \
(DMU_OT_NEWTYPE | \
((metadata) ? DMU_OT_METADATA : 0) | \
((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
((byteswap) & DMU_OT_BYTESWAP_MASK))
#define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
(ot) < DMU_OT_NUMTYPES)
#define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
/*
* MDB doesn't have dmu_ot; it defines these macros itself.
*/
#ifndef ZFS_MDB
#define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
#define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
#define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
#endif
#define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
((ot) & DMU_OT_METADATA) : \
DMU_OT_IS_METADATA_IMPL(ot))
#define DMU_OT_IS_DDT(ot) \
((ot) == DMU_OT_DDT_ZAP)
/* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
#define DMU_OT_IS_FILE(ot) \
((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
#define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
((ot) & DMU_OT_ENCRYPTED) : \
DMU_OT_IS_ENCRYPTED_IMPL(ot))
/*
* These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
* have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
* is repurposed for embedded BPs.
*/
#define DMU_OT_HAS_FILL(ot) \
((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
#define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
((ot) & DMU_OT_BYTESWAP_MASK) : \
DMU_OT_BYTESWAP_IMPL(ot))
typedef enum dmu_object_type {
DMU_OT_NONE,
/* general: */
DMU_OT_OBJECT_DIRECTORY, /* ZAP */
DMU_OT_OBJECT_ARRAY, /* UINT64 */
DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
DMU_OT_BPOBJ, /* UINT64 */
DMU_OT_BPOBJ_HDR, /* UINT64 */
/* spa: */
DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
DMU_OT_SPACE_MAP, /* UINT64 */
/* zil: */
DMU_OT_INTENT_LOG, /* UINT64 */
/* dmu: */
DMU_OT_DNODE, /* DNODE */
DMU_OT_OBJSET, /* OBJSET */
/* dsl: */
DMU_OT_DSL_DIR, /* UINT64 */
DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
DMU_OT_DSL_PROPS, /* ZAP */
DMU_OT_DSL_DATASET, /* UINT64 */
/* zpl: */
DMU_OT_ZNODE, /* ZNODE */
DMU_OT_OLDACL, /* Old ACL */
DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
DMU_OT_MASTER_NODE, /* ZAP */
DMU_OT_UNLINKED_SET, /* ZAP */
/* zvol: */
DMU_OT_ZVOL, /* UINT8 */
DMU_OT_ZVOL_PROP, /* ZAP */
/* other; for testing only! */
DMU_OT_PLAIN_OTHER, /* UINT8 */
DMU_OT_UINT64_OTHER, /* UINT64 */
DMU_OT_ZAP_OTHER, /* ZAP */
/* new object types: */
DMU_OT_ERROR_LOG, /* ZAP */
DMU_OT_SPA_HISTORY, /* UINT8 */
DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
DMU_OT_POOL_PROPS, /* ZAP */
DMU_OT_DSL_PERMS, /* ZAP */
DMU_OT_ACL, /* ACL */
DMU_OT_SYSACL, /* SYSACL */
DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
DMU_OT_NEXT_CLONES, /* ZAP */
DMU_OT_SCAN_QUEUE, /* ZAP */
DMU_OT_USERGROUP_USED, /* ZAP */
DMU_OT_USERGROUP_QUOTA, /* ZAP */
DMU_OT_USERREFS, /* ZAP */
DMU_OT_DDT_ZAP, /* ZAP */
DMU_OT_DDT_STATS, /* ZAP */
DMU_OT_SA, /* System attr */
DMU_OT_SA_MASTER_NODE, /* ZAP */
DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
DMU_OT_SCAN_XLATE, /* ZAP */
DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
DMU_OT_DEADLIST, /* ZAP */
DMU_OT_DEADLIST_HDR, /* UINT64 */
DMU_OT_DSL_CLONES, /* ZAP */
DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
/*
* Do not allocate new object types here. Doing so makes the on-disk
* format incompatible with any other format that uses the same object
* type number.
*
* When creating an object which does not have one of the above types
* use the DMU_OTN_* type with the correct byteswap and metadata
* values.
*
* The DMU_OTN_* types do not have entries in the dmu_ot table,
* use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
* of indexing into dmu_ot directly (this works for both DMU_OT_* types
* and DMU_OTN_* types).
*/
DMU_OT_NUMTYPES,
/*
* Names for valid types declared with DMU_OT().
*/
DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
} dmu_object_type_t;
/*
* These flags are intended to be used to specify the "txg_how"
* parameter when calling the dmu_tx_assign() function. See the comment
* above dmu_tx_assign() for more details on the meaning of these flags.
*/
#define TXG_NOWAIT (0ULL)
#define TXG_WAIT (1ULL<<0)
#define TXG_NOTHROTTLE (1ULL<<1)
void byteswap_uint64_array(void *buf, size_t size);
void byteswap_uint32_array(void *buf, size_t size);
void byteswap_uint16_array(void *buf, size_t size);
void byteswap_uint8_array(void *buf, size_t size);
void zap_byteswap(void *buf, size_t size);
void zfs_oldacl_byteswap(void *buf, size_t size);
void zfs_acl_byteswap(void *buf, size_t size);
void zfs_znode_byteswap(void *buf, size_t size);
#define DS_FIND_SNAPSHOTS (1<<0)
#define DS_FIND_CHILDREN (1<<1)
#define DS_FIND_SERIALIZE (1<<2)
/*
* The maximum number of bytes that can be accessed as part of one
* operation, including metadata.
*/
#define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
#define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
#define DMU_USERUSED_OBJECT (-1ULL)
#define DMU_GROUPUSED_OBJECT (-2ULL)
#define DMU_PROJECTUSED_OBJECT (-3ULL)
/*
* Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
*/
#define DMU_OBJACCT_PREFIX "obj-"
#define DMU_OBJACCT_PREFIX_LEN 4
/*
* artificial blkids for bonus buffer and spill blocks
*/
#define DMU_BONUS_BLKID (-1ULL)
#define DMU_SPILL_BLKID (-2ULL)
/*
* Public routines to create, destroy, open, and close objsets.
*/
typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
cred_t *cr, dmu_tx_t *tx);
int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
int dmu_objset_own(const char *name, dmu_objset_type_t type,
boolean_t readonly, boolean_t key_required, void *tag, objset_t **osp);
void dmu_objset_rele(objset_t *os, void *tag);
void dmu_objset_disown(objset_t *os, boolean_t key_required, void *tag);
int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
void dmu_objset_evict_dbufs(objset_t *os);
int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
void *arg);
int dmu_objset_clone(const char *name, const char *origin);
int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
struct nvlist *errlist);
int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
int dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
int flags);
void dmu_objset_byteswap(void *buf, size_t size);
int dsl_dataset_rename_snapshot(const char *fsname,
const char *oldsnapname, const char *newsnapname, boolean_t recursive);
typedef struct dmu_buf {
uint64_t db_object; /* object that this buffer is part of */
uint64_t db_offset; /* byte offset in this object */
uint64_t db_size; /* size of buffer in bytes */
void *db_data; /* data in buffer */
} dmu_buf_t;
/*
* The names of zap entries in the DIRECTORY_OBJECT of the MOS.
*/
#define DMU_POOL_DIRECTORY_OBJECT 1
#define DMU_POOL_CONFIG "config"
#define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
#define DMU_POOL_FEATURES_FOR_READ "features_for_read"
#define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
#define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
#define DMU_POOL_ROOT_DATASET "root_dataset"
#define DMU_POOL_SYNC_BPOBJ "sync_bplist"
#define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
#define DMU_POOL_ERRLOG_LAST "errlog_last"
#define DMU_POOL_SPARES "spares"
#define DMU_POOL_DEFLATE "deflate"
#define DMU_POOL_HISTORY "history"
#define DMU_POOL_PROPS "pool_props"
#define DMU_POOL_L2CACHE "l2cache"
#define DMU_POOL_TMP_USERREFS "tmp_userrefs"
#define DMU_POOL_DDT "DDT-%s-%s-%s"
#define DMU_POOL_DDT_STATS "DDT-statistics"
#define DMU_POOL_CREATION_VERSION "creation_version"
#define DMU_POOL_SCAN "scan"
#define DMU_POOL_FREE_BPOBJ "free_bpobj"
#define DMU_POOL_BPTREE_OBJ "bptree_obj"
#define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
#define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
#define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
#define DMU_POOL_REMOVING "com.delphix:removing"
#define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
#define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
#define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
#define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap"
#define DMU_POOL_DELETED_CLONES "com.delphix:deleted_clones"
/*
* Allocate an object from this objset. The range of object numbers
* available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
*
* The transaction must be assigned to a txg. The newly allocated
* object will be "held" in the transaction (ie. you can modify the
* newly allocated object in this transaction).
*
* dmu_object_alloc() chooses an object and returns it in *objectp.
*
* dmu_object_claim() allocates a specific object number. If that
* number is already allocated, it fails and returns EEXIST.
*
* Return 0 on success, or ENOSPC or EEXIST as specified above.
*/
uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
int indirect_blockshift,
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonus_type, int bonus_len,
int dnodesize, dmu_tx_t *tx);
uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
int bonuslen, int dnodesize, dnode_t **allocated_dnode, void *tag,
dmu_tx_t *tx);
int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonus_type, int bonus_len,
int dnodesize, dmu_tx_t *tx);
int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx);
int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
/*
* Free an object from this objset.
*
* The object's data will be freed as well (ie. you don't need to call
* dmu_free(object, 0, -1, tx)).
*
* The object need not be held in the transaction.
*
* If there are any holds on this object's buffers (via dmu_buf_hold()),
* or tx holds on the object (via dmu_tx_hold_object()), you can not
* free it; it fails and returns EBUSY.
*
* If the object is not allocated, it fails and returns ENOENT.
*
* Return 0 on success, or EBUSY or ENOENT as specified above.
*/
int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
/*
* Find the next allocated or free object.
*
* The objectp parameter is in-out. It will be updated to be the next
* object which is allocated. Ignore objects which have not been
* modified since txg.
*
* XXX Can only be called on a objset with no dirty data.
*
* Returns 0 on success, or ENOENT if there are no more objects.
*/
int dmu_object_next(objset_t *os, uint64_t *objectp,
boolean_t hole, uint64_t txg);
/*
* Set the number of levels on a dnode. nlevels must be greater than the
* current number of levels or an EINVAL will be returned.
*/
int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
dmu_tx_t *tx);
/*
* Set the data blocksize for an object.
*
* The object cannot have any blocks allocated beyond the first. If
* the first block is allocated already, the new size must be greater
* than the current block size. If these conditions are not met,
* ENOTSUP will be returned.
*
* Returns 0 on success, or EBUSY if there are any holds on the object
* contents, or ENOTSUP as described above.
*/
int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
int ibs, dmu_tx_t *tx);
/*
* Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
* to accommodate the change. When calling this function, the caller must
* ensure that the object's nlevels can sufficiently support the new maxblkid.
*/
int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
dmu_tx_t *tx);
/*
* Set the checksum property on a dnode. The new checksum algorithm will
* apply to all newly written blocks; existing blocks will not be affected.
*/
void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
dmu_tx_t *tx);
/*
* Set the compress property on a dnode. The new compression algorithm will
* apply to all newly written blocks; existing blocks will not be affected.
*/
void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
dmu_tx_t *tx);
void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
int compressed_size, int byteorder, dmu_tx_t *tx);
void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
dmu_tx_t *tx);
/*
* Decide how to write a block: checksum, compression, number of copies, etc.
*/
#define WP_NOFILL 0x1
#define WP_DMU_SYNC 0x2
#define WP_SPILL 0x4
void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
struct zio_prop *zp);
/*
* The bonus data is accessed more or less like a regular buffer.
* You must dmu_bonus_hold() to get the buffer, which will give you a
* dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
* data. As with any normal buffer, you must call dmu_buf_will_dirty()
* before modifying it, and the
* object must be held in an assigned transaction before calling
* dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
* buffer as well. You must release what you hold with dmu_buf_rele().
*
* Returns ENOENT, EIO, or 0.
*/
int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp);
int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
uint32_t flags);
int dmu_bonus_max(void);
int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
/*
* Special spill buffer support used by "SA" framework
*/
int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
dmu_buf_t **dbp);
int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
void *tag, dmu_buf_t **dbp);
int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
/*
* Obtain the DMU buffer from the specified object which contains the
* specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
* that it will remain in memory. You must release the hold with
* dmu_buf_rele(). You must not access the dmu_buf_t after releasing
* what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
*
* You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
* on the returned buffer before reading or writing the buffer's
* db_data. The comments for those routines describe what particular
* operations are valid after calling them.
*
* The object number must be a valid, allocated object number.
*/
int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
void *tag, dmu_buf_t **, int flags);
int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
void *tag, dmu_buf_t **dbp, int flags);
int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset,
uint64_t length, boolean_t read, void *tag, int *numbufsp,
dmu_buf_t ***dbpp, uint32_t flags);
/*
* Add a reference to a dmu buffer that has already been held via
* dmu_buf_hold() in the current context.
*/
void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
/*
* Attempt to add a reference to a dmu buffer that is in an unknown state,
* using a pointer that may have been invalidated by eviction processing.
* The request will succeed if the passed in dbuf still represents the
* same os/object/blkid, is ineligible for eviction, and has at least
* one hold by a user other than the syncer.
*/
boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
uint64_t blkid, void *tag);
void dmu_buf_rele(dmu_buf_t *db, void *tag);
uint64_t dmu_buf_refcount(dmu_buf_t *db);
uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
/*
* dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
* range of an object. A pointer to an array of dmu_buf_t*'s is
* returned (in *dbpp).
*
* dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
* frees the array. The hold on the array of buffers MUST be released
* with dmu_buf_rele_array. You can NOT release the hold on each buffer
* individually with dmu_buf_rele.
*/
int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
uint64_t length, boolean_t read, void *tag,
int *numbufsp, dmu_buf_t ***dbpp);
void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
typedef void dmu_buf_evict_func_t(void *user_ptr);
/*
* A DMU buffer user object may be associated with a dbuf for the
* duration of its lifetime. This allows the user of a dbuf (client)
* to attach private data to a dbuf (e.g. in-core only data such as a
* dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
* when that dbuf has been evicted. Clients typically respond to the
* eviction notification by freeing their private data, thus ensuring
* the same lifetime for both dbuf and private data.
*
* The mapping from a dmu_buf_user_t to any client private data is the
* client's responsibility. All current consumers of the API with private
* data embed a dmu_buf_user_t as the first member of the structure for
* their private data. This allows conversions between the two types
* with a simple cast. Since the DMU buf user API never needs access
* to the private data, other strategies can be employed if necessary
* or convenient for the client (e.g. using container_of() to do the
* conversion for private data that cannot have the dmu_buf_user_t as
* its first member).
*
* Eviction callbacks are executed without the dbuf mutex held or any
* other type of mechanism to guarantee that the dbuf is still available.
* For this reason, users must assume the dbuf has already been freed
* and not reference the dbuf from the callback context.
*
* Users requesting "immediate eviction" are notified as soon as the dbuf
* is only referenced by dirty records (dirties == holds). Otherwise the
* notification occurs after eviction processing for the dbuf begins.
*/
typedef struct dmu_buf_user {
/*
* Asynchronous user eviction callback state.
*/
taskq_ent_t dbu_tqent;
/*
* This instance's eviction function pointers.
*
* dbu_evict_func_sync is called synchronously and then
* dbu_evict_func_async is executed asynchronously on a taskq.
*/
dmu_buf_evict_func_t *dbu_evict_func_sync;
dmu_buf_evict_func_t *dbu_evict_func_async;
#ifdef ZFS_DEBUG
/*
* Pointer to user's dbuf pointer. NULL for clients that do
* not associate a dbuf with their user data.
*
* The dbuf pointer is cleared upon eviction so as to catch
* use-after-evict bugs in clients.
*/
dmu_buf_t **dbu_clear_on_evict_dbufp;
#endif
} dmu_buf_user_t;
/*
* Initialize the given dmu_buf_user_t instance with the eviction function
* evict_func, to be called when the user is evicted.
*
* NOTE: This function should only be called once on a given dmu_buf_user_t.
* To allow enforcement of this, dbu must already be zeroed on entry.
*/
/*ARGSUSED*/
static inline void
dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
dmu_buf_evict_func_t *evict_func_async,
dmu_buf_t **clear_on_evict_dbufp __maybe_unused)
{
ASSERT(dbu->dbu_evict_func_sync == NULL);
ASSERT(dbu->dbu_evict_func_async == NULL);
/* must have at least one evict func */
IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
dbu->dbu_evict_func_sync = evict_func_sync;
dbu->dbu_evict_func_async = evict_func_async;
taskq_init_ent(&dbu->dbu_tqent);
#ifdef ZFS_DEBUG
dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
#endif
}
/*
* Attach user data to a dbuf and mark it for normal (when the dbuf's
* data is cleared or its reference count goes to zero) eviction processing.
*
* Returns NULL on success, or the existing user if another user currently
* owns the buffer.
*/
void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
/*
* Attach user data to a dbuf and mark it for immediate (its dirty and
* reference counts are equal) eviction processing.
*
* Returns NULL on success, or the existing user if another user currently
* owns the buffer.
*/
void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
/*
* Replace the current user of a dbuf.
*
* If given the current user of a dbuf, replaces the dbuf's user with
* "new_user" and returns the user data pointer that was replaced.
* Otherwise returns the current, and unmodified, dbuf user pointer.
*/
void *dmu_buf_replace_user(dmu_buf_t *db,
dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
/*
* Remove the specified user data for a DMU buffer.
*
* Returns the user that was removed on success, or the current user if
* another user currently owns the buffer.
*/
void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
/*
* Returns the user data (dmu_buf_user_t *) associated with this dbuf.
*/
void *dmu_buf_get_user(dmu_buf_t *db);
objset_t *dmu_buf_get_objset(dmu_buf_t *db);
dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
void dmu_buf_dnode_exit(dmu_buf_t *db);
/* Block until any in-progress dmu buf user evictions complete. */
void dmu_buf_user_evict_wait(void);
/*
* Returns the blkptr associated with this dbuf, or NULL if not set.
*/
struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
/*
* Indicate that you are going to modify the buffer's data (db_data).
*
* The transaction (tx) must be assigned to a txg (ie. you've called
* dmu_tx_assign()). The buffer's object must be held in the tx
* (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
*/
void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx);
void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
/*
* You must create a transaction, then hold the objects which you will
* (or might) modify as part of this transaction. Then you must assign
* the transaction to a transaction group. Once the transaction has
* been assigned, you can modify buffers which belong to held objects as
* part of this transaction. You can't modify buffers before the
* transaction has been assigned; you can't modify buffers which don't
* belong to objects which this transaction holds; you can't hold
* objects once the transaction has been assigned. You may hold an
* object which you are going to free (with dmu_object_free()), but you
* don't have to.
*
* You can abort the transaction before it has been assigned.
*
* Note that you may hold buffers (with dmu_buf_hold) at any time,
* regardless of transaction state.
*/
#define DMU_NEW_OBJECT (-1ULL)
#define DMU_OBJECT_END (-1ULL)
dmu_tx_t *dmu_tx_create(objset_t *os);
void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
int len);
void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
uint64_t len);
void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
uint64_t len);
void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
const char *name);
void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
void dmu_tx_abort(dmu_tx_t *tx);
int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
void dmu_tx_wait(dmu_tx_t *tx);
void dmu_tx_commit(dmu_tx_t *tx);
void dmu_tx_mark_netfree(dmu_tx_t *tx);
/*
* To register a commit callback, dmu_tx_callback_register() must be called.
*
* dcb_data is a pointer to caller private data that is passed on as a
* callback parameter. The caller is responsible for properly allocating and
* freeing it.
*
* When registering a callback, the transaction must be already created, but
* it cannot be committed or aborted. It can be assigned to a txg or not.
*
* The callback will be called after the transaction has been safely written
* to stable storage and will also be called if the dmu_tx is aborted.
* If there is any error which prevents the transaction from being committed to
* disk, the callback will be called with a value of error != 0.
*
* When multiple callbacks are registered to the transaction, the callbacks
* will be called in reverse order to let Lustre, the only user of commit
* callback currently, take the fast path of its commit callback handling.
*/
typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
void *dcb_data);
void dmu_tx_do_callbacks(list_t *cb_list, int error);
/*
* Free up the data blocks for a defined range of a file. If size is
* -1, the range from offset to end-of-file is freed.
*/
int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
uint64_t size, dmu_tx_t *tx);
int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
uint64_t size);
int dmu_free_long_object(objset_t *os, uint64_t object);
/*
* Convenience functions.
*
* Canfail routines will return 0 on success, or an errno if there is a
* nonrecoverable I/O error.
*/
#define DMU_READ_PREFETCH 0 /* prefetch */
#define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
#define DMU_READ_NO_DECRYPT 2 /* don't decrypt */
int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
void *buf, uint32_t flags);
int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
uint32_t flags);
void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
const void *buf, dmu_tx_t *tx);
void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
const void *buf, dmu_tx_t *tx);
void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
dmu_tx_t *tx);
#ifdef _KERNEL
int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size);
int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size);
int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size);
int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
dmu_tx_t *tx);
int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
dmu_tx_t *tx);
int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
dmu_tx_t *tx);
#endif
struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
void dmu_return_arcbuf(struct arc_buf *buf);
int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
struct arc_buf *buf, dmu_tx_t *tx);
int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
struct arc_buf *buf, dmu_tx_t *tx);
#define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
extern int zfs_prefetch_disable;
extern int zfs_max_recordsize;
/*
* Asynchronously try to read in the data.
*/
void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
uint64_t len, enum zio_priority pri);
typedef struct dmu_object_info {
/* All sizes are in bytes unless otherwise indicated. */
uint32_t doi_data_block_size;
uint32_t doi_metadata_block_size;
dmu_object_type_t doi_type;
dmu_object_type_t doi_bonus_type;
uint64_t doi_bonus_size;
uint8_t doi_indirection; /* 2 = dnode->indirect->data */
uint8_t doi_checksum;
uint8_t doi_compress;
uint8_t doi_nblkptr;
uint8_t doi_pad[4];
uint64_t doi_dnodesize;
uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
uint64_t doi_max_offset;
uint64_t doi_fill_count; /* number of non-empty blocks */
} dmu_object_info_t;
typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
typedef struct dmu_object_type_info {
dmu_object_byteswap_t ot_byteswap;
boolean_t ot_metadata;
boolean_t ot_dbuf_metadata_cache;
boolean_t ot_encrypt;
char *ot_name;
} dmu_object_type_info_t;
typedef const struct dmu_object_byteswap_info {
arc_byteswap_func_t ob_func;
char *ob_name;
} dmu_object_byteswap_info_t;
extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
/*
* Get information on a DMU object.
*
* Return 0 on success or ENOENT if object is not allocated.
*
* If doi is NULL, just indicates whether the object exists.
*/
int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
/* Like dmu_object_info, but faster if you have a held dnode in hand. */
void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
/* Like dmu_object_info, but faster if you have a held dbuf in hand. */
void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
/*
* Like dmu_object_info_from_db, but faster still when you only care about
* the size.
*/
void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
u_longlong_t *nblk512);
void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
typedef struct dmu_objset_stats {
uint64_t dds_num_clones; /* number of clones of this */
uint64_t dds_creation_txg;
uint64_t dds_guid;
dmu_objset_type_t dds_type;
uint8_t dds_is_snapshot;
uint8_t dds_inconsistent;
uint8_t dds_redacted;
char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
} dmu_objset_stats_t;
/*
* Get stats on a dataset.
*/
void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
/*
* Add entries to the nvlist for all the objset's properties. See
* zfs_prop_table[] and zfs(1m) for details on the properties.
*/
void dmu_objset_stats(objset_t *os, struct nvlist *nv);
/*
* Get the space usage statistics for statvfs().
*
* refdbytes is the amount of space "referenced" by this objset.
* availbytes is the amount of space available to this objset, taking
* into account quotas & reservations, assuming that no other objsets
* use the space first. These values correspond to the 'referenced' and
* 'available' properties, described in the zfs(1m) manpage.
*
* usedobjs and availobjs are the number of objects currently allocated,
* and available.
*/
void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
uint64_t *usedobjsp, uint64_t *availobjsp);
/*
* The fsid_guid is a 56-bit ID that can change to avoid collisions.
* (Contrast with the ds_guid which is a 64-bit ID that will never
* change, so there is a small probability that it will collide.)
*/
uint64_t dmu_objset_fsid_guid(objset_t *os);
/*
* Get the [cm]time for an objset's snapshot dir
*/
inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
int dmu_objset_is_snapshot(objset_t *os);
extern struct spa *dmu_objset_spa(objset_t *os);
extern struct zilog *dmu_objset_zil(objset_t *os);
extern struct dsl_pool *dmu_objset_pool(objset_t *os);
extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
extern void dmu_objset_name(objset_t *os, char *buf);
extern dmu_objset_type_t dmu_objset_type(objset_t *os);
extern uint64_t dmu_objset_id(objset_t *os);
extern uint64_t dmu_objset_dnodesize(objset_t *os);
extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
extern int dmu_objset_blksize(objset_t *os);
extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real,
int maxlen, boolean_t *conflict);
extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
uint64_t *idp, uint64_t *offp);
typedef struct zfs_file_info {
uint64_t zfi_user;
uint64_t zfi_group;
uint64_t zfi_project;
uint64_t zfi_generation;
} zfs_file_info_t;
typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data,
struct zfs_file_info *zoi);
extern void dmu_objset_register_type(dmu_objset_type_t ost,
file_info_cb_t *cb);
extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
extern void *dmu_objset_get_user(objset_t *os);
/*
* Return the txg number for the given assigned transaction.
*/
uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
/*
* Synchronous write.
* If a parent zio is provided this function initiates a write on the
* provided buffer as a child of the parent zio.
* In the absence of a parent zio, the write is completed synchronously.
* At write completion, blk is filled with the bp of the written block.
* Note that while the data covered by this function will be on stable
* storage when the write completes this new data does not become a
* permanent part of the file until the associated transaction commits.
*/
/*
* {zfs,zvol,ztest}_get_done() args
*/
typedef struct zgd {
struct lwb *zgd_lwb;
struct blkptr *zgd_bp;
dmu_buf_t *zgd_db;
struct zfs_locked_range *zgd_lr;
void *zgd_private;
} zgd_t;
typedef void dmu_sync_cb_t(zgd_t *arg, int error);
int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
/*
* Find the next hole or data block in file starting at *off
* Return found offset in *off. Return ESRCH for end of file.
*/
int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
uint64_t *off);
/*
* Initial setup and final teardown.
*/
extern void dmu_init(void);
extern void dmu_fini(void);
typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
uint64_t object, uint64_t offset, int len);
void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
dmu_traverse_cb_t cb, void *arg);
int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
zfs_file_t *fp, offset_t *offp);
/* CRC64 table */
#define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
extern uint64_t zfs_crc64_table[256];
#ifdef __cplusplus
}
#endif
#endif /* _SYS_DMU_H */