freebsd-nq/sys/dev/ral/rt2560.c
Maxim Sobolev e50d35e6c6 Add new tunable 'net.link.ifqmaxlen' to set default send interface
queue length. The default value for this parameter is 50, which is
quite low for many of today's uses and the only way to modify this
parameter right now is to edit if_var.h file. Also add read-only
sysctl with the same name, so that it's possible to retrieve the
current value.

MFC after:	1 month
2010-05-03 07:32:50 +00:00

2828 lines
72 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2005, 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2560 chipset driver
* http://www.ralinktech.com/
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_ratectl.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/ral/rt2560reg.h>
#include <dev/ral/rt2560var.h>
#define RT2560_RSSI(sc, rssi) \
((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ? \
((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0)
#define RAL_DEBUG
#ifdef RAL_DEBUG
#define DPRINTF(sc, fmt, ...) do { \
if (sc->sc_debug > 0) \
printf(fmt, __VA_ARGS__); \
} while (0)
#define DPRINTFN(sc, n, fmt, ...) do { \
if (sc->sc_debug >= (n)) \
printf(fmt, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(sc, fmt, ...)
#define DPRINTFN(sc, n, fmt, ...)
#endif
static struct ieee80211vap *rt2560_vap_create(struct ieee80211com *,
const char name[IFNAMSIZ], int unit, int opmode,
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void rt2560_vap_delete(struct ieee80211vap *);
static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
int);
static int rt2560_alloc_tx_ring(struct rt2560_softc *,
struct rt2560_tx_ring *, int);
static void rt2560_reset_tx_ring(struct rt2560_softc *,
struct rt2560_tx_ring *);
static void rt2560_free_tx_ring(struct rt2560_softc *,
struct rt2560_tx_ring *);
static int rt2560_alloc_rx_ring(struct rt2560_softc *,
struct rt2560_rx_ring *, int);
static void rt2560_reset_rx_ring(struct rt2560_softc *,
struct rt2560_rx_ring *);
static void rt2560_free_rx_ring(struct rt2560_softc *,
struct rt2560_rx_ring *);
static void rt2560_newassoc(struct ieee80211_node *, int);
static int rt2560_newstate(struct ieee80211vap *,
enum ieee80211_state, int);
static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
static void rt2560_encryption_intr(struct rt2560_softc *);
static void rt2560_tx_intr(struct rt2560_softc *);
static void rt2560_prio_intr(struct rt2560_softc *);
static void rt2560_decryption_intr(struct rt2560_softc *);
static void rt2560_rx_intr(struct rt2560_softc *);
static void rt2560_beacon_update(struct ieee80211vap *, int item);
static void rt2560_beacon_expire(struct rt2560_softc *);
static void rt2560_wakeup_expire(struct rt2560_softc *);
static void rt2560_scan_start(struct ieee80211com *);
static void rt2560_scan_end(struct ieee80211com *);
static void rt2560_set_channel(struct ieee80211com *);
static void rt2560_setup_tx_desc(struct rt2560_softc *,
struct rt2560_tx_desc *, uint32_t, int, int, int,
bus_addr_t);
static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
struct ieee80211_node *);
static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
struct ieee80211_node *);
static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
struct ieee80211_node *);
static void rt2560_start_locked(struct ifnet *);
static void rt2560_start(struct ifnet *);
static void rt2560_watchdog(void *);
static int rt2560_ioctl(struct ifnet *, u_long, caddr_t);
static void rt2560_bbp_write(struct rt2560_softc *, uint8_t,
uint8_t);
static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
static void rt2560_rf_write(struct rt2560_softc *, uint8_t,
uint32_t);
static void rt2560_set_chan(struct rt2560_softc *,
struct ieee80211_channel *);
#if 0
static void rt2560_disable_rf_tune(struct rt2560_softc *);
#endif
static void rt2560_enable_tsf_sync(struct rt2560_softc *);
static void rt2560_enable_tsf(struct rt2560_softc *);
static void rt2560_update_plcp(struct rt2560_softc *);
static void rt2560_update_slot(struct ifnet *);
static void rt2560_set_basicrates(struct rt2560_softc *);
static void rt2560_update_led(struct rt2560_softc *, int, int);
static void rt2560_set_bssid(struct rt2560_softc *, const uint8_t *);
static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
static void rt2560_update_promisc(struct ifnet *);
static const char *rt2560_get_rf(int);
static void rt2560_read_config(struct rt2560_softc *);
static int rt2560_bbp_init(struct rt2560_softc *);
static void rt2560_set_txantenna(struct rt2560_softc *, int);
static void rt2560_set_rxantenna(struct rt2560_softc *, int);
static void rt2560_init_locked(struct rt2560_softc *);
static void rt2560_init(void *);
static void rt2560_stop_locked(struct rt2560_softc *);
static int rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static const struct {
uint32_t reg;
uint32_t val;
} rt2560_def_mac[] = {
RT2560_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rt2560_def_bbp[] = {
RT2560_DEF_BBP
};
static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2;
static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2;
static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2;
static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2;
static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2;
static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2;
static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
static const struct {
uint8_t chan;
uint32_t r1, r2, r4;
} rt2560_rf5222[] = {
RT2560_RF5222
};
int
rt2560_attach(device_t dev, int id)
{
struct rt2560_softc *sc = device_get_softc(dev);
struct ieee80211com *ic;
struct ifnet *ifp;
int error;
uint8_t bands;
uint8_t macaddr[IEEE80211_ADDR_LEN];
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
/* retrieve RT2560 rev. no */
sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
/* retrieve RF rev. no and various other things from EEPROM */
rt2560_read_config(sc);
device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
sc->asic_rev, rt2560_get_rf(sc->rf_rev));
/*
* Allocate Tx and Rx rings.
*/
error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Tx ring\n");
goto fail1;
}
error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
goto fail2;
}
error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Prio ring\n");
goto fail3;
}
error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
goto fail4;
}
error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate Rx ring\n");
goto fail5;
}
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
goto fail6;
}
ic = ifp->if_l2com;
/* retrieve MAC address */
rt2560_get_macaddr(sc, macaddr);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = rt2560_init;
ifp->if_ioctl = rt2560_ioctl;
ifp->if_start = rt2560_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_AHDEMO /* adhoc demo mode */
| IEEE80211_C_WDS /* 4-address traffic works */
| IEEE80211_C_MBSS /* mesh point link mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
| IEEE80211_C_BGSCAN /* capable of bg scanning */
#ifdef notyet
| IEEE80211_C_TXFRAG /* handle tx frags */
#endif
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
if (sc->rf_rev == RT2560_RF_5222)
setbit(&bands, IEEE80211_MODE_11A);
ieee80211_init_channels(ic, NULL, &bands);
ieee80211_ifattach(ic, macaddr);
ic->ic_newassoc = rt2560_newassoc;
ic->ic_raw_xmit = rt2560_raw_xmit;
ic->ic_updateslot = rt2560_update_slot;
ic->ic_update_promisc = rt2560_update_promisc;
ic->ic_scan_start = rt2560_scan_start;
ic->ic_scan_end = rt2560_scan_end;
ic->ic_set_channel = rt2560_set_channel;
ic->ic_vap_create = rt2560_vap_create;
ic->ic_vap_delete = rt2560_vap_delete;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
RT2560_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
RT2560_RX_RADIOTAP_PRESENT);
/*
* Add a few sysctl knobs.
*/
#ifdef RAL_DEBUG
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs");
#endif
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail6: rt2560_free_rx_ring(sc, &sc->rxq);
fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
fail4: rt2560_free_tx_ring(sc, &sc->prioq);
fail3: rt2560_free_tx_ring(sc, &sc->atimq);
fail2: rt2560_free_tx_ring(sc, &sc->txq);
fail1: mtx_destroy(&sc->sc_mtx);
return ENXIO;
}
int
rt2560_detach(void *xsc)
{
struct rt2560_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
rt2560_stop(sc);
ieee80211_ifdetach(ic);
rt2560_free_tx_ring(sc, &sc->txq);
rt2560_free_tx_ring(sc, &sc->atimq);
rt2560_free_tx_ring(sc, &sc->prioq);
rt2560_free_tx_ring(sc, &sc->bcnq);
rt2560_free_rx_ring(sc, &sc->rxq);
if_free(ifp);
mtx_destroy(&sc->sc_mtx);
return 0;
}
static struct ieee80211vap *
rt2560_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_vap *rvp;
struct ieee80211vap *vap;
switch (opmode) {
case IEEE80211_M_STA:
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
case IEEE80211_M_MONITOR:
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
/* XXXRP: TBD */
if (!TAILQ_EMPTY(&ic->ic_vaps)) {
if_printf(ifp, "only 1 vap supported\n");
return NULL;
}
if (opmode == IEEE80211_M_STA)
flags |= IEEE80211_CLONE_NOBEACONS;
break;
case IEEE80211_M_WDS:
if (TAILQ_EMPTY(&ic->ic_vaps) ||
ic->ic_opmode != IEEE80211_M_HOSTAP) {
if_printf(ifp, "wds only supported in ap mode\n");
return NULL;
}
/*
* Silently remove any request for a unique
* bssid; WDS vap's always share the local
* mac address.
*/
flags &= ~IEEE80211_CLONE_BSSID;
break;
default:
if_printf(ifp, "unknown opmode %d\n", opmode);
return NULL;
}
rvp = (struct rt2560_vap *) malloc(sizeof(struct rt2560_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (rvp == NULL)
return NULL;
vap = &rvp->ral_vap;
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
/* override state transition machine */
rvp->ral_newstate = vap->iv_newstate;
vap->iv_newstate = rt2560_newstate;
vap->iv_update_beacon = rt2560_beacon_update;
ieee80211_ratectl_init(vap);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
if (TAILQ_FIRST(&ic->ic_vaps) == vap)
ic->ic_opmode = opmode;
return vap;
}
static void
rt2560_vap_delete(struct ieee80211vap *vap)
{
struct rt2560_vap *rvp = RT2560_VAP(vap);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(rvp, M_80211_VAP);
}
void
rt2560_resume(void *xsc)
{
struct rt2560_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
if (ifp->if_flags & IFF_UP)
rt2560_init(sc);
}
static void
rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
int count)
{
int i, error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
ring->cur_encrypt = ring->next_encrypt = 0;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE,
0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL,
&ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
error = bus_dmamap_create(ring->data_dmat, 0,
&ring->data[i].map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
}
return 0;
fail: rt2560_free_tx_ring(sc, ring);
return error;
}
static void
rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
{
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
desc = &ring->desc[i];
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
desc->flags = 0;
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
ring->queued = 0;
ring->cur = ring->next = 0;
ring->cur_encrypt = ring->next_encrypt = 0;
}
static void
rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
{
struct rt2560_tx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->ni != NULL)
ieee80211_free_node(data->ni);
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
int count)
{
struct rt2560_rx_desc *desc;
struct rt2560_rx_data *data;
bus_addr_t physaddr;
int i, error;
ring->count = count;
ring->cur = ring->next = 0;
ring->cur_decrypt = 0;
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE,
0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
desc = &sc->rxq.desc[i];
data = &sc->rxq.data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
&physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load rx buf DMA map");
goto fail;
}
desc->flags = htole32(RT2560_RX_BUSY);
desc->physaddr = htole32(physaddr);
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
return 0;
fail: rt2560_free_rx_ring(sc, ring);
return error;
}
static void
rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
{
int i;
for (i = 0; i < ring->count; i++) {
ring->desc[i].flags = htole32(RT2560_RX_BUSY);
ring->data[i].drop = 0;
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
ring->cur = ring->next = 0;
ring->cur_decrypt = 0;
}
static void
rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
{
struct rt2560_rx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static void
rt2560_newassoc(struct ieee80211_node *ni, int isnew)
{
/* XXX move */
ieee80211_ratectl_node_init(ni);
}
static int
rt2560_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct rt2560_vap *rvp = RT2560_VAP(vap);
struct ifnet *ifp = vap->iv_ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
int error;
if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) {
/* abort TSF synchronization */
RAL_WRITE(sc, RT2560_CSR14, 0);
/* turn association led off */
rt2560_update_led(sc, 0, 0);
}
error = rvp->ral_newstate(vap, nstate, arg);
if (error == 0 && nstate == IEEE80211_S_RUN) {
struct ieee80211_node *ni = vap->iv_bss;
struct mbuf *m;
if (vap->iv_opmode != IEEE80211_M_MONITOR) {
rt2560_update_plcp(sc);
rt2560_set_basicrates(sc);
rt2560_set_bssid(sc, ni->ni_bssid);
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_IBSS ||
vap->iv_opmode == IEEE80211_M_MBSS) {
m = ieee80211_beacon_alloc(ni, &rvp->ral_bo);
if (m == NULL) {
if_printf(ifp, "could not allocate beacon\n");
return ENOBUFS;
}
ieee80211_ref_node(ni);
error = rt2560_tx_bcn(sc, m, ni);
if (error != 0)
return error;
}
/* turn assocation led on */
rt2560_update_led(sc, 1, 0);
if (vap->iv_opmode != IEEE80211_M_MONITOR)
rt2560_enable_tsf_sync(sc);
else
rt2560_enable_tsf(sc);
}
return error;
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
* 93C66).
*/
static uint16_t
rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
RT2560_EEPROM_CTL(sc, 0);
RT2560_EEPROM_CTL(sc, RT2560_S);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
RT2560_EEPROM_CTL(sc, RT2560_S);
/* write start bit (1) */
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
/* write READ opcode (10) */
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
RT2560_EEPROM_CTL(sc, RT2560_S);
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
/* write address (A5-A0 or A7-A0) */
n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
for (; n >= 0; n--) {
RT2560_EEPROM_CTL(sc, RT2560_S |
(((addr >> n) & 1) << RT2560_SHIFT_D));
RT2560_EEPROM_CTL(sc, RT2560_S |
(((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
}
RT2560_EEPROM_CTL(sc, RT2560_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
tmp = RAL_READ(sc, RT2560_CSR21);
val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
RT2560_EEPROM_CTL(sc, RT2560_S);
}
RT2560_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
RT2560_EEPROM_CTL(sc, RT2560_S);
RT2560_EEPROM_CTL(sc, 0);
RT2560_EEPROM_CTL(sc, RT2560_C);
return val;
}
/*
* Some frames were processed by the hardware cipher engine and are ready for
* transmission.
*/
static void
rt2560_encryption_intr(struct rt2560_softc *sc)
{
struct rt2560_tx_desc *desc;
int hw;
/* retrieve last descriptor index processed by cipher engine */
hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
hw /= RT2560_TX_DESC_SIZE;
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_POSTREAD);
while (sc->txq.next_encrypt != hw) {
if (sc->txq.next_encrypt == sc->txq.cur_encrypt) {
printf("hw encrypt %d, cur_encrypt %d\n", hw,
sc->txq.cur_encrypt);
break;
}
desc = &sc->txq.desc[sc->txq.next_encrypt];
if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
(le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
break;
/* for TKIP, swap eiv field to fix a bug in ASIC */
if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
RT2560_TX_CIPHER_TKIP)
desc->eiv = bswap32(desc->eiv);
/* mark the frame ready for transmission */
desc->flags |= htole32(RT2560_TX_VALID);
desc->flags |= htole32(RT2560_TX_BUSY);
DPRINTFN(sc, 15, "encryption done idx=%u\n",
sc->txq.next_encrypt);
sc->txq.next_encrypt =
(sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
}
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_PREWRITE);
/* kick Tx */
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
}
static void
rt2560_tx_intr(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct mbuf *m;
uint32_t flags;
int retrycnt;
struct ieee80211vap *vap;
struct ieee80211_node *ni;
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->txq.desc[sc->txq.next];
data = &sc->txq.data[sc->txq.next];
flags = le32toh(desc->flags);
if ((flags & RT2560_TX_BUSY) ||
(flags & RT2560_TX_CIPHER_BUSY) ||
!(flags & RT2560_TX_VALID))
break;
m = data->m;
ni = data->ni;
vap = ni->ni_vap;
switch (flags & RT2560_TX_RESULT_MASK) {
case RT2560_TX_SUCCESS:
retrycnt = 0;
DPRINTFN(sc, 10, "%s\n", "data frame sent successfully");
if (data->rix != IEEE80211_FIXED_RATE_NONE)
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_SUCCESS,
&retrycnt, NULL);
ifp->if_opackets++;
break;
case RT2560_TX_SUCCESS_RETRY:
retrycnt = RT2560_TX_RETRYCNT(flags);
DPRINTFN(sc, 9, "data frame sent after %u retries\n",
retrycnt);
if (data->rix != IEEE80211_FIXED_RATE_NONE)
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_SUCCESS,
&retrycnt, NULL);
ifp->if_opackets++;
break;
case RT2560_TX_FAIL_RETRY:
retrycnt = RT2560_TX_RETRYCNT(flags);
DPRINTFN(sc, 9, "data frame failed after %d retries\n",
retrycnt);
if (data->rix != IEEE80211_FIXED_RATE_NONE)
ieee80211_ratectl_tx_complete(vap, ni,
IEEE80211_RATECTL_TX_FAILURE,
&retrycnt, NULL);
ifp->if_oerrors++;
break;
case RT2560_TX_FAIL_INVALID:
case RT2560_TX_FAIL_OTHER:
default:
device_printf(sc->sc_dev, "sending data frame failed "
"0x%08x\n", flags);
ifp->if_oerrors++;
}
bus_dmamap_sync(sc->txq.data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txq.data_dmat, data->map);
m_freem(m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
/* descriptor is no longer valid */
desc->flags &= ~htole32(RT2560_TX_VALID);
DPRINTFN(sc, 15, "tx done idx=%u\n", sc->txq.next);
sc->txq.queued--;
sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
}
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_PREWRITE);
if (sc->prioq.queued == 0 && sc->txq.queued == 0)
sc->sc_tx_timer = 0;
if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) {
sc->sc_flags &= ~RT2560_F_DATA_OACTIVE;
if ((sc->sc_flags &
(RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
rt2560_start_locked(ifp);
}
}
static void
rt2560_prio_intr(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct ieee80211_node *ni;
struct mbuf *m;
int flags;
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->prioq.desc[sc->prioq.next];
data = &sc->prioq.data[sc->prioq.next];
flags = le32toh(desc->flags);
if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0)
break;
switch (flags & RT2560_TX_RESULT_MASK) {
case RT2560_TX_SUCCESS:
DPRINTFN(sc, 10, "%s\n", "mgt frame sent successfully");
break;
case RT2560_TX_SUCCESS_RETRY:
DPRINTFN(sc, 9, "mgt frame sent after %u retries\n",
(flags >> 5) & 0x7);
break;
case RT2560_TX_FAIL_RETRY:
DPRINTFN(sc, 9, "%s\n",
"sending mgt frame failed (too much retries)");
break;
case RT2560_TX_FAIL_INVALID:
case RT2560_TX_FAIL_OTHER:
default:
device_printf(sc->sc_dev, "sending mgt frame failed "
"0x%08x\n", flags);
break;
}
bus_dmamap_sync(sc->prioq.data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->prioq.data_dmat, data->map);
m = data->m;
data->m = NULL;
ni = data->ni;
data->ni = NULL;
/* descriptor is no longer valid */
desc->flags &= ~htole32(RT2560_TX_VALID);
DPRINTFN(sc, 15, "prio done idx=%u\n", sc->prioq.next);
sc->prioq.queued--;
sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
if (m->m_flags & M_TXCB)
ieee80211_process_callback(ni, m,
(flags & RT2560_TX_RESULT_MASK) &~
(RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY));
m_freem(m);
ieee80211_free_node(ni);
}
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_PREWRITE);
if (sc->prioq.queued == 0 && sc->txq.queued == 0)
sc->sc_tx_timer = 0;
if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) {
sc->sc_flags &= ~RT2560_F_PRIO_OACTIVE;
if ((sc->sc_flags &
(RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
rt2560_start_locked(ifp);
}
}
/*
* Some frames were processed by the hardware cipher engine and are ready for
* handoff to the IEEE802.11 layer.
*/
static void
rt2560_decryption_intr(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct rt2560_rx_desc *desc;
struct rt2560_rx_data *data;
bus_addr_t physaddr;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *mnew, *m;
int hw, error;
int8_t rssi, nf;
/* retrieve last decriptor index processed by cipher engine */
hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
hw /= RT2560_RX_DESC_SIZE;
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_POSTREAD);
for (; sc->rxq.cur_decrypt != hw;) {
desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
data = &sc->rxq.data[sc->rxq.cur_decrypt];
if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
(le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
break;
if (data->drop) {
ifp->if_ierrors++;
goto skip;
}
if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
(le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
ifp->if_ierrors++;
goto skip;
}
/*
* Try to allocate a new mbuf for this ring element and load it
* before processing the current mbuf. If the ring element
* cannot be loaded, drop the received packet and reuse the old
* mbuf. In the unlikely case that the old mbuf can't be
* reloaded either, explicitly panic.
*/
mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (mnew == NULL) {
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxq.data_dmat, data->map);
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
&physaddr, 0);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(data->m, void *), MCLBYTES,
rt2560_dma_map_addr, &physaddr, 0);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
device_get_name(sc->sc_dev));
}
ifp->if_ierrors++;
goto skip;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
desc->physaddr = htole32(physaddr);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len =
(le32toh(desc->flags) >> 16) & 0xfff;
rssi = RT2560_RSSI(sc, desc->rssi);
nf = RT2560_NOISE_FLOOR;
if (ieee80211_radiotap_active(ic)) {
struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
uint32_t tsf_lo, tsf_hi;
/* get timestamp (low and high 32 bits) */
tsf_hi = RAL_READ(sc, RT2560_CSR17);
tsf_lo = RAL_READ(sc, RT2560_CSR16);
tap->wr_tsf =
htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
tap->wr_flags = 0;
tap->wr_rate = ieee80211_plcp2rate(desc->rate,
(desc->flags & htole32(RT2560_RX_OFDM)) ?
IEEE80211_T_OFDM : IEEE80211_T_CCK);
tap->wr_antenna = sc->rx_ant;
tap->wr_antsignal = nf + rssi;
tap->wr_antnoise = nf;
}
sc->sc_flags |= RT2560_F_INPUT_RUNNING;
RAL_UNLOCK(sc);
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
if (ni != NULL) {
(void) ieee80211_input(ni, m, rssi, nf);
ieee80211_free_node(ni);
} else
(void) ieee80211_input_all(ic, m, rssi, nf);
RAL_LOCK(sc);
sc->sc_flags &= ~RT2560_F_INPUT_RUNNING;
skip: desc->flags = htole32(RT2560_RX_BUSY);
DPRINTFN(sc, 15, "decryption done idx=%u\n", sc->rxq.cur_decrypt);
sc->rxq.cur_decrypt =
(sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
}
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_PREWRITE);
}
/*
* Some frames were received. Pass them to the hardware cipher engine before
* sending them to the 802.11 layer.
*/
static void
rt2560_rx_intr(struct rt2560_softc *sc)
{
struct rt2560_rx_desc *desc;
struct rt2560_rx_data *data;
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->rxq.desc[sc->rxq.cur];
data = &sc->rxq.data[sc->rxq.cur];
if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
(le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
break;
data->drop = 0;
if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
(le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
/*
* This should not happen since we did not request
* to receive those frames when we filled RXCSR0.
*/
DPRINTFN(sc, 5, "PHY or CRC error flags 0x%08x\n",
le32toh(desc->flags));
data->drop = 1;
}
if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
DPRINTFN(sc, 5, "%s\n", "bad length");
data->drop = 1;
}
/* mark the frame for decryption */
desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
DPRINTFN(sc, 15, "rx done idx=%u\n", sc->rxq.cur);
sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
}
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_PREWRITE);
/* kick decrypt */
RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
}
static void
rt2560_beacon_update(struct ieee80211vap *vap, int item)
{
struct rt2560_vap *rvp = RT2560_VAP(vap);
struct ieee80211_beacon_offsets *bo = &rvp->ral_bo;
setbit(bo->bo_flags, item);
}
/*
* This function is called periodically in IBSS mode when a new beacon must be
* sent out.
*/
static void
rt2560_beacon_expire(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct rt2560_vap *rvp = RT2560_VAP(vap);
struct rt2560_tx_data *data;
if (ic->ic_opmode != IEEE80211_M_IBSS &&
ic->ic_opmode != IEEE80211_M_HOSTAP &&
ic->ic_opmode != IEEE80211_M_MBSS)
return;
data = &sc->bcnq.data[sc->bcnq.next];
/*
* Don't send beacon if bsschan isn't set
*/
if (data->ni == NULL)
return;
bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
/* XXX 1 =>'s mcast frames which means all PS sta's will wakeup! */
ieee80211_beacon_update(data->ni, &rvp->ral_bo, data->m, 1);
rt2560_tx_bcn(sc, data->m, data->ni);
DPRINTFN(sc, 15, "%s", "beacon expired\n");
sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
}
/* ARGSUSED */
static void
rt2560_wakeup_expire(struct rt2560_softc *sc)
{
DPRINTFN(sc, 2, "%s", "wakeup expired\n");
}
void
rt2560_intr(void *arg)
{
struct rt2560_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t r;
RAL_LOCK(sc);
/* disable interrupts */
RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
/* don't re-enable interrupts if we're shutting down */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
RAL_UNLOCK(sc);
return;
}
r = RAL_READ(sc, RT2560_CSR7);
RAL_WRITE(sc, RT2560_CSR7, r);
if (r & RT2560_BEACON_EXPIRE)
rt2560_beacon_expire(sc);
if (r & RT2560_WAKEUP_EXPIRE)
rt2560_wakeup_expire(sc);
if (r & RT2560_ENCRYPTION_DONE)
rt2560_encryption_intr(sc);
if (r & RT2560_TX_DONE)
rt2560_tx_intr(sc);
if (r & RT2560_PRIO_DONE)
rt2560_prio_intr(sc);
if (r & RT2560_DECRYPTION_DONE)
rt2560_decryption_intr(sc);
if (r & RT2560_RX_DONE) {
rt2560_rx_intr(sc);
rt2560_encryption_intr(sc);
}
/* re-enable interrupts */
RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
RAL_UNLOCK(sc);
}
#define RAL_SIFS 10 /* us */
#define RT2560_TXRX_TURNAROUND 10 /* us */
static uint8_t
rt2560_plcp_signal(int rate)
{
switch (rate) {
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* CCK rates (NB: not IEEE std, device-specific) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
}
return 0xff; /* XXX unsupported/unknown rate */
}
static void
rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint16_t plcp_length;
int remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(len << 16);
desc->physaddr = htole32(physaddr);
desc->wme = htole16(
RT2560_AIFSN(2) |
RT2560_LOGCWMIN(3) |
RT2560_LOGCWMAX(8));
/* setup PLCP fields */
desc->plcp_signal = rt2560_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
desc->flags |= htole32(RT2560_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2560_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
if (!encrypt)
desc->flags |= htole32(RT2560_TX_VALID);
desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY)
: htole32(RT2560_TX_BUSY);
}
static int
rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
int nsegs, rate, error;
desc = &sc->bcnq.desc[sc->bcnq.cur];
data = &sc->bcnq.data[sc->bcnq.cur];
/* XXX maybe a separate beacon rate? */
rate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].mgmtrate;
error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(vap, m0);
}
data->m = m0;
data->ni = ni;
rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
DPRINTFN(sc, 10, "sending beacon frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->bcnq.cur, rate);
bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
BUS_DMASYNC_PREWRITE);
sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
return 0;
}
static int
rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
uint16_t dur;
uint32_t flags = 0;
int nsegs, rate, error;
desc = &sc->prioq.desc[sc->prioq.cur];
data = &sc->prioq.data[sc->prioq.cur];
rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
}
error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(vap, m0);
}
data->m = m0;
data->ni = ni;
/* management frames are not taken into account for amrr */
data->rix = IEEE80211_FIXED_RATE_NONE;
wh = mtod(m0, struct ieee80211_frame *);
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2560_TX_ACK;
dur = ieee80211_ack_duration(ic->ic_rt,
rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE);
*(uint16_t *)wh->i_dur = htole16(dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= RT2560_TX_TIMESTAMP;
}
rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
segs->ds_addr);
bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(sc, 10, "sending mgt frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->prioq.cur, rate);
/* kick prio */
sc->prioq.queued++;
sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
return 0;
}
static int
rt2560_sendprot(struct rt2560_softc *sc,
const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
{
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_frame *wh;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct mbuf *mprot;
int protrate, ackrate, pktlen, flags, isshort, error;
uint16_t dur;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
int nsegs;
KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
("protection %d", prot));
wh = mtod(m, const struct ieee80211_frame *);
pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
+ ieee80211_ack_duration(ic->ic_rt, rate, isshort);
flags = RT2560_TX_MORE_FRAG;
if (prot == IEEE80211_PROT_RTSCTS) {
/* NB: CTS is the same size as an ACK */
dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
flags |= RT2560_TX_ACK;
mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
} else {
mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
}
if (mprot == NULL) {
/* XXX stat + msg */
return ENOBUFS;
}
desc = &sc->txq.desc[sc->txq.cur_encrypt];
data = &sc->txq.data[sc->txq.cur_encrypt];
error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
mprot, segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(mprot);
return error;
}
data->m = mprot;
data->ni = ieee80211_ref_node(ni);
/* ctl frames are not taken into account for amrr */
data->rix = IEEE80211_FIXED_RATE_NONE;
rt2560_setup_tx_desc(sc, desc, flags, mprot->m_pkthdr.len, protrate, 1,
segs->ds_addr);
bus_dmamap_sync(sc->txq.data_dmat, data->map,
BUS_DMASYNC_PREWRITE);
sc->txq.queued++;
sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
return 0;
}
static int
rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
uint32_t flags;
int nsegs, rate, error;
desc = &sc->prioq.desc[sc->prioq.cur];
data = &sc->prioq.data[sc->prioq.cur];
rate = params->ibp_rate0;
if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
/* XXX fall back to mcast/mgmt rate? */
m_freem(m0);
return EINVAL;
}
flags = 0;
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
flags |= RT2560_TX_ACK;
if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
error = rt2560_sendprot(sc, m0, ni,
params->ibp_flags & IEEE80211_BPF_RTS ?
IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
rate);
if (error) {
m_freem(m0);
return error;
}
flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
}
error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(ni->ni_vap, m0);
}
data->m = m0;
data->ni = ni;
/* XXX need to setup descriptor ourself */
rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len,
rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0,
segs->ds_addr);
bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(sc, 10, "sending raw frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->prioq.cur, rate);
/* kick prio */
sc->prioq.queued++;
sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
return 0;
}
static int
rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct rt2560_tx_desc *desc;
struct rt2560_tx_data *data;
struct ieee80211_frame *wh;
const struct ieee80211_txparam *tp;
struct ieee80211_key *k;
struct mbuf *mnew;
bus_dma_segment_t segs[RT2560_MAX_SCATTER];
uint16_t dur;
uint32_t flags;
int nsegs, rate, error;
wh = mtod(m0, struct ieee80211_frame *);
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
rate = tp->mcastrate;
} else if (m0->m_flags & M_EAPOL) {
rate = tp->mgmtrate;
} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
rate = tp->ucastrate;
} else {
(void) ieee80211_ratectl_rate(ni, NULL, 0);
rate = ni->ni_txrate;
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
int prot = IEEE80211_PROT_NONE;
if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
prot = IEEE80211_PROT_RTSCTS;
else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
prot = ic->ic_protmode;
if (prot != IEEE80211_PROT_NONE) {
error = rt2560_sendprot(sc, m0, ni, prot, rate);
if (error) {
m_freem(m0);
return error;
}
flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
}
}
data = &sc->txq.data[sc->txq.cur_encrypt];
desc = &sc->txq.desc[sc->txq.cur_encrypt];
error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
mnew = m_defrag(m0, M_DONTWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
m0, segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(vap, m0);
}
data->m = m0;
data->ni = ni;
/* remember link conditions for rate adaptation algorithm */
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
data->rix = ni->ni_txrate;
/* XXX probably need last rssi value and not avg */
data->rssi = ic->ic_node_getrssi(ni);
} else
data->rix = IEEE80211_FIXED_RATE_NONE;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2560_TX_ACK;
dur = ieee80211_ack_duration(ic->ic_rt,
rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE);
*(uint16_t *)wh->i_dur = htole16(dur);
}
rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
segs->ds_addr);
bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(sc, 10, "sending data frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->txq.cur_encrypt, rate);
/* kick encrypt */
sc->txq.queued++;
sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
return 0;
}
static void
rt2560_start_locked(struct ifnet *ifp)
{
struct rt2560_softc *sc = ifp->if_softc;
struct mbuf *m;
struct ieee80211_node *ni;
RAL_LOCK_ASSERT(sc);
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
sc->sc_flags |= RT2560_F_DATA_OACTIVE;
break;
}
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
if (rt2560_tx_data(sc, m, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
sc->sc_tx_timer = 5;
}
}
static void
rt2560_start(struct ifnet *ifp)
{
struct rt2560_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
rt2560_start_locked(ifp);
RAL_UNLOCK(sc);
}
static void
rt2560_watchdog(void *arg)
{
struct rt2560_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
RAL_LOCK_ASSERT(sc);
KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
if (sc->sc_invalid) /* card ejected */
return;
rt2560_encryption_intr(sc);
rt2560_tx_intr(sc);
if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
rt2560_init_locked(sc);
ifp->if_oerrors++;
/* NB: callout is reset in rt2560_init() */
return;
}
callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
}
static int
rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct rt2560_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
RAL_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
rt2560_init_locked(sc);
startall = 1;
} else
rt2560_update_promisc(ifp);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rt2560_stop_locked(sc);
}
RAL_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
}
static void
rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to BBP\n");
return;
}
tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
RAL_WRITE(sc, RT2560_BBPCSR, tmp);
DPRINTFN(sc, 15, "BBP R%u <- 0x%02x\n", reg, val);
}
static uint8_t
rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not read from BBP\n");
return 0;
}
val = RT2560_BBP_BUSY | reg << 8;
RAL_WRITE(sc, RT2560_BBPCSR, val);
for (ntries = 0; ntries < 100; ntries++) {
val = RAL_READ(sc, RT2560_BBPCSR);
if (!(val & RT2560_BBP_BUSY))
return val & 0xff;
DELAY(1);
}
device_printf(sc->sc_dev, "could not read from BBP\n");
return 0;
}
static void
rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to RF\n");
return;
}
tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
(reg & 0x3);
RAL_WRITE(sc, RT2560_RFCSR, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(sc, 15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
}
static void
rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint8_t power, tmp;
u_int i, chan;
chan = ieee80211_chan2ieee(ic, c);
KASSERT(chan != 0 && chan != IEEE80211_CHAN_ANY, ("chan 0x%x", chan));
if (IEEE80211_IS_CHAN_2GHZ(c))
power = min(sc->txpow[chan - 1], 31);
else
power = 31;
/* adjust txpower using ifconfig settings */
power -= (100 - ic->ic_txpowlimit) / 8;
DPRINTFN(sc, 2, "setting channel to %u, txpower to %u\n", chan, power);
switch (sc->rf_rev) {
case RT2560_RF_2522:
rt2560_rf_write(sc, RAL_RF1, 0x00814);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
break;
case RT2560_RF_2523:
rt2560_rf_write(sc, RAL_RF1, 0x08804);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RT2560_RF_2524:
rt2560_rf_write(sc, RAL_RF1, 0x0c808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RT2560_RF_2525:
rt2560_rf_write(sc, RAL_RF1, 0x08808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
rt2560_rf_write(sc, RAL_RF1, 0x08808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RT2560_RF_2525E:
rt2560_rf_write(sc, RAL_RF1, 0x08808);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
break;
case RT2560_RF_2526:
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
rt2560_rf_write(sc, RAL_RF1, 0x08804);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
break;
/* dual-band RF */
case RT2560_RF_5222:
for (i = 0; rt2560_rf5222[i].chan != chan; i++);
rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
break;
default:
printf("unknown ral rev=%d\n", sc->rf_rev);
}
/* XXX */
if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
/* set Japan filter bit for channel 14 */
tmp = rt2560_bbp_read(sc, 70);
tmp &= ~RT2560_JAPAN_FILTER;
if (chan == 14)
tmp |= RT2560_JAPAN_FILTER;
rt2560_bbp_write(sc, 70, tmp);
/* clear CRC errors */
RAL_READ(sc, RT2560_CNT0);
}
}
static void
rt2560_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
rt2560_set_chan(sc, ic->ic_curchan);
RAL_UNLOCK(sc);
}
#if 0
/*
* Disable RF auto-tuning.
*/
static void
rt2560_disable_rf_tune(struct rt2560_softc *sc)
{
uint32_t tmp;
if (sc->rf_rev != RT2560_RF_2523) {
tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
rt2560_rf_write(sc, RAL_RF1, tmp);
}
tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
rt2560_rf_write(sc, RAL_RF3, tmp);
DPRINTFN(sc, 2, "%s", "disabling RF autotune\n");
}
#endif
/*
* Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
* synchronization.
*/
static void
rt2560_enable_tsf_sync(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint16_t logcwmin, preload;
uint32_t tmp;
/* first, disable TSF synchronization */
RAL_WRITE(sc, RT2560_CSR14, 0);
tmp = 16 * vap->iv_bss->ni_intval;
RAL_WRITE(sc, RT2560_CSR12, tmp);
RAL_WRITE(sc, RT2560_CSR13, 0);
logcwmin = 5;
preload = (vap->iv_opmode == IEEE80211_M_STA) ? 384 : 1024;
tmp = logcwmin << 16 | preload;
RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
/* finally, enable TSF synchronization */
tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2560_ENABLE_TSF_SYNC(1);
else
tmp |= RT2560_ENABLE_TSF_SYNC(2) |
RT2560_ENABLE_BEACON_GENERATOR;
RAL_WRITE(sc, RT2560_CSR14, tmp);
DPRINTF(sc, "%s", "enabling TSF synchronization\n");
}
static void
rt2560_enable_tsf(struct rt2560_softc *sc)
{
RAL_WRITE(sc, RT2560_CSR14, 0);
RAL_WRITE(sc, RT2560_CSR14,
RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_TSF);
}
static void
rt2560_update_plcp(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/* no short preamble for 1Mbps */
RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
/* values taken from the reference driver */
RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
} else {
/* same values as above or'ed 0x8 */
RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
}
DPRINTF(sc, "updating PLCP for %s preamble\n",
(ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long");
}
/*
* This function can be called by ieee80211_set_shortslottime(). Refer to
* IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
*/
static void
rt2560_update_slot(struct ifnet *ifp)
{
struct rt2560_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
uint8_t slottime;
uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
uint32_t tmp;
#ifndef FORCE_SLOTTIME
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
#else
/*
* Setting slot time according to "short slot time" capability
* in beacon/probe_resp seems to cause problem to acknowledge
* certain AP's data frames transimitted at CCK/DS rates: the
* problematic AP keeps retransmitting data frames, probably
* because MAC level acks are not received by hardware.
* So we cheat a little bit here by claiming we are capable of
* "short slot time" but setting hardware slot time to the normal
* slot time. ral(4) does not seem to have trouble to receive
* frames transmitted using short slot time even if hardware
* slot time is set to normal slot time. If we didn't use this
* trick, we would have to claim that short slot time is not
* supported; this would give relative poor RX performance
* (-1Mb~-2Mb lower) and the _whole_ BSS would stop using short
* slot time.
*/
slottime = 20;
#endif
/* update the MAC slot boundaries */
tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
tx_pifs = tx_sifs + slottime;
tx_difs = tx_sifs + 2 * slottime;
eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
tmp = RAL_READ(sc, RT2560_CSR11);
tmp = (tmp & ~0x1f00) | slottime << 8;
RAL_WRITE(sc, RT2560_CSR11, tmp);
tmp = tx_pifs << 16 | tx_sifs;
RAL_WRITE(sc, RT2560_CSR18, tmp);
tmp = eifs << 16 | tx_difs;
RAL_WRITE(sc, RT2560_CSR19, tmp);
DPRINTF(sc, "setting slottime to %uus\n", slottime);
}
static void
rt2560_set_basicrates(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/* update basic rate set */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
/* 11b basic rates: 1, 2Mbps */
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
/* 11a basic rates: 6, 12, 24Mbps */
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
} else {
/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
}
}
static void
rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
{
uint32_t tmp;
/* set ON period to 70ms and OFF period to 30ms */
tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
RAL_WRITE(sc, RT2560_LEDCSR, tmp);
}
static void
rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
RAL_WRITE(sc, RT2560_CSR5, tmp);
tmp = bssid[4] | bssid[5] << 8;
RAL_WRITE(sc, RT2560_CSR6, tmp);
DPRINTF(sc, "setting BSSID to %6D\n", bssid, ":");
}
static void
rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
RAL_WRITE(sc, RT2560_CSR3, tmp);
tmp = addr[4] | addr[5] << 8;
RAL_WRITE(sc, RT2560_CSR4, tmp);
DPRINTF(sc, "setting MAC address to %6D\n", addr, ":");
}
static void
rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = RAL_READ(sc, RT2560_CSR3);
addr[0] = tmp & 0xff;
addr[1] = (tmp >> 8) & 0xff;
addr[2] = (tmp >> 16) & 0xff;
addr[3] = (tmp >> 24);
tmp = RAL_READ(sc, RT2560_CSR4);
addr[4] = tmp & 0xff;
addr[5] = (tmp >> 8) & 0xff;
}
static void
rt2560_update_promisc(struct ifnet *ifp)
{
struct rt2560_softc *sc = ifp->if_softc;
uint32_t tmp;
tmp = RAL_READ(sc, RT2560_RXCSR0);
tmp &= ~RT2560_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2560_DROP_NOT_TO_ME;
RAL_WRITE(sc, RT2560_RXCSR0, tmp);
DPRINTF(sc, "%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving");
}
static const char *
rt2560_get_rf(int rev)
{
switch (rev) {
case RT2560_RF_2522: return "RT2522";
case RT2560_RF_2523: return "RT2523";
case RT2560_RF_2524: return "RT2524";
case RT2560_RF_2525: return "RT2525";
case RT2560_RF_2525E: return "RT2525e";
case RT2560_RF_2526: return "RT2526";
case RT2560_RF_5222: return "RT5222";
default: return "unknown";
}
}
static void
rt2560_read_config(struct rt2560_softc *sc)
{
uint16_t val;
int i;
val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
sc->rf_rev = (val >> 11) & 0x7;
sc->hw_radio = (val >> 10) & 0x1;
sc->led_mode = (val >> 6) & 0x7;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
/* read default values for BBP registers */
for (i = 0; i < 16; i++) {
val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
if (val == 0 || val == 0xffff)
continue;
sc->bbp_prom[i].reg = val >> 8;
sc->bbp_prom[i].val = val & 0xff;
}
/* read Tx power for all b/g channels */
for (i = 0; i < 14 / 2; i++) {
val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
sc->txpow[i * 2] = val & 0xff;
sc->txpow[i * 2 + 1] = val >> 8;
}
for (i = 0; i < 14; ++i) {
if (sc->txpow[i] > 31)
sc->txpow[i] = 24;
}
val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE);
if ((val & 0xff) == 0xff)
sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR;
else
sc->rssi_corr = val & 0xff;
DPRINTF(sc, "rssi correction %d, calibrate 0x%02x\n",
sc->rssi_corr, val);
}
static void
rt2560_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
/* abort TSF synchronization */
RAL_WRITE(sc, RT2560_CSR14, 0);
rt2560_set_bssid(sc, ifp->if_broadcastaddr);
}
static void
rt2560_scan_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
struct ieee80211vap *vap = ic->ic_scan->ss_vap;
rt2560_enable_tsf_sync(sc);
/* XXX keep local copy */
rt2560_set_bssid(sc, vap->iv_bss->ni_bssid);
}
static int
rt2560_bbp_init(struct rt2560_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for BBP\n");
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < N(rt2560_def_bbp); i++) {
rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
rt2560_def_bbp[i].val);
}
/* initialize BBP registers to values stored in EEPROM */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0 && sc->bbp_prom[i].val == 0)
break;
rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
rt2560_bbp_write(sc, 17, 0x48); /* XXX restore bbp17 */
return 0;
#undef N
}
static void
rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
{
uint32_t tmp;
uint8_t tx;
tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
if (antenna == 1)
tx |= RT2560_BBP_ANTA;
else if (antenna == 2)
tx |= RT2560_BBP_ANTB;
else
tx |= RT2560_BBP_DIVERSITY;
/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
sc->rf_rev == RT2560_RF_5222)
tx |= RT2560_BBP_FLIPIQ;
rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
/* update values for CCK and OFDM in BBPCSR1 */
tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
tmp |= (tx & 0x7) << 16 | (tx & 0x7);
RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
}
static void
rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
{
uint8_t rx;
rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
if (antenna == 1)
rx |= RT2560_BBP_ANTA;
else if (antenna == 2)
rx |= RT2560_BBP_ANTB;
else
rx |= RT2560_BBP_DIVERSITY;
/* need to force no I/Q flip for RF 2525e and 2526 */
if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
rx &= ~RT2560_BBP_FLIPIQ;
rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
}
static void
rt2560_init_locked(struct rt2560_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
int i;
RAL_LOCK_ASSERT(sc);
rt2560_stop_locked(sc);
/* setup tx rings */
tmp = RT2560_PRIO_RING_COUNT << 24 |
RT2560_ATIM_RING_COUNT << 16 |
RT2560_TX_RING_COUNT << 8 |
RT2560_TX_DESC_SIZE;
/* rings must be initialized in this exact order */
RAL_WRITE(sc, RT2560_TXCSR2, tmp);
RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
/* setup rx ring */
tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
RAL_WRITE(sc, RT2560_RXCSR1, tmp);
RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
/* initialize MAC registers to default values */
for (i = 0; i < N(rt2560_def_mac); i++)
RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
rt2560_set_macaddr(sc, IF_LLADDR(ifp));
/* set basic rate set (will be updated later) */
RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
rt2560_update_slot(ifp);
rt2560_update_plcp(sc);
rt2560_update_led(sc, 0, 0);
RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
if (rt2560_bbp_init(sc) != 0) {
rt2560_stop(sc);
RAL_UNLOCK(sc);
return;
}
rt2560_set_txantenna(sc, sc->tx_ant);
rt2560_set_rxantenna(sc, sc->rx_ant);
/* set default BSS channel */
rt2560_set_chan(sc, ic->ic_curchan);
/* kick Rx */
tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
ic->ic_opmode != IEEE80211_M_MBSS)
tmp |= RT2560_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2560_DROP_NOT_TO_ME;
}
RAL_WRITE(sc, RT2560_RXCSR0, tmp);
/* clear old FCS and Rx FIFO errors */
RAL_READ(sc, RT2560_CNT0);
RAL_READ(sc, RT2560_CNT4);
/* clear any pending interrupts */
RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
/* enable interrupts */
RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
#undef N
}
static void
rt2560_init(void *priv)
{
struct rt2560_softc *sc = priv;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
RAL_LOCK(sc);
rt2560_init_locked(sc);
RAL_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic); /* start all vap's */
}
static void
rt2560_stop_locked(struct rt2560_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
volatile int *flags = &sc->sc_flags;
RAL_LOCK_ASSERT(sc);
while (*flags & RT2560_F_INPUT_RUNNING)
msleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10);
callout_stop(&sc->watchdog_ch);
sc->sc_tx_timer = 0;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* abort Tx */
RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
/* disable Rx */
RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
/* reset ASIC (imply reset BBP) */
RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
RAL_WRITE(sc, RT2560_CSR1, 0);
/* disable interrupts */
RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
/* reset Tx and Rx rings */
rt2560_reset_tx_ring(sc, &sc->txq);
rt2560_reset_tx_ring(sc, &sc->atimq);
rt2560_reset_tx_ring(sc, &sc->prioq);
rt2560_reset_tx_ring(sc, &sc->bcnq);
rt2560_reset_rx_ring(sc, &sc->rxq);
}
sc->sc_flags &= ~(RT2560_F_PRIO_OACTIVE | RT2560_F_DATA_OACTIVE);
}
void
rt2560_stop(void *arg)
{
struct rt2560_softc *sc = arg;
RAL_LOCK(sc);
rt2560_stop_locked(sc);
RAL_UNLOCK(sc);
}
static int
rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct rt2560_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
RAL_UNLOCK(sc);
m_freem(m);
ieee80211_free_node(ni);
return ENETDOWN;
}
if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
sc->sc_flags |= RT2560_F_PRIO_OACTIVE;
RAL_UNLOCK(sc);
m_freem(m);
ieee80211_free_node(ni);
return ENOBUFS; /* XXX */
}
ifp->if_opackets++;
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
if (rt2560_tx_mgt(sc, m, ni) != 0)
goto bad;
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
if (rt2560_tx_raw(sc, m, ni, params))
goto bad;
}
sc->sc_tx_timer = 5;
RAL_UNLOCK(sc);
return 0;
bad:
ifp->if_oerrors++;
ieee80211_free_node(ni);
RAL_UNLOCK(sc);
return EIO; /* XXX */
}