freebsd-nq/sys/dev/usb/wlan/if_upgt.c
Hans Petter Selasky f1a16106b6 - Move all USB device ID arrays into so-called sections,
sorted according to the mode which they support:
	host, device or dual mode
- Add generic tool to extract these data:
	tools/bus_autoconf

Discussed with:	imp
Suggested by:	Robert Millan <rmh@debian.org>
PR:		misc/157903
MFC after:	14 days
2011-06-24 02:30:02 +00:00

2396 lines
61 KiB
C

/* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
/* $FreeBSD$ */
/*
* Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/endian.h>
#include <sys/firmware.h>
#include <sys/linker.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_phy.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <net/bpf.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"
#include <dev/usb/wlan/if_upgtvar.h>
/*
* Driver for the USB PrismGT devices.
*
* For now just USB 2.0 devices with the GW3887 chipset are supported.
* The driver has been written based on the firmware version 2.13.1.0_LM87.
*
* TODO's:
* - MONITOR mode test.
* - Add HOSTAP mode.
* - Add IBSS mode.
* - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
*
* Parts of this driver has been influenced by reading the p54u driver
* written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
* Sebastien Bourdeauducq <lekernel@prism54.org>.
*/
SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
"USB PrismGT GW3887 driver parameters");
#ifdef UPGT_DEBUG
int upgt_debug = 0;
SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW, &upgt_debug,
0, "control debugging printfs");
TUNABLE_INT("hw.upgt.debug", &upgt_debug);
enum {
UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */
UPGT_DEBUG_RESET = 0x00000004, /* reset processing */
UPGT_DEBUG_INTR = 0x00000008, /* INTR */
UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */
UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */
UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */
UPGT_DEBUG_STAT = 0x00000080, /* statistic */
UPGT_DEBUG_FW = 0x00000100, /* firmware */
UPGT_DEBUG_ANY = 0xffffffff
};
#define DPRINTF(sc, m, fmt, ...) do { \
if (sc->sc_debug & (m)) \
printf(fmt, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(sc, m, fmt, ...) do { \
(void) sc; \
} while (0)
#endif
/*
* Prototypes.
*/
static device_probe_t upgt_match;
static device_attach_t upgt_attach;
static device_detach_t upgt_detach;
static int upgt_alloc_tx(struct upgt_softc *);
static int upgt_alloc_rx(struct upgt_softc *);
static int upgt_device_reset(struct upgt_softc *);
static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
static int upgt_fw_verify(struct upgt_softc *);
static int upgt_mem_init(struct upgt_softc *);
static int upgt_fw_load(struct upgt_softc *);
static int upgt_fw_copy(const uint8_t *, char *, int);
static uint32_t upgt_crc32_le(const void *, size_t);
static struct mbuf *
upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
static struct mbuf *
upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
static void upgt_txeof(struct usb_xfer *, struct upgt_data *);
static int upgt_eeprom_read(struct upgt_softc *);
static int upgt_eeprom_parse(struct upgt_softc *);
static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
static uint32_t upgt_chksum_le(const uint32_t *, size_t);
static void upgt_tx_done(struct upgt_softc *, uint8_t *);
static void upgt_init(void *);
static void upgt_init_locked(struct upgt_softc *);
static int upgt_ioctl(struct ifnet *, u_long, caddr_t);
static void upgt_start(struct ifnet *);
static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void upgt_scan_start(struct ieee80211com *);
static void upgt_scan_end(struct ieee80211com *);
static void upgt_set_channel(struct ieee80211com *);
static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
const char name[IFNAMSIZ], int unit, int opmode,
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void upgt_vap_delete(struct ieee80211vap *);
static void upgt_update_mcast(struct ifnet *);
static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
static void upgt_set_multi(void *);
static void upgt_stop(struct upgt_softc *);
static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
static void upgt_set_led(struct upgt_softc *, int);
static void upgt_set_led_blink(void *);
static void upgt_get_stats(struct upgt_softc *);
static void upgt_mem_free(struct upgt_softc *, uint32_t);
static uint32_t upgt_mem_alloc(struct upgt_softc *);
static void upgt_free_tx(struct upgt_softc *);
static void upgt_free_rx(struct upgt_softc *);
static void upgt_watchdog(void *);
static void upgt_abort_xfers(struct upgt_softc *);
static void upgt_abort_xfers_locked(struct upgt_softc *);
static void upgt_sysctl_node(struct upgt_softc *);
static struct upgt_data *
upgt_getbuf(struct upgt_softc *);
static struct upgt_data *
upgt_gettxbuf(struct upgt_softc *);
static int upgt_tx_start(struct upgt_softc *, struct mbuf *,
struct ieee80211_node *, struct upgt_data *);
static const char *upgt_fwname = "upgt-gw3887";
static const STRUCT_USB_HOST_ID upgt_devs[] = {
#define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
/* version 2 devices */
UPGT_DEV(ACCTON, PRISM_GT),
UPGT_DEV(BELKIN, F5D7050),
UPGT_DEV(CISCOLINKSYS, WUSB54AG),
UPGT_DEV(CONCEPTRONIC, PRISM_GT),
UPGT_DEV(DELL, PRISM_GT_1),
UPGT_DEV(DELL, PRISM_GT_2),
UPGT_DEV(FSC, E5400),
UPGT_DEV(GLOBESPAN, PRISM_GT_1),
UPGT_DEV(GLOBESPAN, PRISM_GT_2),
UPGT_DEV(NETGEAR, WG111V2_2),
UPGT_DEV(INTERSIL, PRISM_GT),
UPGT_DEV(SMC, 2862WG),
UPGT_DEV(USR, USR5422),
UPGT_DEV(WISTRONNEWEB, UR045G),
UPGT_DEV(XYRATEX, PRISM_GT_1),
UPGT_DEV(XYRATEX, PRISM_GT_2),
UPGT_DEV(ZCOM, XG703A),
UPGT_DEV(ZCOM, XM142)
};
static usb_callback_t upgt_bulk_rx_callback;
static usb_callback_t upgt_bulk_tx_callback;
static const struct usb_config upgt_config[UPGT_N_XFERS] = {
[UPGT_BULK_TX] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = MCLBYTES,
.flags = {
.ext_buffer = 1,
.force_short_xfer = 1,
.pipe_bof = 1
},
.callback = upgt_bulk_tx_callback,
.timeout = UPGT_USB_TIMEOUT, /* ms */
},
[UPGT_BULK_RX] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = MCLBYTES,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.short_xfer_ok = 1
},
.callback = upgt_bulk_rx_callback,
},
};
static int
upgt_match(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
return (ENXIO);
if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa));
}
static int
upgt_attach(device_t dev)
{
int error;
struct ieee80211com *ic;
struct ifnet *ifp;
struct upgt_softc *sc = device_get_softc(dev);
struct usb_attach_arg *uaa = device_get_ivars(dev);
uint8_t bands, iface_index = UPGT_IFACE_INDEX;
sc->sc_dev = dev;
sc->sc_udev = uaa->device;
#ifdef UPGT_DEBUG
sc->sc_debug = upgt_debug;
#endif
device_set_usb_desc(dev);
mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init(&sc->sc_led_ch, 0);
callout_init(&sc->sc_watchdog_ch, 0);
/* Allocate TX and RX xfers. */
error = upgt_alloc_tx(sc);
if (error)
goto fail1;
error = upgt_alloc_rx(sc);
if (error)
goto fail2;
error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
if (error) {
device_printf(dev, "could not allocate USB transfers, "
"err=%s\n", usbd_errstr(error));
goto fail3;
}
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
goto fail4;
}
/* Initialize the device. */
error = upgt_device_reset(sc);
if (error)
goto fail5;
/* Verify the firmware. */
error = upgt_fw_verify(sc);
if (error)
goto fail5;
/* Calculate device memory space. */
if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
device_printf(dev,
"could not find memory space addresses on FW\n");
error = EIO;
goto fail5;
}
sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
sc->sc_memaddr_frame_start);
DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
sc->sc_memaddr_frame_end);
DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
sc->sc_memaddr_rx_start);
upgt_mem_init(sc);
/* Load the firmware. */
error = upgt_fw_load(sc);
if (error)
goto fail5;
/* Read the whole EEPROM content and parse it. */
error = upgt_eeprom_read(sc);
if (error)
goto fail5;
error = upgt_eeprom_parse(sc);
if (error)
goto fail5;
/* all works related with the device have done here. */
upgt_abort_xfers(sc);
/* Setup the 802.11 device. */
ifp->if_softc = sc;
if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = upgt_init;
ifp->if_ioctl = upgt_ioctl;
ifp->if_start = upgt_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
IFQ_SET_READY(&ifp->if_snd);
ic = ifp->if_l2com;
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_BGSCAN /* capable of bg scanning */
| IEEE80211_C_WPA /* 802.11i */
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
ieee80211_init_channels(ic, NULL, &bands);
ieee80211_ifattach(ic, sc->sc_myaddr);
ic->ic_raw_xmit = upgt_raw_xmit;
ic->ic_scan_start = upgt_scan_start;
ic->ic_scan_end = upgt_scan_end;
ic->ic_set_channel = upgt_set_channel;
ic->ic_vap_create = upgt_vap_create;
ic->ic_vap_delete = upgt_vap_delete;
ic->ic_update_mcast = upgt_update_mcast;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
UPGT_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
UPGT_RX_RADIOTAP_PRESENT);
upgt_sysctl_node(sc);
if (bootverbose)
ieee80211_announce(ic);
return (0);
fail5: if_free(ifp);
fail4: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
fail3: upgt_free_rx(sc);
fail2: upgt_free_tx(sc);
fail1: mtx_destroy(&sc->sc_mtx);
return (error);
}
static void
upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
{
struct upgt_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
UPGT_ASSERT_LOCKED(sc);
/*
* Do any tx complete callback. Note this must be done before releasing
* the node reference.
*/
if (data->m) {
m = data->m;
if (m->m_flags & M_TXCB) {
/* XXX status? */
ieee80211_process_callback(data->ni, m, 0);
}
m_freem(m);
data->m = NULL;
}
if (data->ni) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
ifp->if_opackets++;
}
static void
upgt_get_stats(struct upgt_softc *sc)
{
struct upgt_data *data_cmd;
struct upgt_lmac_mem *mem;
struct upgt_lmac_stats *stats;
data_cmd = upgt_getbuf(sc);
if (data_cmd == NULL) {
device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
return;
}
/*
* Transmit the URB containing the CMD data.
*/
bzero(data_cmd->buf, MCLBYTES);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
stats = (struct upgt_lmac_stats *)(mem + 1);
stats->header1.flags = 0;
stats->header1.type = UPGT_H1_TYPE_CTRL;
stats->header1.len = htole16(
sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
stats->header2.flags = 0;
data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
mem->chksum = upgt_chksum_le((uint32_t *)stats,
data_cmd->buflen - sizeof(*mem));
upgt_bulk_tx(sc, data_cmd);
}
static int
upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct upgt_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->sc_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC))
upgt_set_multi(sc);
} else {
upgt_init(sc);
startall = 1;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
upgt_stop(sc);
}
sc->sc_if_flags = ifp->if_flags;
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
}
static void
upgt_stop_locked(struct upgt_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
UPGT_ASSERT_LOCKED(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
upgt_set_macfilter(sc, IEEE80211_S_INIT);
upgt_abort_xfers_locked(sc);
}
static void
upgt_stop(struct upgt_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
UPGT_LOCK(sc);
upgt_stop_locked(sc);
UPGT_UNLOCK(sc);
/* device down */
sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_flags &= ~UPGT_FLAG_INITDONE;
}
static void
upgt_set_led(struct upgt_softc *sc, int action)
{
struct upgt_data *data_cmd;
struct upgt_lmac_mem *mem;
struct upgt_lmac_led *led;
data_cmd = upgt_getbuf(sc);
if (data_cmd == NULL) {
device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
return;
}
/*
* Transmit the URB containing the CMD data.
*/
bzero(data_cmd->buf, MCLBYTES);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
led = (struct upgt_lmac_led *)(mem + 1);
led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
led->header1.type = UPGT_H1_TYPE_CTRL;
led->header1.len = htole16(
sizeof(struct upgt_lmac_led) -
sizeof(struct upgt_lmac_header));
led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
led->header2.type = htole16(UPGT_H2_TYPE_LED);
led->header2.flags = 0;
switch (action) {
case UPGT_LED_OFF:
led->mode = htole16(UPGT_LED_MODE_SET);
led->action_fix = 0;
led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
led->action_tmp_dur = 0;
break;
case UPGT_LED_ON:
led->mode = htole16(UPGT_LED_MODE_SET);
led->action_fix = 0;
led->action_tmp = htole16(UPGT_LED_ACTION_ON);
led->action_tmp_dur = 0;
break;
case UPGT_LED_BLINK:
if (sc->sc_state != IEEE80211_S_RUN) {
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
return;
}
if (sc->sc_led_blink) {
/* previous blink was not finished */
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
return;
}
led->mode = htole16(UPGT_LED_MODE_SET);
led->action_fix = htole16(UPGT_LED_ACTION_OFF);
led->action_tmp = htole16(UPGT_LED_ACTION_ON);
led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
/* lock blink */
sc->sc_led_blink = 1;
callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
break;
default:
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
return;
}
data_cmd->buflen = sizeof(*mem) + sizeof(*led);
mem->chksum = upgt_chksum_le((uint32_t *)led,
data_cmd->buflen - sizeof(*mem));
upgt_bulk_tx(sc, data_cmd);
}
static void
upgt_set_led_blink(void *arg)
{
struct upgt_softc *sc = arg;
/* blink finished, we are ready for a next one */
sc->sc_led_blink = 0;
}
static void
upgt_init(void *priv)
{
struct upgt_softc *sc = priv;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
UPGT_LOCK(sc);
upgt_init_locked(sc);
UPGT_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic); /* start all vap's */
}
static void
upgt_init_locked(struct upgt_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
UPGT_ASSERT_LOCKED(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
upgt_stop_locked(sc);
usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
(void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_flags |= UPGT_FLAG_INITDONE;
callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
}
static int
upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_node *ni;
struct upgt_data *data_cmd;
struct upgt_lmac_mem *mem;
struct upgt_lmac_filter *filter;
uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
UPGT_ASSERT_LOCKED(sc);
data_cmd = upgt_getbuf(sc);
if (data_cmd == NULL) {
device_printf(sc->sc_dev, "out of TX buffers.\n");
return (ENOBUFS);
}
/*
* Transmit the URB containing the CMD data.
*/
bzero(data_cmd->buf, MCLBYTES);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
filter = (struct upgt_lmac_filter *)(mem + 1);
filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
filter->header1.type = UPGT_H1_TYPE_CTRL;
filter->header1.len = htole16(
sizeof(struct upgt_lmac_filter) -
sizeof(struct upgt_lmac_header));
filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
filter->header2.flags = 0;
switch (state) {
case IEEE80211_S_INIT:
DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
__func__);
filter->type = htole16(UPGT_FILTER_TYPE_RESET);
break;
case IEEE80211_S_SCAN:
DPRINTF(sc, UPGT_DEBUG_STATE,
"set MAC filter to SCAN (bssid %s)\n",
ether_sprintf(broadcast));
filter->type = htole16(UPGT_FILTER_TYPE_NONE);
IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
IEEE80211_ADDR_COPY(filter->src, broadcast);
filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
filter->rxhw = htole32(sc->sc_eeprom_hwrx);
filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
break;
case IEEE80211_S_RUN:
ni = ieee80211_ref_node(vap->iv_bss);
/* XXX monitor mode isn't tested yet. */
if (vap->iv_opmode == IEEE80211_M_MONITOR) {
filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
filter->rxhw = htole32(sc->sc_eeprom_hwrx);
filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
} else {
DPRINTF(sc, UPGT_DEBUG_STATE,
"set MAC filter to RUN (bssid %s)\n",
ether_sprintf(ni->ni_bssid));
filter->type = htole16(UPGT_FILTER_TYPE_STA);
IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
filter->rxhw = htole32(sc->sc_eeprom_hwrx);
filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
}
ieee80211_free_node(ni);
break;
default:
device_printf(sc->sc_dev,
"MAC filter does not know that state\n");
break;
}
data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
mem->chksum = upgt_chksum_le((uint32_t *)filter,
data_cmd->buflen - sizeof(*mem));
upgt_bulk_tx(sc, data_cmd);
return (0);
}
static void
upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct upgt_softc *sc = ifp->if_softc;
const struct ieee80211_txparam *tp;
/*
* 0x01 = OFMD6 0x10 = DS1
* 0x04 = OFDM9 0x11 = DS2
* 0x06 = OFDM12 0x12 = DS5
* 0x07 = OFDM18 0x13 = DS11
* 0x08 = OFDM24
* 0x09 = OFDM36
* 0x0a = OFDM48
* 0x0b = OFDM54
*/
const uint8_t rateset_auto_11b[] =
{ 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
const uint8_t rateset_auto_11g[] =
{ 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
const uint8_t rateset_fix_11bg[] =
{ 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b };
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
/* XXX */
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
/*
* Automatic rate control is done by the device.
* We just pass the rateset from which the device
* will pickup a rate.
*/
if (ic->ic_curmode == IEEE80211_MODE_11B)
bcopy(rateset_auto_11b, sc->sc_cur_rateset,
sizeof(sc->sc_cur_rateset));
if (ic->ic_curmode == IEEE80211_MODE_11G ||
ic->ic_curmode == IEEE80211_MODE_AUTO)
bcopy(rateset_auto_11g, sc->sc_cur_rateset,
sizeof(sc->sc_cur_rateset));
} else {
/* set a fixed rate */
memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
sizeof(sc->sc_cur_rateset));
}
}
static void
upgt_set_multi(void *arg)
{
struct upgt_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
if (!(ifp->if_flags & IFF_UP))
return;
/*
* XXX don't know how to set a device. Lack of docs. Just try to set
* IFF_ALLMULTI flag here.
*/
ifp->if_flags |= IFF_ALLMULTI;
}
static void
upgt_start(struct ifnet *ifp)
{
struct upgt_softc *sc = ifp->if_softc;
struct upgt_data *data_tx;
struct ieee80211_node *ni;
struct mbuf *m;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
UPGT_LOCK(sc);
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
data_tx = upgt_gettxbuf(sc);
if (data_tx == NULL) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
break;
}
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
UPGT_STAT_INC(sc, st_tx_inactive);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
}
UPGT_UNLOCK(sc);
}
static int
upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct upgt_softc *sc = ifp->if_softc;
struct upgt_data *data_tx = NULL;
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
m_freem(m);
ieee80211_free_node(ni);
return ENETDOWN;
}
UPGT_LOCK(sc);
data_tx = upgt_gettxbuf(sc);
if (data_tx == NULL) {
ieee80211_free_node(ni);
m_freem(m);
UPGT_UNLOCK(sc);
return (ENOBUFS);
}
if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
UPGT_STAT_INC(sc, st_tx_inactive);
ieee80211_free_node(ni);
ifp->if_oerrors++;
UPGT_UNLOCK(sc);
return (EIO);
}
UPGT_UNLOCK(sc);
sc->sc_tx_timer = 5;
return (0);
}
static void
upgt_watchdog(void *arg)
{
struct upgt_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
device_printf(sc->sc_dev, "watchdog timeout\n");
/* upgt_init(ifp); XXX needs a process context ? */
ifp->if_oerrors++;
return;
}
callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
}
}
static uint32_t
upgt_mem_alloc(struct upgt_softc *sc)
{
int i;
for (i = 0; i < sc->sc_memory.pages; i++) {
if (sc->sc_memory.page[i].used == 0) {
sc->sc_memory.page[i].used = 1;
return (sc->sc_memory.page[i].addr);
}
}
return (0);
}
static void
upgt_scan_start(struct ieee80211com *ic)
{
/* do nothing. */
}
static void
upgt_scan_end(struct ieee80211com *ic)
{
/* do nothing. */
}
static void
upgt_set_channel(struct ieee80211com *ic)
{
struct upgt_softc *sc = ic->ic_ifp->if_softc;
UPGT_LOCK(sc);
upgt_set_chan(sc, ic->ic_curchan);
UPGT_UNLOCK(sc);
}
static void
upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct upgt_data *data_cmd;
struct upgt_lmac_mem *mem;
struct upgt_lmac_channel *chan;
int channel;
UPGT_ASSERT_LOCKED(sc);
channel = ieee80211_chan2ieee(ic, c);
if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
/* XXX should NEVER happen */
device_printf(sc->sc_dev,
"%s: invalid channel %x\n", __func__, channel);
return;
}
DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
data_cmd = upgt_getbuf(sc);
if (data_cmd == NULL) {
device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
return;
}
/*
* Transmit the URB containing the CMD data.
*/
bzero(data_cmd->buf, MCLBYTES);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
chan = (struct upgt_lmac_channel *)(mem + 1);
chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
chan->header1.type = UPGT_H1_TYPE_CTRL;
chan->header1.len = htole16(
sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
chan->header2.flags = 0;
chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
chan->freq6 = sc->sc_eeprom_freq6[channel];
chan->settings = sc->sc_eeprom_freq6_settings;
chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
sizeof(chan->freq3_1));
bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
sizeof(sc->sc_eeprom_freq4[channel]));
bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
sizeof(chan->freq3_2));
data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
mem->chksum = upgt_chksum_le((uint32_t *)chan,
data_cmd->buflen - sizeof(*mem));
upgt_bulk_tx(sc, data_cmd);
}
static struct ieee80211vap *
upgt_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct upgt_vap *uvp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (uvp == NULL)
return NULL;
vap = &uvp->vap;
/* enable s/w bmiss handling for sta mode */
ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
/* override state transition machine */
uvp->newstate = vap->iv_newstate;
vap->iv_newstate = upgt_newstate;
/* setup device rates */
upgt_setup_rates(vap, ic);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change,
ieee80211_media_status);
ic->ic_opmode = opmode;
return vap;
}
static int
upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct upgt_vap *uvp = UPGT_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct upgt_softc *sc = ic->ic_ifp->if_softc;
/* do it in a process context */
sc->sc_state = nstate;
IEEE80211_UNLOCK(ic);
UPGT_LOCK(sc);
callout_stop(&sc->sc_led_ch);
callout_stop(&sc->sc_watchdog_ch);
switch (nstate) {
case IEEE80211_S_INIT:
/* do not accept any frames if the device is down */
(void)upgt_set_macfilter(sc, sc->sc_state);
upgt_set_led(sc, UPGT_LED_OFF);
break;
case IEEE80211_S_SCAN:
upgt_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_AUTH:
upgt_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
upgt_set_macfilter(sc, sc->sc_state);
upgt_set_led(sc, UPGT_LED_ON);
break;
default:
break;
}
UPGT_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (uvp->newstate(vap, nstate, arg));
}
static void
upgt_vap_delete(struct ieee80211vap *vap)
{
struct upgt_vap *uvp = UPGT_VAP(vap);
ieee80211_vap_detach(vap);
free(uvp, M_80211_VAP);
}
static void
upgt_update_mcast(struct ifnet *ifp)
{
struct upgt_softc *sc = ifp->if_softc;
upgt_set_multi(sc);
}
static int
upgt_eeprom_parse(struct upgt_softc *sc)
{
struct upgt_eeprom_header *eeprom_header;
struct upgt_eeprom_option *eeprom_option;
uint16_t option_len;
uint16_t option_type;
uint16_t preamble_len;
int option_end = 0;
/* calculate eeprom options start offset */
eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
preamble_len = le16toh(eeprom_header->preamble_len);
eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
(sizeof(struct upgt_eeprom_header) + preamble_len));
while (!option_end) {
/* the eeprom option length is stored in words */
option_len =
(le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
option_type =
le16toh(eeprom_option->type);
switch (option_type) {
case UPGT_EEPROM_TYPE_NAME:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM name len=%d\n", option_len);
break;
case UPGT_EEPROM_TYPE_SERIAL:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM serial len=%d\n", option_len);
break;
case UPGT_EEPROM_TYPE_MAC:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM mac len=%d\n", option_len);
IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
break;
case UPGT_EEPROM_TYPE_HWRX:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM hwrx len=%d\n", option_len);
upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
break;
case UPGT_EEPROM_TYPE_CHIP:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM chip len=%d\n", option_len);
break;
case UPGT_EEPROM_TYPE_FREQ3:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM freq3 len=%d\n", option_len);
upgt_eeprom_parse_freq3(sc, eeprom_option->data,
option_len);
break;
case UPGT_EEPROM_TYPE_FREQ4:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM freq4 len=%d\n", option_len);
upgt_eeprom_parse_freq4(sc, eeprom_option->data,
option_len);
break;
case UPGT_EEPROM_TYPE_FREQ5:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM freq5 len=%d\n", option_len);
break;
case UPGT_EEPROM_TYPE_FREQ6:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM freq6 len=%d\n", option_len);
upgt_eeprom_parse_freq6(sc, eeprom_option->data,
option_len);
break;
case UPGT_EEPROM_TYPE_END:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM end len=%d\n", option_len);
option_end = 1;
break;
case UPGT_EEPROM_TYPE_OFF:
DPRINTF(sc, UPGT_DEBUG_FW,
"%s: EEPROM off without end option\n", __func__);
return (EIO);
default:
DPRINTF(sc, UPGT_DEBUG_FW,
"EEPROM unknown type 0x%04x len=%d\n",
option_type, option_len);
break;
}
/* jump to next EEPROM option */
eeprom_option = (struct upgt_eeprom_option *)
(eeprom_option->data + option_len);
}
return (0);
}
static void
upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
{
struct upgt_eeprom_freq3_header *freq3_header;
struct upgt_lmac_freq3 *freq3;
int i, elements, flags;
unsigned channel;
freq3_header = (struct upgt_eeprom_freq3_header *)data;
freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
flags = freq3_header->flags;
elements = freq3_header->elements;
DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
flags, elements);
for (i = 0; i < elements; i++) {
channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
continue;
sc->sc_eeprom_freq3[channel] = freq3[i];
DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
}
}
void
upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
{
struct upgt_eeprom_freq4_header *freq4_header;
struct upgt_eeprom_freq4_1 *freq4_1;
struct upgt_eeprom_freq4_2 *freq4_2;
int i, j, elements, settings, flags;
unsigned channel;
freq4_header = (struct upgt_eeprom_freq4_header *)data;
freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
flags = freq4_header->flags;
elements = freq4_header->elements;
settings = freq4_header->settings;
/* we need this value later */
sc->sc_eeprom_freq6_settings = freq4_header->settings;
DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
flags, elements, settings);
for (i = 0; i < elements; i++) {
channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
continue;
freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
for (j = 0; j < settings; j++) {
sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
sc->sc_eeprom_freq4[channel][j].pad = 0;
}
DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
le16toh(freq4_1[i].freq), channel);
}
}
void
upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
{
struct upgt_lmac_freq6 *freq6;
int i, elements;
unsigned channel;
freq6 = (struct upgt_lmac_freq6 *)data;
elements = len / sizeof(struct upgt_lmac_freq6);
DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
for (i = 0; i < elements; i++) {
channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
continue;
sc->sc_eeprom_freq6[channel] = freq6[i];
DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
}
}
static void
upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
{
struct upgt_eeprom_option_hwrx *option_hwrx;
option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
sc->sc_eeprom_hwrx);
}
static int
upgt_eeprom_read(struct upgt_softc *sc)
{
struct upgt_data *data_cmd;
struct upgt_lmac_mem *mem;
struct upgt_lmac_eeprom *eeprom;
int block, error, offset;
UPGT_LOCK(sc);
usb_pause_mtx(&sc->sc_mtx, 100);
offset = 0;
block = UPGT_EEPROM_BLOCK_SIZE;
while (offset < UPGT_EEPROM_SIZE) {
DPRINTF(sc, UPGT_DEBUG_FW,
"request EEPROM block (offset=%d, len=%d)\n", offset, block);
data_cmd = upgt_getbuf(sc);
if (data_cmd == NULL) {
UPGT_UNLOCK(sc);
return (ENOBUFS);
}
/*
* Transmit the URB containing the CMD data.
*/
bzero(data_cmd->buf, MCLBYTES);
mem = (struct upgt_lmac_mem *)data_cmd->buf;
mem->addr = htole32(sc->sc_memaddr_frame_start +
UPGT_MEMSIZE_FRAME_HEAD);
eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
eeprom->header1.flags = 0;
eeprom->header1.type = UPGT_H1_TYPE_CTRL;
eeprom->header1.len = htole16((
sizeof(struct upgt_lmac_eeprom) -
sizeof(struct upgt_lmac_header)) + block);
eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
eeprom->header2.flags = 0;
eeprom->offset = htole16(offset);
eeprom->len = htole16(block);
data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
data_cmd->buflen - sizeof(*mem));
upgt_bulk_tx(sc, data_cmd);
error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
if (error != 0) {
device_printf(sc->sc_dev,
"timeout while waiting for EEPROM data\n");
UPGT_UNLOCK(sc);
return (EIO);
}
offset += block;
if (UPGT_EEPROM_SIZE - offset < block)
block = UPGT_EEPROM_SIZE - offset;
}
UPGT_UNLOCK(sc);
return (0);
}
/*
* When a rx data came in the function returns a mbuf and a rssi values.
*/
static struct mbuf *
upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
{
struct mbuf *m = NULL;
struct upgt_softc *sc = usbd_xfer_softc(xfer);
struct upgt_lmac_header *header;
struct upgt_lmac_eeprom *eeprom;
uint8_t h1_type;
uint16_t h2_type;
int actlen, sumlen;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
UPGT_ASSERT_LOCKED(sc);
if (actlen < 1)
return (NULL);
/* Check only at the very beginning. */
if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
(memcmp(data->buf, "OK", 2) == 0)) {
sc->sc_flags |= UPGT_FLAG_FWLOADED;
wakeup_one(sc);
return (NULL);
}
if (actlen < UPGT_RX_MINSZ)
return (NULL);
/*
* Check what type of frame came in.
*/
header = (struct upgt_lmac_header *)(data->buf + 4);
h1_type = header->header1.type;
h2_type = le16toh(header->header2.type);
if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
uint16_t eeprom_offset = le16toh(eeprom->offset);
uint16_t eeprom_len = le16toh(eeprom->len);
DPRINTF(sc, UPGT_DEBUG_FW,
"received EEPROM block (offset=%d, len=%d)\n",
eeprom_offset, eeprom_len);
bcopy(data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
sc->sc_eeprom + eeprom_offset, eeprom_len);
/* EEPROM data has arrived in time, wakeup. */
wakeup(sc);
} else if (h1_type == UPGT_H1_TYPE_CTRL &&
h2_type == UPGT_H2_TYPE_TX_DONE) {
DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
__func__);
upgt_tx_done(sc, data->buf + 4);
} else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
__func__);
m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
rssi);
} else if (h1_type == UPGT_H1_TYPE_CTRL &&
h2_type == UPGT_H2_TYPE_STATS) {
DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
__func__);
/* TODO: what could we do with the statistic data? */
} else {
/* ignore unknown frame types */
DPRINTF(sc, UPGT_DEBUG_INTR,
"received unknown frame type 0x%02x\n",
header->header1.type);
}
return (m);
}
/*
* The firmware awaits a checksum for each frame we send to it.
* The algorithm used therefor is uncommon but somehow similar to CRC32.
*/
static uint32_t
upgt_chksum_le(const uint32_t *buf, size_t size)
{
int i;
uint32_t crc = 0;
for (i = 0; i < size; i += sizeof(uint32_t)) {
crc = htole32(crc ^ *buf++);
crc = htole32((crc >> 5) ^ (crc << 3));
}
return (crc);
}
static struct mbuf *
upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct upgt_lmac_rx_desc *rxdesc;
struct mbuf *m;
/*
* don't pass packets to the ieee80211 framework if the driver isn't
* RUNNING.
*/
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
return (NULL);
/* access RX packet descriptor */
rxdesc = (struct upgt_lmac_rx_desc *)data;
/* create mbuf which is suitable for strict alignment archs */
KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
device_printf(sc->sc_dev, "could not create RX mbuf\n");
return (NULL);
}
m_adj(m, ETHER_ALIGN);
bcopy(rxdesc->data, mtod(m, char *), pkglen);
/* trim FCS */
m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
m->m_pkthdr.rcvif = ifp;
if (ieee80211_radiotap_active(ic)) {
struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
tap->wr_antsignal = rxdesc->rssi;
}
ifp->if_ipackets++;
DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
*rssi = rxdesc->rssi;
return (m);
}
static uint8_t
upgt_rx_rate(struct upgt_softc *sc, const int rate)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
static const uint8_t ofdm_upgt2rate[12] =
{ 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
if (ic->ic_curmode == IEEE80211_MODE_11B &&
!(rate < 0 || rate > 3))
return cck_upgt2rate[rate & 0xf];
if (ic->ic_curmode == IEEE80211_MODE_11G &&
!(rate < 0 || rate > 11))
return ofdm_upgt2rate[rate & 0xf];
return (0);
}
static void
upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
{
struct ifnet *ifp = sc->sc_ifp;
struct upgt_lmac_tx_done_desc *desc;
int i, freed = 0;
UPGT_ASSERT_LOCKED(sc);
desc = (struct upgt_lmac_tx_done_desc *)data;
for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
struct upgt_data *data_tx = &sc->sc_tx_data[i];
if (data_tx->addr == le32toh(desc->header2.reqid)) {
upgt_mem_free(sc, data_tx->addr);
data_tx->ni = NULL;
data_tx->addr = 0;
data_tx->m = NULL;
data_tx->use = 0;
DPRINTF(sc, UPGT_DEBUG_TX_PROC,
"TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
le32toh(desc->header2.reqid),
le16toh(desc->status), le16toh(desc->rssi));
DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
le16toh(desc->seq));
freed++;
}
}
if (freed != 0) {
sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
UPGT_UNLOCK(sc);
upgt_start(ifp);
UPGT_LOCK(sc);
}
}
static void
upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
{
int i;
for (i = 0; i < sc->sc_memory.pages; i++) {
if (sc->sc_memory.page[i].addr == addr) {
sc->sc_memory.page[i].used = 0;
return;
}
}
device_printf(sc->sc_dev,
"could not free memory address 0x%08x\n", addr);
}
static int
upgt_fw_load(struct upgt_softc *sc)
{
const struct firmware *fw;
struct upgt_data *data_cmd;
struct upgt_fw_x2_header *x2;
char start_fwload_cmd[] = { 0x3c, 0x0d };
int error = 0, offset, bsize, n;
uint32_t crc32;
fw = firmware_get(upgt_fwname);
if (fw == NULL) {
device_printf(sc->sc_dev, "could not read microcode %s\n",
upgt_fwname);
return (EIO);
}
UPGT_LOCK(sc);
/* send firmware start load command */
data_cmd = upgt_getbuf(sc);
if (data_cmd == NULL) {
error = ENOBUFS;
goto fail;
}
data_cmd->buflen = sizeof(start_fwload_cmd);
bcopy(start_fwload_cmd, data_cmd->buf, data_cmd->buflen);
upgt_bulk_tx(sc, data_cmd);
/* send X2 header */
data_cmd = upgt_getbuf(sc);
if (data_cmd == NULL) {
error = ENOBUFS;
goto fail;
}
data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
x2->len = htole32(fw->datasize);
x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
UPGT_X2_SIGNATURE_SIZE,
sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
sizeof(uint32_t));
upgt_bulk_tx(sc, data_cmd);
/* download firmware */
for (offset = 0; offset < fw->datasize; offset += bsize) {
if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
bsize = UPGT_FW_BLOCK_SIZE;
else
bsize = fw->datasize - offset;
data_cmd = upgt_getbuf(sc);
if (data_cmd == NULL) {
error = ENOBUFS;
goto fail;
}
n = upgt_fw_copy((const uint8_t *)fw->data + offset,
data_cmd->buf, bsize);
data_cmd->buflen = bsize;
upgt_bulk_tx(sc, data_cmd);
DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
offset, n, bsize);
bsize = n;
}
DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
/* load firmware */
data_cmd = upgt_getbuf(sc);
if (data_cmd == NULL) {
error = ENOBUFS;
goto fail;
}
crc32 = upgt_crc32_le(fw->data, fw->datasize);
*((uint32_t *)(data_cmd->buf) ) = crc32;
*((uint8_t *)(data_cmd->buf) + 4) = 'g';
*((uint8_t *)(data_cmd->buf) + 5) = '\r';
data_cmd->buflen = 6;
upgt_bulk_tx(sc, data_cmd);
/* waiting 'OK' response. */
usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
if (error != 0) {
device_printf(sc->sc_dev, "firmware load failed\n");
error = EIO;
}
DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
fail:
UPGT_UNLOCK(sc);
firmware_put(fw, FIRMWARE_UNLOAD);
return (error);
}
static uint32_t
upgt_crc32_le(const void *buf, size_t size)
{
uint32_t crc;
crc = ether_crc32_le(buf, size);
/* apply final XOR value as common for CRC-32 */
crc = htole32(crc ^ 0xffffffffU);
return (crc);
}
/*
* While copying the version 2 firmware, we need to replace two characters:
*
* 0x7e -> 0x7d 0x5e
* 0x7d -> 0x7d 0x5d
*/
static int
upgt_fw_copy(const uint8_t *src, char *dst, int size)
{
int i, j;
for (i = 0, j = 0; i < size && j < size; i++) {
switch (src[i]) {
case 0x7e:
dst[j] = 0x7d;
j++;
dst[j] = 0x5e;
j++;
break;
case 0x7d:
dst[j] = 0x7d;
j++;
dst[j] = 0x5d;
j++;
break;
default:
dst[j] = src[i];
j++;
break;
}
}
return (i);
}
static int
upgt_mem_init(struct upgt_softc *sc)
{
int i;
for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
sc->sc_memory.page[i].used = 0;
if (i == 0) {
/*
* The first memory page is always reserved for
* command data.
*/
sc->sc_memory.page[i].addr =
sc->sc_memaddr_frame_start + MCLBYTES;
} else {
sc->sc_memory.page[i].addr =
sc->sc_memory.page[i - 1].addr + MCLBYTES;
}
if (sc->sc_memory.page[i].addr + MCLBYTES >=
sc->sc_memaddr_frame_end)
break;
DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
i, sc->sc_memory.page[i].addr);
}
sc->sc_memory.pages = i;
DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
return (0);
}
static int
upgt_fw_verify(struct upgt_softc *sc)
{
const struct firmware *fw;
const struct upgt_fw_bra_option *bra_opt;
const struct upgt_fw_bra_descr *descr;
const uint8_t *p;
const uint32_t *uc;
uint32_t bra_option_type, bra_option_len;
int offset, bra_end = 0, error = 0;
fw = firmware_get(upgt_fwname);
if (fw == NULL) {
device_printf(sc->sc_dev, "could not read microcode %s\n",
upgt_fwname);
return EIO;
}
/*
* Seek to beginning of Boot Record Area (BRA).
*/
for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
if (*uc == 0)
break;
}
for (; offset < fw->datasize; offset += sizeof(*uc)) {
uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
if (*uc != 0)
break;
}
if (offset == fw->datasize) {
device_printf(sc->sc_dev,
"firmware Boot Record Area not found\n");
error = EIO;
goto fail;
}
DPRINTF(sc, UPGT_DEBUG_FW,
"firmware Boot Record Area found at offset %d\n", offset);
/*
* Parse Boot Record Area (BRA) options.
*/
while (offset < fw->datasize && bra_end == 0) {
/* get current BRA option */
p = (const uint8_t *)fw->data + offset;
bra_opt = (const struct upgt_fw_bra_option *)p;
bra_option_type = le32toh(bra_opt->type);
bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
switch (bra_option_type) {
case UPGT_BRA_TYPE_FW:
DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
bra_option_len);
if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
device_printf(sc->sc_dev,
"wrong UPGT_BRA_TYPE_FW len\n");
error = EIO;
goto fail;
}
if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
bra_option_len) == 0) {
sc->sc_fw_type = UPGT_FWTYPE_LM86;
break;
}
if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
bra_option_len) == 0) {
sc->sc_fw_type = UPGT_FWTYPE_LM87;
break;
}
device_printf(sc->sc_dev,
"unsupported firmware type\n");
error = EIO;
goto fail;
case UPGT_BRA_TYPE_VERSION:
DPRINTF(sc, UPGT_DEBUG_FW,
"UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
break;
case UPGT_BRA_TYPE_DEPIF:
DPRINTF(sc, UPGT_DEBUG_FW,
"UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
break;
case UPGT_BRA_TYPE_EXPIF:
DPRINTF(sc, UPGT_DEBUG_FW,
"UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
break;
case UPGT_BRA_TYPE_DESCR:
DPRINTF(sc, UPGT_DEBUG_FW,
"UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
sc->sc_memaddr_frame_start =
le32toh(descr->memaddr_space_start);
sc->sc_memaddr_frame_end =
le32toh(descr->memaddr_space_end);
DPRINTF(sc, UPGT_DEBUG_FW,
"memory address space start=0x%08x\n",
sc->sc_memaddr_frame_start);
DPRINTF(sc, UPGT_DEBUG_FW,
"memory address space end=0x%08x\n",
sc->sc_memaddr_frame_end);
break;
case UPGT_BRA_TYPE_END:
DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
bra_option_len);
bra_end = 1;
break;
default:
DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
bra_option_len);
error = EIO;
goto fail;
}
/* jump to next BRA option */
offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
}
DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
fail:
firmware_put(fw, FIRMWARE_UNLOAD);
return (error);
}
static void
upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
{
UPGT_ASSERT_LOCKED(sc);
STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
UPGT_STAT_INC(sc, st_tx_pending);
usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
}
static int
upgt_device_reset(struct upgt_softc *sc)
{
struct upgt_data *data;
char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
UPGT_LOCK(sc);
data = upgt_getbuf(sc);
if (data == NULL) {
UPGT_UNLOCK(sc);
return (ENOBUFS);
}
bcopy(init_cmd, data->buf, sizeof(init_cmd));
data->buflen = sizeof(init_cmd);
upgt_bulk_tx(sc, data);
usb_pause_mtx(&sc->sc_mtx, 100);
UPGT_UNLOCK(sc);
DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
return (0);
}
static int
upgt_alloc_tx(struct upgt_softc *sc)
{
int i;
STAILQ_INIT(&sc->sc_tx_active);
STAILQ_INIT(&sc->sc_tx_inactive);
STAILQ_INIT(&sc->sc_tx_pending);
for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
struct upgt_data *data = &sc->sc_tx_data[i];
data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
if (data->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate TX buffer\n");
return (ENOMEM);
}
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
UPGT_STAT_INC(sc, st_tx_inactive);
}
return (0);
}
static int
upgt_alloc_rx(struct upgt_softc *sc)
{
int i;
STAILQ_INIT(&sc->sc_rx_active);
STAILQ_INIT(&sc->sc_rx_inactive);
for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
struct upgt_data *data = &sc->sc_rx_data[i];
data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
if (data->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate RX buffer\n");
return (ENOMEM);
}
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
}
return (0);
}
static int
upgt_detach(device_t dev)
{
struct upgt_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
if (!device_is_attached(dev))
return 0;
upgt_stop(sc);
callout_drain(&sc->sc_led_ch);
callout_drain(&sc->sc_watchdog_ch);
usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
ieee80211_ifdetach(ic);
upgt_free_rx(sc);
upgt_free_tx(sc);
if_free(ifp);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static void
upgt_free_rx(struct upgt_softc *sc)
{
int i;
for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
struct upgt_data *data = &sc->sc_rx_data[i];
free(data->buf, M_USBDEV);
data->ni = NULL;
}
}
static void
upgt_free_tx(struct upgt_softc *sc)
{
int i;
for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
struct upgt_data *data = &sc->sc_tx_data[i];
free(data->buf, M_USBDEV);
data->ni = NULL;
}
}
static void
upgt_abort_xfers_locked(struct upgt_softc *sc)
{
int i;
UPGT_ASSERT_LOCKED(sc);
/* abort any pending transfers */
for (i = 0; i < UPGT_N_XFERS; i++)
usbd_transfer_stop(sc->sc_xfer[i]);
}
static void
upgt_abort_xfers(struct upgt_softc *sc)
{
UPGT_LOCK(sc);
upgt_abort_xfers_locked(sc);
UPGT_UNLOCK(sc);
}
#define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
static void
upgt_sysctl_node(struct upgt_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child;
struct sysctl_oid *tree;
struct upgt_stat *stats;
stats = &sc->sc_stat;
ctx = device_get_sysctl_ctx(sc->sc_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "UPGT statistics");
child = SYSCTL_CHILDREN(tree);
UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
&stats->st_tx_active, "Active numbers in TX queue");
UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
&stats->st_tx_inactive, "Inactive numbers in TX queue");
UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
&stats->st_tx_pending, "Pending numbers in TX queue");
}
#undef UPGT_SYSCTL_STAT_ADD32
static struct upgt_data *
_upgt_getbuf(struct upgt_softc *sc)
{
struct upgt_data *bf;
bf = STAILQ_FIRST(&sc->sc_tx_inactive);
if (bf != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
UPGT_STAT_DEC(sc, st_tx_inactive);
} else
bf = NULL;
if (bf == NULL)
DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
"out of xmit buffers");
return (bf);
}
static struct upgt_data *
upgt_getbuf(struct upgt_softc *sc)
{
struct upgt_data *bf;
UPGT_ASSERT_LOCKED(sc);
bf = _upgt_getbuf(sc);
if (bf == NULL) {
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
return (bf);
}
static struct upgt_data *
upgt_gettxbuf(struct upgt_softc *sc)
{
struct upgt_data *bf;
UPGT_ASSERT_LOCKED(sc);
bf = upgt_getbuf(sc);
if (bf == NULL)
return (NULL);
bf->addr = upgt_mem_alloc(sc);
if (bf->addr == 0) {
struct ifnet *ifp = sc->sc_ifp;
DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
__func__);
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
UPGT_STAT_INC(sc, st_tx_inactive);
if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return (NULL);
}
return (bf);
}
static int
upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
struct upgt_data *data)
{
struct ieee80211vap *vap = ni->ni_vap;
int error = 0, len;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct ifnet *ifp = sc->sc_ifp;
struct upgt_lmac_mem *mem;
struct upgt_lmac_tx_desc *txdesc;
UPGT_ASSERT_LOCKED(sc);
upgt_set_led(sc, UPGT_LED_BLINK);
/*
* Software crypto.
*/
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
device_printf(sc->sc_dev,
"ieee80211_crypto_encap returns NULL.\n");
error = EIO;
goto done;
}
/* in case packet header moved, reset pointer */
wh = mtod(m, struct ieee80211_frame *);
}
/* Transmit the URB containing the TX data. */
bzero(data->buf, MCLBYTES);
mem = (struct upgt_lmac_mem *)data->buf;
mem->addr = htole32(data->addr);
txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
/* mgmt frames */
txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
/* always send mgmt frames at lowest rate (DS1) */
memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
} else {
/* data frames */
txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
bcopy(sc->sc_cur_rateset, txdesc->rates, sizeof(txdesc->rates));
}
txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
txdesc->header1.len = htole16(m->m_pkthdr.len);
txdesc->header2.reqid = htole32(data->addr);
txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
if (ieee80211_radiotap_active_vap(vap)) {
struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = 0; /* XXX where to get from? */
ieee80211_radiotap_tx(vap, m);
}
/* copy frame below our TX descriptor header */
m_copydata(m, 0, m->m_pkthdr.len,
data->buf + (sizeof(*mem) + sizeof(*txdesc)));
/* calculate frame size */
len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
/* we need to align the frame to a 4 byte boundary */
len = (len + 3) & ~3;
/* calculate frame checksum */
mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
data->ni = ni;
data->m = m;
data->buflen = len;
DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
__func__, len);
KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
upgt_bulk_tx(sc, data);
done:
/*
* If we don't regulary read the device statistics, the RX queue
* will stall. It's strange, but it works, so we keep reading
* the statistics here. *shrug*
*/
if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
upgt_get_stats(sc);
return (error);
}
static void
upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct upgt_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m = NULL;
struct upgt_data *data;
int8_t nf;
int rssi = -1;
UPGT_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data == NULL)
goto setup;
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
m = upgt_rxeof(xfer, data, &rssi);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
/* FALLTHROUGH */
case USB_ST_SETUP:
setup:
data = STAILQ_FIRST(&sc->sc_rx_inactive);
if (data == NULL)
return;
STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
usbd_xfer_set_frame_data(xfer, 0, data->buf,
usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
/*
* To avoid LOR we should unlock our private mutex here to call
* ieee80211_input() because here is at the end of a USB
* callback and safe to unlock.
*/
UPGT_UNLOCK(sc);
if (m != NULL) {
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
nf = -95; /* XXX */
if (ni != NULL) {
(void) ieee80211_input(ni, m, rssi, nf);
/* node is no longer needed */
ieee80211_free_node(ni);
} else
(void) ieee80211_input_all(ic, m, rssi, nf);
m = NULL;
}
if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
!IFQ_IS_EMPTY(&ifp->if_snd))
upgt_start(ifp);
UPGT_LOCK(sc);
break;
default:
/* needs it to the inactive queue due to a error. */
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
}
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
ifp->if_ierrors++;
goto setup;
}
break;
}
}
static void
upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct upgt_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct upgt_data *data;
UPGT_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_tx_active);
if (data == NULL)
goto setup;
STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
UPGT_STAT_DEC(sc, st_tx_active);
upgt_txeof(xfer, data);
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
UPGT_STAT_INC(sc, st_tx_inactive);
/* FALLTHROUGH */
case USB_ST_SETUP:
setup:
data = STAILQ_FIRST(&sc->sc_tx_pending);
if (data == NULL) {
DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
__func__);
return;
}
STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
UPGT_STAT_DEC(sc, st_tx_pending);
STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
UPGT_STAT_INC(sc, st_tx_active);
usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
usbd_transfer_submit(xfer);
UPGT_UNLOCK(sc);
upgt_start(ifp);
UPGT_LOCK(sc);
break;
default:
data = STAILQ_FIRST(&sc->sc_tx_active);
if (data == NULL)
goto setup;
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
ifp->if_oerrors++;
}
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
goto setup;
}
break;
}
}
static device_method_t upgt_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, upgt_match),
DEVMETHOD(device_attach, upgt_attach),
DEVMETHOD(device_detach, upgt_detach),
{ 0, 0 }
};
static driver_t upgt_driver = {
"upgt",
upgt_methods,
sizeof(struct upgt_softc)
};
static devclass_t upgt_devclass;
DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
MODULE_VERSION(if_upgt, 1);
MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);