745 lines
28 KiB
C++
745 lines
28 KiB
C++
//===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// Scudo Hardened Allocator implementation.
|
|
/// It uses the sanitizer_common allocator as a base and aims at mitigating
|
|
/// heap corruption vulnerabilities. It provides a checksum-guarded chunk
|
|
/// header, a delayed free list, and additional sanity checks.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "scudo_allocator.h"
|
|
#include "scudo_crc32.h"
|
|
#include "scudo_flags.h"
|
|
#include "scudo_tsd.h"
|
|
#include "scudo_utils.h"
|
|
|
|
#include "sanitizer_common/sanitizer_allocator_checks.h"
|
|
#include "sanitizer_common/sanitizer_allocator_interface.h"
|
|
#include "sanitizer_common/sanitizer_quarantine.h"
|
|
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
|
|
namespace __scudo {
|
|
|
|
// Global static cookie, initialized at start-up.
|
|
static u32 Cookie;
|
|
|
|
// We default to software CRC32 if the alternatives are not supported, either
|
|
// at compilation or at runtime.
|
|
static atomic_uint8_t HashAlgorithm = { CRC32Software };
|
|
|
|
INLINE u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
|
|
// If the hardware CRC32 feature is defined here, it was enabled everywhere,
|
|
// as opposed to only for scudo_crc32.cpp. This means that other hardware
|
|
// specific instructions were likely emitted at other places, and as a
|
|
// result there is no reason to not use it here.
|
|
#if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
|
|
Crc = CRC32_INTRINSIC(Crc, Value);
|
|
for (uptr i = 0; i < ArraySize; i++)
|
|
Crc = CRC32_INTRINSIC(Crc, Array[i]);
|
|
return Crc;
|
|
#else
|
|
if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
|
|
Crc = computeHardwareCRC32(Crc, Value);
|
|
for (uptr i = 0; i < ArraySize; i++)
|
|
Crc = computeHardwareCRC32(Crc, Array[i]);
|
|
return Crc;
|
|
}
|
|
Crc = computeSoftwareCRC32(Crc, Value);
|
|
for (uptr i = 0; i < ArraySize; i++)
|
|
Crc = computeSoftwareCRC32(Crc, Array[i]);
|
|
return Crc;
|
|
#endif // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
|
|
}
|
|
|
|
static ScudoBackendAllocator &getBackendAllocator();
|
|
|
|
namespace Chunk {
|
|
// We can't use the offset member of the chunk itself, as we would double
|
|
// fetch it without any warranty that it wouldn't have been tampered. To
|
|
// prevent this, we work with a local copy of the header.
|
|
static INLINE void *getBackendPtr(const void *Ptr, UnpackedHeader *Header) {
|
|
return reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
|
|
AlignedChunkHeaderSize -
|
|
(Header->Offset << MinAlignmentLog));
|
|
}
|
|
|
|
static INLINE AtomicPackedHeader *getAtomicHeader(void *Ptr) {
|
|
return reinterpret_cast<AtomicPackedHeader *>(reinterpret_cast<uptr>(Ptr) -
|
|
AlignedChunkHeaderSize);
|
|
}
|
|
static INLINE
|
|
const AtomicPackedHeader *getConstAtomicHeader(const void *Ptr) {
|
|
return reinterpret_cast<const AtomicPackedHeader *>(
|
|
reinterpret_cast<uptr>(Ptr) - AlignedChunkHeaderSize);
|
|
}
|
|
|
|
static INLINE bool isAligned(const void *Ptr) {
|
|
return IsAligned(reinterpret_cast<uptr>(Ptr), MinAlignment);
|
|
}
|
|
|
|
// Returns the usable size for a chunk, meaning the amount of bytes from the
|
|
// beginning of the user data to the end of the backend allocated chunk.
|
|
static INLINE uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) {
|
|
const uptr Size = getBackendAllocator().getActuallyAllocatedSize(
|
|
getBackendPtr(Ptr, Header), Header->ClassId);
|
|
if (Size == 0)
|
|
return 0;
|
|
return Size - AlignedChunkHeaderSize - (Header->Offset << MinAlignmentLog);
|
|
}
|
|
|
|
// Compute the checksum of the chunk pointer and its header.
|
|
static INLINE u16 computeChecksum(const void *Ptr, UnpackedHeader *Header) {
|
|
UnpackedHeader ZeroChecksumHeader = *Header;
|
|
ZeroChecksumHeader.Checksum = 0;
|
|
uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
|
|
memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
|
|
const u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(Ptr),
|
|
HeaderHolder, ARRAY_SIZE(HeaderHolder));
|
|
return static_cast<u16>(Crc);
|
|
}
|
|
|
|
// Checks the validity of a chunk by verifying its checksum. It doesn't
|
|
// incur termination in the event of an invalid chunk.
|
|
static INLINE bool isValid(const void *Ptr) {
|
|
PackedHeader NewPackedHeader =
|
|
atomic_load_relaxed(getConstAtomicHeader(Ptr));
|
|
UnpackedHeader NewUnpackedHeader =
|
|
bit_cast<UnpackedHeader>(NewPackedHeader);
|
|
return (NewUnpackedHeader.Checksum ==
|
|
computeChecksum(Ptr, &NewUnpackedHeader));
|
|
}
|
|
|
|
// Nulls out a chunk header. When returning the chunk to the backend, there
|
|
// is no need to store a valid ChunkAvailable header, as this would be
|
|
// computationally expensive. Zeroing out serves the same purpose by making
|
|
// the header invalid. In the extremely rare event where 0 would be a valid
|
|
// checksum for the chunk, the state of the chunk is ChunkAvailable anyway.
|
|
COMPILER_CHECK(ChunkAvailable == 0);
|
|
static INLINE void eraseHeader(void *Ptr) {
|
|
const PackedHeader NullPackedHeader = 0;
|
|
atomic_store_relaxed(getAtomicHeader(Ptr), NullPackedHeader);
|
|
}
|
|
|
|
// Loads and unpacks the header, verifying the checksum in the process.
|
|
static INLINE
|
|
void loadHeader(const void *Ptr, UnpackedHeader *NewUnpackedHeader) {
|
|
PackedHeader NewPackedHeader =
|
|
atomic_load_relaxed(getConstAtomicHeader(Ptr));
|
|
*NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
|
|
if (UNLIKELY(NewUnpackedHeader->Checksum !=
|
|
computeChecksum(Ptr, NewUnpackedHeader))) {
|
|
dieWithMessage("ERROR: corrupted chunk header at address %p\n", Ptr);
|
|
}
|
|
}
|
|
|
|
// Packs and stores the header, computing the checksum in the process.
|
|
static INLINE void storeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader) {
|
|
NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
|
|
PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
|
|
atomic_store_relaxed(getAtomicHeader(Ptr), NewPackedHeader);
|
|
}
|
|
|
|
// Packs and stores the header, computing the checksum in the process. We
|
|
// compare the current header with the expected provided one to ensure that
|
|
// we are not being raced by a corruption occurring in another thread.
|
|
static INLINE void compareExchangeHeader(void *Ptr,
|
|
UnpackedHeader *NewUnpackedHeader,
|
|
UnpackedHeader *OldUnpackedHeader) {
|
|
NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
|
|
PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
|
|
PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
|
|
if (UNLIKELY(!atomic_compare_exchange_strong(
|
|
getAtomicHeader(Ptr), &OldPackedHeader, NewPackedHeader,
|
|
memory_order_relaxed))) {
|
|
dieWithMessage("ERROR: race on chunk header at address %p\n", Ptr);
|
|
}
|
|
}
|
|
} // namespace Chunk
|
|
|
|
struct QuarantineCallback {
|
|
explicit QuarantineCallback(AllocatorCache *Cache)
|
|
: Cache_(Cache) {}
|
|
|
|
// Chunk recycling function, returns a quarantined chunk to the backend,
|
|
// first making sure it hasn't been tampered with.
|
|
void Recycle(void *Ptr) {
|
|
UnpackedHeader Header;
|
|
Chunk::loadHeader(Ptr, &Header);
|
|
if (UNLIKELY(Header.State != ChunkQuarantine)) {
|
|
dieWithMessage("ERROR: invalid chunk state when recycling address %p\n",
|
|
Ptr);
|
|
}
|
|
Chunk::eraseHeader(Ptr);
|
|
void *BackendPtr = Chunk::getBackendPtr(Ptr, &Header);
|
|
if (Header.ClassId)
|
|
getBackendAllocator().deallocatePrimary(Cache_, BackendPtr,
|
|
Header.ClassId);
|
|
else
|
|
getBackendAllocator().deallocateSecondary(BackendPtr);
|
|
}
|
|
|
|
// Internal quarantine allocation and deallocation functions. We first check
|
|
// that the batches are indeed serviced by the Primary.
|
|
// TODO(kostyak): figure out the best way to protect the batches.
|
|
void *Allocate(uptr Size) {
|
|
return getBackendAllocator().allocatePrimary(Cache_, BatchClassId);
|
|
}
|
|
|
|
void Deallocate(void *Ptr) {
|
|
getBackendAllocator().deallocatePrimary(Cache_, Ptr, BatchClassId);
|
|
}
|
|
|
|
AllocatorCache *Cache_;
|
|
COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
|
|
const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
|
|
};
|
|
|
|
typedef Quarantine<QuarantineCallback, void> ScudoQuarantine;
|
|
typedef ScudoQuarantine::Cache ScudoQuarantineCache;
|
|
COMPILER_CHECK(sizeof(ScudoQuarantineCache) <=
|
|
sizeof(ScudoTSD::QuarantineCachePlaceHolder));
|
|
|
|
ScudoQuarantineCache *getQuarantineCache(ScudoTSD *TSD) {
|
|
return reinterpret_cast<ScudoQuarantineCache *>(
|
|
TSD->QuarantineCachePlaceHolder);
|
|
}
|
|
|
|
struct ScudoAllocator {
|
|
static const uptr MaxAllowedMallocSize =
|
|
FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);
|
|
|
|
typedef ReturnNullOrDieOnFailure FailureHandler;
|
|
|
|
ScudoBackendAllocator BackendAllocator;
|
|
ScudoQuarantine AllocatorQuarantine;
|
|
|
|
u32 QuarantineChunksUpToSize;
|
|
|
|
bool DeallocationTypeMismatch;
|
|
bool ZeroContents;
|
|
bool DeleteSizeMismatch;
|
|
|
|
bool CheckRssLimit;
|
|
uptr HardRssLimitMb;
|
|
uptr SoftRssLimitMb;
|
|
atomic_uint8_t RssLimitExceeded;
|
|
atomic_uint64_t RssLastCheckedAtNS;
|
|
|
|
explicit ScudoAllocator(LinkerInitialized)
|
|
: AllocatorQuarantine(LINKER_INITIALIZED) {}
|
|
|
|
void performSanityChecks() {
|
|
// Verify that the header offset field can hold the maximum offset. In the
|
|
// case of the Secondary allocator, it takes care of alignment and the
|
|
// offset will always be 0. In the case of the Primary, the worst case
|
|
// scenario happens in the last size class, when the backend allocation
|
|
// would already be aligned on the requested alignment, which would happen
|
|
// to be the maximum alignment that would fit in that size class. As a
|
|
// result, the maximum offset will be at most the maximum alignment for the
|
|
// last size class minus the header size, in multiples of MinAlignment.
|
|
UnpackedHeader Header = {};
|
|
const uptr MaxPrimaryAlignment =
|
|
1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
|
|
const uptr MaxOffset =
|
|
(MaxPrimaryAlignment - AlignedChunkHeaderSize) >> MinAlignmentLog;
|
|
Header.Offset = MaxOffset;
|
|
if (Header.Offset != MaxOffset) {
|
|
dieWithMessage("ERROR: the maximum possible offset doesn't fit in the "
|
|
"header\n");
|
|
}
|
|
// Verify that we can fit the maximum size or amount of unused bytes in the
|
|
// header. Given that the Secondary fits the allocation to a page, the worst
|
|
// case scenario happens in the Primary. It will depend on the second to
|
|
// last and last class sizes, as well as the dynamic base for the Primary.
|
|
// The following is an over-approximation that works for our needs.
|
|
const uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
|
|
Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
|
|
if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes) {
|
|
dieWithMessage("ERROR: the maximum possible unused bytes doesn't fit in "
|
|
"the header\n");
|
|
}
|
|
|
|
const uptr LargestClassId = SizeClassMap::kLargestClassID;
|
|
Header.ClassId = LargestClassId;
|
|
if (Header.ClassId != LargestClassId) {
|
|
dieWithMessage("ERROR: the largest class ID doesn't fit in the header\n");
|
|
}
|
|
}
|
|
|
|
void init() {
|
|
SanitizerToolName = "Scudo";
|
|
initFlags();
|
|
|
|
performSanityChecks();
|
|
|
|
// Check if hardware CRC32 is supported in the binary and by the platform,
|
|
// if so, opt for the CRC32 hardware version of the checksum.
|
|
if (&computeHardwareCRC32 && hasHardwareCRC32())
|
|
atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);
|
|
|
|
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
|
|
BackendAllocator.init(common_flags()->allocator_release_to_os_interval_ms);
|
|
HardRssLimitMb = common_flags()->hard_rss_limit_mb;
|
|
SoftRssLimitMb = common_flags()->soft_rss_limit_mb;
|
|
AllocatorQuarantine.Init(
|
|
static_cast<uptr>(getFlags()->QuarantineSizeKb) << 10,
|
|
static_cast<uptr>(getFlags()->ThreadLocalQuarantineSizeKb) << 10);
|
|
QuarantineChunksUpToSize = getFlags()->QuarantineChunksUpToSize;
|
|
DeallocationTypeMismatch = getFlags()->DeallocationTypeMismatch;
|
|
DeleteSizeMismatch = getFlags()->DeleteSizeMismatch;
|
|
ZeroContents = getFlags()->ZeroContents;
|
|
|
|
if (UNLIKELY(!GetRandom(reinterpret_cast<void *>(&Cookie), sizeof(Cookie),
|
|
/*blocking=*/false))) {
|
|
Cookie = static_cast<u32>((NanoTime() >> 12) ^
|
|
(reinterpret_cast<uptr>(this) >> 4));
|
|
}
|
|
|
|
CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
|
|
if (CheckRssLimit)
|
|
atomic_store_relaxed(&RssLastCheckedAtNS, MonotonicNanoTime());
|
|
}
|
|
|
|
// Helper function that checks for a valid Scudo chunk. nullptr isn't.
|
|
bool isValidPointer(const void *Ptr) {
|
|
initThreadMaybe();
|
|
if (UNLIKELY(!Ptr))
|
|
return false;
|
|
if (!Chunk::isAligned(Ptr))
|
|
return false;
|
|
return Chunk::isValid(Ptr);
|
|
}
|
|
|
|
// Opportunistic RSS limit check. This will update the RSS limit status, if
|
|
// it can, every 100ms, otherwise it will just return the current one.
|
|
bool isRssLimitExceeded() {
|
|
u64 LastCheck = atomic_load_relaxed(&RssLastCheckedAtNS);
|
|
const u64 CurrentCheck = MonotonicNanoTime();
|
|
if (LIKELY(CurrentCheck < LastCheck + (100ULL * 1000000ULL)))
|
|
return atomic_load_relaxed(&RssLimitExceeded);
|
|
if (!atomic_compare_exchange_weak(&RssLastCheckedAtNS, &LastCheck,
|
|
CurrentCheck, memory_order_relaxed))
|
|
return atomic_load_relaxed(&RssLimitExceeded);
|
|
// TODO(kostyak): We currently use sanitizer_common's GetRSS which reads the
|
|
// RSS from /proc/self/statm by default. We might want to
|
|
// call getrusage directly, even if it's less accurate.
|
|
const uptr CurrentRssMb = GetRSS() >> 20;
|
|
if (HardRssLimitMb && HardRssLimitMb < CurrentRssMb) {
|
|
Report("%s: hard RSS limit exhausted (%zdMb vs %zdMb)\n",
|
|
SanitizerToolName, HardRssLimitMb, CurrentRssMb);
|
|
DumpProcessMap();
|
|
Die();
|
|
}
|
|
if (SoftRssLimitMb) {
|
|
if (atomic_load_relaxed(&RssLimitExceeded)) {
|
|
if (CurrentRssMb <= SoftRssLimitMb)
|
|
atomic_store_relaxed(&RssLimitExceeded, false);
|
|
} else {
|
|
if (CurrentRssMb > SoftRssLimitMb) {
|
|
atomic_store_relaxed(&RssLimitExceeded, true);
|
|
Report("%s: soft RSS limit exhausted (%zdMb vs %zdMb)\n",
|
|
SanitizerToolName, SoftRssLimitMb, CurrentRssMb);
|
|
}
|
|
}
|
|
}
|
|
return atomic_load_relaxed(&RssLimitExceeded);
|
|
}
|
|
|
|
// Allocates a chunk.
|
|
void *allocate(uptr Size, uptr Alignment, AllocType Type,
|
|
bool ForceZeroContents = false) {
|
|
initThreadMaybe();
|
|
if (UNLIKELY(Alignment > MaxAlignment))
|
|
return FailureHandler::OnBadRequest();
|
|
if (UNLIKELY(Alignment < MinAlignment))
|
|
Alignment = MinAlignment;
|
|
if (UNLIKELY(Size >= MaxAllowedMallocSize))
|
|
return FailureHandler::OnBadRequest();
|
|
if (UNLIKELY(Size == 0))
|
|
Size = 1;
|
|
|
|
uptr NeededSize = RoundUpTo(Size, MinAlignment) + AlignedChunkHeaderSize;
|
|
uptr AlignedSize = (Alignment > MinAlignment) ?
|
|
NeededSize + (Alignment - AlignedChunkHeaderSize) : NeededSize;
|
|
if (UNLIKELY(AlignedSize >= MaxAllowedMallocSize))
|
|
return FailureHandler::OnBadRequest();
|
|
|
|
if (CheckRssLimit && UNLIKELY(isRssLimitExceeded()))
|
|
return FailureHandler::OnOOM();
|
|
|
|
// Primary and Secondary backed allocations have a different treatment. We
|
|
// deal with alignment requirements of Primary serviced allocations here,
|
|
// but the Secondary will take care of its own alignment needs.
|
|
void *BackendPtr;
|
|
uptr BackendSize;
|
|
u8 ClassId;
|
|
if (PrimaryAllocator::CanAllocate(AlignedSize, MinAlignment)) {
|
|
BackendSize = AlignedSize;
|
|
ClassId = SizeClassMap::ClassID(BackendSize);
|
|
ScudoTSD *TSD = getTSDAndLock();
|
|
BackendPtr = BackendAllocator.allocatePrimary(&TSD->Cache, ClassId);
|
|
TSD->unlock();
|
|
} else {
|
|
BackendSize = NeededSize;
|
|
ClassId = 0;
|
|
BackendPtr = BackendAllocator.allocateSecondary(BackendSize, Alignment);
|
|
}
|
|
if (UNLIKELY(!BackendPtr))
|
|
return FailureHandler::OnOOM();
|
|
|
|
// If requested, we will zero out the entire contents of the returned chunk.
|
|
if ((ForceZeroContents || ZeroContents) && ClassId)
|
|
memset(BackendPtr, 0,
|
|
BackendAllocator.getActuallyAllocatedSize(BackendPtr, ClassId));
|
|
|
|
UnpackedHeader Header = {};
|
|
uptr UserPtr = reinterpret_cast<uptr>(BackendPtr) + AlignedChunkHeaderSize;
|
|
if (UNLIKELY(!IsAligned(UserPtr, Alignment))) {
|
|
// Since the Secondary takes care of alignment, a non-aligned pointer
|
|
// means it is from the Primary. It is also the only case where the offset
|
|
// field of the header would be non-zero.
|
|
DCHECK(ClassId);
|
|
const uptr AlignedUserPtr = RoundUpTo(UserPtr, Alignment);
|
|
Header.Offset = (AlignedUserPtr - UserPtr) >> MinAlignmentLog;
|
|
UserPtr = AlignedUserPtr;
|
|
}
|
|
CHECK_LE(UserPtr + Size, reinterpret_cast<uptr>(BackendPtr) + BackendSize);
|
|
Header.State = ChunkAllocated;
|
|
Header.AllocType = Type;
|
|
if (ClassId) {
|
|
Header.ClassId = ClassId;
|
|
Header.SizeOrUnusedBytes = Size;
|
|
} else {
|
|
// The secondary fits the allocations to a page, so the amount of unused
|
|
// bytes is the difference between the end of the user allocation and the
|
|
// next page boundary.
|
|
const uptr PageSize = GetPageSizeCached();
|
|
const uptr TrailingBytes = (UserPtr + Size) & (PageSize - 1);
|
|
if (TrailingBytes)
|
|
Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
|
|
}
|
|
void *Ptr = reinterpret_cast<void *>(UserPtr);
|
|
Chunk::storeHeader(Ptr, &Header);
|
|
// if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(Ptr, Size);
|
|
return Ptr;
|
|
}
|
|
|
|
// Place a chunk in the quarantine or directly deallocate it in the event of
|
|
// a zero-sized quarantine, or if the size of the chunk is greater than the
|
|
// quarantine chunk size threshold.
|
|
void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header,
|
|
uptr Size) {
|
|
const bool BypassQuarantine = (AllocatorQuarantine.GetCacheSize() == 0) ||
|
|
(Size > QuarantineChunksUpToSize);
|
|
if (BypassQuarantine) {
|
|
Chunk::eraseHeader(Ptr);
|
|
void *BackendPtr = Chunk::getBackendPtr(Ptr, Header);
|
|
if (Header->ClassId) {
|
|
ScudoTSD *TSD = getTSDAndLock();
|
|
getBackendAllocator().deallocatePrimary(&TSD->Cache, BackendPtr,
|
|
Header->ClassId);
|
|
TSD->unlock();
|
|
} else {
|
|
getBackendAllocator().deallocateSecondary(BackendPtr);
|
|
}
|
|
} else {
|
|
// If a small memory amount was allocated with a larger alignment, we want
|
|
// to take that into account. Otherwise the Quarantine would be filled
|
|
// with tiny chunks, taking a lot of VA memory. This is an approximation
|
|
// of the usable size, that allows us to not call
|
|
// GetActuallyAllocatedSize.
|
|
uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
|
|
UnpackedHeader NewHeader = *Header;
|
|
NewHeader.State = ChunkQuarantine;
|
|
Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
|
|
ScudoTSD *TSD = getTSDAndLock();
|
|
AllocatorQuarantine.Put(getQuarantineCache(TSD),
|
|
QuarantineCallback(&TSD->Cache), Ptr,
|
|
EstimatedSize);
|
|
TSD->unlock();
|
|
}
|
|
}
|
|
|
|
// Deallocates a Chunk, which means either adding it to the quarantine or
|
|
// directly returning it to the backend if criteria are met.
|
|
void deallocate(void *Ptr, uptr DeleteSize, AllocType Type) {
|
|
// For a deallocation, we only ensure minimal initialization, meaning thread
|
|
// local data will be left uninitialized for now (when using ELF TLS). The
|
|
// fallback cache will be used instead. This is a workaround for a situation
|
|
// where the only heap operation performed in a thread would be a free past
|
|
// the TLS destructors, ending up in initialized thread specific data never
|
|
// being destroyed properly. Any other heap operation will do a full init.
|
|
initThreadMaybe(/*MinimalInit=*/true);
|
|
// if (&__sanitizer_free_hook) __sanitizer_free_hook(Ptr);
|
|
if (UNLIKELY(!Ptr))
|
|
return;
|
|
if (UNLIKELY(!Chunk::isAligned(Ptr))) {
|
|
dieWithMessage("ERROR: attempted to deallocate a chunk not properly "
|
|
"aligned at address %p\n", Ptr);
|
|
}
|
|
UnpackedHeader Header;
|
|
Chunk::loadHeader(Ptr, &Header);
|
|
if (UNLIKELY(Header.State != ChunkAllocated)) {
|
|
dieWithMessage("ERROR: invalid chunk state when deallocating address "
|
|
"%p\n", Ptr);
|
|
}
|
|
if (DeallocationTypeMismatch) {
|
|
// The deallocation type has to match the allocation one.
|
|
if (Header.AllocType != Type) {
|
|
// With the exception of memalign'd Chunks, that can be still be free'd.
|
|
if (Header.AllocType != FromMemalign || Type != FromMalloc) {
|
|
dieWithMessage("ERROR: allocation type mismatch when deallocating "
|
|
"address %p\n", Ptr);
|
|
}
|
|
}
|
|
}
|
|
uptr Size = Header.ClassId ? Header.SizeOrUnusedBytes :
|
|
Chunk::getUsableSize(Ptr, &Header) - Header.SizeOrUnusedBytes;
|
|
if (DeleteSizeMismatch) {
|
|
if (DeleteSize && DeleteSize != Size) {
|
|
dieWithMessage("ERROR: invalid sized delete on chunk at address %p\n",
|
|
Ptr);
|
|
}
|
|
}
|
|
quarantineOrDeallocateChunk(Ptr, &Header, Size);
|
|
}
|
|
|
|
// Reallocates a chunk. We can save on a new allocation if the new requested
|
|
// size still fits in the chunk.
|
|
void *reallocate(void *OldPtr, uptr NewSize) {
|
|
initThreadMaybe();
|
|
if (UNLIKELY(!Chunk::isAligned(OldPtr))) {
|
|
dieWithMessage("ERROR: attempted to reallocate a chunk not properly "
|
|
"aligned at address %p\n", OldPtr);
|
|
}
|
|
UnpackedHeader OldHeader;
|
|
Chunk::loadHeader(OldPtr, &OldHeader);
|
|
if (UNLIKELY(OldHeader.State != ChunkAllocated)) {
|
|
dieWithMessage("ERROR: invalid chunk state when reallocating address "
|
|
"%p\n", OldPtr);
|
|
}
|
|
if (DeallocationTypeMismatch) {
|
|
if (UNLIKELY(OldHeader.AllocType != FromMalloc)) {
|
|
dieWithMessage("ERROR: allocation type mismatch when reallocating "
|
|
"address %p\n", OldPtr);
|
|
}
|
|
}
|
|
const uptr UsableSize = Chunk::getUsableSize(OldPtr, &OldHeader);
|
|
// The new size still fits in the current chunk, and the size difference
|
|
// is reasonable.
|
|
if (NewSize <= UsableSize &&
|
|
(UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
|
|
UnpackedHeader NewHeader = OldHeader;
|
|
NewHeader.SizeOrUnusedBytes =
|
|
OldHeader.ClassId ? NewSize : UsableSize - NewSize;
|
|
Chunk::compareExchangeHeader(OldPtr, &NewHeader, &OldHeader);
|
|
return OldPtr;
|
|
}
|
|
// Otherwise, we have to allocate a new chunk and copy the contents of the
|
|
// old one.
|
|
void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
|
|
if (NewPtr) {
|
|
uptr OldSize = OldHeader.ClassId ? OldHeader.SizeOrUnusedBytes :
|
|
UsableSize - OldHeader.SizeOrUnusedBytes;
|
|
memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
|
|
quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
|
|
}
|
|
return NewPtr;
|
|
}
|
|
|
|
// Helper function that returns the actual usable size of a chunk.
|
|
uptr getUsableSize(const void *Ptr) {
|
|
initThreadMaybe();
|
|
if (UNLIKELY(!Ptr))
|
|
return 0;
|
|
UnpackedHeader Header;
|
|
Chunk::loadHeader(Ptr, &Header);
|
|
// Getting the usable size of a chunk only makes sense if it's allocated.
|
|
if (UNLIKELY(Header.State != ChunkAllocated)) {
|
|
dieWithMessage("ERROR: invalid chunk state when sizing address %p\n",
|
|
Ptr);
|
|
}
|
|
return Chunk::getUsableSize(Ptr, &Header);
|
|
}
|
|
|
|
void *calloc(uptr NMemB, uptr Size) {
|
|
initThreadMaybe();
|
|
if (UNLIKELY(CheckForCallocOverflow(NMemB, Size)))
|
|
return FailureHandler::OnBadRequest();
|
|
return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
|
|
}
|
|
|
|
void commitBack(ScudoTSD *TSD) {
|
|
AllocatorQuarantine.Drain(getQuarantineCache(TSD),
|
|
QuarantineCallback(&TSD->Cache));
|
|
BackendAllocator.destroyCache(&TSD->Cache);
|
|
}
|
|
|
|
uptr getStats(AllocatorStat StatType) {
|
|
initThreadMaybe();
|
|
uptr stats[AllocatorStatCount];
|
|
BackendAllocator.getStats(stats);
|
|
return stats[StatType];
|
|
}
|
|
|
|
void *handleBadRequest() {
|
|
initThreadMaybe();
|
|
return FailureHandler::OnBadRequest();
|
|
}
|
|
|
|
void setRssLimit(uptr LimitMb, bool HardLimit) {
|
|
if (HardLimit)
|
|
HardRssLimitMb = LimitMb;
|
|
else
|
|
SoftRssLimitMb = LimitMb;
|
|
CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
|
|
}
|
|
};
|
|
|
|
static ScudoAllocator Instance(LINKER_INITIALIZED);
|
|
|
|
static ScudoBackendAllocator &getBackendAllocator() {
|
|
return Instance.BackendAllocator;
|
|
}
|
|
|
|
void initScudo() {
|
|
Instance.init();
|
|
}
|
|
|
|
void ScudoTSD::init(bool Shared) {
|
|
UnlockRequired = Shared;
|
|
getBackendAllocator().initCache(&Cache);
|
|
memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
|
|
}
|
|
|
|
void ScudoTSD::commitBack() {
|
|
Instance.commitBack(this);
|
|
}
|
|
|
|
void *scudoMalloc(uptr Size, AllocType Type) {
|
|
return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, Type));
|
|
}
|
|
|
|
void scudoFree(void *Ptr, AllocType Type) {
|
|
Instance.deallocate(Ptr, 0, Type);
|
|
}
|
|
|
|
void scudoSizedFree(void *Ptr, uptr Size, AllocType Type) {
|
|
Instance.deallocate(Ptr, Size, Type);
|
|
}
|
|
|
|
void *scudoRealloc(void *Ptr, uptr Size) {
|
|
if (!Ptr)
|
|
return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
|
|
if (Size == 0) {
|
|
Instance.deallocate(Ptr, 0, FromMalloc);
|
|
return nullptr;
|
|
}
|
|
return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
|
|
}
|
|
|
|
void *scudoCalloc(uptr NMemB, uptr Size) {
|
|
return SetErrnoOnNull(Instance.calloc(NMemB, Size));
|
|
}
|
|
|
|
void *scudoValloc(uptr Size) {
|
|
return SetErrnoOnNull(
|
|
Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
|
|
}
|
|
|
|
void *scudoPvalloc(uptr Size) {
|
|
uptr PageSize = GetPageSizeCached();
|
|
if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
|
|
errno = ENOMEM;
|
|
return Instance.handleBadRequest();
|
|
}
|
|
// pvalloc(0) should allocate one page.
|
|
Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
|
|
return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
|
|
}
|
|
|
|
void *scudoMemalign(uptr Alignment, uptr Size) {
|
|
if (UNLIKELY(!IsPowerOfTwo(Alignment))) {
|
|
errno = EINVAL;
|
|
return Instance.handleBadRequest();
|
|
}
|
|
return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMemalign));
|
|
}
|
|
|
|
int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
|
|
if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
|
|
Instance.handleBadRequest();
|
|
return EINVAL;
|
|
}
|
|
void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
|
|
if (UNLIKELY(!Ptr))
|
|
return ENOMEM;
|
|
*MemPtr = Ptr;
|
|
return 0;
|
|
}
|
|
|
|
void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
|
|
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
|
|
errno = EINVAL;
|
|
return Instance.handleBadRequest();
|
|
}
|
|
return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
|
|
}
|
|
|
|
uptr scudoMallocUsableSize(void *Ptr) {
|
|
return Instance.getUsableSize(Ptr);
|
|
}
|
|
|
|
} // namespace __scudo
|
|
|
|
using namespace __scudo;
|
|
|
|
// MallocExtension helper functions
|
|
|
|
uptr __sanitizer_get_current_allocated_bytes() {
|
|
return Instance.getStats(AllocatorStatAllocated);
|
|
}
|
|
|
|
uptr __sanitizer_get_heap_size() {
|
|
return Instance.getStats(AllocatorStatMapped);
|
|
}
|
|
|
|
uptr __sanitizer_get_free_bytes() {
|
|
return 1;
|
|
}
|
|
|
|
uptr __sanitizer_get_unmapped_bytes() {
|
|
return 1;
|
|
}
|
|
|
|
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
|
|
return size;
|
|
}
|
|
|
|
int __sanitizer_get_ownership(const void *Ptr) {
|
|
return Instance.isValidPointer(Ptr);
|
|
}
|
|
|
|
uptr __sanitizer_get_allocated_size(const void *Ptr) {
|
|
return Instance.getUsableSize(Ptr);
|
|
}
|
|
|
|
// Interface functions
|
|
|
|
extern "C" {
|
|
void __scudo_set_rss_limit(unsigned long LimitMb, int HardLimit) { // NOLINT
|
|
if (!SCUDO_CAN_USE_PUBLIC_INTERFACE)
|
|
return;
|
|
Instance.setRssLimit(LimitMb, !!HardLimit);
|
|
}
|
|
} // extern "C"
|