402 lines
13 KiB
C++
402 lines
13 KiB
C++
//===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instrumentation system.
|
|
//
|
|
// Implementation of the API functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "xray_interface_internal.h"
|
|
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <errno.h>
|
|
#include <limits>
|
|
#include <sys/mman.h>
|
|
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "xray_defs.h"
|
|
#include "xray_flags.h"
|
|
|
|
extern __sanitizer::SpinMutex XRayInstrMapMutex;
|
|
extern __sanitizer::atomic_uint8_t XRayInitialized;
|
|
extern __xray::XRaySledMap XRayInstrMap;
|
|
|
|
namespace __xray {
|
|
|
|
#if defined(__x86_64__)
|
|
static const int16_t cSledLength = 12;
|
|
#elif defined(__aarch64__)
|
|
static const int16_t cSledLength = 32;
|
|
#elif defined(__arm__)
|
|
static const int16_t cSledLength = 28;
|
|
#elif SANITIZER_MIPS32
|
|
static const int16_t cSledLength = 48;
|
|
#elif SANITIZER_MIPS64
|
|
static const int16_t cSledLength = 64;
|
|
#elif defined(__powerpc64__)
|
|
static const int16_t cSledLength = 8;
|
|
#else
|
|
#error "Unsupported CPU Architecture"
|
|
#endif /* CPU architecture */
|
|
|
|
// This is the function to call when we encounter the entry or exit sleds.
|
|
__sanitizer::atomic_uintptr_t XRayPatchedFunction{0};
|
|
|
|
// This is the function to call from the arg1-enabled sleds/trampolines.
|
|
__sanitizer::atomic_uintptr_t XRayArgLogger{0};
|
|
|
|
// This is the function to call when we encounter a custom event log call.
|
|
__sanitizer::atomic_uintptr_t XRayPatchedCustomEvent{0};
|
|
|
|
// This is the global status to determine whether we are currently
|
|
// patching/unpatching.
|
|
__sanitizer::atomic_uint8_t XRayPatching{0};
|
|
|
|
// MProtectHelper is an RAII wrapper for calls to mprotect(...) that will undo
|
|
// any successful mprotect(...) changes. This is used to make a page writeable
|
|
// and executable, and upon destruction if it was successful in doing so returns
|
|
// the page into a read-only and executable page.
|
|
//
|
|
// This is only used specifically for runtime-patching of the XRay
|
|
// instrumentation points. This assumes that the executable pages are originally
|
|
// read-and-execute only.
|
|
class MProtectHelper {
|
|
void *PageAlignedAddr;
|
|
std::size_t MProtectLen;
|
|
bool MustCleanup;
|
|
|
|
public:
|
|
explicit MProtectHelper(void *PageAlignedAddr,
|
|
std::size_t MProtectLen) XRAY_NEVER_INSTRUMENT
|
|
: PageAlignedAddr(PageAlignedAddr),
|
|
MProtectLen(MProtectLen),
|
|
MustCleanup(false) {}
|
|
|
|
int MakeWriteable() XRAY_NEVER_INSTRUMENT {
|
|
auto R = mprotect(PageAlignedAddr, MProtectLen,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC);
|
|
if (R != -1)
|
|
MustCleanup = true;
|
|
return R;
|
|
}
|
|
|
|
~MProtectHelper() XRAY_NEVER_INSTRUMENT {
|
|
if (MustCleanup) {
|
|
mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
|
|
}
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
|
|
bool patchSled(const XRaySledEntry &Sled, bool Enable,
|
|
int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
bool Success = false;
|
|
switch (Sled.Kind) {
|
|
case XRayEntryType::ENTRY:
|
|
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
|
|
break;
|
|
case XRayEntryType::EXIT:
|
|
Success = patchFunctionExit(Enable, FuncId, Sled);
|
|
break;
|
|
case XRayEntryType::TAIL:
|
|
Success = patchFunctionTailExit(Enable, FuncId, Sled);
|
|
break;
|
|
case XRayEntryType::LOG_ARGS_ENTRY:
|
|
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
|
|
break;
|
|
case XRayEntryType::CUSTOM_EVENT:
|
|
Success = patchCustomEvent(Enable, FuncId, Sled);
|
|
break;
|
|
default:
|
|
Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind));
|
|
return false;
|
|
}
|
|
return Success;
|
|
}
|
|
|
|
XRayPatchingStatus patchFunction(int32_t FuncId,
|
|
bool Enable) XRAY_NEVER_INSTRUMENT {
|
|
if (!__sanitizer::atomic_load(&XRayInitialized,
|
|
__sanitizer::memory_order_acquire))
|
|
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
|
|
|
|
uint8_t NotPatching = false;
|
|
if (!__sanitizer::atomic_compare_exchange_strong(
|
|
&XRayPatching, &NotPatching, true, __sanitizer::memory_order_acq_rel))
|
|
return XRayPatchingStatus::ONGOING; // Already patching.
|
|
|
|
// Next, we look for the function index.
|
|
XRaySledMap InstrMap;
|
|
{
|
|
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
InstrMap = XRayInstrMap;
|
|
}
|
|
|
|
// If we don't have an index, we can't patch individual functions.
|
|
if (InstrMap.Functions == 0)
|
|
return XRayPatchingStatus::NOT_INITIALIZED;
|
|
|
|
// FuncId must be a positive number, less than the number of functions
|
|
// instrumented.
|
|
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
|
|
Report("Invalid function id provided: %d\n", FuncId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
// Now we patch ths sleds for this specific function.
|
|
auto SledRange = InstrMap.SledsIndex[FuncId - 1];
|
|
auto *f = SledRange.Begin;
|
|
auto *e = SledRange.End;
|
|
|
|
bool SucceedOnce = false;
|
|
while (f != e)
|
|
SucceedOnce |= patchSled(*f++, Enable, FuncId);
|
|
|
|
__sanitizer::atomic_store(&XRayPatching, false,
|
|
__sanitizer::memory_order_release);
|
|
|
|
if (!SucceedOnce) {
|
|
Report("Failed patching any sled for function '%d'.", FuncId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
return XRayPatchingStatus::SUCCESS;
|
|
}
|
|
|
|
// controlPatching implements the common internals of the patching/unpatching
|
|
// implementation. |Enable| defines whether we're enabling or disabling the
|
|
// runtime XRay instrumentation.
|
|
XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
|
|
if (!__sanitizer::atomic_load(&XRayInitialized,
|
|
__sanitizer::memory_order_acquire))
|
|
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
|
|
|
|
uint8_t NotPatching = false;
|
|
if (!__sanitizer::atomic_compare_exchange_strong(
|
|
&XRayPatching, &NotPatching, true, __sanitizer::memory_order_acq_rel))
|
|
return XRayPatchingStatus::ONGOING; // Already patching.
|
|
|
|
uint8_t PatchingSuccess = false;
|
|
auto XRayPatchingStatusResetter =
|
|
__sanitizer::at_scope_exit([&PatchingSuccess] {
|
|
if (!PatchingSuccess)
|
|
__sanitizer::atomic_store(&XRayPatching, false,
|
|
__sanitizer::memory_order_release);
|
|
});
|
|
|
|
XRaySledMap InstrMap;
|
|
{
|
|
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
InstrMap = XRayInstrMap;
|
|
}
|
|
if (InstrMap.Entries == 0)
|
|
return XRayPatchingStatus::NOT_INITIALIZED;
|
|
|
|
uint32_t FuncId = 1;
|
|
uint64_t CurFun = 0;
|
|
|
|
// First we want to find the bounds for which we have instrumentation points,
|
|
// and try to get as few calls to mprotect(...) as possible. We're assuming
|
|
// that all the sleds for the instrumentation map are contiguous as a single
|
|
// set of pages. When we do support dynamic shared object instrumentation,
|
|
// we'll need to do this for each set of page load offsets per DSO loaded. For
|
|
// now we're assuming we can mprotect the whole section of text between the
|
|
// minimum sled address and the maximum sled address (+ the largest sled
|
|
// size).
|
|
auto MinSled = InstrMap.Sleds[0];
|
|
auto MaxSled = InstrMap.Sleds[InstrMap.Entries - 1];
|
|
for (std::size_t I = 0; I < InstrMap.Entries; I++) {
|
|
const auto &Sled = InstrMap.Sleds[I];
|
|
if (Sled.Address < MinSled.Address)
|
|
MinSled = Sled;
|
|
if (Sled.Address > MaxSled.Address)
|
|
MaxSled = Sled;
|
|
}
|
|
|
|
const size_t PageSize = flags()->xray_page_size_override > 0
|
|
? flags()->xray_page_size_override
|
|
: GetPageSizeCached();
|
|
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
|
|
Report("System page size is not a power of two: %lld\n", PageSize);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
void *PageAlignedAddr =
|
|
reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1));
|
|
size_t MProtectLen =
|
|
(MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength;
|
|
MProtectHelper Protector(PageAlignedAddr, MProtectLen);
|
|
if (Protector.MakeWriteable() == -1) {
|
|
Report("Failed mprotect: %d\n", errno);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
for (std::size_t I = 0; I < InstrMap.Entries; ++I) {
|
|
auto &Sled = InstrMap.Sleds[I];
|
|
auto F = Sled.Function;
|
|
if (CurFun == 0)
|
|
CurFun = F;
|
|
if (F != CurFun) {
|
|
++FuncId;
|
|
CurFun = F;
|
|
}
|
|
patchSled(Sled, Enable, FuncId);
|
|
}
|
|
__sanitizer::atomic_store(&XRayPatching, false,
|
|
__sanitizer::memory_order_release);
|
|
PatchingSuccess = true;
|
|
return XRayPatchingStatus::SUCCESS;
|
|
}
|
|
|
|
XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId,
|
|
bool Enable) XRAY_NEVER_INSTRUMENT {
|
|
XRaySledMap InstrMap;
|
|
{
|
|
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
InstrMap = XRayInstrMap;
|
|
}
|
|
|
|
// FuncId must be a positive number, less than the number of functions
|
|
// instrumented.
|
|
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
|
|
Report("Invalid function id provided: %d\n", FuncId);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
const size_t PageSize = flags()->xray_page_size_override > 0
|
|
? flags()->xray_page_size_override
|
|
: GetPageSizeCached();
|
|
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
|
|
Report("Provided page size is not a power of two: %lld\n", PageSize);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
|
|
// Here we compute the minumum sled and maximum sled associated with a
|
|
// particular function ID.
|
|
auto SledRange = InstrMap.SledsIndex[FuncId - 1];
|
|
auto *f = SledRange.Begin;
|
|
auto *e = SledRange.End;
|
|
auto MinSled = *f;
|
|
auto MaxSled = *(SledRange.End - 1);
|
|
while (f != e) {
|
|
if (f->Address < MinSled.Address)
|
|
MinSled = *f;
|
|
if (f->Address > MaxSled.Address)
|
|
MaxSled = *f;
|
|
++f;
|
|
}
|
|
|
|
void *PageAlignedAddr =
|
|
reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1));
|
|
size_t MProtectLen =
|
|
(MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength;
|
|
MProtectHelper Protector(PageAlignedAddr, MProtectLen);
|
|
if (Protector.MakeWriteable() == -1) {
|
|
Report("Failed mprotect: %d\n", errno);
|
|
return XRayPatchingStatus::FAILED;
|
|
}
|
|
return patchFunction(FuncId, Enable);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
} // namespace __xray
|
|
|
|
using namespace __xray;
|
|
|
|
// The following functions are declared `extern "C" {...}` in the header, hence
|
|
// they're defined in the global namespace.
|
|
|
|
int __xray_set_handler(void (*entry)(int32_t,
|
|
XRayEntryType)) XRAY_NEVER_INSTRUMENT {
|
|
if (__sanitizer::atomic_load(&XRayInitialized,
|
|
__sanitizer::memory_order_acquire)) {
|
|
|
|
__sanitizer::atomic_store(&__xray::XRayPatchedFunction,
|
|
reinterpret_cast<uintptr_t>(entry),
|
|
__sanitizer::memory_order_release);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __xray_set_customevent_handler(void (*entry)(void *, size_t))
|
|
XRAY_NEVER_INSTRUMENT {
|
|
if (__sanitizer::atomic_load(&XRayInitialized,
|
|
__sanitizer::memory_order_acquire)) {
|
|
__sanitizer::atomic_store(&__xray::XRayPatchedCustomEvent,
|
|
reinterpret_cast<uintptr_t>(entry),
|
|
__sanitizer::memory_order_release);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
|
|
return __xray_set_handler(nullptr);
|
|
}
|
|
|
|
int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT {
|
|
return __xray_set_customevent_handler(nullptr);
|
|
}
|
|
|
|
XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
|
|
return controlPatching(true);
|
|
}
|
|
|
|
XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
|
|
return controlPatching(false);
|
|
}
|
|
|
|
XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
return mprotectAndPatchFunction(FuncId, true);
|
|
}
|
|
|
|
XRayPatchingStatus
|
|
__xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
return mprotectAndPatchFunction(FuncId, false);
|
|
}
|
|
|
|
int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) {
|
|
if (!__sanitizer::atomic_load(&XRayInitialized,
|
|
__sanitizer::memory_order_acquire))
|
|
return 0;
|
|
|
|
// A relaxed write might not be visible even if the current thread gets
|
|
// scheduled on a different CPU/NUMA node. We need to wait for everyone to
|
|
// have this handler installed for consistency of collected data across CPUs.
|
|
__sanitizer::atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry),
|
|
__sanitizer::memory_order_release);
|
|
return 1;
|
|
}
|
|
|
|
int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
|
|
|
|
uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
|
|
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
if (FuncId <= 0 || static_cast<size_t>(FuncId) > XRayInstrMap.Functions)
|
|
return 0;
|
|
return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Function
|
|
// On PPC, function entries are always aligned to 16 bytes. The beginning of a
|
|
// sled might be a local entry, which is always +8 based on the global entry.
|
|
// Always return the global entry.
|
|
#ifdef __PPC__
|
|
& ~0xf
|
|
#endif
|
|
;
|
|
}
|
|
|
|
size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
|
|
__sanitizer::SpinMutexLock Guard(&XRayInstrMapMutex);
|
|
return XRayInstrMap.Functions;
|
|
}
|