freebsd-nq/sys/netinet/in_fib_dxr.c
Marko Zec e7abe200c2 fib_algo: shift / mask by constants in dxr_lookup()
Since trie configuration remains invariant during each DXR instance
lifetime, instead of shifting and masking lookup keys by values
computed at runtime, compile upfront several dxr_lookup()
configurations with hardcoded shift / mask constants, and choose the
apropriate lookup function version after each DXR instance rebuild.

In synthetic tests this yields small but measurable (5-10%) lookup
throughput improvement, depending on FIB size and  prefix patterns.

MFC after:	3 days
2022-01-17 00:13:47 +01:00

1427 lines
37 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012-2022 Marko Zec
* Copyright (c) 2005, 2018 University of Zagreb
* Copyright (c) 2005 International Computer Science Institute
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* An implementation of DXR, a simple IPv4 LPM scheme with compact lookup
* structures and a trivial search procedure. More significant bits of
* the search key are used to directly index a two-stage trie, while the
* remaining bits are used for finding the next hop in a sorted array.
* More details in:
*
* M. Zec, L. Rizzo, M. Mikuc, DXR: towards a billion routing lookups per
* second in software, ACM SIGCOMM Computer Communication Review, September
* 2012
*
* M. Zec, M. Mikuc, Pushing the envelope: beyond two billion IP routing
* lookups per second on commodity CPUs, IEEE SoftCOM, September 2017, Split
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/ctype.h>
#include <sys/epoch.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <vm/uma.h>
#include <netinet/in.h>
#include <netinet/in_fib.h>
#include <net/route.h>
#include <net/route/route_ctl.h>
#include <net/route/fib_algo.h>
#define DXR_TRIE_BITS 20
CTASSERT(DXR_TRIE_BITS >= 16 && DXR_TRIE_BITS <= 24);
/* DXR2: two-stage primary trie, instead of a single direct lookup table */
#define DXR2
#if DXR_TRIE_BITS > 16
#define DXR_D 16
#else
#define DXR_D (DXR_TRIE_BITS - 1)
#endif
#define D_TBL_SIZE (1 << DXR_D)
#define DIRECT_TBL_SIZE (1 << DXR_TRIE_BITS)
#define DXR_RANGE_MASK (0xffffffffU >> DXR_TRIE_BITS)
#define DXR_RANGE_SHIFT (32 - DXR_TRIE_BITS)
#define DESC_BASE_BITS 22
#define DESC_FRAGMENTS_BITS (32 - DESC_BASE_BITS)
#define BASE_MAX ((1 << DESC_BASE_BITS) - 1)
#define RTBL_SIZE_INCR (BASE_MAX / 64)
#if DXR_TRIE_BITS < 24
#define FRAGS_MASK_SHORT ((1 << (23 - DXR_TRIE_BITS)) - 1)
#else
#define FRAGS_MASK_SHORT 0
#endif
#define FRAGS_PREF_SHORT (((1 << DESC_FRAGMENTS_BITS) - 1) & \
~FRAGS_MASK_SHORT)
#define FRAGS_MARK_XL (FRAGS_PREF_SHORT - 1)
#define FRAGS_MARK_HIT (FRAGS_PREF_SHORT - 2)
#define IS_SHORT_FORMAT(x) ((x & FRAGS_PREF_SHORT) == FRAGS_PREF_SHORT)
#define IS_LONG_FORMAT(x) ((x & FRAGS_PREF_SHORT) != FRAGS_PREF_SHORT)
#define IS_XL_FORMAT(x) (x == FRAGS_MARK_XL)
#define RE_SHORT_MAX_NH ((1 << (DXR_TRIE_BITS - 8)) - 1)
#define CHUNK_HASH_BITS 16
#define CHUNK_HASH_SIZE (1 << CHUNK_HASH_BITS)
#define CHUNK_HASH_MASK (CHUNK_HASH_SIZE - 1)
#define TRIE_HASH_BITS 16
#define TRIE_HASH_SIZE (1 << TRIE_HASH_BITS)
#define TRIE_HASH_MASK (TRIE_HASH_SIZE - 1)
#define XTBL_SIZE_INCR (DIRECT_TBL_SIZE / 16)
#define UNUSED_BUCKETS 8
/* Lookup structure elements */
struct direct_entry {
uint32_t fragments: DESC_FRAGMENTS_BITS,
base: DESC_BASE_BITS;
};
struct range_entry_long {
uint32_t start: DXR_RANGE_SHIFT,
nexthop: DXR_TRIE_BITS;
};
#if DXR_TRIE_BITS < 24
struct range_entry_short {
uint16_t start: DXR_RANGE_SHIFT - 8,
nexthop: DXR_TRIE_BITS - 8;
};
#endif
/* Auxiliary structures */
struct heap_entry {
uint32_t start;
uint32_t end;
uint32_t preflen;
uint32_t nexthop;
};
struct chunk_desc {
LIST_ENTRY(chunk_desc) cd_all_le;
LIST_ENTRY(chunk_desc) cd_hash_le;
uint32_t cd_hash;
uint32_t cd_refcnt;
uint32_t cd_base;
uint32_t cd_cur_size;
uint32_t cd_max_size;
};
struct trie_desc {
LIST_ENTRY(trie_desc) td_all_le;
LIST_ENTRY(trie_desc) td_hash_le;
uint32_t td_hash;
uint32_t td_index;
uint32_t td_refcnt;
};
struct dxr_aux {
/* Glue to external state */
struct fib_data *fd;
uint32_t fibnum;
int refcnt;
/* Auxiliary build-time tables */
struct direct_entry direct_tbl[DIRECT_TBL_SIZE];
uint16_t d_tbl[D_TBL_SIZE];
struct direct_entry *x_tbl;
union {
struct range_entry_long re;
uint32_t fragments;
} *range_tbl;
/* Auxiliary internal state */
uint32_t updates_mask[DIRECT_TBL_SIZE / 32];
struct trie_desc *trietbl[D_TBL_SIZE];
LIST_HEAD(, chunk_desc) chunk_hashtbl[CHUNK_HASH_SIZE];
LIST_HEAD(, chunk_desc) all_chunks;
LIST_HEAD(, chunk_desc) unused_chunks[UNUSED_BUCKETS];
LIST_HEAD(, trie_desc) trie_hashtbl[TRIE_HASH_SIZE];
LIST_HEAD(, trie_desc) all_trie;
LIST_HEAD(, trie_desc) unused_trie; /* abuses hash link entry */
struct sockaddr_in dst;
struct sockaddr_in mask;
struct heap_entry heap[33];
uint32_t prefixes;
uint32_t updates_low;
uint32_t updates_high;
uint32_t unused_chunks_size;
uint32_t xtbl_size;
uint32_t all_trie_cnt;
uint32_t unused_trie_cnt;
uint32_t trie_rebuilt_prefixes;
uint32_t heap_index;
uint32_t d_bits;
uint32_t rtbl_size;
uint32_t rtbl_top;
uint32_t rtbl_work_frags;
uint32_t work_chunk;
};
/* Main lookup structure container */
struct dxr {
/* Lookup tables */
void *d;
void *x;
void *r;
struct nhop_object **nh_tbl;
/* Glue to external state */
struct dxr_aux *aux;
struct fib_data *fd;
struct epoch_context epoch_ctx;
uint32_t fibnum;
uint16_t d_shift;
uint16_t x_shift;
uint32_t x_mask;
};
static MALLOC_DEFINE(M_DXRLPM, "dxr", "DXR LPM");
static MALLOC_DEFINE(M_DXRAUX, "dxr aux", "DXR auxiliary");
uma_zone_t chunk_zone;
uma_zone_t trie_zone;
VNET_DEFINE_STATIC(int, frag_limit) = 100;
#define V_frag_limit VNET(frag_limit)
/* Binary search for a matching address range */
#define DXR_LOOKUP_STAGE \
if (masked_dst < range[middle].start) { \
upperbound = middle; \
middle = (middle + lowerbound) / 2; \
} else if (masked_dst < range[middle + 1].start) \
return (range[middle].nexthop); \
else { \
lowerbound = middle + 1; \
middle = (upperbound + middle + 1) / 2; \
} \
if (upperbound == lowerbound) \
return (range[lowerbound].nexthop);
static int
range_lookup(struct range_entry_long *rt, struct direct_entry de, uint32_t dst)
{
uint32_t base;
uint32_t upperbound;
uint32_t middle;
uint32_t lowerbound;
uint32_t masked_dst;
base = de.base;
lowerbound = 0;
masked_dst = dst & DXR_RANGE_MASK;
#if DXR_TRIE_BITS < 24
if (__predict_true(IS_SHORT_FORMAT(de.fragments))) {
upperbound = de.fragments & FRAGS_MASK_SHORT;
struct range_entry_short *range =
(struct range_entry_short *) &rt[base];
masked_dst >>= 8;
middle = upperbound;
upperbound = upperbound * 2 + 1;
for (;;) {
DXR_LOOKUP_STAGE
DXR_LOOKUP_STAGE
}
}
#endif
upperbound = de.fragments;
middle = upperbound / 2;
struct range_entry_long *range = &rt[base];
if (__predict_false(IS_XL_FORMAT(de.fragments))) {
upperbound = *((uint32_t *) range);
range++;
middle = upperbound / 2;
}
for (;;) {
DXR_LOOKUP_STAGE
DXR_LOOKUP_STAGE
}
}
#define DXR_LOOKUP_DEFINE(D) \
static int inline \
dxr_lookup_##D(struct dxr *dxr, uint32_t dst) \
{ \
struct direct_entry de; \
uint16_t *dt = dxr->d; \
struct direct_entry *xt = dxr->x; \
\
de = xt[(dt[dst >> (32 - (D))] << (DXR_TRIE_BITS - (D))) \
+ ((dst >> DXR_RANGE_SHIFT) & \
(0xffffffffU >> (32 - DXR_TRIE_BITS + (D))))]; \
if (__predict_true(de.fragments == FRAGS_MARK_HIT)) \
return (de.base); \
return (range_lookup(dxr->r, de, dst)); \
} \
\
static struct nhop_object * \
dxr_fib_lookup_##D(void *algo_data, \
const struct flm_lookup_key key, uint32_t scopeid __unused) \
{ \
struct dxr *dxr = algo_data; \
\
return (dxr->nh_tbl[dxr_lookup_##D(dxr, \
ntohl(key.addr4.s_addr))]); \
}
#ifdef DXR2
#if DXR_TRIE_BITS > 16
DXR_LOOKUP_DEFINE(16)
#endif
DXR_LOOKUP_DEFINE(15)
DXR_LOOKUP_DEFINE(14)
DXR_LOOKUP_DEFINE(13)
DXR_LOOKUP_DEFINE(12)
DXR_LOOKUP_DEFINE(11)
DXR_LOOKUP_DEFINE(10)
DXR_LOOKUP_DEFINE(9)
#endif /* DXR2 */
static int inline
dxr_lookup(struct dxr *dxr, uint32_t dst)
{
struct direct_entry de;
#ifdef DXR2
uint16_t *dt = dxr->d;
struct direct_entry *xt = dxr->x;
de = xt[(dt[dst >> dxr->d_shift] << dxr->x_shift) +
((dst >> DXR_RANGE_SHIFT) & dxr->x_mask)];
#else /* !DXR2 */
struct direct_entry *dt = dxr->d;
de = dt[dst >> DXR_RANGE_SHIFT];
#endif /* !DXR2 */
if (__predict_true(de.fragments == FRAGS_MARK_HIT))
return (de.base);
return (range_lookup(dxr->r, de, dst));
}
static void
initheap(struct dxr_aux *da, uint32_t dst_u32, uint32_t chunk)
{
struct heap_entry *fhp = &da->heap[0];
struct rtentry *rt;
struct route_nhop_data rnd;
da->heap_index = 0;
da->dst.sin_addr.s_addr = htonl(dst_u32);
rt = fib4_lookup_rt(da->fibnum, da->dst.sin_addr, 0, NHR_UNLOCKED,
&rnd);
if (rt != NULL) {
struct in_addr addr;
uint32_t scopeid;
rt_get_inet_prefix_plen(rt, &addr, &fhp->preflen, &scopeid);
fhp->start = ntohl(addr.s_addr);
fhp->end = fhp->start;
if (fhp->preflen < 32)
fhp->end |= (0xffffffffU >> fhp->preflen);
fhp->nexthop = fib_get_nhop_idx(da->fd, rnd.rnd_nhop);
} else {
fhp->preflen = fhp->nexthop = fhp->start = 0;
fhp->end = 0xffffffffU;
}
}
static uint32_t
chunk_size(struct dxr_aux *da, struct direct_entry *fdesc)
{
if (IS_SHORT_FORMAT(fdesc->fragments))
return ((fdesc->fragments & FRAGS_MASK_SHORT) + 1);
else if (IS_XL_FORMAT(fdesc->fragments))
return (da->range_tbl[fdesc->base].fragments + 2);
else /* if (IS_LONG_FORMAT(fdesc->fragments)) */
return (fdesc->fragments + 1);
}
static uint32_t
chunk_hash(struct dxr_aux *da, struct direct_entry *fdesc)
{
uint32_t size = chunk_size(da, fdesc);
uint32_t *p = (uint32_t *) &da->range_tbl[fdesc->base];
uint32_t *l = (uint32_t *) &da->range_tbl[fdesc->base + size];
uint32_t hash = fdesc->fragments;
for (; p < l; p++)
hash = (hash << 7) + (hash >> 13) + *p;
return (hash + (hash >> 16));
}
static int
chunk_ref(struct dxr_aux *da, uint32_t chunk)
{
struct direct_entry *fdesc = &da->direct_tbl[chunk];
struct chunk_desc *cdp, *empty_cdp;
uint32_t base = fdesc->base;
uint32_t size = chunk_size(da, fdesc);
uint32_t hash = chunk_hash(da, fdesc);
int i;
/* Find an existing descriptor */
LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK],
cd_hash_le) {
if (cdp->cd_hash != hash || cdp->cd_cur_size != size ||
memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base],
sizeof(struct range_entry_long) * size))
continue;
da->rtbl_top = fdesc->base;
fdesc->base = cdp->cd_base;
cdp->cd_refcnt++;
return (0);
}
/* No matching chunks found. Find an empty one to recycle. */
for (cdp = NULL, i = size; cdp == NULL && i < UNUSED_BUCKETS; i++)
cdp = LIST_FIRST(&da->unused_chunks[i]);
if (cdp == NULL)
LIST_FOREACH(empty_cdp, &da->unused_chunks[0], cd_hash_le)
if (empty_cdp->cd_max_size >= size && (cdp == NULL ||
empty_cdp->cd_max_size < cdp->cd_max_size)) {
cdp = empty_cdp;
if (empty_cdp->cd_max_size == size)
break;
}
if (cdp != NULL) {
/* Copy from heap into the recycled chunk */
bcopy(&da->range_tbl[fdesc->base], &da->range_tbl[cdp->cd_base],
size * sizeof(struct range_entry_long));
fdesc->base = cdp->cd_base;
da->rtbl_top -= size;
da->unused_chunks_size -= cdp->cd_max_size;
if (cdp->cd_max_size > size) {
/* Split the range in two, need a new descriptor */
empty_cdp = uma_zalloc(chunk_zone, M_NOWAIT);
if (empty_cdp == NULL)
return (1);
LIST_INSERT_BEFORE(cdp, empty_cdp, cd_all_le);
empty_cdp->cd_base = cdp->cd_base + size;
empty_cdp->cd_cur_size = 0;
empty_cdp->cd_max_size = cdp->cd_max_size - size;
i = empty_cdp->cd_max_size;
if (i >= UNUSED_BUCKETS)
i = 0;
LIST_INSERT_HEAD(&da->unused_chunks[i], empty_cdp,
cd_hash_le);
da->unused_chunks_size += empty_cdp->cd_max_size;
cdp->cd_max_size = size;
}
LIST_REMOVE(cdp, cd_hash_le);
} else {
/* Alloc a new descriptor at the top of the heap*/
cdp = uma_zalloc(chunk_zone, M_NOWAIT);
if (cdp == NULL)
return (1);
cdp->cd_max_size = size;
cdp->cd_base = fdesc->base;
LIST_INSERT_HEAD(&da->all_chunks, cdp, cd_all_le);
KASSERT(cdp->cd_base + cdp->cd_max_size == da->rtbl_top,
("dxr: %s %d", __FUNCTION__, __LINE__));
}
cdp->cd_hash = hash;
cdp->cd_refcnt = 1;
cdp->cd_cur_size = size;
LIST_INSERT_HEAD(&da->chunk_hashtbl[hash & CHUNK_HASH_MASK], cdp,
cd_hash_le);
if (da->rtbl_top >= da->rtbl_size) {
if (da->rtbl_top >= BASE_MAX) {
FIB_PRINTF(LOG_ERR, da->fd,
"structural limit exceeded at %d "
"range table elements", da->rtbl_top);
return (1);
}
da->rtbl_size += RTBL_SIZE_INCR;
i = (BASE_MAX - da->rtbl_top) * LOG_DEBUG / BASE_MAX;
FIB_PRINTF(i, da->fd, "range table at %d%% structural limit",
da->rtbl_top * 100 / BASE_MAX);
da->range_tbl = realloc(da->range_tbl,
sizeof(*da->range_tbl) * da->rtbl_size + FRAGS_PREF_SHORT,
M_DXRAUX, M_NOWAIT);
if (da->range_tbl == NULL)
return (1);
}
return (0);
}
static void
chunk_unref(struct dxr_aux *da, uint32_t chunk)
{
struct direct_entry *fdesc = &da->direct_tbl[chunk];
struct chunk_desc *cdp, *cdp2;
uint32_t base = fdesc->base;
uint32_t size = chunk_size(da, fdesc);
uint32_t hash = chunk_hash(da, fdesc);
int i;
/* Find the corresponding descriptor */
LIST_FOREACH(cdp, &da->chunk_hashtbl[hash & CHUNK_HASH_MASK],
cd_hash_le)
if (cdp->cd_hash == hash && cdp->cd_cur_size == size &&
memcmp(&da->range_tbl[base], &da->range_tbl[cdp->cd_base],
sizeof(struct range_entry_long) * size) == 0)
break;
KASSERT(cdp != NULL, ("dxr: dangling chunk"));
if (--cdp->cd_refcnt > 0)
return;
LIST_REMOVE(cdp, cd_hash_le);
da->unused_chunks_size += cdp->cd_max_size;
cdp->cd_cur_size = 0;
/* Attempt to merge with the preceding chunk, if empty */
cdp2 = LIST_NEXT(cdp, cd_all_le);
if (cdp2 != NULL && cdp2->cd_cur_size == 0) {
KASSERT(cdp2->cd_base + cdp2->cd_max_size == cdp->cd_base,
("dxr: %s %d", __FUNCTION__, __LINE__));
LIST_REMOVE(cdp, cd_all_le);
LIST_REMOVE(cdp2, cd_hash_le);
cdp2->cd_max_size += cdp->cd_max_size;
uma_zfree(chunk_zone, cdp);
cdp = cdp2;
}
/* Attempt to merge with the subsequent chunk, if empty */
cdp2 = LIST_PREV(cdp, &da->all_chunks, chunk_desc, cd_all_le);
if (cdp2 != NULL && cdp2->cd_cur_size == 0) {
KASSERT(cdp->cd_base + cdp->cd_max_size == cdp2->cd_base,
("dxr: %s %d", __FUNCTION__, __LINE__));
LIST_REMOVE(cdp, cd_all_le);
LIST_REMOVE(cdp2, cd_hash_le);
cdp2->cd_max_size += cdp->cd_max_size;
cdp2->cd_base = cdp->cd_base;
uma_zfree(chunk_zone, cdp);
cdp = cdp2;
}
if (cdp->cd_base + cdp->cd_max_size == da->rtbl_top) {
/* Free the chunk on the top of the range heap, trim the heap */
KASSERT(cdp == LIST_FIRST(&da->all_chunks),
("dxr: %s %d", __FUNCTION__, __LINE__));
da->rtbl_top -= cdp->cd_max_size;
da->unused_chunks_size -= cdp->cd_max_size;
LIST_REMOVE(cdp, cd_all_le);
uma_zfree(chunk_zone, cdp);
return;
}
i = cdp->cd_max_size;
if (i >= UNUSED_BUCKETS)
i = 0;
LIST_INSERT_HEAD(&da->unused_chunks[i], cdp, cd_hash_le);
}
#ifdef DXR2
static uint32_t
trie_hash(struct dxr_aux *da, uint32_t dxr_x, uint32_t index)
{
uint32_t i, *val;
uint32_t hash = 0;
for (i = 0; i < (1 << dxr_x); i++) {
hash = (hash << 3) ^ (hash >> 3);
val = (uint32_t *)
(void *) &da->direct_tbl[(index << dxr_x) + i];
hash += (*val << 5);
hash += (*val >> 5);
}
return (hash + (hash >> 16));
}
static int
trie_ref(struct dxr_aux *da, uint32_t index)
{
struct trie_desc *tp;
uint32_t dxr_d = da->d_bits;
uint32_t dxr_x = DXR_TRIE_BITS - dxr_d;
uint32_t hash = trie_hash(da, dxr_x, index);
/* Find an existing descriptor */
LIST_FOREACH(tp, &da->trie_hashtbl[hash & TRIE_HASH_MASK], td_hash_le)
if (tp->td_hash == hash &&
memcmp(&da->direct_tbl[index << dxr_x],
&da->x_tbl[tp->td_index << dxr_x],
sizeof(*da->x_tbl) << dxr_x) == 0) {
tp->td_refcnt++;
da->trietbl[index] = tp;
return(tp->td_index);
}
tp = LIST_FIRST(&da->unused_trie);
if (tp != NULL) {
LIST_REMOVE(tp, td_hash_le);
da->unused_trie_cnt--;
} else {
tp = uma_zalloc(trie_zone, M_NOWAIT);
if (tp == NULL)
return (-1);
LIST_INSERT_HEAD(&da->all_trie, tp, td_all_le);
tp->td_index = da->all_trie_cnt++;
}
tp->td_hash = hash;
tp->td_refcnt = 1;
LIST_INSERT_HEAD(&da->trie_hashtbl[hash & TRIE_HASH_MASK], tp,
td_hash_le);
memcpy(&da->x_tbl[tp->td_index << dxr_x],
&da->direct_tbl[index << dxr_x], sizeof(*da->x_tbl) << dxr_x);
da->trietbl[index] = tp;
if (da->all_trie_cnt >= da->xtbl_size >> dxr_x) {
da->xtbl_size += XTBL_SIZE_INCR;
da->x_tbl = realloc(da->x_tbl,
sizeof(*da->x_tbl) * da->xtbl_size, M_DXRAUX, M_NOWAIT);
if (da->x_tbl == NULL)
return (-1);
}
return(tp->td_index);
}
static void
trie_unref(struct dxr_aux *da, uint32_t index)
{
struct trie_desc *tp = da->trietbl[index];
if (tp == NULL)
return;
da->trietbl[index] = NULL;
if (--tp->td_refcnt > 0)
return;
LIST_REMOVE(tp, td_hash_le);
da->unused_trie_cnt++;
if (tp->td_index != da->all_trie_cnt - 1) {
LIST_INSERT_HEAD(&da->unused_trie, tp, td_hash_le);
return;
}
do {
da->all_trie_cnt--;
da->unused_trie_cnt--;
LIST_REMOVE(tp, td_all_le);
uma_zfree(trie_zone, tp);
LIST_FOREACH(tp, &da->unused_trie, td_hash_le)
if (tp->td_index == da->all_trie_cnt - 1) {
LIST_REMOVE(tp, td_hash_le);
break;
}
} while (tp != NULL);
}
#endif
static void
heap_inject(struct dxr_aux *da, uint32_t start, uint32_t end, uint32_t preflen,
uint32_t nh)
{
struct heap_entry *fhp;
int i;
for (i = da->heap_index; i >= 0; i--) {
if (preflen > da->heap[i].preflen)
break;
else if (preflen < da->heap[i].preflen)
da->heap[i + 1] = da->heap[i];
else
return;
}
fhp = &da->heap[i + 1];
fhp->preflen = preflen;
fhp->start = start;
fhp->end = end;
fhp->nexthop = nh;
da->heap_index++;
}
static int
dxr_walk(struct rtentry *rt, void *arg)
{
struct dxr_aux *da = arg;
uint32_t chunk = da->work_chunk;
uint32_t first = chunk << DXR_RANGE_SHIFT;
uint32_t last = first | DXR_RANGE_MASK;
struct range_entry_long *fp =
&da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re;
struct heap_entry *fhp = &da->heap[da->heap_index];
uint32_t preflen, nh, start, end, scopeid;
struct in_addr addr;
rt_get_inet_prefix_plen(rt, &addr, &preflen, &scopeid);
start = ntohl(addr.s_addr);
if (start > last)
return (-1); /* Beyond chunk boundaries, we are done */
if (start < first)
return (0); /* Skip this route */
end = start;
if (preflen < 32)
end |= (0xffffffffU >> preflen);
nh = fib_get_nhop_idx(da->fd, rt_get_raw_nhop(rt));
if (start == fhp->start)
heap_inject(da, start, end, preflen, nh);
else {
/* start > fhp->start */
while (start > fhp->end) {
uint32_t oend = fhp->end;
if (da->heap_index > 0) {
fhp--;
da->heap_index--;
} else
initheap(da, fhp->end + 1, chunk);
if (fhp->end > oend && fhp->nexthop != fp->nexthop) {
fp++;
da->rtbl_work_frags++;
fp->start = (oend + 1) & DXR_RANGE_MASK;
fp->nexthop = fhp->nexthop;
}
}
if (start > ((chunk << DXR_RANGE_SHIFT) | fp->start) &&
nh != fp->nexthop) {
fp++;
da->rtbl_work_frags++;
fp->start = start & DXR_RANGE_MASK;
} else if (da->rtbl_work_frags) {
if ((--fp)->nexthop == nh)
da->rtbl_work_frags--;
else
fp++;
}
fp->nexthop = nh;
heap_inject(da, start, end, preflen, nh);
}
return (0);
}
static int
update_chunk(struct dxr_aux *da, uint32_t chunk)
{
struct range_entry_long *fp;
#if DXR_TRIE_BITS < 24
struct range_entry_short *fps;
uint32_t start, nh, i;
#endif
struct heap_entry *fhp;
uint32_t first = chunk << DXR_RANGE_SHIFT;
uint32_t last = first | DXR_RANGE_MASK;
if (da->direct_tbl[chunk].fragments != FRAGS_MARK_HIT)
chunk_unref(da, chunk);
initheap(da, first, chunk);
fp = &da->range_tbl[da->rtbl_top].re;
da->rtbl_work_frags = 0;
fp->start = first & DXR_RANGE_MASK;
fp->nexthop = da->heap[0].nexthop;
da->dst.sin_addr.s_addr = htonl(first);
da->mask.sin_addr.s_addr = htonl(~DXR_RANGE_MASK);
da->work_chunk = chunk;
rib_walk_from(da->fibnum, AF_INET, RIB_FLAG_LOCKED,
(struct sockaddr *) &da->dst, (struct sockaddr *) &da->mask,
dxr_walk, da);
/* Flush any remaining objects on the heap */
fp = &da->range_tbl[da->rtbl_top + da->rtbl_work_frags].re;
fhp = &da->heap[da->heap_index];
while (fhp->preflen > DXR_TRIE_BITS) {
uint32_t oend = fhp->end;
if (da->heap_index > 0) {
fhp--;
da->heap_index--;
} else
initheap(da, fhp->end + 1, chunk);
if (fhp->end > oend && fhp->nexthop != fp->nexthop) {
/* Have we crossed the upper chunk boundary? */
if (oend >= last)
break;
fp++;
da->rtbl_work_frags++;
fp->start = (oend + 1) & DXR_RANGE_MASK;
fp->nexthop = fhp->nexthop;
}
}
/* Direct hit if the chunk contains only a single fragment */
if (da->rtbl_work_frags == 0) {
da->direct_tbl[chunk].base = fp->nexthop;
da->direct_tbl[chunk].fragments = FRAGS_MARK_HIT;
return (0);
}
da->direct_tbl[chunk].base = da->rtbl_top;
da->direct_tbl[chunk].fragments = da->rtbl_work_frags;
#if DXR_TRIE_BITS < 24
/* Check whether the chunk can be more compactly encoded */
fp = &da->range_tbl[da->rtbl_top].re;
for (i = 0; i <= da->rtbl_work_frags; i++, fp++)
if ((fp->start & 0xff) != 0 || fp->nexthop > RE_SHORT_MAX_NH)
break;
if (i == da->rtbl_work_frags + 1) {
fp = &da->range_tbl[da->rtbl_top].re;
fps = (void *) fp;
for (i = 0; i <= da->rtbl_work_frags; i++, fp++, fps++) {
start = fp->start;
nh = fp->nexthop;
fps->start = start >> 8;
fps->nexthop = nh;
}
fps->start = start >> 8;
fps->nexthop = nh;
da->rtbl_work_frags >>= 1;
da->direct_tbl[chunk].fragments =
da->rtbl_work_frags | FRAGS_PREF_SHORT;
} else
#endif
if (da->rtbl_work_frags >= FRAGS_MARK_HIT) {
da->direct_tbl[chunk].fragments = FRAGS_MARK_XL;
memmove(&da->range_tbl[da->rtbl_top + 1],
&da->range_tbl[da->rtbl_top],
(da->rtbl_work_frags + 1) * sizeof(*da->range_tbl));
da->range_tbl[da->rtbl_top].fragments = da->rtbl_work_frags;
da->rtbl_work_frags++;
}
da->rtbl_top += (da->rtbl_work_frags + 1);
return (chunk_ref(da, chunk));
}
static void
dxr_build(struct dxr *dxr)
{
struct dxr_aux *da = dxr->aux;
struct chunk_desc *cdp;
struct rib_rtable_info rinfo;
struct timeval t0, t1, t2, t3;
uint32_t r_size, dxr_tot_size;
uint32_t i, m, range_rebuild = 0;
uint32_t range_frag;
#ifdef DXR2
struct trie_desc *tp;
uint32_t d_tbl_size, dxr_x, d_size, x_size;
uint32_t ti, trie_rebuild = 0, prev_size = 0;
uint32_t trie_frag;
#endif
KASSERT(dxr->d == NULL, ("dxr: d not free"));
if (da == NULL) {
da = malloc(sizeof(*dxr->aux), M_DXRAUX, M_NOWAIT);
if (da == NULL)
return;
dxr->aux = da;
da->fibnum = dxr->fibnum;
da->refcnt = 1;
LIST_INIT(&da->all_chunks);
LIST_INIT(&da->all_trie);
da->rtbl_size = RTBL_SIZE_INCR;
da->range_tbl = NULL;
da->xtbl_size = XTBL_SIZE_INCR;
da->x_tbl = NULL;
bzero(&da->dst, sizeof(da->dst));
bzero(&da->mask, sizeof(da->mask));
da->dst.sin_len = sizeof(da->dst);
da->mask.sin_len = sizeof(da->mask);
da->dst.sin_family = AF_INET;
da->mask.sin_family = AF_INET;
}
if (da->range_tbl == NULL) {
da->range_tbl = malloc(sizeof(*da->range_tbl) * da->rtbl_size
+ FRAGS_PREF_SHORT, M_DXRAUX, M_NOWAIT);
if (da->range_tbl == NULL)
return;
range_rebuild = 1;
}
#ifdef DXR2
if (da->x_tbl == NULL) {
da->x_tbl = malloc(sizeof(*da->x_tbl) * da->xtbl_size,
M_DXRAUX, M_NOWAIT);
if (da->x_tbl == NULL)
return;
trie_rebuild = 1;
}
#endif
da->fd = dxr->fd;
microuptime(&t0);
dxr->nh_tbl = fib_get_nhop_array(da->fd);
fib_get_rtable_info(fib_get_rh(da->fd), &rinfo);
if (da->updates_low > da->updates_high)
range_rebuild = 1;
range_build:
if (range_rebuild) {
/* Bulk cleanup */
bzero(da->chunk_hashtbl, sizeof(da->chunk_hashtbl));
while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) {
LIST_REMOVE(cdp, cd_all_le);
uma_zfree(chunk_zone, cdp);
}
for (i = 0; i < UNUSED_BUCKETS; i++)
LIST_INIT(&da->unused_chunks[i]);
da->unused_chunks_size = 0;
da->rtbl_top = 0;
da->updates_low = 0;
da->updates_high = DIRECT_TBL_SIZE - 1;
memset(da->updates_mask, 0xff, sizeof(da->updates_mask));
for (i = 0; i < DIRECT_TBL_SIZE; i++) {
da->direct_tbl[i].fragments = FRAGS_MARK_HIT;
da->direct_tbl[i].base = 0;
}
}
da->prefixes = rinfo.num_prefixes;
/* DXR: construct direct & range table */
for (i = da->updates_low; i <= da->updates_high; i++) {
m = da->updates_mask[i >> 5] >> (i & 0x1f);
if (m == 0)
i |= 0x1f;
else if (m & 1 && update_chunk(da, i) != 0)
return;
}
range_frag = 0;
if (da->rtbl_top)
range_frag = da->unused_chunks_size * 10000ULL / da->rtbl_top;
if (range_frag > V_frag_limit) {
range_rebuild = 1;
goto range_build;
}
r_size = sizeof(*da->range_tbl) * da->rtbl_top;
microuptime(&t1);
#ifdef DXR2
if (range_rebuild ||
abs(fls(da->prefixes) - fls(da->trie_rebuilt_prefixes)) > 1)
trie_rebuild = 1;
trie_build:
if (trie_rebuild) {
da->trie_rebuilt_prefixes = da->prefixes;
da->d_bits = DXR_D;
da->updates_low = 0;
da->updates_high = DIRECT_TBL_SIZE - 1;
if (!range_rebuild)
memset(da->updates_mask, 0xff,
sizeof(da->updates_mask));
}
dxr2_try_squeeze:
if (trie_rebuild) {
/* Bulk cleanup */
bzero(da->trietbl, sizeof(da->trietbl));
bzero(da->trie_hashtbl, sizeof(da->trie_hashtbl));
while ((tp = LIST_FIRST(&da->all_trie)) != NULL) {
LIST_REMOVE(tp, td_all_le);
uma_zfree(trie_zone, tp);
}
LIST_INIT(&da->unused_trie);
da->all_trie_cnt = da->unused_trie_cnt = 0;
}
/* Populate d_tbl, x_tbl */
dxr_x = DXR_TRIE_BITS - da->d_bits;
d_tbl_size = (1 << da->d_bits);
for (i = da->updates_low >> dxr_x; i <= da->updates_high >> dxr_x;
i++) {
if (!trie_rebuild) {
m = 0;
for (int j = 0; j < (1 << dxr_x); j += 32)
m |= da->updates_mask[((i << dxr_x) + j) >> 5];
if (m == 0)
continue;
trie_unref(da, i);
}
ti = trie_ref(da, i);
if (ti < 0)
return;
da->d_tbl[i] = ti;
}
trie_frag = 0;
if (da->all_trie_cnt)
trie_frag = da->unused_trie_cnt * 10000ULL / da->all_trie_cnt;
if (trie_frag > V_frag_limit) {
trie_rebuild = 1;
goto trie_build;
}
d_size = sizeof(*da->d_tbl) * d_tbl_size;
x_size = sizeof(*da->x_tbl) * DIRECT_TBL_SIZE / d_tbl_size
* da->all_trie_cnt;
dxr_tot_size = d_size + x_size + r_size;
if (trie_rebuild == 1) {
/* Try to find a more compact D/X split */
if (prev_size == 0 || dxr_tot_size <= prev_size)
da->d_bits--;
else {
da->d_bits++;
trie_rebuild = 2;
}
prev_size = dxr_tot_size;
goto dxr2_try_squeeze;
}
microuptime(&t2);
#else /* !DXR2 */
dxr_tot_size = sizeof(da->direct_tbl) + r_size;
t2 = t1;
#endif
dxr->d = malloc(dxr_tot_size, M_DXRLPM, M_NOWAIT);
if (dxr->d == NULL)
return;
#ifdef DXR2
memcpy(dxr->d, da->d_tbl, d_size);
dxr->x = ((char *) dxr->d) + d_size;
memcpy(dxr->x, da->x_tbl, x_size);
dxr->r = ((char *) dxr->x) + x_size;
dxr->d_shift = 32 - da->d_bits;
dxr->x_shift = dxr_x;
dxr->x_mask = 0xffffffffU >> (32 - dxr_x);
#else /* !DXR2 */
memcpy(dxr->d, da->direct_tbl, sizeof(da->direct_tbl));
dxr->r = ((char *) dxr->d) + sizeof(da->direct_tbl);
#endif
memcpy(dxr->r, da->range_tbl, r_size);
if (da->updates_low <= da->updates_high)
bzero(&da->updates_mask[da->updates_low / 32],
(da->updates_high - da->updates_low) / 8 + 1);
da->updates_low = DIRECT_TBL_SIZE - 1;
da->updates_high = 0;
microuptime(&t3);
#ifdef DXR2
FIB_PRINTF(LOG_INFO, da->fd, "D%dX%dR, %d prefixes, %d nhops (max)",
da->d_bits, dxr_x, rinfo.num_prefixes, rinfo.num_nhops);
#else
FIB_PRINTF(LOG_INFO, da->fd, "D%dR, %d prefixes, %d nhops (max)",
DXR_D, rinfo.num_prefixes, rinfo.num_nhops);
#endif
i = dxr_tot_size * 100;
if (rinfo.num_prefixes)
i /= rinfo.num_prefixes;
FIB_PRINTF(LOG_INFO, da->fd, "%d.%02d KBytes, %d.%02d Bytes/prefix",
dxr_tot_size / 1024, dxr_tot_size * 100 / 1024 % 100,
i / 100, i % 100);
#ifdef DXR2
FIB_PRINTF(LOG_INFO, da->fd,
"%d.%02d%% trie, %d.%02d%% range fragmentation",
trie_frag / 100, trie_frag % 100,
range_frag / 100, range_frag % 100);
#else
FIB_PRINTF(LOG_INFO, da->fd, "%d.%01d%% range fragmentation",
range_frag / 100, range_frag % 100);
#endif
i = (t1.tv_sec - t0.tv_sec) * 1000000 + t1.tv_usec - t0.tv_usec;
FIB_PRINTF(LOG_INFO, da->fd, "range table %s in %u.%03u ms",
range_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000);
#ifdef DXR2
i = (t2.tv_sec - t1.tv_sec) * 1000000 + t2.tv_usec - t1.tv_usec;
FIB_PRINTF(LOG_INFO, da->fd, "trie %s in %u.%03u ms",
trie_rebuild ? "rebuilt" : "updated", i / 1000, i % 1000);
#endif
i = (t3.tv_sec - t2.tv_sec) * 1000000 + t3.tv_usec - t2.tv_usec;
FIB_PRINTF(LOG_INFO, da->fd, "snapshot forked in %u.%03u ms",
i / 1000, i % 1000);
}
/*
* Glue functions for attaching to FreeBSD 13 fib_algo infrastructure.
*/
static struct nhop_object *
dxr_fib_lookup(void *algo_data, const struct flm_lookup_key key,
uint32_t scopeid)
{
struct dxr *dxr = algo_data;
return (dxr->nh_tbl[dxr_lookup(dxr, ntohl(key.addr4.s_addr))]);
}
static enum flm_op_result
dxr_init(uint32_t fibnum, struct fib_data *fd, void *old_data, void **data)
{
struct dxr *old_dxr = old_data;
struct dxr_aux *da = NULL;
struct dxr *dxr;
dxr = malloc(sizeof(*dxr), M_DXRAUX, M_NOWAIT);
if (dxr == NULL)
return (FLM_REBUILD);
/* Check whether we may reuse the old auxiliary structures */
if (old_dxr != NULL && old_dxr->aux != NULL) {
da = old_dxr->aux;
atomic_add_int(&da->refcnt, 1);
}
dxr->aux = da;
dxr->d = NULL;
dxr->fd = fd;
dxr->fibnum = fibnum;
*data = dxr;
return (FLM_SUCCESS);
}
static void
dxr_destroy(void *data)
{
struct dxr *dxr = data;
struct dxr_aux *da;
struct chunk_desc *cdp;
struct trie_desc *tp;
if (dxr->d != NULL)
free(dxr->d, M_DXRLPM);
da = dxr->aux;
free(dxr, M_DXRAUX);
if (da == NULL || atomic_fetchadd_int(&da->refcnt, -1) > 1)
return;
/* Release auxiliary structures */
while ((cdp = LIST_FIRST(&da->all_chunks)) != NULL) {
LIST_REMOVE(cdp, cd_all_le);
uma_zfree(chunk_zone, cdp);
}
while ((tp = LIST_FIRST(&da->all_trie)) != NULL) {
LIST_REMOVE(tp, td_all_le);
uma_zfree(trie_zone, tp);
}
free(da->range_tbl, M_DXRAUX);
free(da->x_tbl, M_DXRAUX);
free(da, M_DXRAUX);
}
static void
epoch_dxr_destroy(epoch_context_t ctx)
{
struct dxr *dxr = __containerof(ctx, struct dxr, epoch_ctx);
dxr_destroy(dxr);
}
static void *
choose_lookup_fn(struct dxr_aux *da)
{
#ifdef DXR2
switch (da->d_bits) {
#if DXR_TRIE_BITS > 16
case 16:
return (dxr_fib_lookup_16);
#endif
case 15:
return (dxr_fib_lookup_15);
case 14:
return (dxr_fib_lookup_14);
case 13:
return (dxr_fib_lookup_13);
case 12:
return (dxr_fib_lookup_12);
case 11:
return (dxr_fib_lookup_11);
case 10:
return (dxr_fib_lookup_10);
case 9:
return (dxr_fib_lookup_9);
}
#endif /* DXR2 */
return (dxr_fib_lookup);
}
static enum flm_op_result
dxr_dump_end(void *data, struct fib_dp *dp)
{
struct dxr *dxr = data;
struct dxr_aux *da;
dxr_build(dxr);
da = dxr->aux;
if (da == NULL)
return (FLM_REBUILD);
/* Structural limit exceeded, hard error */
if (da->rtbl_top >= BASE_MAX)
return (FLM_ERROR);
/* A malloc(,, M_NOWAIT) failed somewhere, retry later */
if (dxr->d == NULL)
return (FLM_REBUILD);
dp->f = choose_lookup_fn(da);
dp->arg = dxr;
return (FLM_SUCCESS);
}
static enum flm_op_result
dxr_dump_rib_item(struct rtentry *rt, void *data)
{
return (FLM_SUCCESS);
}
static enum flm_op_result
dxr_change_rib_item(struct rib_head *rnh, struct rib_cmd_info *rc,
void *data)
{
return (FLM_BATCH);
}
static enum flm_op_result
dxr_change_rib_batch(struct rib_head *rnh, struct fib_change_queue *q,
void *data)
{
struct dxr *dxr = data;
struct dxr *new_dxr;
struct dxr_aux *da;
struct fib_dp new_dp;
enum flm_op_result res;
uint32_t ip, plen, hmask, start, end, i, ui;
#ifdef INVARIANTS
struct rib_rtable_info rinfo;
int update_delta = 0;
#endif
KASSERT(data != NULL, ("%s: NULL data", __FUNCTION__));
KASSERT(q != NULL, ("%s: NULL q", __FUNCTION__));
KASSERT(q->count < q->size, ("%s: q->count %d q->size %d",
__FUNCTION__, q->count, q->size));
da = dxr->aux;
KASSERT(da != NULL, ("%s: NULL dxr->aux", __FUNCTION__));
FIB_PRINTF(LOG_INFO, da->fd, "processing %d update(s)", q->count);
for (ui = 0; ui < q->count; ui++) {
#ifdef INVARIANTS
if (q->entries[ui].nh_new != NULL)
update_delta++;
if (q->entries[ui].nh_old != NULL)
update_delta--;
#endif
plen = q->entries[ui].plen;
ip = ntohl(q->entries[ui].addr4.s_addr);
if (plen < 32)
hmask = 0xffffffffU >> plen;
else
hmask = 0;
start = (ip & ~hmask) >> DXR_RANGE_SHIFT;
end = (ip | hmask) >> DXR_RANGE_SHIFT;
if ((start & 0x1f) == 0 && (end & 0x1f) == 0x1f)
for (i = start >> 5; i <= end >> 5; i++)
da->updates_mask[i] = 0xffffffffU;
else
for (i = start; i <= end; i++)
da->updates_mask[i >> 5] |= (1 << (i & 0x1f));
if (start < da->updates_low)
da->updates_low = start;
if (end > da->updates_high)
da->updates_high = end;
}
#ifdef INVARIANTS
fib_get_rtable_info(fib_get_rh(da->fd), &rinfo);
KASSERT(da->prefixes + update_delta == rinfo.num_prefixes,
("%s: update count mismatch", __FUNCTION__));
#endif
res = dxr_init(0, dxr->fd, data, (void **) &new_dxr);
if (res != FLM_SUCCESS)
return (res);
dxr_build(new_dxr);
/* Structural limit exceeded, hard error */
if (da->rtbl_top >= BASE_MAX) {
dxr_destroy(new_dxr);
return (FLM_ERROR);
}
/* A malloc(,, M_NOWAIT) failed somewhere, retry later */
if (new_dxr->d == NULL) {
dxr_destroy(new_dxr);
return (FLM_REBUILD);
}
new_dp.f = choose_lookup_fn(da);
new_dp.arg = new_dxr;
if (fib_set_datapath_ptr(dxr->fd, &new_dp)) {
fib_set_algo_ptr(dxr->fd, new_dxr);
fib_epoch_call(epoch_dxr_destroy, &dxr->epoch_ctx);
return (FLM_SUCCESS);
}
dxr_destroy(new_dxr);
return (FLM_REBUILD);
}
static uint8_t
dxr_get_pref(const struct rib_rtable_info *rinfo)
{
/* Below bsearch4 up to 10 prefixes. Always supersedes dpdk_lpm4. */
return (251);
}
SYSCTL_DECL(_net_route_algo);
SYSCTL_NODE(_net_route_algo, OID_AUTO, dxr, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"DXR tunables");
static int
sysctl_dxr_frag_limit(SYSCTL_HANDLER_ARGS)
{
char buf[8];
int error, new, i;
snprintf(buf, sizeof(buf), "%d.%02d%%", V_frag_limit / 100,
V_frag_limit % 100);
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
if (!isdigit(*buf) && *buf != '.')
return (EINVAL);
for (i = 0, new = 0; isdigit(buf[i]) && i < sizeof(buf); i++)
new = new * 10 + buf[i] - '0';
new *= 100;
if (buf[i++] == '.') {
if (!isdigit(buf[i]))
return (EINVAL);
new += (buf[i++] - '0') * 10;
if (isdigit(buf[i]))
new += buf[i++] - '0';
}
if (new > 1000)
return (EINVAL);
V_frag_limit = new;
snprintf(buf, sizeof(buf), "%d.%02d%%", V_frag_limit / 100,
V_frag_limit % 100);
return (0);
}
SYSCTL_PROC(_net_route_algo_dxr, OID_AUTO, frag_limit,
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_VNET,
0, 0, sysctl_dxr_frag_limit, "A",
"Fragmentation threshold to full rebuild");
static struct fib_lookup_module fib_dxr_mod = {
.flm_name = "dxr",
.flm_family = AF_INET,
.flm_init_cb = dxr_init,
.flm_destroy_cb = dxr_destroy,
.flm_dump_rib_item_cb = dxr_dump_rib_item,
.flm_dump_end_cb = dxr_dump_end,
.flm_change_rib_item_cb = dxr_change_rib_item,
.flm_change_rib_items_cb = dxr_change_rib_batch,
.flm_get_pref = dxr_get_pref,
};
static int
dxr_modevent(module_t mod, int type, void *unused)
{
int error;
switch (type) {
case MOD_LOAD:
chunk_zone = uma_zcreate("dxr chunk", sizeof(struct chunk_desc),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
trie_zone = uma_zcreate("dxr trie", sizeof(struct trie_desc),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
fib_module_register(&fib_dxr_mod);
return(0);
case MOD_UNLOAD:
error = fib_module_unregister(&fib_dxr_mod);
if (error)
return (error);
uma_zdestroy(chunk_zone);
uma_zdestroy(trie_zone);
return(0);
default:
return(EOPNOTSUPP);
}
}
static moduledata_t dxr_mod = {"fib_dxr", dxr_modevent, 0};
DECLARE_MODULE(fib_dxr, dxr_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
MODULE_VERSION(fib_dxr, 1);