freebsd-nq/sys/dev/nand/nfc_fsl.c
Marcel Moolenaar 7c45c9e4b5 Add a driver for the Freescale FCM module in the localbus controller.
This driver does not yet handle multiple chip selects properly.

Note that the NAND infrastructure does not perform full page
reads or writes, which means that this driver cannot make use
of the hardware ECC that is otherwise present.
2012-07-03 01:00:29 +00:00

717 lines
18 KiB
C

/*-
* Copyright (C) 2012 Juniper Networks, Inc.
* Copyright (C) 2009-2012 Semihalf
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* TODO :
*
* -- test support for small pages
* -- support for reading ONFI parameters
* -- support for cached and interleaving commands
* -- proper setting of AL bits in FMR
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/kdb.h>
#include <machine/bus.h>
#include <machine/fdt.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <powerpc/mpc85xx/lbc.h>
#include <dev/nand/nand.h>
#include <dev/nand/nandbus.h>
#include "nfc_fsl.h"
#include "nfc_if.h"
#define LBC_READ(regname) lbc_read_reg(dev, (LBC85XX_ ## regname))
#define LBC_WRITE(regname, val) lbc_write_reg(dev, (LBC85XX_ ## regname), val)
enum addr_type {
ADDR_NONE,
ADDR_ID,
ADDR_ROW,
ADDR_ROWCOL
};
struct fsl_nfc_fcm {
/* Read-only after initialization */
uint32_t reg_fmr;
/* To be preserved across "start_command" */
u_int buf_ofs;
u_int read_ptr;
u_int status:1;
/* Command state -- cleared by "start_command" */
uint32_t fcm_startzero;
uint32_t reg_fcr;
uint32_t reg_fir;
uint32_t reg_mdr;
uint32_t reg_fbcr;
uint32_t reg_fbar;
uint32_t reg_fpar;
u_int cmdnr;
u_int opnr;
u_int pg_ofs;
enum addr_type addr_type;
u_int addr_bytes;
u_int row_addr;
u_int column_addr;
u_int data_fir:8;
uint32_t fcm_endzero;
};
struct fsl_nand_softc {
struct nand_softc nand_dev;
device_t dev;
struct resource *res;
int rid; /* Resourceid */
struct lbc_devinfo *dinfo;
struct fsl_nfc_fcm fcm;
uint8_t col_cycles;
uint8_t row_cycles;
uint16_t pgsz; /* Page size */
};
static int fsl_nand_attach(device_t dev);
static int fsl_nand_probe(device_t dev);
static int fsl_nand_detach(device_t dev);
static int fsl_nfc_select_cs(device_t dev, uint8_t cs);
static int fsl_nfc_read_rnb(device_t dev);
static int fsl_nfc_send_command(device_t dev, uint8_t command);
static int fsl_nfc_send_address(device_t dev, uint8_t address);
static uint8_t fsl_nfc_read_byte(device_t dev);
static int fsl_nfc_start_command(device_t dev);
static void fsl_nfc_read_buf(device_t dev, void *buf, uint32_t len);
static void fsl_nfc_write_buf(device_t dev, void *buf, uint32_t len);
static device_method_t fsl_nand_methods[] = {
DEVMETHOD(device_probe, fsl_nand_probe),
DEVMETHOD(device_attach, fsl_nand_attach),
DEVMETHOD(device_detach, fsl_nand_detach),
DEVMETHOD(nfc_select_cs, fsl_nfc_select_cs),
DEVMETHOD(nfc_read_rnb, fsl_nfc_read_rnb),
DEVMETHOD(nfc_start_command, fsl_nfc_start_command),
DEVMETHOD(nfc_send_command, fsl_nfc_send_command),
DEVMETHOD(nfc_send_address, fsl_nfc_send_address),
DEVMETHOD(nfc_read_byte, fsl_nfc_read_byte),
DEVMETHOD(nfc_read_buf, fsl_nfc_read_buf),
DEVMETHOD(nfc_write_buf, fsl_nfc_write_buf),
{ 0, 0 },
};
static driver_t fsl_nand_driver = {
"nand",
fsl_nand_methods,
sizeof(struct fsl_nand_softc),
};
static devclass_t fsl_nand_devclass;
DRIVER_MODULE(fsl_nand, lbc, fsl_nand_driver, fsl_nand_devclass,
0, 0);
static int fsl_nand_build_address(device_t dev, uint32_t page, uint32_t column);
static int fsl_nand_chip_preprobe(device_t dev, struct nand_id *id);
#ifdef NAND_DEBUG_TIMING
static device_t fcm_devs[8];
#endif
#define CMD_SHIFT(cmd_num) (24 - ((cmd_num) * 8))
#define OP_SHIFT(op_num) (28 - ((op_num) * 4))
#define FSL_LARGE_PAGE_SIZE (2112)
#define FSL_SMALL_PAGE_SIZE (528)
static void
fsl_nand_init_regs(struct fsl_nand_softc *sc)
{
uint32_t or_v, br_v;
device_t dev;
dev = sc->dev;
sc->fcm.reg_fmr = (15 << FMR_CWTO_SHIFT);
/*
* Setup 4 row cycles and hope that chip ignores superfluous address
* bytes.
*/
sc->fcm.reg_fmr |= (2 << FMR_AL_SHIFT);
/* Reprogram BR(x) */
br_v = lbc_read_reg(dev, LBC85XX_BR(sc->dinfo->di_bank));
br_v &= 0xffff8000;
br_v |= 1 << 11; /* 8-bit port size */
br_v |= 0 << 9; /* No ECC checking and generation */
br_v |= 1 << 5; /* FCM machine */
br_v |= 1; /* Valid */
lbc_write_reg(dev, LBC85XX_BR(sc->dinfo->di_bank), br_v);
/* Reprogram OR(x) */
or_v = lbc_read_reg(dev, LBC85XX_OR(sc->dinfo->di_bank));
or_v &= 0xfffffc00;
or_v |= 0x03AE; /* Default POR timing */
lbc_write_reg(dev, LBC85XX_OR(sc->dinfo->di_bank), or_v);
if (or_v & OR_FCM_PAGESIZE) {
sc->pgsz = FSL_LARGE_PAGE_SIZE;
sc->col_cycles = 2;
nand_debug(NDBG_DRV, "%s: large page NAND device at #%d",
device_get_nameunit(dev), sc->dinfo->di_bank);
} else {
sc->pgsz = FSL_SMALL_PAGE_SIZE;
sc->col_cycles = 1;
nand_debug(NDBG_DRV, "%s: small page NAND device at #%d",
device_get_nameunit(dev), sc->dinfo->di_bank);
}
}
static int
fsl_nand_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "fsl,elbc-fcm-nand"))
return (ENXIO);
device_set_desc(dev, "Freescale localbus FCM Controller");
return (BUS_PROBE_DEFAULT);
}
static int
fsl_nand_attach(device_t dev)
{
struct fsl_nand_softc *sc;
struct nand_id id;
struct nand_params *param;
uint32_t num_pages;
sc = device_get_softc(dev);
sc->dev = dev;
sc->dinfo = device_get_ivars(dev);
sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->rid,
RF_ACTIVE);
if (sc->res == NULL) {
device_printf(dev, "could not allocate resources!\n");
return (ENXIO);
}
bzero(&sc->fcm, sizeof(sc->fcm));
/* Init register and check if HW ECC turned on */
fsl_nand_init_regs(sc);
/* Chip is probed, so determine number of row address cycles */
fsl_nand_chip_preprobe(dev, &id);
param = nand_get_params(&id);
if (param != NULL) {
num_pages = (param->chip_size << 20) / param->page_size;
while(num_pages) {
sc->row_cycles++;
num_pages >>= 8;
}
sc->fcm.reg_fmr &= ~(FMR_AL);
sc->fcm.reg_fmr |= (sc->row_cycles - 2) << FMR_AL_SHIFT;
}
nand_init(&sc->nand_dev, dev, NAND_ECC_SOFT, 0, 0, NULL, NULL);
#ifdef NAND_DEBUG_TIMING
fcm_devs[sc->dinfo->di_bank] = dev;
#endif
return (nandbus_create(dev));
}
static int
fsl_nand_detach(device_t dev)
{
struct fsl_nand_softc *sc;
sc = device_get_softc(dev);
if (sc->res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, sc->rid, sc->res);
return (0);
}
static int
fsl_nfc_select_cs(device_t dev, uint8_t cs)
{
// device_printf(dev, "%s(cs=%u)\n", __func__, cs);
return ((cs > 0) ? EINVAL : 0);
}
static int
fsl_nfc_read_rnb(device_t dev)
{
// device_printf(dev, "%s()\n", __func__);
return (0);
}
static int
fsl_nfc_send_command(device_t dev, uint8_t command)
{
struct fsl_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
uint8_t fir_op;
// device_printf(dev, "%s(command=%u)\n", __func__, command);
sc = device_get_softc(dev);
fcm = &sc->fcm;
if (command == NAND_CMD_PROG_END) {
fcm->reg_fir |= (FIR_OP_WB << OP_SHIFT(fcm->opnr));
fcm->opnr++;
}
fcm->reg_fcr |= command << CMD_SHIFT(fcm->cmdnr);
fir_op = (fcm->cmdnr == 0) ? FIR_OP_CW0 : FIR_OP_CM(fcm->cmdnr);
fcm->cmdnr++;
fcm->reg_fir |= (fir_op << OP_SHIFT(fcm->opnr));
fcm->opnr++;
switch (command) {
case NAND_CMD_READ_ID:
fcm->data_fir = FIR_OP_RBW;
fcm->addr_type = ADDR_ID;
break;
case NAND_CMD_SMALLOOB:
fcm->pg_ofs += 256;
/*FALLTHROUGH*/
case NAND_CMD_SMALLB:
fcm->pg_ofs += 256;
/*FALLTHROUGH*/
case NAND_CMD_READ: /* NAND_CMD_SMALLA */
fcm->data_fir = FIR_OP_RBW;
fcm->addr_type = ADDR_ROWCOL;
break;
case NAND_CMD_STATUS:
fcm->data_fir = FIR_OP_RS;
fcm->status = 1;
break;
case NAND_CMD_ERASE:
fcm->addr_type = ADDR_ROW;
break;
case NAND_CMD_PROG:
fcm->addr_type = ADDR_ROWCOL;
break;
}
return (0);
}
static int
fsl_nfc_send_address(device_t dev, uint8_t addr)
{
struct fsl_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
uint32_t addr_bits;
// device_printf(dev, "%s(address=%u)\n", __func__, addr);
sc = device_get_softc(dev);
fcm = &sc->fcm;
KASSERT(fcm->addr_type != ADDR_NONE,
("controller doesn't expect address cycle"));
addr_bits = addr;
if (fcm->addr_type == ADDR_ID) {
fcm->reg_fir |= (FIR_OP_UA << OP_SHIFT(fcm->opnr));
fcm->opnr++;
fcm->reg_fbcr = 5;
fcm->reg_fbar = 0;
fcm->reg_fpar = 0;
fcm->reg_mdr = addr_bits;
fcm->buf_ofs = 0;
fcm->read_ptr = 0;
return (0);
}
if (fcm->addr_type == ADDR_ROW) {
addr_bits <<= fcm->addr_bytes * 8;
fcm->row_addr |= addr_bits;
fcm->addr_bytes++;
if (fcm->addr_bytes < sc->row_cycles)
return (0);
} else {
if (fcm->addr_bytes < sc->col_cycles) {
addr_bits <<= fcm->addr_bytes * 8;
fcm->column_addr |= addr_bits;
} else {
addr_bits <<= (fcm->addr_bytes - sc->col_cycles) * 8;
fcm->row_addr |= addr_bits;
}
fcm->addr_bytes++;
if (fcm->addr_bytes < (sc->row_cycles + sc->col_cycles))
return (0);
}
return (fsl_nand_build_address(dev, fcm->row_addr, fcm->column_addr));
}
static int
fsl_nand_build_address(device_t dev, uint32_t row, uint32_t column)
{
struct fsl_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
uint32_t byte_count = 0;
uint32_t block_address = 0;
uint32_t page_address = 0;
sc = device_get_softc(dev);
fcm = &sc->fcm;
fcm->read_ptr = 0;
fcm->buf_ofs = 0;
if (fcm->addr_type == ADDR_ROWCOL) {
fcm->reg_fir |= (FIR_OP_CA << OP_SHIFT(fcm->opnr));
fcm->opnr++;
column += fcm->pg_ofs;
fcm->pg_ofs = 0;
page_address |= column;
if (column != 0) {
byte_count = sc->pgsz - column;
fcm->read_ptr = column;
}
}
fcm->reg_fir |= (FIR_OP_PA << OP_SHIFT(fcm->opnr));
fcm->opnr++;
if (sc->pgsz == FSL_LARGE_PAGE_SIZE) {
block_address = row >> 6;
page_address |= ((row << FPAR_LP_PI_SHIFT) & FPAR_LP_PI);
fcm->buf_ofs = (row & 1) * 4096;
} else {
block_address = row >> 5;
page_address |= ((row << FPAR_SP_PI_SHIFT) & FPAR_SP_PI);
fcm->buf_ofs = (row & 7) * 1024;
}
fcm->reg_fbcr = byte_count;
fcm->reg_fbar = block_address;
fcm->reg_fpar = page_address;
return (0);
}
static int
fsl_nfc_start_command(device_t dev)
{
struct fsl_nand_softc *sc;
struct fsl_nfc_fcm *fcm;
uint32_t fmr, ltesr_v;
int error, timeout;
// device_printf(dev, "%s()\n", __func__);
sc = device_get_softc(dev);
fcm = &sc->fcm;
fmr = fcm->reg_fmr | FMR_OP;
if (fcm->data_fir)
fcm->reg_fir |= (fcm->data_fir << OP_SHIFT(fcm->opnr));
LBC_WRITE(FIR, fcm->reg_fir);
LBC_WRITE(FCR, fcm->reg_fcr);
LBC_WRITE(FMR, fmr);
LBC_WRITE(FBCR, fcm->reg_fbcr);
LBC_WRITE(FBAR, fcm->reg_fbar);
LBC_WRITE(FPAR, fcm->reg_fpar);
if (fcm->addr_type == ADDR_ID)
LBC_WRITE(MDR, fcm->reg_mdr);
nand_debug(NDBG_DRV, "BEFORE:\nFMR=%#x, FIR=%#x, FCR=%#x", fmr,
fcm->reg_fir, fcm->reg_fcr);
nand_debug(NDBG_DRV, "MDR=%#x, FBAR=%#x, FPAR=%#x, FBCR=%#x",
LBC_READ(MDR), fcm->reg_fbar, fcm->reg_fpar, fcm->reg_fbcr);
LBC_WRITE(LSOR, sc->dinfo->di_bank);
timeout = (cold) ? FSL_FCM_WAIT_TIMEOUT : ~0;
error = 0;
ltesr_v = LBC_READ(LTESR);
while (!error && (ltesr_v & LTESR_CC) == 0) {
if (cold) {
DELAY(1000);
timeout--;
if (timeout < 0)
error = EWOULDBLOCK;
} else
error = tsleep(device_get_parent(sc->dev), PRIBIO,
"nfcfsl", hz);
ltesr_v = LBC_READ(LTESR);
}
if (error)
nand_debug(NDBG_DRV, "Command complete wait timeout\n");
nand_debug(NDBG_DRV, "AFTER:\nLTESR=%#x, LTEDR=%#x, LTEIR=%#x,"
" LTEATR=%#x, LTEAR=%#x, LTECCR=%#x", ltesr_v,
LBC_READ(LTEDR), LBC_READ(LTEIR), LBC_READ(LTEATR),
LBC_READ(LTEAR), LBC_READ(LTECCR));
bzero(&fcm->fcm_startzero,
__rangeof(struct fsl_nfc_fcm, fcm_startzero, fcm_endzero));
if (fcm->status)
sc->fcm.reg_mdr = LBC_READ(MDR);
/* Even if timeout occured, we should perform steps below */
LBC_WRITE(LTESR, ltesr_v);
LBC_WRITE(LTEATR, 0);
return (error);
}
static uint8_t
fsl_nfc_read_byte(device_t dev)
{
struct fsl_nand_softc *sc = device_get_softc(dev);
uint32_t offset;
// device_printf(dev, "%s()\n", __func__);
/*
* LBC controller allows us to read status into a MDR instead of FCM
* buffer. If last operation requested before read_byte() was STATUS,
* then return MDR instead of reading a single byte from a buffer.
*/
if (sc->fcm.status) {
sc->fcm.status = 0;
return (sc->fcm.reg_mdr);
}
KASSERT(sc->fcm.read_ptr < sc->pgsz,
("Attempt to read beyond buffer %x %x", sc->fcm.read_ptr,
sc->pgsz));
offset = sc->fcm.buf_ofs + sc->fcm.read_ptr;
sc->fcm.read_ptr++;
return (bus_read_1(sc->res, offset));
}
static void
fsl_nfc_read_buf(device_t dev, void *buf, uint32_t len)
{
struct fsl_nand_softc *sc = device_get_softc(dev);
uint32_t offset;
int bytesleft = 0;
// device_printf(dev, "%s(buf=%p, len=%u)\n", __func__, buf, len);
nand_debug(NDBG_DRV, "REQUEST OF 0x%0x B (BIB=0x%0x, NTR=0x%0x)",
len, sc->pgsz, sc->fcm.read_ptr);
bytesleft = MIN((unsigned int)len, sc->pgsz - sc->fcm.read_ptr);
offset = sc->fcm.buf_ofs + sc->fcm.read_ptr;
bus_read_region_1(sc->res, offset, buf, bytesleft);
sc->fcm.read_ptr += bytesleft;
}
static void
fsl_nfc_write_buf(device_t dev, void *buf, uint32_t len)
{
struct fsl_nand_softc *sc = device_get_softc(dev);
uint32_t offset;
int bytesleft = 0;
// device_printf(dev, "%s(buf=%p, len=%u)\n", __func__, buf, len);
KASSERT(len <= sc->pgsz - sc->fcm.read_ptr,
("Attempt to write beyond buffer"));
bytesleft = MIN((unsigned int)len, sc->pgsz - sc->fcm.read_ptr);
nand_debug(NDBG_DRV, "REQUEST TO WRITE 0x%0x (BIB=0x%0x, NTR=0x%0x)",
bytesleft, sc->pgsz, sc->fcm.read_ptr);
offset = sc->fcm.buf_ofs + sc->fcm.read_ptr;
bus_write_region_1(sc->res, offset, buf, bytesleft);
sc->fcm.read_ptr += bytesleft;
}
static int
fsl_nand_chip_preprobe(device_t dev, struct nand_id *id)
{
if (fsl_nfc_send_command(dev, NAND_CMD_RESET) != 0)
return (ENXIO);
if (fsl_nfc_start_command(dev) != 0)
return (ENXIO);
DELAY(1000);
if (fsl_nfc_send_command(dev, NAND_CMD_READ_ID))
return (ENXIO);
if (fsl_nfc_send_address(dev, 0))
return (ENXIO);
if (fsl_nfc_start_command(dev) != 0)
return (ENXIO);
DELAY(25);
id->man_id = fsl_nfc_read_byte(dev);
id->dev_id = fsl_nfc_read_byte(dev);
nand_debug(NDBG_DRV, "manufacturer id: %x chip id: %x",
id->man_id, id->dev_id);
return (0);
}
#ifdef NAND_DEBUG_TIMING
static SYSCTL_NODE(_debug, OID_AUTO, fcm, CTLFLAG_RD, 0, "FCM timing");
static u_int csct = 1; /* 22: Chip select to command time (trlx). */
SYSCTL_UINT(_debug_fcm, OID_AUTO, csct, CTLFLAG_RW, &csct, 1,
"Chip select to command time: determines how far in advance -LCSn is "
"asserted prior to any bus activity during a NAND Flash access handled "
"by the FCM. This helps meet chip-select setup times for slow memories.");
static u_int cst = 1; /* 23: Command setup time (trlx). */
SYSCTL_UINT(_debug_fcm, OID_AUTO, cst, CTLFLAG_RW, &cst, 1,
"Command setup time: determines the delay of -LFWE assertion relative to "
"the command, address, or data change when the external memory access "
"is handled by the FCM.");
static u_int cht = 1; /* 24: Command hold time (trlx). */
SYSCTL_UINT(_debug_fcm, OID_AUTO, cht, CTLFLAG_RW, &cht, 1,
"Command hold time: determines the -LFWE negation prior to the command, "
"address, or data change when the external memory access is handled by "
"the FCM.");
static u_int scy = 2; /* 25-27: Cycle length in bus clocks */
SYSCTL_UINT(_debug_fcm, OID_AUTO, scy, CTLFLAG_RW, &scy, 2,
"Cycle length in bus clocks: see RM");
static u_int rst = 1; /* 28: Read setup time (trlx). */
SYSCTL_UINT(_debug_fcm, OID_AUTO, rst, CTLFLAG_RW, &rst, 1,
"Read setup time: determines the delay of -LFRE assertion relative to "
"sampling of read data when the external memory access is handled by "
"the FCM.");
static u_int trlx = 1; /* 29: Timing relaxed. */
SYSCTL_UINT(_debug_fcm, OID_AUTO, trlx, CTLFLAG_RW, &trlx, 1,
"Timing relaxed: modifies the settings of timing parameters for slow "
"memories. See RM");
static u_int ehtr = 1; /* 30: Extended hold time on read accesses. */
SYSCTL_UINT(_debug_fcm, OID_AUTO, ehtr, CTLFLAG_RW, &ehtr, 1,
"Extended hold time on read accesses: indicates with TRLX how many "
"cycles are inserted between a read access from the current bank and "
"the next access.");
static u_int
fsl_nand_get_timing(void)
{
u_int timing;
timing = ((csct & 1) << 9) | ((cst & 1) << 8) | ((cht & 1) << 7) |
((scy & 7) << 4) | ((rst & 1) << 3) | ((trlx & 1) << 2) |
((ehtr & 1) << 1);
printf("nfc_fsl: timing = %u\n", timing);
return (timing);
}
static int
fsl_sysctl_program(SYSCTL_HANDLER_ARGS)
{
struct fsl_nand_softc *sc;
int error, i;
device_t dev;
uint32_t or_v;
error = sysctl_wire_old_buffer(req, sizeof(int));
if (error == 0) {
i = 0;
error = sysctl_handle_int(oidp, &i, 0, req);
}
if (error != 0 || req->newptr == NULL)
return (error);
for (i = 0; i < 8; i++) {
dev = fcm_devs[i];
if (dev == NULL)
continue;
sc = device_get_softc(dev);
/* Reprogram OR(x) */
or_v = lbc_read_reg(dev, LBC85XX_OR(sc->dinfo->di_bank));
or_v &= 0xfffffc00;
or_v |= fsl_nand_get_timing();
lbc_write_reg(dev, LBC85XX_OR(sc->dinfo->di_bank), or_v);
}
return (0);
}
SYSCTL_PROC(_debug_fcm, OID_AUTO, program, CTLTYPE_INT | CTLFLAG_RW, NULL, 0,
fsl_sysctl_program, "I", "write to program FCM with current values");
#endif /* NAND_DEBUG_TIMING */