2020-09-01 21:29:01 +00:00

2586 lines
63 KiB
C

/*-
* Copyright (c) 2012-2016 Solarflare Communications Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_MON_MCDI
#include "mcdi_mon.h"
#endif
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2
#include "ef10_tlv_layout.h"
__checkReturn efx_rc_t
efx_mcdi_get_port_assignment(
__in efx_nic_t *enp,
__out uint32_t *portp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_port_modes(
__in efx_nic_t *enp,
__out uint32_t *modesp,
__out_opt uint32_t *current_modep,
__out_opt uint32_t *default_modep)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
MC_CMD_GET_PORT_MODES_OUT_LEN);
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
req.emr_cmd = MC_CMD_GET_PORT_MODES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
/*
* Require only Modes and DefaultMode fields, unless the current mode
* was requested (CurrentMode field was added for Medford).
*/
if (req.emr_out_length_used <
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
rc = EMSGSIZE;
goto fail2;
}
if ((current_modep != NULL) && (req.emr_out_length_used <
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
rc = EMSGSIZE;
goto fail3;
}
*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
if (current_modep != NULL) {
*current_modep = MCDI_OUT_DWORD(req,
GET_PORT_MODES_OUT_CURRENT_MODE);
}
if (default_modep != NULL) {
*default_modep = MCDI_OUT_DWORD(req,
GET_PORT_MODES_OUT_DEFAULT_MODE);
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_get_port_mode_bandwidth(
__in efx_nic_t *enp,
__out uint32_t *bandwidth_mbpsp)
{
uint32_t port_modes;
uint32_t current_mode;
efx_port_t *epp = &(enp->en_port);
uint32_t single_lane;
uint32_t dual_lane;
uint32_t quad_lane;
uint32_t bandwidth;
efx_rc_t rc;
if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
&current_mode, NULL)) != 0) {
/* No port mode info available. */
goto fail1;
}
if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
single_lane = 25000;
else
single_lane = 10000;
if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
dual_lane = 50000;
else
dual_lane = 20000;
if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
quad_lane = 100000;
else
quad_lane = 40000;
switch (current_mode) {
case TLV_PORT_MODE_1x1_NA: /* mode 0 */
bandwidth = single_lane;
break;
case TLV_PORT_MODE_1x2_NA: /* mode 10 */
case TLV_PORT_MODE_NA_1x2: /* mode 11 */
bandwidth = dual_lane;
break;
case TLV_PORT_MODE_1x1_1x1: /* mode 2 */
bandwidth = single_lane + single_lane;
break;
case TLV_PORT_MODE_4x1_NA: /* mode 4 */
case TLV_PORT_MODE_NA_4x1: /* mode 8 */
bandwidth = 4 * single_lane;
break;
case TLV_PORT_MODE_2x1_2x1: /* mode 5 */
bandwidth = (2 * single_lane) + (2 * single_lane);
break;
case TLV_PORT_MODE_1x2_1x2: /* mode 12 */
bandwidth = dual_lane + dual_lane;
break;
case TLV_PORT_MODE_1x2_2x1: /* mode 17 */
case TLV_PORT_MODE_2x1_1x2: /* mode 18 */
bandwidth = dual_lane + (2 * single_lane);
break;
/* Legacy Medford-only mode. Do not use (see bug63270) */
case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2: /* mode 9 */
bandwidth = 4 * single_lane;
break;
case TLV_PORT_MODE_1x4_NA: /* mode 1 */
case TLV_PORT_MODE_NA_1x4: /* mode 22 */
bandwidth = quad_lane;
break;
case TLV_PORT_MODE_2x2_NA: /* mode 13 */
case TLV_PORT_MODE_NA_2x2: /* mode 14 */
bandwidth = 2 * dual_lane;
break;
case TLV_PORT_MODE_1x4_2x1: /* mode 6 */
case TLV_PORT_MODE_2x1_1x4: /* mode 7 */
bandwidth = quad_lane + (2 * single_lane);
break;
case TLV_PORT_MODE_1x4_1x2: /* mode 15 */
case TLV_PORT_MODE_1x2_1x4: /* mode 16 */
bandwidth = quad_lane + dual_lane;
break;
case TLV_PORT_MODE_1x4_1x4: /* mode 3 */
bandwidth = quad_lane + quad_lane;
break;
default:
rc = EINVAL;
goto fail2;
}
*bandwidth_mbpsp = bandwidth;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_vadaptor_alloc(
__in efx_nic_t *enp,
__in uint32_t port_id)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL);
req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_vadaptor_free(
__in efx_nic_t *enp,
__in uint32_t port_id)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
MC_CMD_VADAPTOR_FREE_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_VADAPTOR_FREE;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_mac_address_pf(
__in efx_nic_t *enp,
__out_ecount_opt(6) uint8_t mac_addrp[6])
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
rc = ENOENT;
goto fail3;
}
if (mac_addrp != NULL) {
uint8_t *addrp;
addrp = MCDI_OUT2(req, uint8_t,
GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_mac_address_vf(
__in efx_nic_t *enp,
__out_ecount_opt(6) uint8_t mac_addrp[6])
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
EVB_PORT_ID_ASSIGNED);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used <
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
rc = EMSGSIZE;
goto fail2;
}
if (MCDI_OUT_DWORD(req,
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
rc = ENOENT;
goto fail3;
}
if (mac_addrp != NULL) {
uint8_t *addrp;
addrp = MCDI_OUT2(req, uint8_t,
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_clock(
__in efx_nic_t *enp,
__out uint32_t *sys_freqp,
__out uint32_t *dpcpu_freqp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
MC_CMD_GET_CLOCK_OUT_LEN);
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
req.emr_cmd = MC_CMD_GET_CLOCK;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
if (*sys_freqp == 0) {
rc = EINVAL;
goto fail3;
}
*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
if (*dpcpu_freqp == 0) {
rc = EINVAL;
goto fail4;
}
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_rxdp_config(
__in efx_nic_t *enp,
__out uint32_t *end_paddingp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
uint32_t end_padding;
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
/* RX DMA end padding is disabled */
end_padding = 0;
} else {
switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
end_padding = 64;
break;
case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
end_padding = 128;
break;
case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
end_padding = 256;
break;
default:
rc = ENOTSUP;
goto fail2;
}
}
*end_paddingp = end_padding;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_vector_cfg(
__in efx_nic_t *enp,
__out_opt uint32_t *vec_basep,
__out_opt uint32_t *pf_nvecp,
__out_opt uint32_t *vf_nvecp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
MC_CMD_GET_VECTOR_CFG_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
if (vec_basep != NULL)
*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
if (pf_nvecp != NULL)
*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
if (vf_nvecp != NULL)
*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_alloc_vis(
__in efx_nic_t *enp,
__in uint32_t min_vi_count,
__in uint32_t max_vi_count,
__out uint32_t *vi_basep,
__out uint32_t *vi_countp,
__out uint32_t *vi_shiftp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
efx_rc_t rc;
if (vi_countp == NULL) {
rc = EINVAL;
goto fail1;
}
req.emr_cmd = MC_CMD_ALLOC_VIS;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
rc = EMSGSIZE;
goto fail3;
}
*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
/* Report VI_SHIFT if available (always zero for Huntington) */
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
*vi_shiftp = 0;
else
*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_free_vis(
__in efx_nic_t *enp)
{
efx_mcdi_req_t req;
efx_rc_t rc;
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
req.emr_cmd = MC_CMD_FREE_VIS;
req.emr_in_buf = NULL;
req.emr_in_length = 0;
req.emr_out_buf = NULL;
req.emr_out_length = 0;
efx_mcdi_execute_quiet(enp, &req);
/* Ignore ELREADY (no allocated VIs, so nothing to free) */
if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_alloc_piobuf(
__in efx_nic_t *enp,
__out efx_piobuf_handle_t *handlep)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
MC_CMD_ALLOC_PIOBUF_OUT_LEN);
efx_rc_t rc;
if (handlep == NULL) {
rc = EINVAL;
goto fail1;
}
req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
rc = EMSGSIZE;
goto fail3;
}
*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_free_piobuf(
__in efx_nic_t *enp,
__in efx_piobuf_handle_t handle)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
MC_CMD_FREE_PIOBUF_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_FREE_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_link_piobuf(
__in efx_nic_t *enp,
__in uint32_t vi_index,
__in efx_piobuf_handle_t handle)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
MC_CMD_LINK_PIOBUF_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_LINK_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_unlink_piobuf(
__in efx_nic_t *enp,
__in uint32_t vi_index)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
MC_CMD_UNLINK_PIOBUF_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static void
ef10_nic_alloc_piobufs(
__in efx_nic_t *enp,
__in uint32_t max_piobuf_count)
{
efx_piobuf_handle_t *handlep;
unsigned int i;
EFSYS_ASSERT3U(max_piobuf_count, <=,
EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
enp->en_arch.ef10.ena_piobuf_count = 0;
for (i = 0; i < max_piobuf_count; i++) {
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
goto fail1;
enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
enp->en_arch.ef10.ena_piobuf_count++;
}
return;
fail1:
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
(void) efx_mcdi_free_piobuf(enp, *handlep);
*handlep = EFX_PIOBUF_HANDLE_INVALID;
}
enp->en_arch.ef10.ena_piobuf_count = 0;
}
static void
ef10_nic_free_piobufs(
__in efx_nic_t *enp)
{
efx_piobuf_handle_t *handlep;
unsigned int i;
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
(void) efx_mcdi_free_piobuf(enp, *handlep);
*handlep = EFX_PIOBUF_HANDLE_INVALID;
}
enp->en_arch.ef10.ena_piobuf_count = 0;
}
/* Sub-allocate a block from a piobuf */
__checkReturn efx_rc_t
ef10_nic_pio_alloc(
__inout efx_nic_t *enp,
__out uint32_t *bufnump,
__out efx_piobuf_handle_t *handlep,
__out uint32_t *blknump,
__out uint32_t *offsetp,
__out size_t *sizep)
{
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
uint32_t blk_per_buf;
uint32_t buf, blk;
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
EFSYS_ASSERT(bufnump);
EFSYS_ASSERT(handlep);
EFSYS_ASSERT(blknump);
EFSYS_ASSERT(offsetp);
EFSYS_ASSERT(sizep);
if ((edcp->edc_pio_alloc_size == 0) ||
(enp->en_arch.ef10.ena_piobuf_count == 0)) {
rc = ENOMEM;
goto fail1;
}
blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
if (~(*map) == 0)
continue;
EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
for (blk = 0; blk < blk_per_buf; blk++) {
if ((*map & (1u << blk)) == 0) {
*map |= (1u << blk);
goto done;
}
}
}
rc = ENOMEM;
goto fail2;
done:
*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
*bufnump = buf;
*blknump = blk;
*sizep = edcp->edc_pio_alloc_size;
*offsetp = blk * (*sizep);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/* Free a piobuf sub-allocated block */
__checkReturn efx_rc_t
ef10_nic_pio_free(
__inout efx_nic_t *enp,
__in uint32_t bufnum,
__in uint32_t blknum)
{
uint32_t *map;
efx_rc_t rc;
if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
(blknum >= (8 * sizeof (*map)))) {
rc = EINVAL;
goto fail1;
}
map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
if ((*map & (1u << blknum)) == 0) {
rc = ENOENT;
goto fail2;
}
*map &= ~(1u << blknum);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_pio_link(
__inout efx_nic_t *enp,
__in uint32_t vi_index,
__in efx_piobuf_handle_t handle)
{
return (efx_mcdi_link_piobuf(enp, vi_index, handle));
}
__checkReturn efx_rc_t
ef10_nic_pio_unlink(
__inout efx_nic_t *enp,
__in uint32_t vi_index)
{
return (efx_mcdi_unlink_piobuf(enp, vi_index));
}
static __checkReturn efx_rc_t
ef10_mcdi_get_pf_count(
__in efx_nic_t *enp,
__out uint32_t *pf_countp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
MC_CMD_GET_PF_COUNT_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_PF_COUNT;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*pf_countp = *MCDI_OUT(req, uint8_t,
MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
EFSYS_ASSERT(*pf_countp != 0);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
ef10_get_datapath_caps(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
MC_CMD_GET_CAPABILITIES_V5_OUT_LEN);
efx_rc_t rc;
if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
goto fail1;
req.emr_cmd = MC_CMD_GET_CAPABILITIES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_CAPABILITIES_V5_OUT_LEN;
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
rc = EMSGSIZE;
goto fail3;
}
#define CAP_FLAGS1(_req, _flag) \
(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) & \
(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
#define CAP_FLAGS2(_req, _flag) \
(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) & \
(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
/*
* Huntington RXDP firmware inserts a 0 or 14 byte prefix.
* We only support the 14 byte prefix here.
*/
if (CAP_FLAGS1(req, RX_PREFIX_LEN_14) == 0) {
rc = ENOTSUP;
goto fail4;
}
encp->enc_rx_prefix_size = 14;
#if EFSYS_OPT_RX_SCALE
/* Check if the firmware supports additional RSS modes */
if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
encp->enc_rx_scale_additional_modes_supported = B_TRUE;
else
encp->enc_rx_scale_additional_modes_supported = B_FALSE;
#endif /* EFSYS_OPT_RX_SCALE */
/* Check if the firmware supports TSO */
if (CAP_FLAGS1(req, TX_TSO))
encp->enc_fw_assisted_tso_enabled = B_TRUE;
else
encp->enc_fw_assisted_tso_enabled = B_FALSE;
/* Check if the firmware supports FATSOv2 */
if (CAP_FLAGS2(req, TX_TSO_V2)) {
encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
} else {
encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
encp->enc_fw_assisted_tso_v2_n_contexts = 0;
}
/* Check if the firmware supports FATSOv2 encap */
if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
else
encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
/* Check if the firmware has vadapter/vport/vswitch support */
if (CAP_FLAGS1(req, EVB))
encp->enc_datapath_cap_evb = B_TRUE;
else
encp->enc_datapath_cap_evb = B_FALSE;
/* Check if the firmware supports VLAN insertion */
if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
else
encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
/* Check if the firmware supports RX event batching */
if (CAP_FLAGS1(req, RX_BATCHING))
encp->enc_rx_batching_enabled = B_TRUE;
else
encp->enc_rx_batching_enabled = B_FALSE;
/*
* Even if batching isn't reported as supported, we may still get
* batched events.
*/
encp->enc_rx_batch_max = 16;
/* Check if the firmware supports disabling scatter on RXQs */
if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
encp->enc_rx_disable_scatter_supported = B_TRUE;
else
encp->enc_rx_disable_scatter_supported = B_FALSE;
/* Check if the firmware supports packed stream mode */
if (CAP_FLAGS1(req, RX_PACKED_STREAM))
encp->enc_rx_packed_stream_supported = B_TRUE;
else
encp->enc_rx_packed_stream_supported = B_FALSE;
/*
* Check if the firmware supports configurable buffer sizes
* for packed stream mode (otherwise buffer size is 1Mbyte)
*/
if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
encp->enc_rx_var_packed_stream_supported = B_TRUE;
else
encp->enc_rx_var_packed_stream_supported = B_FALSE;
/* Check if the firmware supports equal stride super-buffer mode */
if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
encp->enc_rx_es_super_buffer_supported = B_TRUE;
else
encp->enc_rx_es_super_buffer_supported = B_FALSE;
/* Check if the firmware supports FW subvariant w/o Tx checksumming */
if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
else
encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
/* Check if the firmware supports set mac with running filters */
if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
else
encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
/*
* Check if firmware supports the extended MC_CMD_SET_MAC, which allows
* specifying which parameters to configure.
*/
if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
encp->enc_enhanced_set_mac_supported = B_TRUE;
else
encp->enc_enhanced_set_mac_supported = B_FALSE;
/*
* Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
* us to let the firmware choose the settings to use on an EVQ.
*/
if (CAP_FLAGS2(req, INIT_EVQ_V2))
encp->enc_init_evq_v2_supported = B_TRUE;
else
encp->enc_init_evq_v2_supported = B_FALSE;
/*
* Check if firmware-verified NVRAM updates must be used.
*
* The firmware trusted installer requires all NVRAM updates to use
* version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
* and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
* partition and report the result).
*/
if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
encp->enc_nvram_update_verify_result_supported = B_TRUE;
else
encp->enc_nvram_update_verify_result_supported = B_FALSE;
/*
* Check if firmware provides packet memory and Rx datapath
* counters.
*/
if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
encp->enc_pm_and_rxdp_counters = B_TRUE;
else
encp->enc_pm_and_rxdp_counters = B_FALSE;
/*
* Check if the 40G MAC hardware is capable of reporting
* statistics for Tx size bins.
*/
if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
else
encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
/*
* Check if firmware supports VXLAN and NVGRE tunnels.
* The capability indicates Geneve protocol support as well.
*/
if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
encp->enc_tunnel_encapsulations_supported =
(1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
(1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
(1u << EFX_TUNNEL_PROTOCOL_NVGRE);
EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
encp->enc_tunnel_config_udp_entries_max =
EFX_TUNNEL_MAXNENTRIES;
} else {
encp->enc_tunnel_config_udp_entries_max = 0;
}
/*
* Check if firmware reports the VI window mode.
* Medford2 has a variable VI window size (8K, 16K or 64K).
* Medford and Huntington have a fixed 8K VI window size.
*/
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
uint8_t mode =
MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
switch (mode) {
case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
break;
case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
break;
case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
break;
default:
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
break;
}
} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
(enp->en_family == EFX_FAMILY_MEDFORD)) {
/* Huntington and Medford have fixed 8K window size */
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
} else {
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
}
/* Check if firmware supports extended MAC stats. */
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
/* Extended stats buffer supported */
encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
} else {
/* Use Siena-compatible legacy MAC stats */
encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
}
if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
encp->enc_fec_counters = B_TRUE;
else
encp->enc_fec_counters = B_FALSE;
/* Check if the firmware provides head-of-line blocking counters */
if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
encp->enc_hlb_counters = B_TRUE;
else
encp->enc_hlb_counters = B_FALSE;
#if EFSYS_OPT_RX_SCALE
if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
/* Only one exclusive RSS context is available per port. */
encp->enc_rx_scale_max_exclusive_contexts = 1;
switch (enp->en_family) {
case EFX_FAMILY_MEDFORD2:
encp->enc_rx_scale_hash_alg_mask =
(1U << EFX_RX_HASHALG_TOEPLITZ);
break;
case EFX_FAMILY_MEDFORD:
case EFX_FAMILY_HUNTINGTON:
/*
* Packed stream firmware variant maintains a
* non-standard algorithm for hash computation.
* It implies explicit XORing together
* source + destination IP addresses (or last
* four bytes in the case of IPv6) and using the
* resulting value as the input to a Toeplitz hash.
*/
encp->enc_rx_scale_hash_alg_mask =
(1U << EFX_RX_HASHALG_PACKED_STREAM);
break;
default:
rc = EINVAL;
goto fail5;
}
/* Port numbers cannot contribute to the hash value */
encp->enc_rx_scale_l4_hash_supported = B_FALSE;
} else {
/*
* Maximum number of exclusive RSS contexts.
* EF10 hardware supports 64 in total, but 6 are reserved
* for shared contexts. They are a global resource so
* not all may be available.
*/
encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
encp->enc_rx_scale_hash_alg_mask =
(1U << EFX_RX_HASHALG_TOEPLITZ);
/*
* It is possible to use port numbers as
* the input data for hash computation.
*/
encp->enc_rx_scale_l4_hash_supported = B_TRUE;
}
#endif /* EFSYS_OPT_RX_SCALE */
/* Check if the firmware supports "FLAG" and "MARK" filter actions */
if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
encp->enc_filter_action_flag_supported = B_TRUE;
else
encp->enc_filter_action_flag_supported = B_FALSE;
if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
encp->enc_filter_action_mark_supported = B_TRUE;
else
encp->enc_filter_action_mark_supported = B_FALSE;
/* Get maximum supported value for "MARK" filter action */
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
else
encp->enc_filter_action_mark_max = 0;
#undef CAP_FLAGS1
#undef CAP_FLAGS2
return (0);
#if EFSYS_OPT_RX_SCALE
fail5:
EFSYS_PROBE(fail5);
#endif /* EFSYS_OPT_RX_SCALE */
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#define EF10_LEGACY_PF_PRIVILEGE_MASK \
(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
#define EF10_LEGACY_VF_PRIVILEGE_MASK 0
__checkReturn efx_rc_t
ef10_get_privilege_mask(
__in efx_nic_t *enp,
__out uint32_t *maskp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t mask;
efx_rc_t rc;
if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
&mask)) != 0) {
if (rc != ENOTSUP)
goto fail1;
/* Fallback for old firmware without privilege mask support */
if (EFX_PCI_FUNCTION_IS_PF(encp)) {
/* Assume PF has admin privilege */
mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
} else {
/* VF is always unprivileged by default */
mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
}
}
*maskp = mask;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#define EFX_EXT_PORT_MAX 4
#define EFX_EXT_PORT_NA 0xFF
/*
* Table of mapping schemes from port number to external number.
*
* Each port number ultimately corresponds to a connector: either as part of
* a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
* the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
* "Salina"). In general:
*
* Port number (0-based)
* |
* port mapping (n:1)
* |
* v
* External port number (1-based)
* |
* fixed (1:1) or cable assembly (1:m)
* |
* v
* Connector
*
* The external numbering refers to the cages or magjacks on the board,
* as visibly annotated on the board or back panel. This table describes
* how to determine which external cage/magjack corresponds to the port
* numbers used by the driver.
*
* The count of consecutive port numbers that map to each external number,
* is determined by the chip family and the current port mode.
*
* For the Huntington family, the current port mode cannot be discovered,
* but a single mapping is used by all modes for a given chip variant,
* so the mapping used is instead the last match in the table to the full
* set of port modes to which the NIC can be configured. Therefore the
* ordering of entries in the mapping table is significant.
*/
static struct ef10_external_port_map_s {
efx_family_t family;
uint32_t modes_mask;
uint8_t base_port[EFX_EXT_PORT_MAX];
} __ef10_external_port_mappings[] = {
/*
* Modes used by Huntington family controllers where each port
* number maps to a separate cage.
* SFN7x22F (Torino):
* port 0 -> cage 1
* port 1 -> cage 2
* SFN7xx4F (Pavia):
* port 0 -> cage 1
* port 1 -> cage 2
* port 2 -> cage 3
* port 3 -> cage 4
*/
{
EFX_FAMILY_HUNTINGTON,
(1U << TLV_PORT_MODE_10G) | /* mode 0 */
(1U << TLV_PORT_MODE_10G_10G) | /* mode 2 */
(1U << TLV_PORT_MODE_10G_10G_10G_10G), /* mode 4 */
{ 0, 1, 2, 3 }
},
/*
* Modes which for Huntington identify a chip variant where 2
* adjacent port numbers map to each cage.
* SFN7x42Q (Monza):
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_HUNTINGTON,
(1U << TLV_PORT_MODE_40G) | /* mode 1 */
(1U << TLV_PORT_MODE_40G_40G) | /* mode 3 */
(1U << TLV_PORT_MODE_40G_10G_10G) | /* mode 6 */
(1U << TLV_PORT_MODE_10G_10G_40G), /* mode 7 */
{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford allocate each port number to a separate
* cage.
* port 0 -> cage 1
* port 1 -> cage 2
* port 2 -> cage 3
* port 3 -> cage 4
*/
{
EFX_FAMILY_MEDFORD,
(1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */
(1U << TLV_PORT_MODE_1x1_1x1), /* mode 2 */
{ 0, 1, 2, 3 }
},
/*
* Modes that on Medford allocate 2 adjacent port numbers to each
* cage.
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_MEDFORD,
(1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */
(1U << TLV_PORT_MODE_1x4_1x4) | /* mode 3 */
(1U << TLV_PORT_MODE_1x4_2x1) | /* mode 6 */
(1U << TLV_PORT_MODE_2x1_1x4) | /* mode 7 */
/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2), /* mode 9 */
{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford allocate 4 adjacent port numbers to each
* connector, starting on cage 1.
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 1
* port 3 -> cage 1
*/
{
EFX_FAMILY_MEDFORD,
(1U << TLV_PORT_MODE_2x1_2x1) | /* mode 5 */
/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
(1U << TLV_PORT_MODE_4x1_NA), /* mode 4 */
{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford allocate 4 adjacent port numbers to each
* connector, starting on cage 2.
* port 0 -> cage 2
* port 1 -> cage 2
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_MEDFORD,
(1U << TLV_PORT_MODE_NA_4x1), /* mode 8 */
{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford2 allocate each port number to a separate
* cage.
* port 0 -> cage 1
* port 1 -> cage 2
* port 2 -> cage 3
* port 3 -> cage 4
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */
(1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */
(1U << TLV_PORT_MODE_1x1_1x1) | /* mode 2 */
(1U << TLV_PORT_MODE_1x2_NA) | /* mode 10 */
(1U << TLV_PORT_MODE_1x2_1x2) | /* mode 12 */
(1U << TLV_PORT_MODE_1x4_1x2) | /* mode 15 */
(1U << TLV_PORT_MODE_1x2_1x4), /* mode 16 */
{ 0, 1, 2, 3 }
},
/*
* Modes that on Medford2 allocate 1 port to cage 1 and the rest
* to cage 2.
* port 0 -> cage 1
* port 1 -> cage 2
* port 2 -> cage 2
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_1x2_2x1) | /* mode 17 */
(1U << TLV_PORT_MODE_1x4_2x1), /* mode 6 */
{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford2 allocate 2 adjacent port numbers to each
* cage, starting on cage 1.
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_1x4_1x4) | /* mode 3 */
(1U << TLV_PORT_MODE_2x1_2x1) | /* mode 4 */
(1U << TLV_PORT_MODE_1x4_2x1) | /* mode 6 */
(1U << TLV_PORT_MODE_2x1_1x4) | /* mode 7 */
(1U << TLV_PORT_MODE_2x2_NA) | /* mode 13 */
(1U << TLV_PORT_MODE_2x1_1x2), /* mode 18 */
{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford2 allocate 2 adjacent port numbers to each
* cage, starting on cage 2.
* port 0 -> cage 2
* port 1 -> cage 2
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_NA_2x2), /* mode 14 */
{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford2 allocate 4 adjacent port numbers to each
* connector, starting on cage 1.
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 1
* port 3 -> cage 1
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_4x1_NA), /* mode 5 */
{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford2 allocate 4 adjacent port numbers to each
* connector, starting on cage 2.
* port 0 -> cage 2
* port 1 -> cage 2
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_NA_4x1) | /* mode 8 */
(1U << TLV_PORT_MODE_NA_1x2), /* mode 11 */
{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
};
static __checkReturn efx_rc_t
ef10_external_port_mapping(
__in efx_nic_t *enp,
__in uint32_t port,
__out uint8_t *external_portp)
{
efx_rc_t rc;
int i;
uint32_t port_modes;
uint32_t matches;
uint32_t current;
struct ef10_external_port_map_s *mapp = NULL;
int ext_index = port; /* Default 1-1 mapping */
if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
NULL)) != 0) {
/*
* No current port mode information (i.e. Huntington)
* - infer mapping from available modes
*/
if ((rc = efx_mcdi_get_port_modes(enp,
&port_modes, NULL, NULL)) != 0) {
/*
* No port mode information available
* - use default mapping
*/
goto out;
}
} else {
/* Only need to scan the current mode */
port_modes = 1 << current;
}
/*
* Infer the internal port -> external number mapping from
* the possible port modes for this NIC.
*/
for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
struct ef10_external_port_map_s *eepmp =
&__ef10_external_port_mappings[i];
if (eepmp->family != enp->en_family)
continue;
matches = (eepmp->modes_mask & port_modes);
if (matches != 0) {
/*
* Some modes match. For some Huntington boards
* there will be multiple matches. The mapping on the
* last match is used.
*/
mapp = eepmp;
port_modes &= ~matches;
}
}
if (port_modes != 0) {
/* Some advertised modes are not supported */
rc = ENOTSUP;
goto fail1;
}
out:
if (mapp != NULL) {
/*
* External ports are assigned a sequence of consecutive
* port numbers, so find the one with the closest base_port.
*/
uint32_t delta = EFX_EXT_PORT_NA;
for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
uint32_t base = mapp->base_port[i];
if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
if ((port - base) < delta) {
delta = (port - base);
ext_index = i;
}
}
}
}
*external_portp = (uint8_t)(ext_index + 1);
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
ef10_nic_board_cfg(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
ef10_link_state_t els;
efx_port_t *epp = &(enp->en_port);
uint32_t board_type = 0;
uint32_t base, nvec;
uint32_t port;
uint32_t mask;
uint32_t pf;
uint32_t vf;
uint8_t mac_addr[6] = { 0 };
efx_rc_t rc;
/* Get the (zero-based) MCDI port number */
if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
goto fail1;
/* EFX MCDI interface uses one-based port numbers */
emip->emi_port = port + 1;
if ((rc = ef10_external_port_mapping(enp, port,
&encp->enc_external_port)) != 0)
goto fail2;
/*
* Get PCIe function number from firmware (used for
* per-function privilege and dynamic config info).
* - PCIe PF: pf = PF number, vf = 0xffff.
* - PCIe VF: pf = parent PF, vf = VF number.
*/
if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0)
goto fail3;
encp->enc_pf = pf;
encp->enc_vf = vf;
/* MAC address for this function */
if (EFX_PCI_FUNCTION_IS_PF(encp)) {
rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
#if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
/*
* Disable static config checking, ONLY for manufacturing test
* and setup at the factory, to allow the static config to be
* installed.
*/
#else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
if ((rc == 0) && (mac_addr[0] & 0x02)) {
/*
* If the static config does not include a global MAC
* address pool then the board may return a locally
* administered MAC address (this should only happen on
* incorrectly programmed boards).
*/
rc = EINVAL;
}
#endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
} else {
rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
}
if (rc != 0)
goto fail4;
EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
/* Board configuration (legacy) */
rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
if (rc != 0) {
/* Unprivileged functions may not be able to read board cfg */
if (rc == EACCES)
board_type = 0;
else
goto fail5;
}
encp->enc_board_type = board_type;
encp->enc_clk_mult = 1; /* not used for EF10 */
/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
goto fail6;
/*
* Firmware with support for *_FEC capability bits does not
* report that the corresponding *_FEC_REQUESTED bits are supported.
* Add them here so that drivers understand that they are supported.
*/
if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
epp->ep_phy_cap_mask |=
(1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
epp->ep_phy_cap_mask |=
(1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
epp->ep_phy_cap_mask |=
(1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
/* Obtain the default PHY advertised capabilities */
if ((rc = ef10_phy_get_link(enp, &els)) != 0)
goto fail7;
epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
/* Check capabilities of running datapath firmware */
if ((rc = ef10_get_datapath_caps(enp)) != 0)
goto fail8;
/* Alignment for WPTR updates */
encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
/* No boundary crossing limits */
encp->enc_tx_dma_desc_boundary = 0;
/*
* Maximum number of bytes into the frame the TCP header can start for
* firmware assisted TSO to work.
*/
encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
/*
* Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
* MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
* resources (allocated to this PCIe function), which is zero until
* after we have allocated VIs.
*/
encp->enc_evq_limit = 1024;
encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
encp->enc_buftbl_limit = 0xFFFFFFFF;
/* Get interrupt vector limits */
if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
if (EFX_PCI_FUNCTION_IS_PF(encp))
goto fail9;
/* Ignore error (cannot query vector limits from a VF). */
base = 0;
nvec = 1024;
}
encp->enc_intr_vec_base = base;
encp->enc_intr_limit = nvec;
/*
* Get the current privilege mask. Note that this may be modified
* dynamically, so this value is informational only. DO NOT use
* the privilege mask to check for sufficient privileges, as that
* can result in time-of-check/time-of-use bugs.
*/
if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
goto fail10;
encp->enc_privilege_mask = mask;
/* Get remaining controller-specific board config */
if ((rc = enop->eno_board_cfg(enp)) != 0)
if (rc != EACCES)
goto fail11;
return (0);
fail11:
EFSYS_PROBE(fail11);
fail10:
EFSYS_PROBE(fail10);
fail9:
EFSYS_PROBE(fail9);
fail8:
EFSYS_PROBE(fail8);
fail7:
EFSYS_PROBE(fail7);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_probe(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
/* Read and clear any assertion state */
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
goto fail1;
/* Exit the assertion handler */
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
if (rc != EACCES)
goto fail2;
if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
goto fail3;
if ((rc = ef10_nic_board_cfg(enp)) != 0)
goto fail4;
/*
* Set default driver config limits (based on board config).
*
* FIXME: For now allocate a fixed number of VIs which is likely to be
* sufficient and small enough to allow multiple functions on the same
* port.
*/
edcp->edc_min_vi_count = edcp->edc_max_vi_count =
MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
/* The client driver must configure and enable PIO buffer support */
edcp->edc_max_piobuf_count = 0;
edcp->edc_pio_alloc_size = 0;
#if EFSYS_OPT_MAC_STATS
/* Wipe the MAC statistics */
if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
goto fail5;
#endif
#if EFSYS_OPT_LOOPBACK
if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
goto fail6;
#endif
#if EFSYS_OPT_MON_STATS
if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
/* Unprivileged functions do not have access to sensors */
if (rc != EACCES)
goto fail7;
}
#endif
encp->enc_features = enp->en_features;
return (0);
#if EFSYS_OPT_MON_STATS
fail7:
EFSYS_PROBE(fail7);
#endif
#if EFSYS_OPT_LOOPBACK
fail6:
EFSYS_PROBE(fail6);
#endif
#if EFSYS_OPT_MAC_STATS
fail5:
EFSYS_PROBE(fail5);
#endif
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_set_drv_limits(
__inout efx_nic_t *enp,
__in efx_drv_limits_t *edlp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
uint32_t min_evq_count, max_evq_count;
uint32_t min_rxq_count, max_rxq_count;
uint32_t min_txq_count, max_txq_count;
efx_rc_t rc;
if (edlp == NULL) {
rc = EINVAL;
goto fail1;
}
/* Get minimum required and maximum usable VI limits */
min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
edcp->edc_min_vi_count =
MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
edcp->edc_max_vi_count =
MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
/*
* Check limits for sub-allocated piobuf blocks.
* PIO is optional, so don't fail if the limits are incorrect.
*/
if ((encp->enc_piobuf_size == 0) ||
(encp->enc_piobuf_limit == 0) ||
(edlp->edl_min_pio_alloc_size == 0) ||
(edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
/* Disable PIO */
edcp->edc_max_piobuf_count = 0;
edcp->edc_pio_alloc_size = 0;
} else {
uint32_t blk_size, blk_count, blks_per_piobuf;
blk_size =
MAX(edlp->edl_min_pio_alloc_size,
encp->enc_piobuf_min_alloc_size);
blks_per_piobuf = encp->enc_piobuf_size / blk_size;
EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
/* A zero max pio alloc count means unlimited */
if ((edlp->edl_max_pio_alloc_count > 0) &&
(edlp->edl_max_pio_alloc_count < blk_count)) {
blk_count = edlp->edl_max_pio_alloc_count;
}
edcp->edc_pio_alloc_size = blk_size;
edcp->edc_max_piobuf_count =
(blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_reset(
__in efx_nic_t *enp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
MC_CMD_ENTITY_RESET_OUT_LEN);
efx_rc_t rc;
/* ef10_nic_reset() is called to recover from BADASSERT failures. */
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
goto fail1;
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
goto fail2;
req.emr_cmd = MC_CMD_ENTITY_RESET;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail3;
}
/* Clear RX/TX DMA queue errors */
enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_init(
__in efx_nic_t *enp)
{
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
uint32_t min_vi_count, max_vi_count;
uint32_t vi_count, vi_base, vi_shift;
uint32_t i;
uint32_t retry;
uint32_t delay_us;
uint32_t vi_window_size;
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
/* Enable reporting of some events (e.g. link change) */
if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
goto fail1;
/* Allocate (optional) on-chip PIO buffers */
ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
/*
* For best performance, PIO writes should use a write-combined
* (WC) memory mapping. Using a separate WC mapping for the PIO
* aperture of each VI would be a burden to drivers (and not
* possible if the host page size is >4Kbyte).
*
* To avoid this we use a single uncached (UC) mapping for VI
* register access, and a single WC mapping for extra VIs used
* for PIO writes.
*
* Each piobuf must be linked to a VI in the WC mapping, and to
* each VI that is using a sub-allocated block from the piobuf.
*/
min_vi_count = edcp->edc_min_vi_count;
max_vi_count =
edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
/* Ensure that the previously attached driver's VIs are freed */
if ((rc = efx_mcdi_free_vis(enp)) != 0)
goto fail2;
/*
* Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
* fails then retrying the request for fewer VI resources may succeed.
*/
vi_count = 0;
if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
&vi_base, &vi_count, &vi_shift)) != 0)
goto fail3;
EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
if (vi_count < min_vi_count) {
rc = ENOMEM;
goto fail4;
}
enp->en_arch.ef10.ena_vi_base = vi_base;
enp->en_arch.ef10.ena_vi_count = vi_count;
enp->en_arch.ef10.ena_vi_shift = vi_shift;
if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
/* Not enough extra VIs to map piobufs */
ef10_nic_free_piobufs(enp);
}
enp->en_arch.ef10.ena_pio_write_vi_base =
vi_count - enp->en_arch.ef10.ena_piobuf_count;
EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
EFX_VI_WINDOW_SHIFT_INVALID);
EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
EFX_VI_WINDOW_SHIFT_64K);
vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
/* Save UC memory mapping details */
enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
enp->en_arch.ef10.ena_uc_mem_map_size =
(vi_window_size *
enp->en_arch.ef10.ena_pio_write_vi_base);
} else {
enp->en_arch.ef10.ena_uc_mem_map_size =
(vi_window_size *
enp->en_arch.ef10.ena_vi_count);
}
/* Save WC memory mapping details */
enp->en_arch.ef10.ena_wc_mem_map_offset =
enp->en_arch.ef10.ena_uc_mem_map_offset +
enp->en_arch.ef10.ena_uc_mem_map_size;
enp->en_arch.ef10.ena_wc_mem_map_size =
(vi_window_size *
enp->en_arch.ef10.ena_piobuf_count);
/* Link piobufs to extra VIs in WC mapping */
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
rc = efx_mcdi_link_piobuf(enp,
enp->en_arch.ef10.ena_pio_write_vi_base + i,
enp->en_arch.ef10.ena_piobuf_handle[i]);
if (rc != 0)
break;
}
}
/*
* Allocate a vAdaptor attached to our upstream vPort/pPort.
*
* On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
* driver has yet to bring up the EVB port. See bug 56147. In this case,
* retry the request several times after waiting a while. The wait time
* between retries starts small (10ms) and exponentially increases.
* Total wait time is a little over two seconds. Retry logic in the
* client driver may mean this whole loop is repeated if it continues to
* fail.
*/
retry = 0;
delay_us = 10000;
while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
(rc != ENOENT)) {
/*
* Do not retry alloc for PF, or for other errors on
* a VF.
*/
goto fail5;
}
/* VF startup before PF is ready. Retry allocation. */
if (retry > 5) {
/* Too many attempts */
rc = EINVAL;
goto fail6;
}
EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
EFSYS_SLEEP(delay_us);
retry++;
if (delay_us < 500000)
delay_us <<= 2;
}
enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
return (0);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
ef10_nic_free_piobufs(enp);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_get_vi_pool(
__in efx_nic_t *enp,
__out uint32_t *vi_countp)
{
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
/*
* Report VIs that the client driver can use.
* Do not include VIs used for PIO buffer writes.
*/
*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
return (0);
}
__checkReturn efx_rc_t
ef10_nic_get_bar_region(
__in efx_nic_t *enp,
__in efx_nic_region_t region,
__out uint32_t *offsetp,
__out size_t *sizep)
{
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
/*
* TODO: Specify host memory mapping alignment and granularity
* in efx_drv_limits_t so that they can be taken into account
* when allocating extra VIs for PIO writes.
*/
switch (region) {
case EFX_REGION_VI:
/* UC mapped memory BAR region for VI registers */
*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
break;
case EFX_REGION_PIO_WRITE_VI:
/* WC mapped memory BAR region for piobuf writes */
*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
break;
default:
rc = EINVAL;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn boolean_t
ef10_nic_hw_unavailable(
__in efx_nic_t *enp)
{
efx_dword_t dword;
if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
return (B_TRUE);
EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
goto unavail;
return (B_FALSE);
unavail:
ef10_nic_set_hw_unavailable(enp);
return (B_TRUE);
}
void
ef10_nic_set_hw_unavailable(
__in efx_nic_t *enp)
{
EFSYS_PROBE(hw_unavail);
enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
}
void
ef10_nic_fini(
__in efx_nic_t *enp)
{
uint32_t i;
efx_rc_t rc;
(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
enp->en_vport_id = 0;
/* Unlink piobufs from extra VIs in WC mapping */
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
rc = efx_mcdi_unlink_piobuf(enp,
enp->en_arch.ef10.ena_pio_write_vi_base + i);
if (rc != 0)
break;
}
}
ef10_nic_free_piobufs(enp);
(void) efx_mcdi_free_vis(enp);
enp->en_arch.ef10.ena_vi_count = 0;
}
void
ef10_nic_unprobe(
__in efx_nic_t *enp)
{
#if EFSYS_OPT_MON_STATS
mcdi_mon_cfg_free(enp);
#endif /* EFSYS_OPT_MON_STATS */
(void) efx_mcdi_drv_attach(enp, B_FALSE);
}
#if EFSYS_OPT_DIAG
__checkReturn efx_rc_t
ef10_nic_register_test(
__in efx_nic_t *enp)
{
efx_rc_t rc;
/* FIXME */
_NOTE(ARGUNUSED(enp))
_NOTE(CONSTANTCONDITION)
if (B_FALSE) {
rc = ENOTSUP;
goto fail1;
}
/* FIXME */
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_DIAG */
#if EFSYS_OPT_FW_SUBVARIANT_AWARE
__checkReturn efx_rc_t
efx_mcdi_get_nic_global(
__in efx_nic_t *enp,
__in uint32_t key,
__out uint32_t *valuep)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_set_nic_global(
__in efx_nic_t *enp,
__in uint32_t key,
__in uint32_t value)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
efx_rc_t rc;
req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
req.emr_out_buf = NULL;
req.emr_out_length = 0;
MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_FW_SUBVARIANT_AWARE */
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */