4ea603ec6b
- Implement timing out of VPD register access.[1] - Fix an off-by-one error of freeing malloc'd space when checksum is invalid. - Fix style(9) bugs, i.e., sizeof cannot be followed by space. - Retire now obsolete 'hw.pci.enable_vpd' tunable. Submitted by: cokane (initial revision)[1] Reviewed by: marius (intermediate revision) Silence from: jhb, jmg, rwatson Tested by: cokane, jkim MFC after: 3 days
3747 lines
104 KiB
C
3747 lines
104 KiB
C
/*-
|
|
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
|
|
* Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
|
|
* Copyright (c) 2000, BSDi
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_bus.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/endian.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <machine/bus.h>
|
|
#include <sys/rman.h>
|
|
#include <machine/resource.h>
|
|
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
#include <machine/intr_machdep.h>
|
|
#endif
|
|
|
|
#include <sys/pciio.h>
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pci_private.h>
|
|
|
|
#include "pcib_if.h"
|
|
#include "pci_if.h"
|
|
|
|
#ifdef __HAVE_ACPI
|
|
#include <contrib/dev/acpica/acpi.h>
|
|
#include "acpi_if.h"
|
|
#else
|
|
#define ACPI_PWR_FOR_SLEEP(x, y, z)
|
|
#endif
|
|
|
|
static uint32_t pci_mapbase(unsigned mapreg);
|
|
static const char *pci_maptype(unsigned mapreg);
|
|
static int pci_mapsize(unsigned testval);
|
|
static int pci_maprange(unsigned mapreg);
|
|
static void pci_fixancient(pcicfgregs *cfg);
|
|
|
|
static int pci_porten(device_t pcib, int b, int s, int f);
|
|
static int pci_memen(device_t pcib, int b, int s, int f);
|
|
static void pci_assign_interrupt(device_t bus, device_t dev,
|
|
int force_route);
|
|
static int pci_add_map(device_t pcib, device_t bus, device_t dev,
|
|
int b, int s, int f, int reg,
|
|
struct resource_list *rl, int force, int prefetch);
|
|
static int pci_probe(device_t dev);
|
|
static int pci_attach(device_t dev);
|
|
static void pci_load_vendor_data(void);
|
|
static int pci_describe_parse_line(char **ptr, int *vendor,
|
|
int *device, char **desc);
|
|
static char *pci_describe_device(device_t dev);
|
|
static int pci_modevent(module_t mod, int what, void *arg);
|
|
static void pci_hdrtypedata(device_t pcib, int b, int s, int f,
|
|
pcicfgregs *cfg);
|
|
static void pci_read_extcap(device_t pcib, pcicfgregs *cfg);
|
|
static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
|
|
int reg, uint32_t *data);
|
|
#if 0
|
|
static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
|
|
int reg, uint32_t data);
|
|
#endif
|
|
static void pci_read_vpd(device_t pcib, pcicfgregs *cfg);
|
|
static void pci_disable_msi(device_t dev);
|
|
static void pci_enable_msi(device_t dev, uint64_t address,
|
|
uint16_t data);
|
|
static void pci_enable_msix(device_t dev, u_int index,
|
|
uint64_t address, uint32_t data);
|
|
static void pci_mask_msix(device_t dev, u_int index);
|
|
static void pci_unmask_msix(device_t dev, u_int index);
|
|
static int pci_msi_blacklisted(void);
|
|
static void pci_resume_msi(device_t dev);
|
|
static void pci_resume_msix(device_t dev);
|
|
|
|
static device_method_t pci_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, pci_probe),
|
|
DEVMETHOD(device_attach, pci_attach),
|
|
DEVMETHOD(device_detach, bus_generic_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
DEVMETHOD(device_suspend, pci_suspend),
|
|
DEVMETHOD(device_resume, pci_resume),
|
|
|
|
/* Bus interface */
|
|
DEVMETHOD(bus_print_child, pci_print_child),
|
|
DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch),
|
|
DEVMETHOD(bus_read_ivar, pci_read_ivar),
|
|
DEVMETHOD(bus_write_ivar, pci_write_ivar),
|
|
DEVMETHOD(bus_driver_added, pci_driver_added),
|
|
DEVMETHOD(bus_setup_intr, pci_setup_intr),
|
|
DEVMETHOD(bus_teardown_intr, pci_teardown_intr),
|
|
|
|
DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
|
|
DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
|
|
DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
|
|
DEVMETHOD(bus_delete_resource, pci_delete_resource),
|
|
DEVMETHOD(bus_alloc_resource, pci_alloc_resource),
|
|
DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
|
|
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
|
|
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
|
|
DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method),
|
|
DEVMETHOD(bus_child_location_str, pci_child_location_str_method),
|
|
|
|
/* PCI interface */
|
|
DEVMETHOD(pci_read_config, pci_read_config_method),
|
|
DEVMETHOD(pci_write_config, pci_write_config_method),
|
|
DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method),
|
|
DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
|
|
DEVMETHOD(pci_enable_io, pci_enable_io_method),
|
|
DEVMETHOD(pci_disable_io, pci_disable_io_method),
|
|
DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method),
|
|
DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method),
|
|
DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method),
|
|
DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method),
|
|
DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method),
|
|
DEVMETHOD(pci_find_extcap, pci_find_extcap_method),
|
|
DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method),
|
|
DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method),
|
|
DEVMETHOD(pci_remap_msix, pci_remap_msix_method),
|
|
DEVMETHOD(pci_release_msi, pci_release_msi_method),
|
|
DEVMETHOD(pci_msi_count, pci_msi_count_method),
|
|
DEVMETHOD(pci_msix_count, pci_msix_count_method),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
DEFINE_CLASS_0(pci, pci_driver, pci_methods, 0);
|
|
|
|
static devclass_t pci_devclass;
|
|
DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, 0);
|
|
MODULE_VERSION(pci, 1);
|
|
|
|
static char *pci_vendordata;
|
|
static size_t pci_vendordata_size;
|
|
|
|
|
|
struct pci_quirk {
|
|
uint32_t devid; /* Vendor/device of the card */
|
|
int type;
|
|
#define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */
|
|
#define PCI_QUIRK_DISABLE_MSI 2 /* MSI/MSI-X doesn't work */
|
|
int arg1;
|
|
int arg2;
|
|
};
|
|
|
|
struct pci_quirk pci_quirks[] = {
|
|
/* The Intel 82371AB and 82443MX has a map register at offset 0x90. */
|
|
{ 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 },
|
|
{ 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 },
|
|
/* As does the Serverworks OSB4 (the SMBus mapping register) */
|
|
{ 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 },
|
|
|
|
/*
|
|
* MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
|
|
* or the CMIC-SL (AKA ServerWorks GC_LE).
|
|
*/
|
|
{ 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
{ 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
|
|
/*
|
|
* MSI doesn't work on earlier Intel chipsets including
|
|
* E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
|
|
*/
|
|
{ 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
{ 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
{ 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
{ 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
{ 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
{ 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
{ 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
|
|
/*
|
|
* MSI doesn't work with devices behind the AMD 8131 HT-PCIX
|
|
* bridge.
|
|
*/
|
|
{ 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 },
|
|
|
|
{ 0 }
|
|
};
|
|
|
|
/* map register information */
|
|
#define PCI_MAPMEM 0x01 /* memory map */
|
|
#define PCI_MAPMEMP 0x02 /* prefetchable memory map */
|
|
#define PCI_MAPPORT 0x04 /* port map */
|
|
|
|
struct devlist pci_devq;
|
|
uint32_t pci_generation;
|
|
uint32_t pci_numdevs = 0;
|
|
static int pcie_chipset, pcix_chipset;
|
|
|
|
/* sysctl vars */
|
|
SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters");
|
|
|
|
static int pci_enable_io_modes = 1;
|
|
TUNABLE_INT("hw.pci.enable_io_modes", &pci_enable_io_modes);
|
|
SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RW,
|
|
&pci_enable_io_modes, 1,
|
|
"Enable I/O and memory bits in the config register. Some BIOSes do not\n\
|
|
enable these bits correctly. We'd like to do this all the time, but there\n\
|
|
are some peripherals that this causes problems with.");
|
|
|
|
static int pci_do_power_nodriver = 0;
|
|
TUNABLE_INT("hw.pci.do_power_nodriver", &pci_do_power_nodriver);
|
|
SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RW,
|
|
&pci_do_power_nodriver, 0,
|
|
"Place a function into D3 state when no driver attaches to it. 0 means\n\
|
|
disable. 1 means conservatively place devices into D3 state. 2 means\n\
|
|
agressively place devices into D3 state. 3 means put absolutely everything\n\
|
|
in D3 state.");
|
|
|
|
static int pci_do_power_resume = 1;
|
|
TUNABLE_INT("hw.pci.do_power_resume", &pci_do_power_resume);
|
|
SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RW,
|
|
&pci_do_power_resume, 1,
|
|
"Transition from D3 -> D0 on resume.");
|
|
|
|
static int pci_do_msi = 1;
|
|
TUNABLE_INT("hw.pci.enable_msi", &pci_do_msi);
|
|
SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RW, &pci_do_msi, 1,
|
|
"Enable support for MSI interrupts");
|
|
|
|
static int pci_do_msix = 1;
|
|
TUNABLE_INT("hw.pci.enable_msix", &pci_do_msix);
|
|
SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RW, &pci_do_msix, 1,
|
|
"Enable support for MSI-X interrupts");
|
|
|
|
static int pci_honor_msi_blacklist = 1;
|
|
TUNABLE_INT("hw.pci.honor_msi_blacklist", &pci_honor_msi_blacklist);
|
|
SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RD,
|
|
&pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI");
|
|
|
|
/* Find a device_t by bus/slot/function in domain 0 */
|
|
|
|
device_t
|
|
pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
|
|
{
|
|
|
|
return (pci_find_dbsf(0, bus, slot, func));
|
|
}
|
|
|
|
/* Find a device_t by domain/bus/slot/function */
|
|
|
|
device_t
|
|
pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
|
|
{
|
|
struct pci_devinfo *dinfo;
|
|
|
|
STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
|
|
if ((dinfo->cfg.domain == domain) &&
|
|
(dinfo->cfg.bus == bus) &&
|
|
(dinfo->cfg.slot == slot) &&
|
|
(dinfo->cfg.func == func)) {
|
|
return (dinfo->cfg.dev);
|
|
}
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/* Find a device_t by vendor/device ID */
|
|
|
|
device_t
|
|
pci_find_device(uint16_t vendor, uint16_t device)
|
|
{
|
|
struct pci_devinfo *dinfo;
|
|
|
|
STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
|
|
if ((dinfo->cfg.vendor == vendor) &&
|
|
(dinfo->cfg.device == device)) {
|
|
return (dinfo->cfg.dev);
|
|
}
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/* return base address of memory or port map */
|
|
|
|
static uint32_t
|
|
pci_mapbase(uint32_t mapreg)
|
|
{
|
|
|
|
if (PCI_BAR_MEM(mapreg))
|
|
return (mapreg & PCIM_BAR_MEM_BASE);
|
|
else
|
|
return (mapreg & PCIM_BAR_IO_BASE);
|
|
}
|
|
|
|
/* return map type of memory or port map */
|
|
|
|
static const char *
|
|
pci_maptype(unsigned mapreg)
|
|
{
|
|
|
|
if (PCI_BAR_IO(mapreg))
|
|
return ("I/O Port");
|
|
if (mapreg & PCIM_BAR_MEM_PREFETCH)
|
|
return ("Prefetchable Memory");
|
|
return ("Memory");
|
|
}
|
|
|
|
/* return log2 of map size decoded for memory or port map */
|
|
|
|
static int
|
|
pci_mapsize(uint32_t testval)
|
|
{
|
|
int ln2size;
|
|
|
|
testval = pci_mapbase(testval);
|
|
ln2size = 0;
|
|
if (testval != 0) {
|
|
while ((testval & 1) == 0)
|
|
{
|
|
ln2size++;
|
|
testval >>= 1;
|
|
}
|
|
}
|
|
return (ln2size);
|
|
}
|
|
|
|
/* return log2 of address range supported by map register */
|
|
|
|
static int
|
|
pci_maprange(unsigned mapreg)
|
|
{
|
|
int ln2range = 0;
|
|
|
|
if (PCI_BAR_IO(mapreg))
|
|
ln2range = 32;
|
|
else
|
|
switch (mapreg & PCIM_BAR_MEM_TYPE) {
|
|
case PCIM_BAR_MEM_32:
|
|
ln2range = 32;
|
|
break;
|
|
case PCIM_BAR_MEM_1MB:
|
|
ln2range = 20;
|
|
break;
|
|
case PCIM_BAR_MEM_64:
|
|
ln2range = 64;
|
|
break;
|
|
}
|
|
return (ln2range);
|
|
}
|
|
|
|
/* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
|
|
|
|
static void
|
|
pci_fixancient(pcicfgregs *cfg)
|
|
{
|
|
if (cfg->hdrtype != 0)
|
|
return;
|
|
|
|
/* PCI to PCI bridges use header type 1 */
|
|
if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
|
|
cfg->hdrtype = 1;
|
|
}
|
|
|
|
/* extract header type specific config data */
|
|
|
|
static void
|
|
pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
|
|
{
|
|
#define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
|
|
switch (cfg->hdrtype) {
|
|
case 0:
|
|
cfg->subvendor = REG(PCIR_SUBVEND_0, 2);
|
|
cfg->subdevice = REG(PCIR_SUBDEV_0, 2);
|
|
cfg->nummaps = PCI_MAXMAPS_0;
|
|
break;
|
|
case 1:
|
|
cfg->nummaps = PCI_MAXMAPS_1;
|
|
break;
|
|
case 2:
|
|
cfg->subvendor = REG(PCIR_SUBVEND_2, 2);
|
|
cfg->subdevice = REG(PCIR_SUBDEV_2, 2);
|
|
cfg->nummaps = PCI_MAXMAPS_2;
|
|
break;
|
|
}
|
|
#undef REG
|
|
}
|
|
|
|
/* read configuration header into pcicfgregs structure */
|
|
struct pci_devinfo *
|
|
pci_read_device(device_t pcib, int d, int b, int s, int f, size_t size)
|
|
{
|
|
#define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w)
|
|
pcicfgregs *cfg = NULL;
|
|
struct pci_devinfo *devlist_entry;
|
|
struct devlist *devlist_head;
|
|
|
|
devlist_head = &pci_devq;
|
|
|
|
devlist_entry = NULL;
|
|
|
|
if (REG(PCIR_DEVVENDOR, 4) != -1) {
|
|
devlist_entry = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
|
|
if (devlist_entry == NULL)
|
|
return (NULL);
|
|
|
|
cfg = &devlist_entry->cfg;
|
|
|
|
cfg->domain = d;
|
|
cfg->bus = b;
|
|
cfg->slot = s;
|
|
cfg->func = f;
|
|
cfg->vendor = REG(PCIR_VENDOR, 2);
|
|
cfg->device = REG(PCIR_DEVICE, 2);
|
|
cfg->cmdreg = REG(PCIR_COMMAND, 2);
|
|
cfg->statreg = REG(PCIR_STATUS, 2);
|
|
cfg->baseclass = REG(PCIR_CLASS, 1);
|
|
cfg->subclass = REG(PCIR_SUBCLASS, 1);
|
|
cfg->progif = REG(PCIR_PROGIF, 1);
|
|
cfg->revid = REG(PCIR_REVID, 1);
|
|
cfg->hdrtype = REG(PCIR_HDRTYPE, 1);
|
|
cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1);
|
|
cfg->lattimer = REG(PCIR_LATTIMER, 1);
|
|
cfg->intpin = REG(PCIR_INTPIN, 1);
|
|
cfg->intline = REG(PCIR_INTLINE, 1);
|
|
|
|
cfg->mingnt = REG(PCIR_MINGNT, 1);
|
|
cfg->maxlat = REG(PCIR_MAXLAT, 1);
|
|
|
|
cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0;
|
|
cfg->hdrtype &= ~PCIM_MFDEV;
|
|
|
|
pci_fixancient(cfg);
|
|
pci_hdrtypedata(pcib, b, s, f, cfg);
|
|
|
|
if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
|
|
pci_read_extcap(pcib, cfg);
|
|
|
|
STAILQ_INSERT_TAIL(devlist_head, devlist_entry, pci_links);
|
|
|
|
devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
|
|
devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
|
|
devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
|
|
devlist_entry->conf.pc_sel.pc_func = cfg->func;
|
|
devlist_entry->conf.pc_hdr = cfg->hdrtype;
|
|
|
|
devlist_entry->conf.pc_subvendor = cfg->subvendor;
|
|
devlist_entry->conf.pc_subdevice = cfg->subdevice;
|
|
devlist_entry->conf.pc_vendor = cfg->vendor;
|
|
devlist_entry->conf.pc_device = cfg->device;
|
|
|
|
devlist_entry->conf.pc_class = cfg->baseclass;
|
|
devlist_entry->conf.pc_subclass = cfg->subclass;
|
|
devlist_entry->conf.pc_progif = cfg->progif;
|
|
devlist_entry->conf.pc_revid = cfg->revid;
|
|
|
|
pci_numdevs++;
|
|
pci_generation++;
|
|
}
|
|
return (devlist_entry);
|
|
#undef REG
|
|
}
|
|
|
|
static void
|
|
pci_read_extcap(device_t pcib, pcicfgregs *cfg)
|
|
{
|
|
#define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
|
|
#define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
uint64_t addr;
|
|
#endif
|
|
uint32_t val;
|
|
int ptr, nextptr, ptrptr;
|
|
|
|
switch (cfg->hdrtype & PCIM_HDRTYPE) {
|
|
case 0:
|
|
case 1:
|
|
ptrptr = PCIR_CAP_PTR;
|
|
break;
|
|
case 2:
|
|
ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */
|
|
break;
|
|
default:
|
|
return; /* no extended capabilities support */
|
|
}
|
|
nextptr = REG(ptrptr, 1); /* sanity check? */
|
|
|
|
/*
|
|
* Read capability entries.
|
|
*/
|
|
while (nextptr != 0) {
|
|
/* Sanity check */
|
|
if (nextptr > 255) {
|
|
printf("illegal PCI extended capability offset %d\n",
|
|
nextptr);
|
|
return;
|
|
}
|
|
/* Find the next entry */
|
|
ptr = nextptr;
|
|
nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
|
|
|
|
/* Process this entry */
|
|
switch (REG(ptr + PCICAP_ID, 1)) {
|
|
case PCIY_PMG: /* PCI power management */
|
|
if (cfg->pp.pp_cap == 0) {
|
|
cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
|
|
cfg->pp.pp_status = ptr + PCIR_POWER_STATUS;
|
|
cfg->pp.pp_pmcsr = ptr + PCIR_POWER_PMCSR;
|
|
if ((nextptr - ptr) > PCIR_POWER_DATA)
|
|
cfg->pp.pp_data = ptr + PCIR_POWER_DATA;
|
|
}
|
|
break;
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
case PCIY_HT: /* HyperTransport */
|
|
/* Determine HT-specific capability type. */
|
|
val = REG(ptr + PCIR_HT_COMMAND, 2);
|
|
switch (val & PCIM_HTCMD_CAP_MASK) {
|
|
case PCIM_HTCAP_MSI_MAPPING:
|
|
if (!(val & PCIM_HTCMD_MSI_FIXED)) {
|
|
/* Sanity check the mapping window. */
|
|
addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
|
|
4);
|
|
addr <<= 32;
|
|
addr = REG(ptr + PCIR_HTMSI_ADDRESS_LO,
|
|
4);
|
|
if (addr != MSI_INTEL_ADDR_BASE)
|
|
device_printf(pcib,
|
|
"HT Bridge at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
|
|
cfg->domain, cfg->bus,
|
|
cfg->slot, cfg->func,
|
|
(long long)addr);
|
|
}
|
|
|
|
/* Enable MSI -> HT mapping. */
|
|
val |= PCIM_HTCMD_MSI_ENABLE;
|
|
WREG(ptr + PCIR_HT_COMMAND, val, 2);
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
case PCIY_MSI: /* PCI MSI */
|
|
cfg->msi.msi_location = ptr;
|
|
cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
|
|
cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl &
|
|
PCIM_MSICTRL_MMC_MASK)>>1);
|
|
break;
|
|
case PCIY_MSIX: /* PCI MSI-X */
|
|
cfg->msix.msix_location = ptr;
|
|
cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
|
|
cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl &
|
|
PCIM_MSIXCTRL_TABLE_SIZE) + 1;
|
|
val = REG(ptr + PCIR_MSIX_TABLE, 4);
|
|
cfg->msix.msix_table_bar = PCIR_BAR(val &
|
|
PCIM_MSIX_BIR_MASK);
|
|
cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
|
|
val = REG(ptr + PCIR_MSIX_PBA, 4);
|
|
cfg->msix.msix_pba_bar = PCIR_BAR(val &
|
|
PCIM_MSIX_BIR_MASK);
|
|
cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
|
|
break;
|
|
case PCIY_VPD: /* PCI Vital Product Data */
|
|
cfg->vpd.vpd_reg = ptr;
|
|
break;
|
|
case PCIY_SUBVENDOR:
|
|
/* Should always be true. */
|
|
if ((cfg->hdrtype & PCIM_HDRTYPE) == 1) {
|
|
val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
|
|
cfg->subvendor = val & 0xffff;
|
|
cfg->subdevice = val >> 16;
|
|
}
|
|
break;
|
|
case PCIY_PCIX: /* PCI-X */
|
|
/*
|
|
* Assume we have a PCI-X chipset if we have
|
|
* at least one PCI-PCI bridge with a PCI-X
|
|
* capability. Note that some systems with
|
|
* PCI-express or HT chipsets might match on
|
|
* this check as well.
|
|
*/
|
|
if ((cfg->hdrtype & PCIM_HDRTYPE) == 1)
|
|
pcix_chipset = 1;
|
|
break;
|
|
case PCIY_EXPRESS: /* PCI-express */
|
|
/*
|
|
* Assume we have a PCI-express chipset if we have
|
|
* at least one PCI-express root port.
|
|
*/
|
|
val = REG(ptr + PCIR_EXPRESS_FLAGS, 2);
|
|
if ((val & PCIM_EXP_FLAGS_TYPE) ==
|
|
PCIM_EXP_TYPE_ROOT_PORT)
|
|
pcie_chipset = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
/* REG and WREG use carry through to next functions */
|
|
}
|
|
|
|
/*
|
|
* PCI Vital Product Data
|
|
*/
|
|
|
|
#define PCI_VPD_TIMEOUT 1000000
|
|
|
|
static int
|
|
pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
|
|
{
|
|
int count = PCI_VPD_TIMEOUT;
|
|
|
|
KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
|
|
|
|
WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
|
|
|
|
while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
|
|
if (--count < 0)
|
|
return (ENXIO);
|
|
DELAY(1); /* limit looping */
|
|
}
|
|
*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
|
|
|
|
return (0);
|
|
}
|
|
|
|
#if 0
|
|
static int
|
|
pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
|
|
{
|
|
int count = PCI_VPD_TIMEOUT;
|
|
|
|
KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
|
|
|
|
WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
|
|
WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
|
|
while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
|
|
if (--count < 0)
|
|
return (ENXIO);
|
|
DELAY(1); /* limit looping */
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
#undef PCI_VPD_TIMEOUT
|
|
|
|
struct vpd_readstate {
|
|
device_t pcib;
|
|
pcicfgregs *cfg;
|
|
uint32_t val;
|
|
int bytesinval;
|
|
int off;
|
|
uint8_t cksum;
|
|
};
|
|
|
|
static int
|
|
vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
|
|
{
|
|
uint32_t reg;
|
|
uint8_t byte;
|
|
|
|
if (vrs->bytesinval == 0) {
|
|
if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®))
|
|
return (ENXIO);
|
|
vrs->val = le32toh(reg);
|
|
vrs->off += 4;
|
|
byte = vrs->val & 0xff;
|
|
vrs->bytesinval = 3;
|
|
} else {
|
|
vrs->val = vrs->val >> 8;
|
|
byte = vrs->val & 0xff;
|
|
vrs->bytesinval--;
|
|
}
|
|
|
|
vrs->cksum += byte;
|
|
*data = byte;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
pci_read_vpd(device_t pcib, pcicfgregs *cfg)
|
|
{
|
|
struct vpd_readstate vrs;
|
|
int state;
|
|
int name;
|
|
int remain;
|
|
int i;
|
|
int alloc, off; /* alloc/off for RO/W arrays */
|
|
int cksumvalid;
|
|
int dflen;
|
|
uint8_t byte;
|
|
uint8_t byte2;
|
|
|
|
/* init vpd reader */
|
|
vrs.bytesinval = 0;
|
|
vrs.off = 0;
|
|
vrs.pcib = pcib;
|
|
vrs.cfg = cfg;
|
|
vrs.cksum = 0;
|
|
|
|
state = 0;
|
|
name = remain = i = 0; /* shut up stupid gcc */
|
|
alloc = off = 0; /* shut up stupid gcc */
|
|
dflen = 0; /* shut up stupid gcc */
|
|
cksumvalid = -1;
|
|
while (state >= 0) {
|
|
if (vpd_nextbyte(&vrs, &byte)) {
|
|
state = -2;
|
|
break;
|
|
}
|
|
#if 0
|
|
printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \
|
|
"state: %d, remain: %d, name: %#x, i: %d\n", vrs.val,
|
|
vrs.off, vrs.bytesinval, byte, state, remain, name, i);
|
|
#endif
|
|
switch (state) {
|
|
case 0: /* item name */
|
|
if (byte & 0x80) {
|
|
if (vpd_nextbyte(&vrs, &byte2)) {
|
|
state = -2;
|
|
break;
|
|
}
|
|
remain = byte2;
|
|
if (vpd_nextbyte(&vrs, &byte2)) {
|
|
state = -2;
|
|
break;
|
|
}
|
|
remain |= byte2 << 8;
|
|
if (remain > (0x7f*4 - vrs.off)) {
|
|
state = -1;
|
|
printf(
|
|
"pci%d:%d:%d:%d: invalid VPD data, remain %#x\n",
|
|
cfg->domain, cfg->bus, cfg->slot,
|
|
cfg->func, remain);
|
|
}
|
|
name = byte & 0x7f;
|
|
} else {
|
|
remain = byte & 0x7;
|
|
name = (byte >> 3) & 0xf;
|
|
}
|
|
switch (name) {
|
|
case 0x2: /* String */
|
|
cfg->vpd.vpd_ident = malloc(remain + 1,
|
|
M_DEVBUF, M_WAITOK);
|
|
i = 0;
|
|
state = 1;
|
|
break;
|
|
case 0xf: /* End */
|
|
state = -1;
|
|
break;
|
|
case 0x10: /* VPD-R */
|
|
alloc = 8;
|
|
off = 0;
|
|
cfg->vpd.vpd_ros = malloc(alloc *
|
|
sizeof(*cfg->vpd.vpd_ros), M_DEVBUF,
|
|
M_WAITOK | M_ZERO);
|
|
state = 2;
|
|
break;
|
|
case 0x11: /* VPD-W */
|
|
alloc = 8;
|
|
off = 0;
|
|
cfg->vpd.vpd_w = malloc(alloc *
|
|
sizeof(*cfg->vpd.vpd_w), M_DEVBUF,
|
|
M_WAITOK | M_ZERO);
|
|
state = 5;
|
|
break;
|
|
default: /* Invalid data, abort */
|
|
state = -1;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 1: /* Identifier String */
|
|
cfg->vpd.vpd_ident[i++] = byte;
|
|
remain--;
|
|
if (remain == 0) {
|
|
cfg->vpd.vpd_ident[i] = '\0';
|
|
state = 0;
|
|
}
|
|
break;
|
|
|
|
case 2: /* VPD-R Keyword Header */
|
|
if (off == alloc) {
|
|
cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
|
|
(alloc *= 2) * sizeof(*cfg->vpd.vpd_ros),
|
|
M_DEVBUF, M_WAITOK | M_ZERO);
|
|
}
|
|
cfg->vpd.vpd_ros[off].keyword[0] = byte;
|
|
if (vpd_nextbyte(&vrs, &byte2)) {
|
|
state = -2;
|
|
break;
|
|
}
|
|
cfg->vpd.vpd_ros[off].keyword[1] = byte2;
|
|
if (vpd_nextbyte(&vrs, &byte2)) {
|
|
state = -2;
|
|
break;
|
|
}
|
|
dflen = byte2;
|
|
if (dflen == 0 &&
|
|
strncmp(cfg->vpd.vpd_ros[off].keyword, "RV",
|
|
2) == 0) {
|
|
/*
|
|
* if this happens, we can't trust the rest
|
|
* of the VPD.
|
|
*/
|
|
printf(
|
|
"pci%d:%d:%d:%d: bad keyword length: %d\n",
|
|
cfg->domain, cfg->bus, cfg->slot,
|
|
cfg->func, dflen);
|
|
cksumvalid = 0;
|
|
state = -1;
|
|
break;
|
|
} else if (dflen == 0) {
|
|
cfg->vpd.vpd_ros[off].value = malloc(1 *
|
|
sizeof(*cfg->vpd.vpd_ros[off].value),
|
|
M_DEVBUF, M_WAITOK);
|
|
cfg->vpd.vpd_ros[off].value[0] = '\x00';
|
|
} else
|
|
cfg->vpd.vpd_ros[off].value = malloc(
|
|
(dflen + 1) *
|
|
sizeof(*cfg->vpd.vpd_ros[off].value),
|
|
M_DEVBUF, M_WAITOK);
|
|
remain -= 3;
|
|
i = 0;
|
|
/* keep in sync w/ state 3's transistions */
|
|
if (dflen == 0 && remain == 0)
|
|
state = 0;
|
|
else if (dflen == 0)
|
|
state = 2;
|
|
else
|
|
state = 3;
|
|
break;
|
|
|
|
case 3: /* VPD-R Keyword Value */
|
|
cfg->vpd.vpd_ros[off].value[i++] = byte;
|
|
if (strncmp(cfg->vpd.vpd_ros[off].keyword,
|
|
"RV", 2) == 0 && cksumvalid == -1) {
|
|
if (vrs.cksum == 0)
|
|
cksumvalid = 1;
|
|
else {
|
|
if (bootverbose)
|
|
printf(
|
|
"pci%d:%d:%d:%d: bad VPD cksum, remain %hhu\n",
|
|
cfg->domain, cfg->bus,
|
|
cfg->slot, cfg->func,
|
|
vrs.cksum);
|
|
cksumvalid = 0;
|
|
state = -1;
|
|
break;
|
|
}
|
|
}
|
|
dflen--;
|
|
remain--;
|
|
/* keep in sync w/ state 2's transistions */
|
|
if (dflen == 0)
|
|
cfg->vpd.vpd_ros[off++].value[i++] = '\0';
|
|
if (dflen == 0 && remain == 0) {
|
|
cfg->vpd.vpd_rocnt = off;
|
|
cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros,
|
|
off * sizeof(*cfg->vpd.vpd_ros),
|
|
M_DEVBUF, M_WAITOK | M_ZERO);
|
|
state = 0;
|
|
} else if (dflen == 0)
|
|
state = 2;
|
|
break;
|
|
|
|
case 4:
|
|
remain--;
|
|
if (remain == 0)
|
|
state = 0;
|
|
break;
|
|
|
|
case 5: /* VPD-W Keyword Header */
|
|
if (off == alloc) {
|
|
cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
|
|
(alloc *= 2) * sizeof(*cfg->vpd.vpd_w),
|
|
M_DEVBUF, M_WAITOK | M_ZERO);
|
|
}
|
|
cfg->vpd.vpd_w[off].keyword[0] = byte;
|
|
if (vpd_nextbyte(&vrs, &byte2)) {
|
|
state = -2;
|
|
break;
|
|
}
|
|
cfg->vpd.vpd_w[off].keyword[1] = byte2;
|
|
if (vpd_nextbyte(&vrs, &byte2)) {
|
|
state = -2;
|
|
break;
|
|
}
|
|
cfg->vpd.vpd_w[off].len = dflen = byte2;
|
|
cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval;
|
|
cfg->vpd.vpd_w[off].value = malloc((dflen + 1) *
|
|
sizeof(*cfg->vpd.vpd_w[off].value),
|
|
M_DEVBUF, M_WAITOK);
|
|
remain -= 3;
|
|
i = 0;
|
|
/* keep in sync w/ state 6's transistions */
|
|
if (dflen == 0 && remain == 0)
|
|
state = 0;
|
|
else if (dflen == 0)
|
|
state = 5;
|
|
else
|
|
state = 6;
|
|
break;
|
|
|
|
case 6: /* VPD-W Keyword Value */
|
|
cfg->vpd.vpd_w[off].value[i++] = byte;
|
|
dflen--;
|
|
remain--;
|
|
/* keep in sync w/ state 5's transistions */
|
|
if (dflen == 0)
|
|
cfg->vpd.vpd_w[off++].value[i++] = '\0';
|
|
if (dflen == 0 && remain == 0) {
|
|
cfg->vpd.vpd_wcnt = off;
|
|
cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w,
|
|
off * sizeof(*cfg->vpd.vpd_w),
|
|
M_DEVBUF, M_WAITOK | M_ZERO);
|
|
state = 0;
|
|
} else if (dflen == 0)
|
|
state = 5;
|
|
break;
|
|
|
|
default:
|
|
printf("pci%d:%d:%d:%d: invalid state: %d\n",
|
|
cfg->domain, cfg->bus, cfg->slot, cfg->func,
|
|
state);
|
|
state = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cksumvalid == 0 || state < -1) {
|
|
/* read-only data bad, clean up */
|
|
if (cfg->vpd.vpd_ros != NULL) {
|
|
for (off = 0; cfg->vpd.vpd_ros[off].value; off++)
|
|
free(cfg->vpd.vpd_ros[off].value, M_DEVBUF);
|
|
free(cfg->vpd.vpd_ros, M_DEVBUF);
|
|
cfg->vpd.vpd_ros = NULL;
|
|
}
|
|
}
|
|
if (state < -1) {
|
|
/* I/O error, clean up */
|
|
printf("pci%d:%d:%d:%d: failed to read VPD data.\n",
|
|
cfg->domain, cfg->bus, cfg->slot, cfg->func);
|
|
if (cfg->vpd.vpd_ident != NULL) {
|
|
free(cfg->vpd.vpd_ident, M_DEVBUF);
|
|
cfg->vpd.vpd_ident = NULL;
|
|
}
|
|
if (cfg->vpd.vpd_w != NULL) {
|
|
for (off = 0; cfg->vpd.vpd_w[off].value; off++)
|
|
free(cfg->vpd.vpd_w[off].value, M_DEVBUF);
|
|
free(cfg->vpd.vpd_w, M_DEVBUF);
|
|
cfg->vpd.vpd_w = NULL;
|
|
}
|
|
}
|
|
cfg->vpd.vpd_cached = 1;
|
|
#undef REG
|
|
#undef WREG
|
|
}
|
|
|
|
int
|
|
pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
|
|
if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
|
|
pci_read_vpd(device_get_parent(dev), cfg);
|
|
|
|
*identptr = cfg->vpd.vpd_ident;
|
|
|
|
if (*identptr == NULL)
|
|
return (ENXIO);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
|
|
const char **vptr)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
int i;
|
|
|
|
if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
|
|
pci_read_vpd(device_get_parent(dev), cfg);
|
|
|
|
for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
|
|
if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
|
|
sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
|
|
*vptr = cfg->vpd.vpd_ros[i].value;
|
|
}
|
|
|
|
if (i != cfg->vpd.vpd_rocnt)
|
|
return (0);
|
|
|
|
*vptr = NULL;
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Return the offset in configuration space of the requested extended
|
|
* capability entry or 0 if the specified capability was not found.
|
|
*/
|
|
int
|
|
pci_find_extcap_method(device_t dev, device_t child, int capability,
|
|
int *capreg)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
u_int32_t status;
|
|
u_int8_t ptr;
|
|
|
|
/*
|
|
* Check the CAP_LIST bit of the PCI status register first.
|
|
*/
|
|
status = pci_read_config(child, PCIR_STATUS, 2);
|
|
if (!(status & PCIM_STATUS_CAPPRESENT))
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Determine the start pointer of the capabilities list.
|
|
*/
|
|
switch (cfg->hdrtype & PCIM_HDRTYPE) {
|
|
case 0:
|
|
case 1:
|
|
ptr = PCIR_CAP_PTR;
|
|
break;
|
|
case 2:
|
|
ptr = PCIR_CAP_PTR_2;
|
|
break;
|
|
default:
|
|
/* XXX: panic? */
|
|
return (ENXIO); /* no extended capabilities support */
|
|
}
|
|
ptr = pci_read_config(child, ptr, 1);
|
|
|
|
/*
|
|
* Traverse the capabilities list.
|
|
*/
|
|
while (ptr != 0) {
|
|
if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
|
|
if (capreg != NULL)
|
|
*capreg = ptr;
|
|
return (0);
|
|
}
|
|
ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
|
|
}
|
|
|
|
return (ENOENT);
|
|
}
|
|
|
|
/*
|
|
* Support for MSI-X message interrupts.
|
|
*/
|
|
void
|
|
pci_enable_msix(device_t dev, u_int index, uint64_t address, uint32_t data)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
struct pcicfg_msix *msix = &dinfo->cfg.msix;
|
|
uint32_t offset;
|
|
|
|
KASSERT(msix->msix_table_len > index, ("bogus index"));
|
|
offset = msix->msix_table_offset + index * 16;
|
|
bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
|
|
bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
|
|
bus_write_4(msix->msix_table_res, offset + 8, data);
|
|
}
|
|
|
|
void
|
|
pci_mask_msix(device_t dev, u_int index)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
struct pcicfg_msix *msix = &dinfo->cfg.msix;
|
|
uint32_t offset, val;
|
|
|
|
KASSERT(msix->msix_msgnum > index, ("bogus index"));
|
|
offset = msix->msix_table_offset + index * 16 + 12;
|
|
val = bus_read_4(msix->msix_table_res, offset);
|
|
if (!(val & PCIM_MSIX_VCTRL_MASK)) {
|
|
val |= PCIM_MSIX_VCTRL_MASK;
|
|
bus_write_4(msix->msix_table_res, offset, val);
|
|
}
|
|
}
|
|
|
|
void
|
|
pci_unmask_msix(device_t dev, u_int index)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
struct pcicfg_msix *msix = &dinfo->cfg.msix;
|
|
uint32_t offset, val;
|
|
|
|
KASSERT(msix->msix_table_len > index, ("bogus index"));
|
|
offset = msix->msix_table_offset + index * 16 + 12;
|
|
val = bus_read_4(msix->msix_table_res, offset);
|
|
if (val & PCIM_MSIX_VCTRL_MASK) {
|
|
val &= ~PCIM_MSIX_VCTRL_MASK;
|
|
bus_write_4(msix->msix_table_res, offset, val);
|
|
}
|
|
}
|
|
|
|
int
|
|
pci_pending_msix(device_t dev, u_int index)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
struct pcicfg_msix *msix = &dinfo->cfg.msix;
|
|
uint32_t offset, bit;
|
|
|
|
KASSERT(msix->msix_table_len > index, ("bogus index"));
|
|
offset = msix->msix_pba_offset + (index / 32) * 4;
|
|
bit = 1 << index % 32;
|
|
return (bus_read_4(msix->msix_pba_res, offset) & bit);
|
|
}
|
|
|
|
/*
|
|
* Restore MSI-X registers and table during resume. If MSI-X is
|
|
* enabled then walk the virtual table to restore the actual MSI-X
|
|
* table.
|
|
*/
|
|
static void
|
|
pci_resume_msix(device_t dev)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
struct pcicfg_msix *msix = &dinfo->cfg.msix;
|
|
struct msix_table_entry *mte;
|
|
struct msix_vector *mv;
|
|
int i;
|
|
|
|
if (msix->msix_alloc > 0) {
|
|
/* First, mask all vectors. */
|
|
for (i = 0; i < msix->msix_msgnum; i++)
|
|
pci_mask_msix(dev, i);
|
|
|
|
/* Second, program any messages with at least one handler. */
|
|
for (i = 0; i < msix->msix_table_len; i++) {
|
|
mte = &msix->msix_table[i];
|
|
if (mte->mte_vector == 0 || mte->mte_handlers == 0)
|
|
continue;
|
|
mv = &msix->msix_vectors[mte->mte_vector - 1];
|
|
pci_enable_msix(dev, i, mv->mv_address, mv->mv_data);
|
|
pci_unmask_msix(dev, i);
|
|
}
|
|
}
|
|
pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
|
|
msix->msix_ctrl, 2);
|
|
}
|
|
|
|
/*
|
|
* Attempt to allocate *count MSI-X messages. The actual number allocated is
|
|
* returned in *count. After this function returns, each message will be
|
|
* available to the driver as SYS_RES_IRQ resources starting at rid 1.
|
|
*/
|
|
int
|
|
pci_alloc_msix_method(device_t dev, device_t child, int *count)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
struct resource_list_entry *rle;
|
|
int actual, error, i, irq, max;
|
|
|
|
/* Don't let count == 0 get us into trouble. */
|
|
if (*count == 0)
|
|
return (EINVAL);
|
|
|
|
/* If rid 0 is allocated, then fail. */
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
|
|
if (rle != NULL && rle->res != NULL)
|
|
return (ENXIO);
|
|
|
|
/* Already have allocated messages? */
|
|
if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
|
|
return (ENXIO);
|
|
|
|
/* If MSI is blacklisted for this system, fail. */
|
|
if (pci_msi_blacklisted())
|
|
return (ENXIO);
|
|
|
|
/* MSI-X capability present? */
|
|
if (cfg->msix.msix_location == 0 || !pci_do_msix)
|
|
return (ENODEV);
|
|
|
|
/* Make sure the appropriate BARs are mapped. */
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
|
|
cfg->msix.msix_table_bar);
|
|
if (rle == NULL || rle->res == NULL ||
|
|
!(rman_get_flags(rle->res) & RF_ACTIVE))
|
|
return (ENXIO);
|
|
cfg->msix.msix_table_res = rle->res;
|
|
if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
|
|
cfg->msix.msix_pba_bar);
|
|
if (rle == NULL || rle->res == NULL ||
|
|
!(rman_get_flags(rle->res) & RF_ACTIVE))
|
|
return (ENXIO);
|
|
}
|
|
cfg->msix.msix_pba_res = rle->res;
|
|
|
|
if (bootverbose)
|
|
device_printf(child,
|
|
"attempting to allocate %d MSI-X vectors (%d supported)\n",
|
|
*count, cfg->msix.msix_msgnum);
|
|
max = min(*count, cfg->msix.msix_msgnum);
|
|
for (i = 0; i < max; i++) {
|
|
/* Allocate a message. */
|
|
error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
|
|
if (error)
|
|
break;
|
|
resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
|
|
irq, 1);
|
|
}
|
|
actual = i;
|
|
|
|
if (bootverbose) {
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
|
|
if (actual == 1)
|
|
device_printf(child, "using IRQ %lu for MSI-X\n",
|
|
rle->start);
|
|
else {
|
|
int run;
|
|
|
|
/*
|
|
* Be fancy and try to print contiguous runs of
|
|
* IRQ values as ranges. 'irq' is the previous IRQ.
|
|
* 'run' is true if we are in a range.
|
|
*/
|
|
device_printf(child, "using IRQs %lu", rle->start);
|
|
irq = rle->start;
|
|
run = 0;
|
|
for (i = 1; i < actual; i++) {
|
|
rle = resource_list_find(&dinfo->resources,
|
|
SYS_RES_IRQ, i + 1);
|
|
|
|
/* Still in a run? */
|
|
if (rle->start == irq + 1) {
|
|
run = 1;
|
|
irq++;
|
|
continue;
|
|
}
|
|
|
|
/* Finish previous range. */
|
|
if (run) {
|
|
printf("-%d", irq);
|
|
run = 0;
|
|
}
|
|
|
|
/* Start new range. */
|
|
printf(",%lu", rle->start);
|
|
irq = rle->start;
|
|
}
|
|
|
|
/* Unfinished range? */
|
|
if (run)
|
|
printf("-%d", irq);
|
|
printf(" for MSI-X\n");
|
|
}
|
|
}
|
|
|
|
/* Mask all vectors. */
|
|
for (i = 0; i < cfg->msix.msix_msgnum; i++)
|
|
pci_mask_msix(child, i);
|
|
|
|
/* Allocate and initialize vector data and virtual table. */
|
|
cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual,
|
|
M_DEVBUF, M_WAITOK | M_ZERO);
|
|
cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual,
|
|
M_DEVBUF, M_WAITOK | M_ZERO);
|
|
for (i = 0; i < actual; i++) {
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
|
|
cfg->msix.msix_vectors[i].mv_irq = rle->start;
|
|
cfg->msix.msix_table[i].mte_vector = i + 1;
|
|
}
|
|
|
|
/* Update control register to enable MSI-X. */
|
|
cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
|
|
pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
|
|
cfg->msix.msix_ctrl, 2);
|
|
|
|
/* Update counts of alloc'd messages. */
|
|
cfg->msix.msix_alloc = actual;
|
|
cfg->msix.msix_table_len = actual;
|
|
*count = actual;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* By default, pci_alloc_msix() will assign the allocated IRQ
|
|
* resources consecutively to the first N messages in the MSI-X table.
|
|
* However, device drivers may want to use different layouts if they
|
|
* either receive fewer messages than they asked for, or they wish to
|
|
* populate the MSI-X table sparsely. This method allows the driver
|
|
* to specify what layout it wants. It must be called after a
|
|
* successful pci_alloc_msix() but before any of the associated
|
|
* SYS_RES_IRQ resources are allocated via bus_alloc_resource().
|
|
*
|
|
* The 'vectors' array contains 'count' message vectors. The array
|
|
* maps directly to the MSI-X table in that index 0 in the array
|
|
* specifies the vector for the first message in the MSI-X table, etc.
|
|
* The vector value in each array index can either be 0 to indicate
|
|
* that no vector should be assigned to a message slot, or it can be a
|
|
* number from 1 to N (where N is the count returned from a
|
|
* succcessful call to pci_alloc_msix()) to indicate which message
|
|
* vector (IRQ) to be used for the corresponding message.
|
|
*
|
|
* On successful return, each message with a non-zero vector will have
|
|
* an associated SYS_RES_IRQ whose rid is equal to the array index +
|
|
* 1. Additionally, if any of the IRQs allocated via the previous
|
|
* call to pci_alloc_msix() are not used in the mapping, those IRQs
|
|
* will be freed back to the system automatically.
|
|
*
|
|
* For example, suppose a driver has a MSI-X table with 6 messages and
|
|
* asks for 6 messages, but pci_alloc_msix() only returns a count of
|
|
* 3. Call the three vectors allocated by pci_alloc_msix() A, B, and
|
|
* C. After the call to pci_alloc_msix(), the device will be setup to
|
|
* have an MSI-X table of ABC--- (where - means no vector assigned).
|
|
* If the driver ten passes a vector array of { 1, 0, 1, 2, 0, 2 },
|
|
* then the MSI-X table will look like A-AB-B, and the 'C' vector will
|
|
* be freed back to the system. This device will also have valid
|
|
* SYS_RES_IRQ rids of 1, 3, 4, and 6.
|
|
*
|
|
* In any case, the SYS_RES_IRQ rid X will always map to the message
|
|
* at MSI-X table index X - 1 and will only be valid if a vector is
|
|
* assigned to that table entry.
|
|
*/
|
|
int
|
|
pci_remap_msix_method(device_t dev, device_t child, int count,
|
|
const u_int *vectors)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
struct pcicfg_msix *msix = &dinfo->cfg.msix;
|
|
struct resource_list_entry *rle;
|
|
int i, irq, j, *used;
|
|
|
|
/*
|
|
* Have to have at least one message in the table but the
|
|
* table can't be bigger than the actual MSI-X table in the
|
|
* device.
|
|
*/
|
|
if (count == 0 || count > msix->msix_msgnum)
|
|
return (EINVAL);
|
|
|
|
/* Sanity check the vectors. */
|
|
for (i = 0; i < count; i++)
|
|
if (vectors[i] > msix->msix_alloc)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Make sure there aren't any holes in the vectors to be used.
|
|
* It's a big pain to support it, and it doesn't really make
|
|
* sense anyway. Also, at least one vector must be used.
|
|
*/
|
|
used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK |
|
|
M_ZERO);
|
|
for (i = 0; i < count; i++)
|
|
if (vectors[i] != 0)
|
|
used[vectors[i] - 1] = 1;
|
|
for (i = 0; i < msix->msix_alloc - 1; i++)
|
|
if (used[i] == 0 && used[i + 1] == 1) {
|
|
free(used, M_DEVBUF);
|
|
return (EINVAL);
|
|
}
|
|
if (used[0] != 1) {
|
|
free(used, M_DEVBUF);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Make sure none of the resources are allocated. */
|
|
for (i = 0; i < msix->msix_table_len; i++) {
|
|
if (msix->msix_table[i].mte_vector == 0)
|
|
continue;
|
|
if (msix->msix_table[i].mte_handlers > 0)
|
|
return (EBUSY);
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
|
|
KASSERT(rle != NULL, ("missing resource"));
|
|
if (rle->res != NULL)
|
|
return (EBUSY);
|
|
}
|
|
|
|
/* Free the existing resource list entries. */
|
|
for (i = 0; i < msix->msix_table_len; i++) {
|
|
if (msix->msix_table[i].mte_vector == 0)
|
|
continue;
|
|
resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
|
|
}
|
|
|
|
/*
|
|
* Build the new virtual table keeping track of which vectors are
|
|
* used.
|
|
*/
|
|
free(msix->msix_table, M_DEVBUF);
|
|
msix->msix_table = malloc(sizeof(struct msix_table_entry) * count,
|
|
M_DEVBUF, M_WAITOK | M_ZERO);
|
|
for (i = 0; i < count; i++)
|
|
msix->msix_table[i].mte_vector = vectors[i];
|
|
msix->msix_table_len = count;
|
|
|
|
/* Free any unused IRQs and resize the vectors array if necessary. */
|
|
j = msix->msix_alloc - 1;
|
|
if (used[j] == 0) {
|
|
struct msix_vector *vec;
|
|
|
|
while (used[j] == 0) {
|
|
PCIB_RELEASE_MSIX(device_get_parent(dev), child,
|
|
msix->msix_vectors[j].mv_irq);
|
|
j--;
|
|
}
|
|
vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF,
|
|
M_WAITOK);
|
|
bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
|
|
(j + 1));
|
|
free(msix->msix_vectors, M_DEVBUF);
|
|
msix->msix_vectors = vec;
|
|
msix->msix_alloc = j + 1;
|
|
}
|
|
free(used, M_DEVBUF);
|
|
|
|
/* Map the IRQs onto the rids. */
|
|
for (i = 0; i < count; i++) {
|
|
if (vectors[i] == 0)
|
|
continue;
|
|
irq = msix->msix_vectors[vectors[i]].mv_irq;
|
|
resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
|
|
irq, 1);
|
|
}
|
|
|
|
if (bootverbose) {
|
|
device_printf(child, "Remapped MSI-X IRQs as: ");
|
|
for (i = 0; i < count; i++) {
|
|
if (i != 0)
|
|
printf(", ");
|
|
if (vectors[i] == 0)
|
|
printf("---");
|
|
else
|
|
printf("%d",
|
|
msix->msix_vectors[vectors[i]].mv_irq);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
pci_release_msix(device_t dev, device_t child)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
struct pcicfg_msix *msix = &dinfo->cfg.msix;
|
|
struct resource_list_entry *rle;
|
|
int i;
|
|
|
|
/* Do we have any messages to release? */
|
|
if (msix->msix_alloc == 0)
|
|
return (ENODEV);
|
|
|
|
/* Make sure none of the resources are allocated. */
|
|
for (i = 0; i < msix->msix_table_len; i++) {
|
|
if (msix->msix_table[i].mte_vector == 0)
|
|
continue;
|
|
if (msix->msix_table[i].mte_handlers > 0)
|
|
return (EBUSY);
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
|
|
KASSERT(rle != NULL, ("missing resource"));
|
|
if (rle->res != NULL)
|
|
return (EBUSY);
|
|
}
|
|
|
|
/* Update control register to disable MSI-X. */
|
|
msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
|
|
pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
|
|
msix->msix_ctrl, 2);
|
|
|
|
/* Free the resource list entries. */
|
|
for (i = 0; i < msix->msix_table_len; i++) {
|
|
if (msix->msix_table[i].mte_vector == 0)
|
|
continue;
|
|
resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
|
|
}
|
|
free(msix->msix_table, M_DEVBUF);
|
|
msix->msix_table_len = 0;
|
|
|
|
/* Release the IRQs. */
|
|
for (i = 0; i < msix->msix_alloc; i++)
|
|
PCIB_RELEASE_MSIX(device_get_parent(dev), child,
|
|
msix->msix_vectors[i].mv_irq);
|
|
free(msix->msix_vectors, M_DEVBUF);
|
|
msix->msix_alloc = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return the max supported MSI-X messages this device supports.
|
|
* Basically, assuming the MD code can alloc messages, this function
|
|
* should return the maximum value that pci_alloc_msix() can return.
|
|
* Thus, it is subject to the tunables, etc.
|
|
*/
|
|
int
|
|
pci_msix_count_method(device_t dev, device_t child)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
struct pcicfg_msix *msix = &dinfo->cfg.msix;
|
|
|
|
if (pci_do_msix && msix->msix_location != 0)
|
|
return (msix->msix_msgnum);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Support for MSI message signalled interrupts.
|
|
*/
|
|
void
|
|
pci_enable_msi(device_t dev, uint64_t address, uint16_t data)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
struct pcicfg_msi *msi = &dinfo->cfg.msi;
|
|
|
|
/* Write data and address values. */
|
|
pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
|
|
address & 0xffffffff, 4);
|
|
if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
|
|
pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR_HIGH,
|
|
address >> 32, 4);
|
|
pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA_64BIT,
|
|
data, 2);
|
|
} else
|
|
pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, data,
|
|
2);
|
|
|
|
/* Enable MSI in the control register. */
|
|
msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
|
|
pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
|
|
2);
|
|
}
|
|
|
|
void
|
|
pci_disable_msi(device_t dev)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
struct pcicfg_msi *msi = &dinfo->cfg.msi;
|
|
|
|
/* Disable MSI in the control register. */
|
|
msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
|
|
pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
|
|
2);
|
|
}
|
|
|
|
/*
|
|
* Restore MSI registers during resume. If MSI is enabled then
|
|
* restore the data and address registers in addition to the control
|
|
* register.
|
|
*/
|
|
static void
|
|
pci_resume_msi(device_t dev)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
struct pcicfg_msi *msi = &dinfo->cfg.msi;
|
|
uint64_t address;
|
|
uint16_t data;
|
|
|
|
if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
|
|
address = msi->msi_addr;
|
|
data = msi->msi_data;
|
|
pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
|
|
address & 0xffffffff, 4);
|
|
if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
|
|
pci_write_config(dev, msi->msi_location +
|
|
PCIR_MSI_ADDR_HIGH, address >> 32, 4);
|
|
pci_write_config(dev, msi->msi_location +
|
|
PCIR_MSI_DATA_64BIT, data, 2);
|
|
} else
|
|
pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
|
|
data, 2);
|
|
}
|
|
pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
|
|
2);
|
|
}
|
|
|
|
int
|
|
pci_remap_msi_irq(device_t dev, u_int irq)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
struct resource_list_entry *rle;
|
|
struct msix_table_entry *mte;
|
|
struct msix_vector *mv;
|
|
device_t bus;
|
|
uint64_t addr;
|
|
uint32_t data;
|
|
int error, i, j;
|
|
|
|
bus = device_get_parent(dev);
|
|
|
|
/*
|
|
* Handle MSI first. We try to find this IRQ among our list
|
|
* of MSI IRQs. If we find it, we request updated address and
|
|
* data registers and apply the results.
|
|
*/
|
|
if (cfg->msi.msi_alloc > 0) {
|
|
|
|
/* If we don't have any active handlers, nothing to do. */
|
|
if (cfg->msi.msi_handlers == 0)
|
|
return (0);
|
|
for (i = 0; i < cfg->msi.msi_alloc; i++) {
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
|
|
i + 1);
|
|
if (rle->start == irq) {
|
|
error = PCIB_MAP_MSI(device_get_parent(bus),
|
|
dev, irq, &addr, &data);
|
|
if (error)
|
|
return (error);
|
|
pci_disable_msi(dev);
|
|
dinfo->cfg.msi.msi_addr = addr;
|
|
dinfo->cfg.msi.msi_data = data;
|
|
pci_enable_msi(dev, addr, data);
|
|
return (0);
|
|
}
|
|
}
|
|
return (ENOENT);
|
|
}
|
|
|
|
/*
|
|
* For MSI-X, we check to see if we have this IRQ. If we do,
|
|
* we request the updated mapping info. If that works, we go
|
|
* through all the slots that use this IRQ and update them.
|
|
*/
|
|
if (cfg->msix.msix_alloc > 0) {
|
|
for (i = 0; i < cfg->msix.msix_alloc; i++) {
|
|
mv = &cfg->msix.msix_vectors[i];
|
|
if (mv->mv_irq == irq) {
|
|
error = PCIB_MAP_MSI(device_get_parent(bus),
|
|
dev, irq, &addr, &data);
|
|
if (error)
|
|
return (error);
|
|
mv->mv_address = addr;
|
|
mv->mv_data = data;
|
|
for (j = 0; j < cfg->msix.msix_table_len; j++) {
|
|
mte = &cfg->msix.msix_table[j];
|
|
if (mte->mte_vector != i + 1)
|
|
continue;
|
|
if (mte->mte_handlers == 0)
|
|
continue;
|
|
pci_mask_msix(dev, j);
|
|
pci_enable_msix(dev, j, addr, data);
|
|
pci_unmask_msix(dev, j);
|
|
}
|
|
}
|
|
}
|
|
return (ENOENT);
|
|
}
|
|
|
|
return (ENOENT);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the specified device is blacklisted because MSI
|
|
* doesn't work.
|
|
*/
|
|
int
|
|
pci_msi_device_blacklisted(device_t dev)
|
|
{
|
|
struct pci_quirk *q;
|
|
|
|
if (!pci_honor_msi_blacklist)
|
|
return (0);
|
|
|
|
for (q = &pci_quirks[0]; q->devid; q++) {
|
|
if (q->devid == pci_get_devid(dev) &&
|
|
q->type == PCI_QUIRK_DISABLE_MSI)
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine if MSI is blacklisted globally on this sytem. Currently,
|
|
* we just check for blacklisted chipsets as represented by the
|
|
* host-PCI bridge at device 0:0:0. In the future, it may become
|
|
* necessary to check other system attributes, such as the kenv values
|
|
* that give the motherboard manufacturer and model number.
|
|
*/
|
|
static int
|
|
pci_msi_blacklisted(void)
|
|
{
|
|
device_t dev;
|
|
|
|
if (!pci_honor_msi_blacklist)
|
|
return (0);
|
|
|
|
/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
|
|
if (!(pcie_chipset || pcix_chipset))
|
|
return (1);
|
|
|
|
dev = pci_find_bsf(0, 0, 0);
|
|
if (dev != NULL)
|
|
return (pci_msi_device_blacklisted(dev));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Attempt to allocate *count MSI messages. The actual number allocated is
|
|
* returned in *count. After this function returns, each message will be
|
|
* available to the driver as SYS_RES_IRQ resources starting at a rid 1.
|
|
*/
|
|
int
|
|
pci_alloc_msi_method(device_t dev, device_t child, int *count)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
struct resource_list_entry *rle;
|
|
int actual, error, i, irqs[32];
|
|
uint16_t ctrl;
|
|
|
|
/* Don't let count == 0 get us into trouble. */
|
|
if (*count == 0)
|
|
return (EINVAL);
|
|
|
|
/* If rid 0 is allocated, then fail. */
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
|
|
if (rle != NULL && rle->res != NULL)
|
|
return (ENXIO);
|
|
|
|
/* Already have allocated messages? */
|
|
if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
|
|
return (ENXIO);
|
|
|
|
/* If MSI is blacklisted for this system, fail. */
|
|
if (pci_msi_blacklisted())
|
|
return (ENXIO);
|
|
|
|
/* MSI capability present? */
|
|
if (cfg->msi.msi_location == 0 || !pci_do_msi)
|
|
return (ENODEV);
|
|
|
|
if (bootverbose)
|
|
device_printf(child,
|
|
"attempting to allocate %d MSI vectors (%d supported)\n",
|
|
*count, cfg->msi.msi_msgnum);
|
|
|
|
/* Don't ask for more than the device supports. */
|
|
actual = min(*count, cfg->msi.msi_msgnum);
|
|
|
|
/* Don't ask for more than 32 messages. */
|
|
actual = min(actual, 32);
|
|
|
|
/* MSI requires power of 2 number of messages. */
|
|
if (!powerof2(actual))
|
|
return (EINVAL);
|
|
|
|
for (;;) {
|
|
/* Try to allocate N messages. */
|
|
error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
|
|
cfg->msi.msi_msgnum, irqs);
|
|
if (error == 0)
|
|
break;
|
|
if (actual == 1)
|
|
return (error);
|
|
|
|
/* Try N / 2. */
|
|
actual >>= 1;
|
|
}
|
|
|
|
/*
|
|
* We now have N actual messages mapped onto SYS_RES_IRQ
|
|
* resources in the irqs[] array, so add new resources
|
|
* starting at rid 1.
|
|
*/
|
|
for (i = 0; i < actual; i++)
|
|
resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
|
|
irqs[i], irqs[i], 1);
|
|
|
|
if (bootverbose) {
|
|
if (actual == 1)
|
|
device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
|
|
else {
|
|
int run;
|
|
|
|
/*
|
|
* Be fancy and try to print contiguous runs
|
|
* of IRQ values as ranges. 'run' is true if
|
|
* we are in a range.
|
|
*/
|
|
device_printf(child, "using IRQs %d", irqs[0]);
|
|
run = 0;
|
|
for (i = 1; i < actual; i++) {
|
|
|
|
/* Still in a run? */
|
|
if (irqs[i] == irqs[i - 1] + 1) {
|
|
run = 1;
|
|
continue;
|
|
}
|
|
|
|
/* Finish previous range. */
|
|
if (run) {
|
|
printf("-%d", irqs[i - 1]);
|
|
run = 0;
|
|
}
|
|
|
|
/* Start new range. */
|
|
printf(",%d", irqs[i]);
|
|
}
|
|
|
|
/* Unfinished range? */
|
|
if (run)
|
|
printf("-%d", irqs[actual - 1]);
|
|
printf(" for MSI\n");
|
|
}
|
|
}
|
|
|
|
/* Update control register with actual count. */
|
|
ctrl = cfg->msi.msi_ctrl;
|
|
ctrl &= ~PCIM_MSICTRL_MME_MASK;
|
|
ctrl |= (ffs(actual) - 1) << 4;
|
|
cfg->msi.msi_ctrl = ctrl;
|
|
pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
|
|
|
|
/* Update counts of alloc'd messages. */
|
|
cfg->msi.msi_alloc = actual;
|
|
cfg->msi.msi_handlers = 0;
|
|
*count = actual;
|
|
return (0);
|
|
}
|
|
|
|
/* Release the MSI messages associated with this device. */
|
|
int
|
|
pci_release_msi_method(device_t dev, device_t child)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
struct pcicfg_msi *msi = &dinfo->cfg.msi;
|
|
struct resource_list_entry *rle;
|
|
int error, i, irqs[32];
|
|
|
|
/* Try MSI-X first. */
|
|
error = pci_release_msix(dev, child);
|
|
if (error != ENODEV)
|
|
return (error);
|
|
|
|
/* Do we have any messages to release? */
|
|
if (msi->msi_alloc == 0)
|
|
return (ENODEV);
|
|
KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
|
|
|
|
/* Make sure none of the resources are allocated. */
|
|
if (msi->msi_handlers > 0)
|
|
return (EBUSY);
|
|
for (i = 0; i < msi->msi_alloc; i++) {
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
|
|
KASSERT(rle != NULL, ("missing MSI resource"));
|
|
if (rle->res != NULL)
|
|
return (EBUSY);
|
|
irqs[i] = rle->start;
|
|
}
|
|
|
|
/* Update control register with 0 count. */
|
|
KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
|
|
("%s: MSI still enabled", __func__));
|
|
msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
|
|
pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
|
|
msi->msi_ctrl, 2);
|
|
|
|
/* Release the messages. */
|
|
PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
|
|
for (i = 0; i < msi->msi_alloc; i++)
|
|
resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
|
|
|
|
/* Update alloc count. */
|
|
msi->msi_alloc = 0;
|
|
msi->msi_addr = 0;
|
|
msi->msi_data = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return the max supported MSI messages this device supports.
|
|
* Basically, assuming the MD code can alloc messages, this function
|
|
* should return the maximum value that pci_alloc_msi() can return.
|
|
* Thus, it is subject to the tunables, etc.
|
|
*/
|
|
int
|
|
pci_msi_count_method(device_t dev, device_t child)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
struct pcicfg_msi *msi = &dinfo->cfg.msi;
|
|
|
|
if (pci_do_msi && msi->msi_location != 0)
|
|
return (msi->msi_msgnum);
|
|
return (0);
|
|
}
|
|
|
|
/* free pcicfgregs structure and all depending data structures */
|
|
|
|
int
|
|
pci_freecfg(struct pci_devinfo *dinfo)
|
|
{
|
|
struct devlist *devlist_head;
|
|
int i;
|
|
|
|
devlist_head = &pci_devq;
|
|
|
|
if (dinfo->cfg.vpd.vpd_reg) {
|
|
free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF);
|
|
for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++)
|
|
free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF);
|
|
free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF);
|
|
for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++)
|
|
free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF);
|
|
free(dinfo->cfg.vpd.vpd_w, M_DEVBUF);
|
|
}
|
|
STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
|
|
free(dinfo, M_DEVBUF);
|
|
|
|
/* increment the generation count */
|
|
pci_generation++;
|
|
|
|
/* we're losing one device */
|
|
pci_numdevs--;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* PCI power manangement
|
|
*/
|
|
int
|
|
pci_set_powerstate_method(device_t dev, device_t child, int state)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
uint16_t status;
|
|
int result, oldstate, highest, delay;
|
|
|
|
if (cfg->pp.pp_cap == 0)
|
|
return (EOPNOTSUPP);
|
|
|
|
/*
|
|
* Optimize a no state change request away. While it would be OK to
|
|
* write to the hardware in theory, some devices have shown odd
|
|
* behavior when going from D3 -> D3.
|
|
*/
|
|
oldstate = pci_get_powerstate(child);
|
|
if (oldstate == state)
|
|
return (0);
|
|
|
|
/*
|
|
* The PCI power management specification states that after a state
|
|
* transition between PCI power states, system software must
|
|
* guarantee a minimal delay before the function accesses the device.
|
|
* Compute the worst case delay that we need to guarantee before we
|
|
* access the device. Many devices will be responsive much more
|
|
* quickly than this delay, but there are some that don't respond
|
|
* instantly to state changes. Transitions to/from D3 state require
|
|
* 10ms, while D2 requires 200us, and D0/1 require none. The delay
|
|
* is done below with DELAY rather than a sleeper function because
|
|
* this function can be called from contexts where we cannot sleep.
|
|
*/
|
|
highest = (oldstate > state) ? oldstate : state;
|
|
if (highest == PCI_POWERSTATE_D3)
|
|
delay = 10000;
|
|
else if (highest == PCI_POWERSTATE_D2)
|
|
delay = 200;
|
|
else
|
|
delay = 0;
|
|
status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2)
|
|
& ~PCIM_PSTAT_DMASK;
|
|
result = 0;
|
|
switch (state) {
|
|
case PCI_POWERSTATE_D0:
|
|
status |= PCIM_PSTAT_D0;
|
|
break;
|
|
case PCI_POWERSTATE_D1:
|
|
if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
|
|
return (EOPNOTSUPP);
|
|
status |= PCIM_PSTAT_D1;
|
|
break;
|
|
case PCI_POWERSTATE_D2:
|
|
if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
|
|
return (EOPNOTSUPP);
|
|
status |= PCIM_PSTAT_D2;
|
|
break;
|
|
case PCI_POWERSTATE_D3:
|
|
status |= PCIM_PSTAT_D3;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (bootverbose)
|
|
printf(
|
|
"pci%d:%d:%d:%d: Transition from D%d to D%d\n",
|
|
dinfo->cfg.domain, dinfo->cfg.bus, dinfo->cfg.slot,
|
|
dinfo->cfg.func, oldstate, state);
|
|
|
|
PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2);
|
|
if (delay)
|
|
DELAY(delay);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_get_powerstate_method(device_t dev, device_t child)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
uint16_t status;
|
|
int result;
|
|
|
|
if (cfg->pp.pp_cap != 0) {
|
|
status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2);
|
|
switch (status & PCIM_PSTAT_DMASK) {
|
|
case PCIM_PSTAT_D0:
|
|
result = PCI_POWERSTATE_D0;
|
|
break;
|
|
case PCIM_PSTAT_D1:
|
|
result = PCI_POWERSTATE_D1;
|
|
break;
|
|
case PCIM_PSTAT_D2:
|
|
result = PCI_POWERSTATE_D2;
|
|
break;
|
|
case PCIM_PSTAT_D3:
|
|
result = PCI_POWERSTATE_D3;
|
|
break;
|
|
default:
|
|
result = PCI_POWERSTATE_UNKNOWN;
|
|
break;
|
|
}
|
|
} else {
|
|
/* No support, device is always at D0 */
|
|
result = PCI_POWERSTATE_D0;
|
|
}
|
|
return (result);
|
|
}
|
|
|
|
/*
|
|
* Some convenience functions for PCI device drivers.
|
|
*/
|
|
|
|
static __inline void
|
|
pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
|
|
{
|
|
uint16_t command;
|
|
|
|
command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
|
|
command |= bit;
|
|
PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
|
|
}
|
|
|
|
static __inline void
|
|
pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
|
|
{
|
|
uint16_t command;
|
|
|
|
command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
|
|
command &= ~bit;
|
|
PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
|
|
}
|
|
|
|
int
|
|
pci_enable_busmaster_method(device_t dev, device_t child)
|
|
{
|
|
pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_disable_busmaster_method(device_t dev, device_t child)
|
|
{
|
|
pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_enable_io_method(device_t dev, device_t child, int space)
|
|
{
|
|
uint16_t command;
|
|
uint16_t bit;
|
|
char *error;
|
|
|
|
bit = 0;
|
|
error = NULL;
|
|
|
|
switch(space) {
|
|
case SYS_RES_IOPORT:
|
|
bit = PCIM_CMD_PORTEN;
|
|
error = "port";
|
|
break;
|
|
case SYS_RES_MEMORY:
|
|
bit = PCIM_CMD_MEMEN;
|
|
error = "memory";
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
pci_set_command_bit(dev, child, bit);
|
|
/* Some devices seem to need a brief stall here, what do to? */
|
|
command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
|
|
if (command & bit)
|
|
return (0);
|
|
device_printf(child, "failed to enable %s mapping!\n", error);
|
|
return (ENXIO);
|
|
}
|
|
|
|
int
|
|
pci_disable_io_method(device_t dev, device_t child, int space)
|
|
{
|
|
uint16_t command;
|
|
uint16_t bit;
|
|
char *error;
|
|
|
|
bit = 0;
|
|
error = NULL;
|
|
|
|
switch(space) {
|
|
case SYS_RES_IOPORT:
|
|
bit = PCIM_CMD_PORTEN;
|
|
error = "port";
|
|
break;
|
|
case SYS_RES_MEMORY:
|
|
bit = PCIM_CMD_MEMEN;
|
|
error = "memory";
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
pci_clear_command_bit(dev, child, bit);
|
|
command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
|
|
if (command & bit) {
|
|
device_printf(child, "failed to disable %s mapping!\n", error);
|
|
return (ENXIO);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* New style pci driver. Parent device is either a pci-host-bridge or a
|
|
* pci-pci-bridge. Both kinds are represented by instances of pcib.
|
|
*/
|
|
|
|
void
|
|
pci_print_verbose(struct pci_devinfo *dinfo)
|
|
{
|
|
|
|
if (bootverbose) {
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
|
|
printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
|
|
cfg->vendor, cfg->device, cfg->revid);
|
|
printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
|
|
cfg->domain, cfg->bus, cfg->slot, cfg->func);
|
|
printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
|
|
cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
|
|
cfg->mfdev);
|
|
printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
|
|
cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
|
|
printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
|
|
cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
|
|
cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
|
|
if (cfg->intpin > 0)
|
|
printf("\tintpin=%c, irq=%d\n",
|
|
cfg->intpin +'a' -1, cfg->intline);
|
|
if (cfg->pp.pp_cap) {
|
|
uint16_t status;
|
|
|
|
status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2);
|
|
printf("\tpowerspec %d supports D0%s%s D3 current D%d\n",
|
|
cfg->pp.pp_cap & PCIM_PCAP_SPEC,
|
|
cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
|
|
cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
|
|
status & PCIM_PSTAT_DMASK);
|
|
}
|
|
if (cfg->msi.msi_location) {
|
|
int ctrl;
|
|
|
|
ctrl = cfg->msi.msi_ctrl;
|
|
printf("\tMSI supports %d message%s%s%s\n",
|
|
cfg->msi.msi_msgnum,
|
|
(cfg->msi.msi_msgnum == 1) ? "" : "s",
|
|
(ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
|
|
(ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
|
|
}
|
|
if (cfg->msix.msix_location) {
|
|
printf("\tMSI-X supports %d message%s ",
|
|
cfg->msix.msix_msgnum,
|
|
(cfg->msix.msix_msgnum == 1) ? "" : "s");
|
|
if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
|
|
printf("in map 0x%x\n",
|
|
cfg->msix.msix_table_bar);
|
|
else
|
|
printf("in maps 0x%x and 0x%x\n",
|
|
cfg->msix.msix_table_bar,
|
|
cfg->msix.msix_pba_bar);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
pci_porten(device_t pcib, int b, int s, int f)
|
|
{
|
|
return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
|
|
& PCIM_CMD_PORTEN) != 0;
|
|
}
|
|
|
|
static int
|
|
pci_memen(device_t pcib, int b, int s, int f)
|
|
{
|
|
return (PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2)
|
|
& PCIM_CMD_MEMEN) != 0;
|
|
}
|
|
|
|
/*
|
|
* Add a resource based on a pci map register. Return 1 if the map
|
|
* register is a 32bit map register or 2 if it is a 64bit register.
|
|
*/
|
|
static int
|
|
pci_add_map(device_t pcib, device_t bus, device_t dev,
|
|
int b, int s, int f, int reg, struct resource_list *rl, int force,
|
|
int prefetch)
|
|
{
|
|
uint32_t map;
|
|
pci_addr_t base;
|
|
pci_addr_t start, end, count;
|
|
uint8_t ln2size;
|
|
uint8_t ln2range;
|
|
uint32_t testval;
|
|
uint16_t cmd;
|
|
int type;
|
|
int barlen;
|
|
struct resource *res;
|
|
|
|
map = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
|
|
PCIB_WRITE_CONFIG(pcib, b, s, f, reg, 0xffffffff, 4);
|
|
testval = PCIB_READ_CONFIG(pcib, b, s, f, reg, 4);
|
|
PCIB_WRITE_CONFIG(pcib, b, s, f, reg, map, 4);
|
|
|
|
if (PCI_BAR_MEM(map))
|
|
type = SYS_RES_MEMORY;
|
|
else
|
|
type = SYS_RES_IOPORT;
|
|
ln2size = pci_mapsize(testval);
|
|
ln2range = pci_maprange(testval);
|
|
base = pci_mapbase(map);
|
|
barlen = ln2range == 64 ? 2 : 1;
|
|
|
|
/*
|
|
* For I/O registers, if bottom bit is set, and the next bit up
|
|
* isn't clear, we know we have a BAR that doesn't conform to the
|
|
* spec, so ignore it. Also, sanity check the size of the data
|
|
* areas to the type of memory involved. Memory must be at least
|
|
* 16 bytes in size, while I/O ranges must be at least 4.
|
|
*/
|
|
if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
|
|
return (barlen);
|
|
if ((type == SYS_RES_MEMORY && ln2size < 4) ||
|
|
(type == SYS_RES_IOPORT && ln2size < 2))
|
|
return (barlen);
|
|
|
|
if (ln2range == 64)
|
|
/* Read the other half of a 64bit map register */
|
|
base |= (uint64_t) PCIB_READ_CONFIG(pcib, b, s, f, reg + 4, 4) << 32;
|
|
if (bootverbose) {
|
|
printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
|
|
reg, pci_maptype(map), ln2range, (uintmax_t)base, ln2size);
|
|
if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
|
|
printf(", port disabled\n");
|
|
else if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
|
|
printf(", memory disabled\n");
|
|
else
|
|
printf(", enabled\n");
|
|
}
|
|
|
|
/*
|
|
* If base is 0, then we have problems. It is best to ignore
|
|
* such entries for the moment. These will be allocated later if
|
|
* the driver specifically requests them. However, some
|
|
* removable busses look better when all resources are allocated,
|
|
* so allow '0' to be overriden.
|
|
*
|
|
* Similarly treat maps whose values is the same as the test value
|
|
* read back. These maps have had all f's written to them by the
|
|
* BIOS in an attempt to disable the resources.
|
|
*/
|
|
if (!force && (base == 0 || map == testval))
|
|
return (barlen);
|
|
if ((u_long)base != base) {
|
|
device_printf(bus,
|
|
"pci%d:%d:%d:%d bar %#x too many address bits",
|
|
pci_get_domain(dev), b, s, f, reg);
|
|
return (barlen);
|
|
}
|
|
|
|
/*
|
|
* This code theoretically does the right thing, but has
|
|
* undesirable side effects in some cases where peripherals
|
|
* respond oddly to having these bits enabled. Let the user
|
|
* be able to turn them off (since pci_enable_io_modes is 1 by
|
|
* default).
|
|
*/
|
|
if (pci_enable_io_modes) {
|
|
/* Turn on resources that have been left off by a lazy BIOS */
|
|
if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f)) {
|
|
cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
|
|
cmd |= PCIM_CMD_PORTEN;
|
|
PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
|
|
}
|
|
if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f)) {
|
|
cmd = PCIB_READ_CONFIG(pcib, b, s, f, PCIR_COMMAND, 2);
|
|
cmd |= PCIM_CMD_MEMEN;
|
|
PCIB_WRITE_CONFIG(pcib, b, s, f, PCIR_COMMAND, cmd, 2);
|
|
}
|
|
} else {
|
|
if (type == SYS_RES_IOPORT && !pci_porten(pcib, b, s, f))
|
|
return (barlen);
|
|
if (type == SYS_RES_MEMORY && !pci_memen(pcib, b, s, f))
|
|
return (barlen);
|
|
}
|
|
|
|
count = 1 << ln2size;
|
|
if (base == 0 || base == pci_mapbase(testval)) {
|
|
start = 0; /* Let the parent deside */
|
|
end = ~0ULL;
|
|
} else {
|
|
start = base;
|
|
end = base + (1 << ln2size) - 1;
|
|
}
|
|
resource_list_add(rl, type, reg, start, end, count);
|
|
|
|
/*
|
|
* Not quite sure what to do on failure of allocating the resource
|
|
* since I can postulate several right answers.
|
|
*/
|
|
res = resource_list_alloc(rl, bus, dev, type, ®, start, end, count,
|
|
prefetch ? RF_PREFETCHABLE : 0);
|
|
if (res == NULL)
|
|
return (barlen);
|
|
start = rman_get_start(res);
|
|
if ((u_long)start != start) {
|
|
/* Wait a minute! this platform can't do this address. */
|
|
device_printf(bus,
|
|
"pci%d:%d.%d.%x bar %#x start %#jx, too many bits.",
|
|
pci_get_domain(dev), b, s, f, reg, (uintmax_t)start);
|
|
resource_list_release(rl, bus, dev, type, reg, res);
|
|
return (barlen);
|
|
}
|
|
pci_write_config(dev, reg, start, 4);
|
|
if (ln2range == 64)
|
|
pci_write_config(dev, reg + 4, start >> 32, 4);
|
|
return (barlen);
|
|
}
|
|
|
|
/*
|
|
* For ATA devices we need to decide early what addressing mode to use.
|
|
* Legacy demands that the primary and secondary ATA ports sits on the
|
|
* same addresses that old ISA hardware did. This dictates that we use
|
|
* those addresses and ignore the BAR's if we cannot set PCI native
|
|
* addressing mode.
|
|
*/
|
|
static void
|
|
pci_ata_maps(device_t pcib, device_t bus, device_t dev, int b,
|
|
int s, int f, struct resource_list *rl, int force, uint32_t prefetchmask)
|
|
{
|
|
int rid, type, progif;
|
|
#if 0
|
|
/* if this device supports PCI native addressing use it */
|
|
progif = pci_read_config(dev, PCIR_PROGIF, 1);
|
|
if ((progif & 0x8a) == 0x8a) {
|
|
if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
|
|
pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
|
|
printf("Trying ATA native PCI addressing mode\n");
|
|
pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
|
|
}
|
|
}
|
|
#endif
|
|
progif = pci_read_config(dev, PCIR_PROGIF, 1);
|
|
type = SYS_RES_IOPORT;
|
|
if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
|
|
pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(0), rl, force,
|
|
prefetchmask & (1 << 0));
|
|
pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(1), rl, force,
|
|
prefetchmask & (1 << 1));
|
|
} else {
|
|
rid = PCIR_BAR(0);
|
|
resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
|
|
resource_list_alloc(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8,
|
|
0);
|
|
rid = PCIR_BAR(1);
|
|
resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
|
|
resource_list_alloc(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1,
|
|
0);
|
|
}
|
|
if (progif & PCIP_STORAGE_IDE_MODESEC) {
|
|
pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(2), rl, force,
|
|
prefetchmask & (1 << 2));
|
|
pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(3), rl, force,
|
|
prefetchmask & (1 << 3));
|
|
} else {
|
|
rid = PCIR_BAR(2);
|
|
resource_list_add(rl, type, rid, 0x170, 0x177, 8);
|
|
resource_list_alloc(rl, bus, dev, type, &rid, 0x170, 0x177, 8,
|
|
0);
|
|
rid = PCIR_BAR(3);
|
|
resource_list_add(rl, type, rid, 0x376, 0x376, 1);
|
|
resource_list_alloc(rl, bus, dev, type, &rid, 0x376, 0x376, 1,
|
|
0);
|
|
}
|
|
pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(4), rl, force,
|
|
prefetchmask & (1 << 4));
|
|
pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(5), rl, force,
|
|
prefetchmask & (1 << 5));
|
|
}
|
|
|
|
static void
|
|
pci_assign_interrupt(device_t bus, device_t dev, int force_route)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
char tunable_name[64];
|
|
int irq;
|
|
|
|
/* Has to have an intpin to have an interrupt. */
|
|
if (cfg->intpin == 0)
|
|
return;
|
|
|
|
/* Let the user override the IRQ with a tunable. */
|
|
irq = PCI_INVALID_IRQ;
|
|
snprintf(tunable_name, sizeof(tunable_name),
|
|
"hw.pci%d.%d.%d.INT%c.irq",
|
|
cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
|
|
if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
|
|
irq = PCI_INVALID_IRQ;
|
|
|
|
/*
|
|
* If we didn't get an IRQ via the tunable, then we either use the
|
|
* IRQ value in the intline register or we ask the bus to route an
|
|
* interrupt for us. If force_route is true, then we only use the
|
|
* value in the intline register if the bus was unable to assign an
|
|
* IRQ.
|
|
*/
|
|
if (!PCI_INTERRUPT_VALID(irq)) {
|
|
if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
|
|
irq = PCI_ASSIGN_INTERRUPT(bus, dev);
|
|
if (!PCI_INTERRUPT_VALID(irq))
|
|
irq = cfg->intline;
|
|
}
|
|
|
|
/* If after all that we don't have an IRQ, just bail. */
|
|
if (!PCI_INTERRUPT_VALID(irq))
|
|
return;
|
|
|
|
/* Update the config register if it changed. */
|
|
if (irq != cfg->intline) {
|
|
cfg->intline = irq;
|
|
pci_write_config(dev, PCIR_INTLINE, irq, 1);
|
|
}
|
|
|
|
/* Add this IRQ as rid 0 interrupt resource. */
|
|
resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
|
|
}
|
|
|
|
void
|
|
pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
|
|
{
|
|
device_t pcib;
|
|
struct pci_devinfo *dinfo = device_get_ivars(dev);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
struct resource_list *rl = &dinfo->resources;
|
|
struct pci_quirk *q;
|
|
int b, i, f, s;
|
|
|
|
pcib = device_get_parent(bus);
|
|
|
|
b = cfg->bus;
|
|
s = cfg->slot;
|
|
f = cfg->func;
|
|
|
|
/* ATA devices needs special map treatment */
|
|
if ((pci_get_class(dev) == PCIC_STORAGE) &&
|
|
(pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
|
|
((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
|
|
(!pci_read_config(dev, PCIR_BAR(0), 4) &&
|
|
!pci_read_config(dev, PCIR_BAR(2), 4))) )
|
|
pci_ata_maps(pcib, bus, dev, b, s, f, rl, force, prefetchmask);
|
|
else
|
|
for (i = 0; i < cfg->nummaps;)
|
|
i += pci_add_map(pcib, bus, dev, b, s, f, PCIR_BAR(i),
|
|
rl, force, prefetchmask & (1 << i));
|
|
|
|
/*
|
|
* Add additional, quirked resources.
|
|
*/
|
|
for (q = &pci_quirks[0]; q->devid; q++) {
|
|
if (q->devid == ((cfg->device << 16) | cfg->vendor)
|
|
&& q->type == PCI_QUIRK_MAP_REG)
|
|
pci_add_map(pcib, bus, dev, b, s, f, q->arg1, rl,
|
|
force, 0);
|
|
}
|
|
|
|
if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
|
|
#ifdef __PCI_REROUTE_INTERRUPT
|
|
/*
|
|
* Try to re-route interrupts. Sometimes the BIOS or
|
|
* firmware may leave bogus values in these registers.
|
|
* If the re-route fails, then just stick with what we
|
|
* have.
|
|
*/
|
|
pci_assign_interrupt(bus, dev, 1);
|
|
#else
|
|
pci_assign_interrupt(bus, dev, 0);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
pci_add_children(device_t dev, int domain, int busno, size_t dinfo_size)
|
|
{
|
|
#define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
|
|
device_t pcib = device_get_parent(dev);
|
|
struct pci_devinfo *dinfo;
|
|
int maxslots;
|
|
int s, f, pcifunchigh;
|
|
uint8_t hdrtype;
|
|
|
|
KASSERT(dinfo_size >= sizeof(struct pci_devinfo),
|
|
("dinfo_size too small"));
|
|
maxslots = PCIB_MAXSLOTS(pcib);
|
|
for (s = 0; s <= maxslots; s++) {
|
|
pcifunchigh = 0;
|
|
f = 0;
|
|
DELAY(1);
|
|
hdrtype = REG(PCIR_HDRTYPE, 1);
|
|
if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
|
|
continue;
|
|
if (hdrtype & PCIM_MFDEV)
|
|
pcifunchigh = PCI_FUNCMAX;
|
|
for (f = 0; f <= pcifunchigh; f++) {
|
|
dinfo = pci_read_device(pcib, domain, busno, s, f,
|
|
dinfo_size);
|
|
if (dinfo != NULL) {
|
|
pci_add_child(dev, dinfo);
|
|
}
|
|
}
|
|
}
|
|
#undef REG
|
|
}
|
|
|
|
void
|
|
pci_add_child(device_t bus, struct pci_devinfo *dinfo)
|
|
{
|
|
dinfo->cfg.dev = device_add_child(bus, NULL, -1);
|
|
device_set_ivars(dinfo->cfg.dev, dinfo);
|
|
resource_list_init(&dinfo->resources);
|
|
pci_cfg_save(dinfo->cfg.dev, dinfo, 0);
|
|
pci_cfg_restore(dinfo->cfg.dev, dinfo);
|
|
pci_print_verbose(dinfo);
|
|
pci_add_resources(bus, dinfo->cfg.dev, 0, 0);
|
|
}
|
|
|
|
static int
|
|
pci_probe(device_t dev)
|
|
{
|
|
|
|
device_set_desc(dev, "PCI bus");
|
|
|
|
/* Allow other subclasses to override this driver. */
|
|
return (-1000);
|
|
}
|
|
|
|
static int
|
|
pci_attach(device_t dev)
|
|
{
|
|
int busno, domain;
|
|
|
|
/*
|
|
* Since there can be multiple independantly numbered PCI
|
|
* busses on systems with multiple PCI domains, we can't use
|
|
* the unit number to decide which bus we are probing. We ask
|
|
* the parent pcib what our domain and bus numbers are.
|
|
*/
|
|
domain = pcib_get_domain(dev);
|
|
busno = pcib_get_bus(dev);
|
|
if (bootverbose)
|
|
device_printf(dev, "domain=%d, physical bus=%d\n",
|
|
domain, busno);
|
|
|
|
pci_add_children(dev, domain, busno, sizeof(struct pci_devinfo));
|
|
|
|
return (bus_generic_attach(dev));
|
|
}
|
|
|
|
int
|
|
pci_suspend(device_t dev)
|
|
{
|
|
int dstate, error, i, numdevs;
|
|
device_t acpi_dev, child, *devlist;
|
|
struct pci_devinfo *dinfo;
|
|
|
|
/*
|
|
* Save the PCI configuration space for each child and set the
|
|
* device in the appropriate power state for this sleep state.
|
|
*/
|
|
acpi_dev = NULL;
|
|
if (pci_do_power_resume)
|
|
acpi_dev = devclass_get_device(devclass_find("acpi"), 0);
|
|
device_get_children(dev, &devlist, &numdevs);
|
|
for (i = 0; i < numdevs; i++) {
|
|
child = devlist[i];
|
|
dinfo = (struct pci_devinfo *) device_get_ivars(child);
|
|
pci_cfg_save(child, dinfo, 0);
|
|
}
|
|
|
|
/* Suspend devices before potentially powering them down. */
|
|
error = bus_generic_suspend(dev);
|
|
if (error) {
|
|
free(devlist, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Always set the device to D3. If ACPI suggests a different
|
|
* power state, use it instead. If ACPI is not present, the
|
|
* firmware is responsible for managing device power. Skip
|
|
* children who aren't attached since they are powered down
|
|
* separately. Only manage type 0 devices for now.
|
|
*/
|
|
for (i = 0; acpi_dev && i < numdevs; i++) {
|
|
child = devlist[i];
|
|
dinfo = (struct pci_devinfo *) device_get_ivars(child);
|
|
if (device_is_attached(child) && dinfo->cfg.hdrtype == 0) {
|
|
dstate = PCI_POWERSTATE_D3;
|
|
ACPI_PWR_FOR_SLEEP(acpi_dev, child, &dstate);
|
|
pci_set_powerstate(child, dstate);
|
|
}
|
|
}
|
|
free(devlist, M_TEMP);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_resume(device_t dev)
|
|
{
|
|
int i, numdevs;
|
|
device_t acpi_dev, child, *devlist;
|
|
struct pci_devinfo *dinfo;
|
|
|
|
/*
|
|
* Set each child to D0 and restore its PCI configuration space.
|
|
*/
|
|
acpi_dev = NULL;
|
|
if (pci_do_power_resume)
|
|
acpi_dev = devclass_get_device(devclass_find("acpi"), 0);
|
|
device_get_children(dev, &devlist, &numdevs);
|
|
for (i = 0; i < numdevs; i++) {
|
|
/*
|
|
* Notify ACPI we're going to D0 but ignore the result. If
|
|
* ACPI is not present, the firmware is responsible for
|
|
* managing device power. Only manage type 0 devices for now.
|
|
*/
|
|
child = devlist[i];
|
|
dinfo = (struct pci_devinfo *) device_get_ivars(child);
|
|
if (acpi_dev && device_is_attached(child) &&
|
|
dinfo->cfg.hdrtype == 0) {
|
|
ACPI_PWR_FOR_SLEEP(acpi_dev, child, NULL);
|
|
pci_set_powerstate(child, PCI_POWERSTATE_D0);
|
|
}
|
|
|
|
/* Now the device is powered up, restore its config space. */
|
|
pci_cfg_restore(child, dinfo);
|
|
}
|
|
free(devlist, M_TEMP);
|
|
return (bus_generic_resume(dev));
|
|
}
|
|
|
|
static void
|
|
pci_load_vendor_data(void)
|
|
{
|
|
caddr_t vendordata, info;
|
|
|
|
if ((vendordata = preload_search_by_type("pci_vendor_data")) != NULL) {
|
|
info = preload_search_info(vendordata, MODINFO_ADDR);
|
|
pci_vendordata = *(char **)info;
|
|
info = preload_search_info(vendordata, MODINFO_SIZE);
|
|
pci_vendordata_size = *(size_t *)info;
|
|
/* terminate the database */
|
|
pci_vendordata[pci_vendordata_size] = '\n';
|
|
}
|
|
}
|
|
|
|
void
|
|
pci_driver_added(device_t dev, driver_t *driver)
|
|
{
|
|
int numdevs;
|
|
device_t *devlist;
|
|
device_t child;
|
|
struct pci_devinfo *dinfo;
|
|
int i;
|
|
|
|
if (bootverbose)
|
|
device_printf(dev, "driver added\n");
|
|
DEVICE_IDENTIFY(driver, dev);
|
|
device_get_children(dev, &devlist, &numdevs);
|
|
for (i = 0; i < numdevs; i++) {
|
|
child = devlist[i];
|
|
if (device_get_state(child) != DS_NOTPRESENT)
|
|
continue;
|
|
dinfo = device_get_ivars(child);
|
|
pci_print_verbose(dinfo);
|
|
if (bootverbose)
|
|
printf("pci%d:%d:%d:%d: reprobing on driver added\n",
|
|
dinfo->cfg.domain, dinfo->cfg.bus, dinfo->cfg.slot,
|
|
dinfo->cfg.func);
|
|
pci_cfg_restore(child, dinfo);
|
|
if (device_probe_and_attach(child) != 0)
|
|
pci_cfg_save(child, dinfo, 1);
|
|
}
|
|
free(devlist, M_TEMP);
|
|
}
|
|
|
|
int
|
|
pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
|
|
driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
|
|
{
|
|
struct pci_devinfo *dinfo;
|
|
struct msix_table_entry *mte;
|
|
struct msix_vector *mv;
|
|
uint64_t addr;
|
|
uint32_t data;
|
|
void *cookie;
|
|
int error, rid;
|
|
|
|
error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
|
|
arg, &cookie);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* If this is a direct child, check to see if the interrupt is
|
|
* MSI or MSI-X. If so, ask our parent to map the MSI and give
|
|
* us the address and data register values. If we fail for some
|
|
* reason, teardown the interrupt handler.
|
|
*/
|
|
rid = rman_get_rid(irq);
|
|
if (device_get_parent(child) == dev && rid > 0) {
|
|
dinfo = device_get_ivars(child);
|
|
if (dinfo->cfg.msi.msi_alloc > 0) {
|
|
if (dinfo->cfg.msi.msi_addr == 0) {
|
|
KASSERT(dinfo->cfg.msi.msi_handlers == 0,
|
|
("MSI has handlers, but vectors not mapped"));
|
|
error = PCIB_MAP_MSI(device_get_parent(dev),
|
|
child, rman_get_start(irq), &addr, &data);
|
|
if (error)
|
|
goto bad;
|
|
dinfo->cfg.msi.msi_addr = addr;
|
|
dinfo->cfg.msi.msi_data = data;
|
|
pci_enable_msi(child, addr, data);
|
|
}
|
|
dinfo->cfg.msi.msi_handlers++;
|
|
} else {
|
|
KASSERT(dinfo->cfg.msix.msix_alloc > 0,
|
|
("No MSI or MSI-X interrupts allocated"));
|
|
KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
|
|
("MSI-X index too high"));
|
|
mte = &dinfo->cfg.msix.msix_table[rid - 1];
|
|
KASSERT(mte->mte_vector != 0, ("no message vector"));
|
|
mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
|
|
KASSERT(mv->mv_irq == rman_get_start(irq),
|
|
("IRQ mismatch"));
|
|
if (mv->mv_address == 0) {
|
|
KASSERT(mte->mte_handlers == 0,
|
|
("MSI-X table entry has handlers, but vector not mapped"));
|
|
error = PCIB_MAP_MSI(device_get_parent(dev),
|
|
child, rman_get_start(irq), &addr, &data);
|
|
if (error)
|
|
goto bad;
|
|
mv->mv_address = addr;
|
|
mv->mv_data = data;
|
|
}
|
|
if (mte->mte_handlers == 0) {
|
|
pci_enable_msix(child, rid - 1, mv->mv_address,
|
|
mv->mv_data);
|
|
pci_unmask_msix(child, rid - 1);
|
|
}
|
|
mte->mte_handlers++;
|
|
}
|
|
bad:
|
|
if (error) {
|
|
(void)bus_generic_teardown_intr(dev, child, irq,
|
|
cookie);
|
|
return (error);
|
|
}
|
|
}
|
|
*cookiep = cookie;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
|
|
void *cookie)
|
|
{
|
|
struct msix_table_entry *mte;
|
|
struct resource_list_entry *rle;
|
|
struct pci_devinfo *dinfo;
|
|
int error, rid;
|
|
|
|
/*
|
|
* If this is a direct child, check to see if the interrupt is
|
|
* MSI or MSI-X. If so, decrement the appropriate handlers
|
|
* count and mask the MSI-X message, or disable MSI messages
|
|
* if the count drops to 0.
|
|
*/
|
|
if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
|
|
return (EINVAL);
|
|
rid = rman_get_rid(irq);
|
|
if (device_get_parent(child) == dev && rid > 0) {
|
|
dinfo = device_get_ivars(child);
|
|
rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
|
|
if (rle->res != irq)
|
|
return (EINVAL);
|
|
if (dinfo->cfg.msi.msi_alloc > 0) {
|
|
KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
|
|
("MSI-X index too high"));
|
|
if (dinfo->cfg.msi.msi_handlers == 0)
|
|
return (EINVAL);
|
|
dinfo->cfg.msi.msi_handlers--;
|
|
if (dinfo->cfg.msi.msi_handlers == 0)
|
|
pci_disable_msi(child);
|
|
} else {
|
|
KASSERT(dinfo->cfg.msix.msix_alloc > 0,
|
|
("No MSI or MSI-X interrupts allocated"));
|
|
KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
|
|
("MSI-X index too high"));
|
|
mte = &dinfo->cfg.msix.msix_table[rid - 1];
|
|
if (mte->mte_handlers == 0)
|
|
return (EINVAL);
|
|
mte->mte_handlers--;
|
|
if (mte->mte_handlers == 0)
|
|
pci_mask_msix(child, rid - 1);
|
|
}
|
|
}
|
|
error = bus_generic_teardown_intr(dev, child, irq, cookie);
|
|
if (device_get_parent(child) == dev && rid > 0)
|
|
KASSERT(error == 0,
|
|
("%s: generic teardown failed for MSI/MSI-X", __func__));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
pci_print_child(device_t dev, device_t child)
|
|
{
|
|
struct pci_devinfo *dinfo;
|
|
struct resource_list *rl;
|
|
int retval = 0;
|
|
|
|
dinfo = device_get_ivars(child);
|
|
rl = &dinfo->resources;
|
|
|
|
retval += bus_print_child_header(dev, child);
|
|
|
|
retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#lx");
|
|
retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#lx");
|
|
retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%ld");
|
|
if (device_get_flags(dev))
|
|
retval += printf(" flags %#x", device_get_flags(dev));
|
|
|
|
retval += printf(" at device %d.%d", pci_get_slot(child),
|
|
pci_get_function(child));
|
|
|
|
retval += bus_print_child_footer(dev, child);
|
|
|
|
return (retval);
|
|
}
|
|
|
|
static struct
|
|
{
|
|
int class;
|
|
int subclass;
|
|
char *desc;
|
|
} pci_nomatch_tab[] = {
|
|
{PCIC_OLD, -1, "old"},
|
|
{PCIC_OLD, PCIS_OLD_NONVGA, "non-VGA display device"},
|
|
{PCIC_OLD, PCIS_OLD_VGA, "VGA-compatible display device"},
|
|
{PCIC_STORAGE, -1, "mass storage"},
|
|
{PCIC_STORAGE, PCIS_STORAGE_SCSI, "SCSI"},
|
|
{PCIC_STORAGE, PCIS_STORAGE_IDE, "ATA"},
|
|
{PCIC_STORAGE, PCIS_STORAGE_FLOPPY, "floppy disk"},
|
|
{PCIC_STORAGE, PCIS_STORAGE_IPI, "IPI"},
|
|
{PCIC_STORAGE, PCIS_STORAGE_RAID, "RAID"},
|
|
{PCIC_NETWORK, -1, "network"},
|
|
{PCIC_NETWORK, PCIS_NETWORK_ETHERNET, "ethernet"},
|
|
{PCIC_NETWORK, PCIS_NETWORK_TOKENRING, "token ring"},
|
|
{PCIC_NETWORK, PCIS_NETWORK_FDDI, "fddi"},
|
|
{PCIC_NETWORK, PCIS_NETWORK_ATM, "ATM"},
|
|
{PCIC_NETWORK, PCIS_NETWORK_ISDN, "ISDN"},
|
|
{PCIC_DISPLAY, -1, "display"},
|
|
{PCIC_DISPLAY, PCIS_DISPLAY_VGA, "VGA"},
|
|
{PCIC_DISPLAY, PCIS_DISPLAY_XGA, "XGA"},
|
|
{PCIC_DISPLAY, PCIS_DISPLAY_3D, "3D"},
|
|
{PCIC_MULTIMEDIA, -1, "multimedia"},
|
|
{PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, "video"},
|
|
{PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, "audio"},
|
|
{PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, "telephony"},
|
|
{PCIC_MEMORY, -1, "memory"},
|
|
{PCIC_MEMORY, PCIS_MEMORY_RAM, "RAM"},
|
|
{PCIC_MEMORY, PCIS_MEMORY_FLASH, "flash"},
|
|
{PCIC_BRIDGE, -1, "bridge"},
|
|
{PCIC_BRIDGE, PCIS_BRIDGE_HOST, "HOST-PCI"},
|
|
{PCIC_BRIDGE, PCIS_BRIDGE_ISA, "PCI-ISA"},
|
|
{PCIC_BRIDGE, PCIS_BRIDGE_EISA, "PCI-EISA"},
|
|
{PCIC_BRIDGE, PCIS_BRIDGE_MCA, "PCI-MCA"},
|
|
{PCIC_BRIDGE, PCIS_BRIDGE_PCI, "PCI-PCI"},
|
|
{PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, "PCI-PCMCIA"},
|
|
{PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, "PCI-NuBus"},
|
|
{PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, "PCI-CardBus"},
|
|
{PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, "PCI-RACEway"},
|
|
{PCIC_SIMPLECOMM, -1, "simple comms"},
|
|
{PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, "UART"}, /* could detect 16550 */
|
|
{PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, "parallel port"},
|
|
{PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, "multiport serial"},
|
|
{PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, "generic modem"},
|
|
{PCIC_BASEPERIPH, -1, "base peripheral"},
|
|
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, "interrupt controller"},
|
|
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, "DMA controller"},
|
|
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, "timer"},
|
|
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, "realtime clock"},
|
|
{PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, "PCI hot-plug controller"},
|
|
{PCIC_INPUTDEV, -1, "input device"},
|
|
{PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, "keyboard"},
|
|
{PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,"digitizer"},
|
|
{PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, "mouse"},
|
|
{PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, "scanner"},
|
|
{PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, "gameport"},
|
|
{PCIC_DOCKING, -1, "docking station"},
|
|
{PCIC_PROCESSOR, -1, "processor"},
|
|
{PCIC_SERIALBUS, -1, "serial bus"},
|
|
{PCIC_SERIALBUS, PCIS_SERIALBUS_FW, "FireWire"},
|
|
{PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, "AccessBus"},
|
|
{PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, "SSA"},
|
|
{PCIC_SERIALBUS, PCIS_SERIALBUS_USB, "USB"},
|
|
{PCIC_SERIALBUS, PCIS_SERIALBUS_FC, "Fibre Channel"},
|
|
{PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, "SMBus"},
|
|
{PCIC_WIRELESS, -1, "wireless controller"},
|
|
{PCIC_WIRELESS, PCIS_WIRELESS_IRDA, "iRDA"},
|
|
{PCIC_WIRELESS, PCIS_WIRELESS_IR, "IR"},
|
|
{PCIC_WIRELESS, PCIS_WIRELESS_RF, "RF"},
|
|
{PCIC_INTELLIIO, -1, "intelligent I/O controller"},
|
|
{PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, "I2O"},
|
|
{PCIC_SATCOM, -1, "satellite communication"},
|
|
{PCIC_SATCOM, PCIS_SATCOM_TV, "sat TV"},
|
|
{PCIC_SATCOM, PCIS_SATCOM_AUDIO, "sat audio"},
|
|
{PCIC_SATCOM, PCIS_SATCOM_VOICE, "sat voice"},
|
|
{PCIC_SATCOM, PCIS_SATCOM_DATA, "sat data"},
|
|
{PCIC_CRYPTO, -1, "encrypt/decrypt"},
|
|
{PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, "network/computer crypto"},
|
|
{PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, "entertainment crypto"},
|
|
{PCIC_DASP, -1, "dasp"},
|
|
{PCIC_DASP, PCIS_DASP_DPIO, "DPIO module"},
|
|
{0, 0, NULL}
|
|
};
|
|
|
|
void
|
|
pci_probe_nomatch(device_t dev, device_t child)
|
|
{
|
|
int i;
|
|
char *cp, *scp, *device;
|
|
|
|
/*
|
|
* Look for a listing for this device in a loaded device database.
|
|
*/
|
|
if ((device = pci_describe_device(child)) != NULL) {
|
|
device_printf(dev, "<%s>", device);
|
|
free(device, M_DEVBUF);
|
|
} else {
|
|
/*
|
|
* Scan the class/subclass descriptions for a general
|
|
* description.
|
|
*/
|
|
cp = "unknown";
|
|
scp = NULL;
|
|
for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
|
|
if (pci_nomatch_tab[i].class == pci_get_class(child)) {
|
|
if (pci_nomatch_tab[i].subclass == -1) {
|
|
cp = pci_nomatch_tab[i].desc;
|
|
} else if (pci_nomatch_tab[i].subclass ==
|
|
pci_get_subclass(child)) {
|
|
scp = pci_nomatch_tab[i].desc;
|
|
}
|
|
}
|
|
}
|
|
device_printf(dev, "<%s%s%s>",
|
|
cp ? cp : "",
|
|
((cp != NULL) && (scp != NULL)) ? ", " : "",
|
|
scp ? scp : "");
|
|
}
|
|
printf(" at device %d.%d (no driver attached)\n",
|
|
pci_get_slot(child), pci_get_function(child));
|
|
pci_cfg_save(child, (struct pci_devinfo *)device_get_ivars(child), 1);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Parse the PCI device database, if loaded, and return a pointer to a
|
|
* description of the device.
|
|
*
|
|
* The database is flat text formatted as follows:
|
|
*
|
|
* Any line not in a valid format is ignored.
|
|
* Lines are terminated with newline '\n' characters.
|
|
*
|
|
* A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
|
|
* the vendor name.
|
|
*
|
|
* A DEVICE line is entered immediately below the corresponding VENDOR ID.
|
|
* - devices cannot be listed without a corresponding VENDOR line.
|
|
* A DEVICE line consists of a TAB, the 4 digit (hex) device code,
|
|
* another TAB, then the device name.
|
|
*/
|
|
|
|
/*
|
|
* Assuming (ptr) points to the beginning of a line in the database,
|
|
* return the vendor or device and description of the next entry.
|
|
* The value of (vendor) or (device) inappropriate for the entry type
|
|
* is set to -1. Returns nonzero at the end of the database.
|
|
*
|
|
* Note that this is slightly unrobust in the face of corrupt data;
|
|
* we attempt to safeguard against this by spamming the end of the
|
|
* database with a newline when we initialise.
|
|
*/
|
|
static int
|
|
pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
|
|
{
|
|
char *cp = *ptr;
|
|
int left;
|
|
|
|
*device = -1;
|
|
*vendor = -1;
|
|
**desc = '\0';
|
|
for (;;) {
|
|
left = pci_vendordata_size - (cp - pci_vendordata);
|
|
if (left <= 0) {
|
|
*ptr = cp;
|
|
return(1);
|
|
}
|
|
|
|
/* vendor entry? */
|
|
if (*cp != '\t' &&
|
|
sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
|
|
break;
|
|
/* device entry? */
|
|
if (*cp == '\t' &&
|
|
sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
|
|
break;
|
|
|
|
/* skip to next line */
|
|
while (*cp != '\n' && left > 0) {
|
|
cp++;
|
|
left--;
|
|
}
|
|
if (*cp == '\n') {
|
|
cp++;
|
|
left--;
|
|
}
|
|
}
|
|
/* skip to next line */
|
|
while (*cp != '\n' && left > 0) {
|
|
cp++;
|
|
left--;
|
|
}
|
|
if (*cp == '\n' && left > 0)
|
|
cp++;
|
|
*ptr = cp;
|
|
return(0);
|
|
}
|
|
|
|
static char *
|
|
pci_describe_device(device_t dev)
|
|
{
|
|
int vendor, device;
|
|
char *desc, *vp, *dp, *line;
|
|
|
|
desc = vp = dp = NULL;
|
|
|
|
/*
|
|
* If we have no vendor data, we can't do anything.
|
|
*/
|
|
if (pci_vendordata == NULL)
|
|
goto out;
|
|
|
|
/*
|
|
* Scan the vendor data looking for this device
|
|
*/
|
|
line = pci_vendordata;
|
|
if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
|
|
goto out;
|
|
for (;;) {
|
|
if (pci_describe_parse_line(&line, &vendor, &device, &vp))
|
|
goto out;
|
|
if (vendor == pci_get_vendor(dev))
|
|
break;
|
|
}
|
|
if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
|
|
goto out;
|
|
for (;;) {
|
|
if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
|
|
*dp = 0;
|
|
break;
|
|
}
|
|
if (vendor != -1) {
|
|
*dp = 0;
|
|
break;
|
|
}
|
|
if (device == pci_get_device(dev))
|
|
break;
|
|
}
|
|
if (dp[0] == '\0')
|
|
snprintf(dp, 80, "0x%x", pci_get_device(dev));
|
|
if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
|
|
NULL)
|
|
sprintf(desc, "%s, %s", vp, dp);
|
|
out:
|
|
if (vp != NULL)
|
|
free(vp, M_DEVBUF);
|
|
if (dp != NULL)
|
|
free(dp, M_DEVBUF);
|
|
return(desc);
|
|
}
|
|
|
|
int
|
|
pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
|
|
{
|
|
struct pci_devinfo *dinfo;
|
|
pcicfgregs *cfg;
|
|
|
|
dinfo = device_get_ivars(child);
|
|
cfg = &dinfo->cfg;
|
|
|
|
switch (which) {
|
|
case PCI_IVAR_ETHADDR:
|
|
/*
|
|
* The generic accessor doesn't deal with failure, so
|
|
* we set the return value, then return an error.
|
|
*/
|
|
*((uint8_t **) result) = NULL;
|
|
return (EINVAL);
|
|
case PCI_IVAR_SUBVENDOR:
|
|
*result = cfg->subvendor;
|
|
break;
|
|
case PCI_IVAR_SUBDEVICE:
|
|
*result = cfg->subdevice;
|
|
break;
|
|
case PCI_IVAR_VENDOR:
|
|
*result = cfg->vendor;
|
|
break;
|
|
case PCI_IVAR_DEVICE:
|
|
*result = cfg->device;
|
|
break;
|
|
case PCI_IVAR_DEVID:
|
|
*result = (cfg->device << 16) | cfg->vendor;
|
|
break;
|
|
case PCI_IVAR_CLASS:
|
|
*result = cfg->baseclass;
|
|
break;
|
|
case PCI_IVAR_SUBCLASS:
|
|
*result = cfg->subclass;
|
|
break;
|
|
case PCI_IVAR_PROGIF:
|
|
*result = cfg->progif;
|
|
break;
|
|
case PCI_IVAR_REVID:
|
|
*result = cfg->revid;
|
|
break;
|
|
case PCI_IVAR_INTPIN:
|
|
*result = cfg->intpin;
|
|
break;
|
|
case PCI_IVAR_IRQ:
|
|
*result = cfg->intline;
|
|
break;
|
|
case PCI_IVAR_DOMAIN:
|
|
*result = cfg->domain;
|
|
break;
|
|
case PCI_IVAR_BUS:
|
|
*result = cfg->bus;
|
|
break;
|
|
case PCI_IVAR_SLOT:
|
|
*result = cfg->slot;
|
|
break;
|
|
case PCI_IVAR_FUNCTION:
|
|
*result = cfg->func;
|
|
break;
|
|
case PCI_IVAR_CMDREG:
|
|
*result = cfg->cmdreg;
|
|
break;
|
|
case PCI_IVAR_CACHELNSZ:
|
|
*result = cfg->cachelnsz;
|
|
break;
|
|
case PCI_IVAR_MINGNT:
|
|
*result = cfg->mingnt;
|
|
break;
|
|
case PCI_IVAR_MAXLAT:
|
|
*result = cfg->maxlat;
|
|
break;
|
|
case PCI_IVAR_LATTIMER:
|
|
*result = cfg->lattimer;
|
|
break;
|
|
default:
|
|
return (ENOENT);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
|
|
{
|
|
struct pci_devinfo *dinfo;
|
|
|
|
dinfo = device_get_ivars(child);
|
|
|
|
switch (which) {
|
|
case PCI_IVAR_INTPIN:
|
|
dinfo->cfg.intpin = value;
|
|
return (0);
|
|
case PCI_IVAR_ETHADDR:
|
|
case PCI_IVAR_SUBVENDOR:
|
|
case PCI_IVAR_SUBDEVICE:
|
|
case PCI_IVAR_VENDOR:
|
|
case PCI_IVAR_DEVICE:
|
|
case PCI_IVAR_DEVID:
|
|
case PCI_IVAR_CLASS:
|
|
case PCI_IVAR_SUBCLASS:
|
|
case PCI_IVAR_PROGIF:
|
|
case PCI_IVAR_REVID:
|
|
case PCI_IVAR_IRQ:
|
|
case PCI_IVAR_DOMAIN:
|
|
case PCI_IVAR_BUS:
|
|
case PCI_IVAR_SLOT:
|
|
case PCI_IVAR_FUNCTION:
|
|
return (EINVAL); /* disallow for now */
|
|
|
|
default:
|
|
return (ENOENT);
|
|
}
|
|
}
|
|
|
|
|
|
#include "opt_ddb.h"
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#include <sys/cons.h>
|
|
|
|
/*
|
|
* List resources based on pci map registers, used for within ddb
|
|
*/
|
|
|
|
DB_SHOW_COMMAND(pciregs, db_pci_dump)
|
|
{
|
|
struct pci_devinfo *dinfo;
|
|
struct devlist *devlist_head;
|
|
struct pci_conf *p;
|
|
const char *name;
|
|
int i, error, none_count;
|
|
|
|
none_count = 0;
|
|
/* get the head of the device queue */
|
|
devlist_head = &pci_devq;
|
|
|
|
/*
|
|
* Go through the list of devices and print out devices
|
|
*/
|
|
for (error = 0, i = 0,
|
|
dinfo = STAILQ_FIRST(devlist_head);
|
|
(dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
|
|
dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
|
|
|
|
/* Populate pd_name and pd_unit */
|
|
name = NULL;
|
|
if (dinfo->cfg.dev)
|
|
name = device_get_name(dinfo->cfg.dev);
|
|
|
|
p = &dinfo->conf;
|
|
db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
|
|
"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
|
|
(name && *name) ? name : "none",
|
|
(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
|
|
none_count++,
|
|
p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
|
|
p->pc_sel.pc_func, (p->pc_class << 16) |
|
|
(p->pc_subclass << 8) | p->pc_progif,
|
|
(p->pc_subdevice << 16) | p->pc_subvendor,
|
|
(p->pc_device << 16) | p->pc_vendor,
|
|
p->pc_revid, p->pc_hdr);
|
|
}
|
|
}
|
|
#endif /* DDB */
|
|
|
|
static struct resource *
|
|
pci_alloc_map(device_t dev, device_t child, int type, int *rid,
|
|
u_long start, u_long end, u_long count, u_int flags)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
struct resource_list *rl = &dinfo->resources;
|
|
struct resource_list_entry *rle;
|
|
struct resource *res;
|
|
pci_addr_t map, testval;
|
|
int mapsize;
|
|
|
|
/*
|
|
* Weed out the bogons, and figure out how large the BAR/map
|
|
* is. Bars that read back 0 here are bogus and unimplemented.
|
|
* Note: atapci in legacy mode are special and handled elsewhere
|
|
* in the code. If you have a atapci device in legacy mode and
|
|
* it fails here, that other code is broken.
|
|
*/
|
|
res = NULL;
|
|
map = pci_read_config(child, *rid, 4);
|
|
pci_write_config(child, *rid, 0xffffffff, 4);
|
|
testval = pci_read_config(child, *rid, 4);
|
|
if (pci_maprange(testval) == 64)
|
|
map |= (pci_addr_t)pci_read_config(child, *rid + 4, 4) << 32;
|
|
if (pci_mapbase(testval) == 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Restore the original value of the BAR. We may have reprogrammed
|
|
* the BAR of the low-level console device and when booting verbose,
|
|
* we need the console device addressable.
|
|
*/
|
|
pci_write_config(child, *rid, map, 4);
|
|
|
|
if (PCI_BAR_MEM(testval)) {
|
|
if (type != SYS_RES_MEMORY) {
|
|
if (bootverbose)
|
|
device_printf(dev,
|
|
"child %s requested type %d for rid %#x,"
|
|
" but the BAR says it is an memio\n",
|
|
device_get_nameunit(child), type, *rid);
|
|
goto out;
|
|
}
|
|
} else {
|
|
if (type != SYS_RES_IOPORT) {
|
|
if (bootverbose)
|
|
device_printf(dev,
|
|
"child %s requested type %d for rid %#x,"
|
|
" but the BAR says it is an ioport\n",
|
|
device_get_nameunit(child), type, *rid);
|
|
goto out;
|
|
}
|
|
}
|
|
/*
|
|
* For real BARs, we need to override the size that
|
|
* the driver requests, because that's what the BAR
|
|
* actually uses and we would otherwise have a
|
|
* situation where we might allocate the excess to
|
|
* another driver, which won't work.
|
|
*/
|
|
mapsize = pci_mapsize(testval);
|
|
count = 1UL << mapsize;
|
|
if (RF_ALIGNMENT(flags) < mapsize)
|
|
flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
|
|
|
|
/*
|
|
* Allocate enough resource, and then write back the
|
|
* appropriate bar for that resource.
|
|
*/
|
|
res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid,
|
|
start, end, count, flags);
|
|
if (res == NULL) {
|
|
device_printf(child,
|
|
"%#lx bytes of rid %#x res %d failed (%#lx, %#lx).\n",
|
|
count, *rid, type, start, end);
|
|
goto out;
|
|
}
|
|
resource_list_add(rl, type, *rid, start, end, count);
|
|
rle = resource_list_find(rl, type, *rid);
|
|
if (rle == NULL)
|
|
panic("pci_alloc_map: unexpectedly can't find resource.");
|
|
rle->res = res;
|
|
rle->start = rman_get_start(res);
|
|
rle->end = rman_get_end(res);
|
|
rle->count = count;
|
|
if (bootverbose)
|
|
device_printf(child,
|
|
"Lazy allocation of %#lx bytes rid %#x type %d at %#lx\n",
|
|
count, *rid, type, rman_get_start(res));
|
|
map = rman_get_start(res);
|
|
out:;
|
|
pci_write_config(child, *rid, map, 4);
|
|
if (pci_maprange(testval) == 64)
|
|
pci_write_config(child, *rid + 4, map >> 32, 4);
|
|
return (res);
|
|
}
|
|
|
|
|
|
struct resource *
|
|
pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
|
|
u_long start, u_long end, u_long count, u_int flags)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
struct resource_list *rl = &dinfo->resources;
|
|
struct resource_list_entry *rle;
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
|
|
/*
|
|
* Perform lazy resource allocation
|
|
*/
|
|
if (device_get_parent(child) == dev) {
|
|
switch (type) {
|
|
case SYS_RES_IRQ:
|
|
/*
|
|
* Can't alloc legacy interrupt once MSI messages
|
|
* have been allocated.
|
|
*/
|
|
if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
|
|
cfg->msix.msix_alloc > 0))
|
|
return (NULL);
|
|
/*
|
|
* If the child device doesn't have an
|
|
* interrupt routed and is deserving of an
|
|
* interrupt, try to assign it one.
|
|
*/
|
|
if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
|
|
(cfg->intpin != 0))
|
|
pci_assign_interrupt(dev, child, 0);
|
|
break;
|
|
case SYS_RES_IOPORT:
|
|
case SYS_RES_MEMORY:
|
|
if (*rid < PCIR_BAR(cfg->nummaps)) {
|
|
/*
|
|
* Enable the I/O mode. We should
|
|
* also be assigning resources too
|
|
* when none are present. The
|
|
* resource_list_alloc kind of sorta does
|
|
* this...
|
|
*/
|
|
if (PCI_ENABLE_IO(dev, child, type))
|
|
return (NULL);
|
|
}
|
|
rle = resource_list_find(rl, type, *rid);
|
|
if (rle == NULL)
|
|
return (pci_alloc_map(dev, child, type, rid,
|
|
start, end, count, flags));
|
|
break;
|
|
}
|
|
/*
|
|
* If we've already allocated the resource, then
|
|
* return it now. But first we may need to activate
|
|
* it, since we don't allocate the resource as active
|
|
* above. Normally this would be done down in the
|
|
* nexus, but since we short-circuit that path we have
|
|
* to do its job here. Not sure if we should free the
|
|
* resource if it fails to activate.
|
|
*/
|
|
rle = resource_list_find(rl, type, *rid);
|
|
if (rle != NULL && rle->res != NULL) {
|
|
if (bootverbose)
|
|
device_printf(child,
|
|
"Reserved %#lx bytes for rid %#x type %d at %#lx\n",
|
|
rman_get_size(rle->res), *rid, type,
|
|
rman_get_start(rle->res));
|
|
if ((flags & RF_ACTIVE) &&
|
|
bus_generic_activate_resource(dev, child, type,
|
|
*rid, rle->res) != 0)
|
|
return (NULL);
|
|
return (rle->res);
|
|
}
|
|
}
|
|
return (resource_list_alloc(rl, dev, child, type, rid,
|
|
start, end, count, flags));
|
|
}
|
|
|
|
void
|
|
pci_delete_resource(device_t dev, device_t child, int type, int rid)
|
|
{
|
|
struct pci_devinfo *dinfo;
|
|
struct resource_list *rl;
|
|
struct resource_list_entry *rle;
|
|
|
|
if (device_get_parent(child) != dev)
|
|
return;
|
|
|
|
dinfo = device_get_ivars(child);
|
|
rl = &dinfo->resources;
|
|
rle = resource_list_find(rl, type, rid);
|
|
if (rle) {
|
|
if (rle->res) {
|
|
if (rman_get_device(rle->res) != dev ||
|
|
rman_get_flags(rle->res) & RF_ACTIVE) {
|
|
device_printf(dev, "delete_resource: "
|
|
"Resource still owned by child, oops. "
|
|
"(type=%d, rid=%d, addr=%lx)\n",
|
|
rle->type, rle->rid,
|
|
rman_get_start(rle->res));
|
|
return;
|
|
}
|
|
bus_release_resource(dev, type, rid, rle->res);
|
|
}
|
|
resource_list_delete(rl, type, rid);
|
|
}
|
|
/*
|
|
* Why do we turn off the PCI configuration BAR when we delete a
|
|
* resource? -- imp
|
|
*/
|
|
pci_write_config(child, rid, 0, 4);
|
|
BUS_DELETE_RESOURCE(device_get_parent(dev), child, type, rid);
|
|
}
|
|
|
|
struct resource_list *
|
|
pci_get_resource_list (device_t dev, device_t child)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
|
|
return (&dinfo->resources);
|
|
}
|
|
|
|
uint32_t
|
|
pci_read_config_method(device_t dev, device_t child, int reg, int width)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
|
|
return (PCIB_READ_CONFIG(device_get_parent(dev),
|
|
cfg->bus, cfg->slot, cfg->func, reg, width));
|
|
}
|
|
|
|
void
|
|
pci_write_config_method(device_t dev, device_t child, int reg,
|
|
uint32_t val, int width)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
|
|
PCIB_WRITE_CONFIG(device_get_parent(dev),
|
|
cfg->bus, cfg->slot, cfg->func, reg, val, width);
|
|
}
|
|
|
|
int
|
|
pci_child_location_str_method(device_t dev, device_t child, char *buf,
|
|
size_t buflen)
|
|
{
|
|
|
|
snprintf(buf, buflen, "slot=%d function=%d", pci_get_slot(child),
|
|
pci_get_function(child));
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
|
|
size_t buflen)
|
|
{
|
|
struct pci_devinfo *dinfo;
|
|
pcicfgregs *cfg;
|
|
|
|
dinfo = device_get_ivars(child);
|
|
cfg = &dinfo->cfg;
|
|
snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
|
|
"subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
|
|
cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
|
|
cfg->progif);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
pci_assign_interrupt_method(device_t dev, device_t child)
|
|
{
|
|
struct pci_devinfo *dinfo = device_get_ivars(child);
|
|
pcicfgregs *cfg = &dinfo->cfg;
|
|
|
|
return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
|
|
cfg->intpin));
|
|
}
|
|
|
|
static int
|
|
pci_modevent(module_t mod, int what, void *arg)
|
|
{
|
|
static struct cdev *pci_cdev;
|
|
|
|
switch (what) {
|
|
case MOD_LOAD:
|
|
STAILQ_INIT(&pci_devq);
|
|
pci_generation = 0;
|
|
pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
|
|
"pci");
|
|
pci_load_vendor_data();
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
destroy_dev(pci_cdev);
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Only do header type 0 devices. Type 1 devices are bridges,
|
|
* which we know need special treatment. Type 2 devices are
|
|
* cardbus bridges which also require special treatment.
|
|
* Other types are unknown, and we err on the side of safety
|
|
* by ignoring them.
|
|
*/
|
|
if (dinfo->cfg.hdrtype != 0)
|
|
return;
|
|
|
|
/*
|
|
* Restore the device to full power mode. We must do this
|
|
* before we restore the registers because moving from D3 to
|
|
* D0 will cause the chip's BARs and some other registers to
|
|
* be reset to some unknown power on reset values. Cut down
|
|
* the noise on boot by doing nothing if we are already in
|
|
* state D0.
|
|
*/
|
|
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
|
|
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
|
|
}
|
|
for (i = 0; i < dinfo->cfg.nummaps; i++)
|
|
pci_write_config(dev, PCIR_BAR(i), dinfo->cfg.bar[i], 4);
|
|
pci_write_config(dev, PCIR_BIOS, dinfo->cfg.bios, 4);
|
|
pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
|
|
pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
|
|
pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
|
|
pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
|
|
pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
|
|
pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
|
|
pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
|
|
pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
|
|
pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
|
|
|
|
/* Restore MSI and MSI-X configurations if they are present. */
|
|
if (dinfo->cfg.msi.msi_location != 0)
|
|
pci_resume_msi(dev);
|
|
if (dinfo->cfg.msix.msix_location != 0)
|
|
pci_resume_msix(dev);
|
|
}
|
|
|
|
void
|
|
pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
|
|
{
|
|
int i;
|
|
uint32_t cls;
|
|
int ps;
|
|
|
|
/*
|
|
* Only do header type 0 devices. Type 1 devices are bridges, which
|
|
* we know need special treatment. Type 2 devices are cardbus bridges
|
|
* which also require special treatment. Other types are unknown, and
|
|
* we err on the side of safety by ignoring them. Powering down
|
|
* bridges should not be undertaken lightly.
|
|
*/
|
|
if (dinfo->cfg.hdrtype != 0)
|
|
return;
|
|
for (i = 0; i < dinfo->cfg.nummaps; i++)
|
|
dinfo->cfg.bar[i] = pci_read_config(dev, PCIR_BAR(i), 4);
|
|
dinfo->cfg.bios = pci_read_config(dev, PCIR_BIOS, 4);
|
|
|
|
/*
|
|
* Some drivers apparently write to these registers w/o updating our
|
|
* cached copy. No harm happens if we update the copy, so do so here
|
|
* so we can restore them. The COMMAND register is modified by the
|
|
* bus w/o updating the cache. This should represent the normally
|
|
* writable portion of the 'defined' part of type 0 headers. In
|
|
* theory we also need to save/restore the PCI capability structures
|
|
* we know about, but apart from power we don't know any that are
|
|
* writable.
|
|
*/
|
|
dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
|
|
dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
|
|
dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
|
|
dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
|
|
dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
|
|
dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
|
|
dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
|
|
dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
|
|
dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
|
|
dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
|
|
dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
|
|
dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
|
|
dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
|
|
dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
|
|
|
|
/*
|
|
* don't set the state for display devices, base peripherals and
|
|
* memory devices since bad things happen when they are powered down.
|
|
* We should (a) have drivers that can easily detach and (b) use
|
|
* generic drivers for these devices so that some device actually
|
|
* attaches. We need to make sure that when we implement (a) we don't
|
|
* power the device down on a reattach.
|
|
*/
|
|
cls = pci_get_class(dev);
|
|
if (!setstate)
|
|
return;
|
|
switch (pci_do_power_nodriver)
|
|
{
|
|
case 0: /* NO powerdown at all */
|
|
return;
|
|
case 1: /* Conservative about what to power down */
|
|
if (cls == PCIC_STORAGE)
|
|
return;
|
|
/*FALLTHROUGH*/
|
|
case 2: /* Agressive about what to power down */
|
|
if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
|
|
cls == PCIC_BASEPERIPH)
|
|
return;
|
|
/*FALLTHROUGH*/
|
|
case 3: /* Power down everything */
|
|
break;
|
|
}
|
|
/*
|
|
* PCI spec says we can only go into D3 state from D0 state.
|
|
* Transition from D[12] into D0 before going to D3 state.
|
|
*/
|
|
ps = pci_get_powerstate(dev);
|
|
if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
|
|
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
|
|
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
|
|
pci_set_powerstate(dev, PCI_POWERSTATE_D3);
|
|
}
|