freebsd-nq/contrib/bind9/doc/draft/draft-ietf-dnsext-dhcid-rr-09.txt
2005-12-29 04:22:58 +00:00

563 lines
20 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

DNSEXT M. Stapp
Internet-Draft Cisco Systems, Inc.
Expires: August 13, 2005 T. Lemon
A. Gustafsson
Nominum, Inc.
February 9, 2005
A DNS RR for Encoding DHCP Information (DHCID RR)
<draft-ietf-dnsext-dhcid-rr-09.txt>
Status of this Memo
This document is an Internet-Draft and is subject to all provisions
of Section 3 of RFC 3667. By submitting this Internet-Draft, each
author represents that any applicable patent or other IPR claims of
which he or she is aware have been or will be disclosed, and any of
which he or she become aware will be disclosed, in accordance with
RFC 3668.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on August 13, 2005.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
It is possible for multiple DHCP clients to attempt to update the
same DNS FQDN as they obtain DHCP leases. Whether the DHCP server or
the clients themselves perform the DNS updates, conflicts can arise.
To resolve such conflicts, "Resolution of DNS Name Conflicts" [1]
Stapp, et al. Expires August 13, 2005 [Page 1]
Internet-Draft The DHCID RR February 2005
proposes storing client identifiers in the DNS to unambiguously
associate domain names with the DHCP clients to which they refer.
This memo defines a distinct RR type for this purpose for use by DHCP
clients and servers, the "DHCID" RR.
Table of Contents
1. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. The DHCID RR . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1 DHCID RDATA format . . . . . . . . . . . . . . . . . . . . 4
3.2 DHCID Presentation Format . . . . . . . . . . . . . . . . 4
3.3 The DHCID RR Type Codes . . . . . . . . . . . . . . . . . 4
3.4 Computation of the RDATA . . . . . . . . . . . . . . . . . 4
3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . 6
3.5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . 6
4. Use of the DHCID RR . . . . . . . . . . . . . . . . . . . . . 6
5. Updater Behavior . . . . . . . . . . . . . . . . . . . . . . . 6
6. Security Considerations . . . . . . . . . . . . . . . . . . . 7
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 7
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 7
9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9.1 Normative References . . . . . . . . . . . . . . . . . . . 8
9.2 Informative References . . . . . . . . . . . . . . . . . . 8
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 9
Intellectual Property and Copyright Statements . . . . . . . . 10
Stapp, et al. Expires August 13, 2005 [Page 2]
Internet-Draft The DHCID RR February 2005
1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [2].
2. Introduction
A set of procedures to allow DHCP [7] clients and servers to
automatically update the DNS (RFC 1034 [3], RFC 1035 [4]) is proposed
in "Resolution of DNS Name Conflicts" [1].
Conflicts can arise if multiple DHCP clients wish to use the same DNS
name. To resolve such conflicts, "Resolution of DNS Name Conflicts"
[1] proposes storing client identifiers in the DNS to unambiguously
associate domain names with the DHCP clients using them. In the
interest of clarity, it is preferable for this DHCP information to
use a distinct RR type. This memo defines a distinct RR for this
purpose for use by DHCP clients or servers, the "DHCID" RR.
In order to avoid exposing potentially sensitive identifying
information, the data stored is the result of a one-way MD5 [5] hash
computation. The hash includes information from the DHCP client's
REQUEST message as well as the domain name itself, so that the data
stored in the DHCID RR will be dependent on both the client
identification used in the DHCP protocol interaction and the domain
name. This means that the DHCID RDATA will vary if a single client
is associated over time with more than one name. This makes it
difficult to 'track' a client as it is associated with various domain
names.
The MD5 hash algorithm has been shown to be weaker than the SHA-1
algorithm; it could therefore be argued that SHA-1 is a better
choice. However, SHA-1 is significantly slower than MD5. A
successful attack of MD5's weakness does not reveal the original data
that was used to generate the signature, but rather provides a new
set of input data that will produce the same signature. Because we
are using the MD5 hash to conceal the original data, the fact that an
attacker could produce a different plaintext resulting in the same
MD5 output is not significant concern.
3. The DHCID RR
The DHCID RR is defined with mnemonic DHCID and type code [TBD]. The
DHCID RR is only defined in the IN class. DHCID RRs cause no
additional section processing. The DHCID RR is not a singleton type.
Stapp, et al. Expires August 13, 2005 [Page 3]
Internet-Draft The DHCID RR February 2005
3.1 DHCID RDATA format
The RDATA section of a DHCID RR in transmission contains RDLENGTH
bytes of binary data. The format of this data and its interpretation
by DHCP servers and clients are described below.
DNS software should consider the RDATA section to be opaque. DHCP
clients or servers use the DHCID RR to associate a DHCP client's
identity with a DNS name, so that multiple DHCP clients and servers
may deterministically perform dynamic DNS updates to the same zone.
From the updater's perspective, the DHCID resource record RDATA
consists of a 16-bit identifier type, in network byte order, followed
by one or more bytes representing the actual identifier:
< 16 bits > DHCP identifier used
< n bytes > MD5 digest
3.2 DHCID Presentation Format
In DNS master files, the RDATA is represented as a single block in
base 64 encoding identical to that used for representing binary data
in RFC 2535 [8]. The data may be divided up into any number of white
space separated substrings, down to single base 64 digits, which are
concatenated to form the complete RDATA. These substrings can span
lines using the standard parentheses.
3.3 The DHCID RR Type Codes
The DHCID RR Type Code specifies what data from the DHCP client's
request was used as input into the hash function. The type codes are
defined in a registry maintained by IANA, as specified in Section 7.
The initial list of assigned values for the type code is:
0x0000 = htype, chaddr from a DHCPv4 client's DHCPREQUEST [7].
0x0001 = The data portion from a DHCPv4 client's Client Identifier
option [9].
0x0002 = The client's DUID (i.e., the data portion of a DHCPv6
client's Client Identifier option [10] or the DUID field from a
DHCPv4 client's Client Identifier option [12]).
0x0003 - 0xfffe = Available to be assigned by IANA.
0xffff = RESERVED
3.4 Computation of the RDATA
The DHCID RDATA is formed by concatenating the two type bytes with
Stapp, et al. Expires August 13, 2005 [Page 4]
Internet-Draft The DHCID RR February 2005
some variable-length identifying data.
< type > < data >
The RDATA for all type codes other than 0xffff, which is reserved for
future expansion, is formed by concatenating the two type bytes and a
16-byte MD5 hash value. The input to the hash function is defined to
be:
data = MD5(< identifier > < FQDN >)
The FQDN is represented in the buffer in unambiguous canonical form
as described in RFC 2535 [8], section 8.1. The type code and the
identifier are related as specified in Section 3.3: the type code
describes the source of the identifier.
When the updater is using the client's link-layer address as the
identifier, the first two bytes of the DHCID RDATA MUST be zero. To
generate the rest of the resource record, the updater computes a
one-way hash using the MD5 algorithm across a buffer containing the
client's network hardware type, link-layer address, and the FQDN
data. Specifically, the first byte of the buffer contains the
network hardware type as it appeared in the DHCP 'htype' field of the
client's DHCPREQUEST message. All of the significant bytes of the
chaddr field in the client's DHCPREQUEST message follow, in the same
order in which the bytes appear in the DHCPREQUEST message. The
number of significant bytes in the 'chaddr' field is specified in the
'hlen' field of the DHCPREQUEST message. The FQDN data, as specified
above, follows.
When the updater is using the DHCPv4 Client Identifier option sent by
the client in its DHCPREQUEST message, the first two bytes of the
DHCID RR MUST be 0x0001, in network byte order. The rest of the
DHCID RR MUST contain the results of computing an MD5 hash across the
payload of the option, followed by the FQDN. The payload of the
option consists of the bytes of the option following the option code
and length.
When the updater is using the DHCPv6 DUID sent by the client in its
REQUEST message, the first two bytes of the DHCID RR MUST be 0x0002,
in network byte order. The rest of the DHCID RR MUST contain the
results of computing an MD5 hash across the payload of the option,
followed by the FQDN. The payload of the option consists of the
bytes of the option following the option code and length.
3.5 Examples
Stapp, et al. Expires August 13, 2005 [Page 5]
Internet-Draft The DHCID RR February 2005
3.5.1 Example 1
A DHCP server allocating the IPv4 address 10.0.0.1 to a client with
Ethernet MAC address 01:02:03:04:05:06 using domain name
"client.example.com" uses the client's link-layer address to identify
the client. The DHCID RDATA is composed by setting the two type
bytes to zero, and performing an MD5 hash computation across a buffer
containing the Ethernet MAC type byte, 0x01, the six bytes of MAC
address, and the domain name (represented as specified in
Section 3.4).
client.example.com. A 10.0.0.1
client.example.com. DHCID AAAUMru0ZM5OK/PdVAJgZ/HU
3.5.2 Example 2
A DHCP server allocates the IPv4 address 10.0.12.99 to a client which
included the DHCP client-identifier option data 01:07:08:09:0a:0b:0c
in its DHCP request. The server updates the name "chi.example.com"
on the client's behalf, and uses the DHCP client identifier option
data as input in forming a DHCID RR. The DHCID RDATA is formed by
setting the two type bytes to the value 0x0001, and performing an MD5
hash computation across a buffer containing the seven bytes from the
client-id option and the FQDN (represented as specified in
Section 3.4).
chi.example.com. A 10.0.12.99
chi.example.com. DHCID AAHdd5jiQ3kEjANDm82cbObk\012
4. Use of the DHCID RR
This RR MUST NOT be used for any purpose other than that detailed in
"Resolution of DNS Name Conflicts" [1]. Although this RR contains
data that is opaque to DNS servers, the data must be consistent
across all entities that update and interpret this record.
Therefore, new data formats may only be defined through actions of
the DHC Working Group, as a result of revising [1].
5. Updater Behavior
The data in the DHCID RR allows updaters to determine whether more
than one DHCP client desires to use a particular FQDN. This allows
site administrators to establish policy about DNS updates. The DHCID
RR does not establish any policy itself.
Updaters use data from a DHCP client's request and the domain name
Stapp, et al. Expires August 13, 2005 [Page 6]
Internet-Draft The DHCID RR February 2005
that the client desires to use to compute a client identity hash, and
then compare that hash to the data in any DHCID RRs on the name that
they wish to associate with the client's IP address. If an updater
discovers DHCID RRs whose RDATA does not match the client identity
that they have computed, the updater SHOULD conclude that a different
client is currently associated with the name in question. The
updater SHOULD then proceed according to the site's administrative
policy. That policy might dictate that a different name be selected,
or it might permit the updater to continue.
6. Security Considerations
The DHCID record as such does not introduce any new security problems
into the DNS. In order to avoid exposing private information about
DHCP clients to public scrutiny, a one-way hash is used to obscure
all client information. In order to make it difficult to 'track' a
client by examining the names associated with a particular hash
value, the FQDN is included in the hash computation. Thus, the RDATA
is dependent on both the DHCP client identification data and on each
FQDN associated with the client.
Administrators should be wary of permitting unsecured DNS updates to
zones which are exposed to the global Internet. Both DHCP clients
and servers SHOULD use some form of update authentication (e.g., TSIG
[11]) when performing DNS updates.
7. IANA Considerations
IANA is requested to allocate an RR type number for the DHCID record
type.
This specification defines a new number-space for the 16-bit type
codes associated with the DHCID RR. IANA is requested to establish a
registry of the values for this number-space.
Three initial values are assigned in Section 3.3, and the value
0xFFFF is reserved for future use. New DHCID RR type codes are
tentatively assigned after the specification for the associated type
code, published as an Internet Draft, has received expert review by a
designated expert. The final assignment of DHCID RR type codes is
through Standards Action, as defined in RFC 2434 [6].
8. Acknowledgements
Many thanks to Josh Littlefield, Olafur Gudmundsson, Bernie Volz, and
Ralph Droms for their review and suggestions.
Stapp, et al. Expires August 13, 2005 [Page 7]
Internet-Draft The DHCID RR February 2005
9. References
9.1 Normative References
[1] Stapp, M. and B. Volz, "Resolution of DNS Name Conflicts Among
DHCP Clients (draft-ietf-dhc-dns-resolution-*)", July 2004.
[2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[3] Mockapetris, P., "Domain names - concepts and facilities",
STD 13, RFC 1034, November 1987.
[4] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, November 1987.
[5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April
1992.
[6] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
9.2 Informative References
[7] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
March 1997.
[8] Eastlake, D., "Domain Name System Security Extensions",
RFC 2535, March 1999.
[9] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
Extensions", RFC 2132, March 1997.
[10] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C. and M.
Carney, "Dynamic Host Configuration Protocol for IPv6
(DHCPv6)", RFC 3315, July 2003.
[11] Vixie, P., Gudmundsson, O., Eastlake, D. and B. Wellington,
"Secret Key Transaction Authentication for DNS (TSIG)",
RFC 2845, May 2000.
[12] Lemon, T. and B. Sommerfeld, "Node-Specific Client Identifiers
for DHCPv4 (draft-ietf-dhc-3315id-for-v4-*)", February 2004.
Stapp, et al. Expires August 13, 2005 [Page 8]
Internet-Draft The DHCID RR February 2005
Authors' Addresses
Mark Stapp
Cisco Systems, Inc.
1414 Massachusetts Ave.
Boxborough, MA 01719
USA
Phone: 978.936.1535
Email: mjs@cisco.com
Ted Lemon
Nominum, Inc.
950 Charter St.
Redwood City, CA 94063
USA
Email: mellon@nominum.com
Andreas Gustafsson
Nominum, Inc.
950 Charter St.
Redwood City, CA 94063
USA
Email: gson@nominum.com
Stapp, et al. Expires August 13, 2005 [Page 9]
Internet-Draft The DHCID RR February 2005
Intellectual Property Statement
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Disclaimer of Validity
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Copyright Statement
Copyright (C) The Internet Society (2005). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
Acknowledgment
Funding for the RFC Editor function is currently provided by the
Internet Society.
Stapp, et al. Expires August 13, 2005 [Page 10]