1776 lines
56 KiB
C++

//===-- Args.cpp ------------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
#include <cstdlib>
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Interpreter/Args.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StreamString.h"
#include "lldb/DataFormatters/FormatManager.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// Args constructor
//----------------------------------------------------------------------
Args::Args (llvm::StringRef command) :
m_args(),
m_argv(),
m_args_quote_char()
{
SetCommandString (command);
}
//----------------------------------------------------------------------
// We have to be very careful on the copy constructor of this class
// to make sure we copy all of the string values, but we can't copy the
// rhs.m_argv into m_argv since it will point to the "const char *" c
// strings in rhs.m_args. We need to copy the string list and update our
// own m_argv appropriately.
//----------------------------------------------------------------------
Args::Args (const Args &rhs) :
m_args (rhs.m_args),
m_argv (),
m_args_quote_char(rhs.m_args_quote_char)
{
UpdateArgvFromArgs();
}
//----------------------------------------------------------------------
// We have to be very careful on the copy constructor of this class
// to make sure we copy all of the string values, but we can't copy the
// rhs.m_argv into m_argv since it will point to the "const char *" c
// strings in rhs.m_args. We need to copy the string list and update our
// own m_argv appropriately.
//----------------------------------------------------------------------
const Args &
Args::operator= (const Args &rhs)
{
// Make sure we aren't assigning to self
if (this != &rhs)
{
m_args = rhs.m_args;
m_args_quote_char = rhs.m_args_quote_char;
UpdateArgvFromArgs();
}
return *this;
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
Args::~Args ()
{
}
void
Args::Dump (Stream &s, const char *label_name) const
{
if (!label_name)
return;
const size_t argc = m_argv.size();
for (size_t i=0; i<argc; ++i)
{
s.Indent();
const char *arg_cstr = m_argv[i];
if (arg_cstr)
s.Printf("%s[%zi]=\"%s\"\n", label_name, i, arg_cstr);
else
s.Printf("%s[%zi]=NULL\n", label_name, i);
}
s.EOL();
}
bool
Args::GetCommandString (std::string &command) const
{
command.clear();
const size_t argc = GetArgumentCount();
for (size_t i=0; i<argc; ++i)
{
if (i > 0)
command += ' ';
command += m_argv[i];
}
return argc > 0;
}
bool
Args::GetQuotedCommandString (std::string &command) const
{
command.clear ();
const size_t argc = GetArgumentCount();
for (size_t i = 0; i < argc; ++i)
{
if (i > 0)
command.append (1, ' ');
char quote_char = GetArgumentQuoteCharAtIndex(i);
if (quote_char)
{
command.append (1, quote_char);
command.append (m_argv[i]);
command.append (1, quote_char);
}
else
command.append (m_argv[i]);
}
return argc > 0;
}
// A helper function for argument parsing.
// Parses the initial part of the first argument using normal double quote rules:
// backslash escapes the double quote and itself. The parsed string is appended to the second
// argument. The function returns the unparsed portion of the string, starting at the closing
// quote.
static llvm::StringRef
ParseDoubleQuotes(llvm::StringRef quoted, std::string &result)
{
// Inside double quotes, '\' and '"' are special.
static const char *k_escapable_characters = "\"\\";
while (true)
{
// Skip over over regular characters and append them.
size_t regular = quoted.find_first_of(k_escapable_characters);
result += quoted.substr(0, regular);
quoted = quoted.substr(regular);
// If we have reached the end of string or the closing quote, we're done.
if (quoted.empty() || quoted.front() == '"')
break;
// We have found a backslash.
quoted = quoted.drop_front();
if (quoted.empty())
{
// A lone backslash at the end of string, let's just append it.
result += '\\';
break;
}
// If the character after the backslash is not a whitelisted escapable character, we
// leave the character sequence untouched.
if (strchr(k_escapable_characters, quoted.front()) == nullptr)
result += '\\';
result += quoted.front();
quoted = quoted.drop_front();
}
return quoted;
}
// A helper function for SetCommandString.
// Parses a single argument from the command string, processing quotes and backslashes in a
// shell-like manner. The parsed argument is appended to the m_args array. The function returns
// the unparsed portion of the string, starting at the first unqouted, unescaped whitespace
// character.
llvm::StringRef
Args::ParseSingleArgument(llvm::StringRef command)
{
// Argument can be split into multiple discontiguous pieces,
// for example:
// "Hello ""World"
// this would result in a single argument "Hello World" (without/
// the quotes) since the quotes would be removed and there is
// not space between the strings.
std::string arg;
// Since we can have multiple quotes that form a single command
// in a command like: "Hello "world'!' (which will make a single
// argument "Hello world!") we remember the first quote character
// we encounter and use that for the quote character.
char first_quote_char = '\0';
bool arg_complete = false;
do
{
// Skip over over regular characters and append them.
size_t regular = command.find_first_of(" \t\"'`\\");
arg += command.substr(0, regular);
command = command.substr(regular);
if (command.empty())
break;
char special = command.front();
command = command.drop_front();
switch (special)
{
case '\\':
if (command.empty())
{
arg += '\\';
break;
}
// If the character after the backslash is not a whitelisted escapable character, we
// leave the character sequence untouched.
if (strchr(" \t\\'\"`", command.front()) == nullptr)
arg += '\\';
arg += command.front();
command = command.drop_front();
break;
case ' ':
case '\t':
// We are not inside any quotes, we just found a space after an
// argument. We are done.
arg_complete = true;
break;
case '"':
case '\'':
case '`':
// We found the start of a quote scope.
if (first_quote_char == '\0')
first_quote_char = special;
if (special == '"')
command = ParseDoubleQuotes(command, arg);
else
{
// For single quotes, we simply skip ahead to the matching quote character
// (or the end of the string).
size_t quoted = command.find(special);
arg += command.substr(0, quoted);
command = command.substr(quoted);
}
// If we found a closing quote, skip it.
if (! command.empty())
command = command.drop_front();
break;
}
} while (!arg_complete);
m_args.push_back(arg);
m_args_quote_char.push_back (first_quote_char);
return command;
}
void
Args::SetCommandString (llvm::StringRef command)
{
m_args.clear();
m_argv.clear();
m_args_quote_char.clear();
static const char *k_space_separators = " \t";
command = command.ltrim(k_space_separators);
while (!command.empty())
{
command = ParseSingleArgument(command);
command = command.ltrim(k_space_separators);
}
UpdateArgvFromArgs();
}
void
Args::UpdateArgsAfterOptionParsing()
{
// Now m_argv might be out of date with m_args, so we need to fix that
arg_cstr_collection::const_iterator argv_pos, argv_end = m_argv.end();
arg_sstr_collection::iterator args_pos;
arg_quote_char_collection::iterator quotes_pos;
for (argv_pos = m_argv.begin(), args_pos = m_args.begin(), quotes_pos = m_args_quote_char.begin();
argv_pos != argv_end && args_pos != m_args.end();
++argv_pos)
{
const char *argv_cstr = *argv_pos;
if (argv_cstr == nullptr)
break;
while (args_pos != m_args.end())
{
const char *args_cstr = args_pos->c_str();
if (args_cstr == argv_cstr)
{
// We found the argument that matches the C string in the
// vector, so we can now look for the next one
++args_pos;
++quotes_pos;
break;
}
else
{
quotes_pos = m_args_quote_char.erase (quotes_pos);
args_pos = m_args.erase (args_pos);
}
}
}
if (args_pos != m_args.end())
m_args.erase (args_pos, m_args.end());
if (quotes_pos != m_args_quote_char.end())
m_args_quote_char.erase (quotes_pos, m_args_quote_char.end());
}
void
Args::UpdateArgvFromArgs()
{
m_argv.clear();
arg_sstr_collection::const_iterator pos, end = m_args.end();
for (pos = m_args.begin(); pos != end; ++pos)
m_argv.push_back(pos->c_str());
m_argv.push_back(nullptr);
// Make sure we have enough arg quote chars in the array
if (m_args_quote_char.size() < m_args.size())
m_args_quote_char.resize (m_argv.size());
}
size_t
Args::GetArgumentCount() const
{
if (m_argv.empty())
return 0;
return m_argv.size() - 1;
}
const char *
Args::GetArgumentAtIndex (size_t idx) const
{
if (idx < m_argv.size())
return m_argv[idx];
return nullptr;
}
char
Args::GetArgumentQuoteCharAtIndex (size_t idx) const
{
if (idx < m_args_quote_char.size())
return m_args_quote_char[idx];
return '\0';
}
char **
Args::GetArgumentVector()
{
if (!m_argv.empty())
return const_cast<char **>(&m_argv[0]);
return nullptr;
}
const char **
Args::GetConstArgumentVector() const
{
if (!m_argv.empty())
return const_cast<const char **>(&m_argv[0]);
return nullptr;
}
void
Args::Shift ()
{
// Don't pop the last NULL terminator from the argv array
if (m_argv.size() > 1)
{
m_argv.erase(m_argv.begin());
m_args.pop_front();
if (!m_args_quote_char.empty())
m_args_quote_char.erase(m_args_quote_char.begin());
}
}
const char *
Args::Unshift (const char *arg_cstr, char quote_char)
{
m_args.push_front(arg_cstr);
m_argv.insert(m_argv.begin(), m_args.front().c_str());
m_args_quote_char.insert(m_args_quote_char.begin(), quote_char);
return GetArgumentAtIndex (0);
}
void
Args::AppendArguments (const Args &rhs)
{
const size_t rhs_argc = rhs.GetArgumentCount();
for (size_t i=0; i<rhs_argc; ++i)
AppendArgument(rhs.GetArgumentAtIndex(i),
rhs.GetArgumentQuoteCharAtIndex(i));
}
void
Args::AppendArguments (const char **argv)
{
if (argv)
{
for (uint32_t i=0; argv[i]; ++i)
AppendArgument(argv[i]);
}
}
const char *
Args::AppendArgument (const char *arg_cstr, char quote_char)
{
return InsertArgumentAtIndex (GetArgumentCount(), arg_cstr, quote_char);
}
const char *
Args::InsertArgumentAtIndex (size_t idx, const char *arg_cstr, char quote_char)
{
// Since we are using a std::list to hold onto the copied C string and
// we don't have direct access to the elements, we have to iterate to
// find the value.
arg_sstr_collection::iterator pos, end = m_args.end();
size_t i = idx;
for (pos = m_args.begin(); i > 0 && pos != end; ++pos)
--i;
pos = m_args.insert(pos, arg_cstr);
if (idx >= m_args_quote_char.size())
{
m_args_quote_char.resize(idx + 1);
m_args_quote_char[idx] = quote_char;
}
else
m_args_quote_char.insert(m_args_quote_char.begin() + idx, quote_char);
UpdateArgvFromArgs();
return GetArgumentAtIndex(idx);
}
const char *
Args::ReplaceArgumentAtIndex (size_t idx, const char *arg_cstr, char quote_char)
{
// Since we are using a std::list to hold onto the copied C string and
// we don't have direct access to the elements, we have to iterate to
// find the value.
arg_sstr_collection::iterator pos, end = m_args.end();
size_t i = idx;
for (pos = m_args.begin(); i > 0 && pos != end; ++pos)
--i;
if (pos != end)
{
pos->assign(arg_cstr);
assert(idx < m_argv.size() - 1);
m_argv[idx] = pos->c_str();
if (idx >= m_args_quote_char.size())
m_args_quote_char.resize(idx + 1);
m_args_quote_char[idx] = quote_char;
return GetArgumentAtIndex(idx);
}
return nullptr;
}
void
Args::DeleteArgumentAtIndex (size_t idx)
{
// Since we are using a std::list to hold onto the copied C string and
// we don't have direct access to the elements, we have to iterate to
// find the value.
arg_sstr_collection::iterator pos, end = m_args.end();
size_t i = idx;
for (pos = m_args.begin(); i > 0 && pos != end; ++pos)
--i;
if (pos != end)
{
m_args.erase (pos);
assert(idx < m_argv.size() - 1);
m_argv.erase(m_argv.begin() + idx);
if (idx < m_args_quote_char.size())
m_args_quote_char.erase(m_args_quote_char.begin() + idx);
}
}
void
Args::SetArguments (size_t argc, const char **argv)
{
// m_argv will be rebuilt in UpdateArgvFromArgs() below, so there is
// no need to clear it here.
m_args.clear();
m_args_quote_char.clear();
// First copy each string
for (size_t i=0; i<argc; ++i)
{
m_args.push_back (argv[i]);
if ((argv[i][0] == '\'') || (argv[i][0] == '"') || (argv[i][0] == '`'))
m_args_quote_char.push_back (argv[i][0]);
else
m_args_quote_char.push_back ('\0');
}
UpdateArgvFromArgs();
}
void
Args::SetArguments (const char **argv)
{
// m_argv will be rebuilt in UpdateArgvFromArgs() below, so there is
// no need to clear it here.
m_args.clear();
m_args_quote_char.clear();
if (argv)
{
// First copy each string
for (size_t i=0; argv[i]; ++i)
{
m_args.push_back (argv[i]);
if ((argv[i][0] == '\'') || (argv[i][0] == '"') || (argv[i][0] == '`'))
m_args_quote_char.push_back (argv[i][0]);
else
m_args_quote_char.push_back ('\0');
}
}
UpdateArgvFromArgs();
}
Error
Args::ParseOptions (Options &options)
{
StreamString sstr;
Error error;
Option *long_options = options.GetLongOptions();
if (long_options == nullptr)
{
error.SetErrorStringWithFormat("invalid long options");
return error;
}
for (int i=0; long_options[i].definition != nullptr; ++i)
{
if (long_options[i].flag == nullptr)
{
if (isprint8(long_options[i].val))
{
sstr << (char)long_options[i].val;
switch (long_options[i].definition->option_has_arg)
{
default:
case OptionParser::eNoArgument: break;
case OptionParser::eRequiredArgument: sstr << ':'; break;
case OptionParser::eOptionalArgument: sstr << "::"; break;
}
}
}
}
std::unique_lock<std::mutex> lock;
OptionParser::Prepare(lock);
int val;
while (1)
{
int long_options_index = -1;
val = OptionParser::Parse(GetArgumentCount(),
GetArgumentVector(),
sstr.GetData(),
long_options,
&long_options_index);
if (val == -1)
break;
// Did we get an error?
if (val == '?')
{
error.SetErrorStringWithFormat("unknown or ambiguous option");
break;
}
// The option auto-set itself
if (val == 0)
continue;
((Options *) &options)->OptionSeen (val);
// Lookup the long option index
if (long_options_index == -1)
{
for (int i=0;
long_options[i].definition || long_options[i].flag || long_options[i].val;
++i)
{
if (long_options[i].val == val)
{
long_options_index = i;
break;
}
}
}
// Call the callback with the option
if (long_options_index >= 0 && long_options[long_options_index].definition)
{
const OptionDefinition *def = long_options[long_options_index].definition;
CommandInterpreter &interpreter = options.GetInterpreter();
OptionValidator *validator = def->validator;
if (validator && !validator->IsValid(*interpreter.GetPlatform(true), interpreter.GetExecutionContext()))
{
error.SetErrorStringWithFormat("Option \"%s\" invalid. %s", def->long_option, def->validator->LongConditionString());
}
else
{
error = options.SetOptionValue(long_options_index,
(def->option_has_arg == OptionParser::eNoArgument) ? nullptr : OptionParser::GetOptionArgument());
}
}
else
{
error.SetErrorStringWithFormat("invalid option with value '%i'", val);
}
if (error.Fail())
break;
}
// Update our ARGV now that get options has consumed all the options
m_argv.erase(m_argv.begin(), m_argv.begin() + OptionParser::GetOptionIndex());
UpdateArgsAfterOptionParsing ();
return error;
}
void
Args::Clear ()
{
m_args.clear ();
m_argv.clear ();
m_args_quote_char.clear();
}
lldb::addr_t
Args::StringToAddress (const ExecutionContext *exe_ctx, const char *s, lldb::addr_t fail_value, Error *error_ptr)
{
bool error_set = false;
if (s && s[0])
{
char *end = nullptr;
lldb::addr_t addr = ::strtoull (s, &end, 0);
if (*end == '\0')
{
if (error_ptr)
error_ptr->Clear();
return addr; // All characters were used, return the result
}
// Try base 16 with no prefix...
addr = ::strtoull (s, &end, 16);
if (*end == '\0')
{
if (error_ptr)
error_ptr->Clear();
return addr; // All characters were used, return the result
}
if (exe_ctx)
{
Target *target = exe_ctx->GetTargetPtr();
if (target)
{
lldb::ValueObjectSP valobj_sp;
EvaluateExpressionOptions options;
options.SetCoerceToId(false);
options.SetUnwindOnError(true);
options.SetKeepInMemory(false);
options.SetTryAllThreads(true);
ExpressionResults expr_result = target->EvaluateExpression(s,
exe_ctx->GetFramePtr(),
valobj_sp,
options);
bool success = false;
if (expr_result == eExpressionCompleted)
{
if (valobj_sp)
valobj_sp = valobj_sp->GetQualifiedRepresentationIfAvailable(valobj_sp->GetDynamicValueType(), true);
// Get the address to watch.
if (valobj_sp)
addr = valobj_sp->GetValueAsUnsigned(fail_value, &success);
if (success)
{
if (error_ptr)
error_ptr->Clear();
return addr;
}
else
{
if (error_ptr)
{
error_set = true;
error_ptr->SetErrorStringWithFormat("address expression \"%s\" resulted in a value whose type can't be converted to an address: %s", s, valobj_sp->GetTypeName().GetCString());
}
}
}
else
{
// Since the compiler can't handle things like "main + 12" we should
// try to do this for now. The compiler doesn't like adding offsets
// to function pointer types.
static RegularExpression g_symbol_plus_offset_regex("^(.*)([-\\+])[[:space:]]*(0x[0-9A-Fa-f]+|[0-9]+)[[:space:]]*$");
RegularExpression::Match regex_match(3);
if (g_symbol_plus_offset_regex.Execute(s, &regex_match))
{
uint64_t offset = 0;
bool add = true;
std::string name;
std::string str;
if (regex_match.GetMatchAtIndex(s, 1, name))
{
if (regex_match.GetMatchAtIndex(s, 2, str))
{
add = str[0] == '+';
if (regex_match.GetMatchAtIndex(s, 3, str))
{
offset = StringConvert::ToUInt64(str.c_str(), 0, 0, &success);
if (success)
{
Error error;
addr = StringToAddress (exe_ctx, name.c_str(), LLDB_INVALID_ADDRESS, &error);
if (addr != LLDB_INVALID_ADDRESS)
{
if (add)
return addr + offset;
else
return addr - offset;
}
}
}
}
}
}
if (error_ptr)
{
error_set = true;
error_ptr->SetErrorStringWithFormat("address expression \"%s\" evaluation failed", s);
}
}
}
}
}
if (error_ptr)
{
if (!error_set)
error_ptr->SetErrorStringWithFormat("invalid address expression \"%s\"", s);
}
return fail_value;
}
const char *
Args::StripSpaces (std::string &s, bool leading, bool trailing, bool return_null_if_empty)
{
static const char *k_white_space = " \t\v";
if (!s.empty())
{
if (leading)
{
size_t pos = s.find_first_not_of (k_white_space);
if (pos == std::string::npos)
s.clear();
else if (pos > 0)
s.erase(0, pos);
}
if (trailing)
{
size_t rpos = s.find_last_not_of(k_white_space);
if (rpos != std::string::npos && rpos + 1 < s.size())
s.erase(rpos + 1);
}
}
if (return_null_if_empty && s.empty())
return nullptr;
return s.c_str();
}
bool
Args::StringToBoolean (const char *s, bool fail_value, bool *success_ptr)
{
llvm::StringRef ref = llvm::StringRef(s).trim();
if (ref.equals_lower("false") ||
ref.equals_lower("off") ||
ref.equals_lower("no") ||
ref.equals_lower("0"))
{
if (success_ptr)
*success_ptr = true;
return false;
}
else
if (ref.equals_lower("true") ||
ref.equals_lower("on") ||
ref.equals_lower("yes") ||
ref.equals_lower("1"))
{
if (success_ptr) *success_ptr = true;
return true;
}
if (success_ptr) *success_ptr = false;
return fail_value;
}
char
Args::StringToChar(const char *s, char fail_value, bool *success_ptr)
{
bool success = false;
char result = fail_value;
if (s)
{
size_t length = strlen(s);
if (length == 1)
{
success = true;
result = s[0];
}
}
if (success_ptr)
*success_ptr = success;
return result;
}
const char *
Args::StringToVersion (const char *s, uint32_t &major, uint32_t &minor, uint32_t &update)
{
major = UINT32_MAX;
minor = UINT32_MAX;
update = UINT32_MAX;
if (s && s[0])
{
char *pos = nullptr;
unsigned long uval32 = ::strtoul (s, &pos, 0);
if (pos == s)
return s;
major = uval32;
if (*pos == '\0')
{
return pos; // Decoded major and got end of string
}
else if (*pos == '.')
{
const char *minor_cstr = pos + 1;
uval32 = ::strtoul (minor_cstr, &pos, 0);
if (pos == minor_cstr)
return pos; // Didn't get any digits for the minor version...
minor = uval32;
if (*pos == '.')
{
const char *update_cstr = pos + 1;
uval32 = ::strtoul (update_cstr, &pos, 0);
if (pos == update_cstr)
return pos;
update = uval32;
}
return pos;
}
}
return nullptr;
}
const char *
Args::GetShellSafeArgument (const FileSpec& shell,
const char *unsafe_arg,
std::string &safe_arg)
{
struct ShellDescriptor
{
ConstString m_basename;
const char* m_escapables;
};
static ShellDescriptor g_Shells[] = {
{ConstString("bash")," '\"<>()&"},
{ConstString("tcsh")," '\"<>()&$"},
{ConstString("sh")," '\"<>()&"}
};
// safe minimal set
const char* escapables = " '\"";
if (auto basename = shell.GetFilename())
{
for (const auto& Shell : g_Shells)
{
if (Shell.m_basename == basename)
{
escapables = Shell.m_escapables;
break;
}
}
}
safe_arg.assign (unsafe_arg);
size_t prev_pos = 0;
while (prev_pos < safe_arg.size())
{
// Escape spaces and quotes
size_t pos = safe_arg.find_first_of(escapables, prev_pos);
if (pos != std::string::npos)
{
safe_arg.insert (pos, 1, '\\');
prev_pos = pos + 2;
}
else
break;
}
return safe_arg.c_str();
}
int64_t
Args::StringToOptionEnum (const char *s, OptionEnumValueElement *enum_values, int32_t fail_value, Error &error)
{
if (enum_values)
{
if (s && s[0])
{
for (int i = 0; enum_values[i].string_value != nullptr ; i++)
{
if (strstr(enum_values[i].string_value, s) == enum_values[i].string_value)
{
error.Clear();
return enum_values[i].value;
}
}
}
StreamString strm;
strm.PutCString ("invalid enumeration value, valid values are: ");
for (int i = 0; enum_values[i].string_value != nullptr; i++)
{
strm.Printf ("%s\"%s\"",
i > 0 ? ", " : "",
enum_values[i].string_value);
}
error.SetErrorString(strm.GetData());
}
else
{
error.SetErrorString ("invalid enumeration argument");
}
return fail_value;
}
ScriptLanguage
Args::StringToScriptLanguage (const char *s, ScriptLanguage fail_value, bool *success_ptr)
{
if (s && s[0])
{
if ((::strcasecmp (s, "python") == 0) ||
(::strcasecmp (s, "default") == 0 && eScriptLanguagePython == eScriptLanguageDefault))
{
if (success_ptr) *success_ptr = true;
return eScriptLanguagePython;
}
if (::strcasecmp (s, "none"))
{
if (success_ptr) *success_ptr = true;
return eScriptLanguageNone;
}
}
if (success_ptr) *success_ptr = false;
return fail_value;
}
Error
Args::StringToFormat
(
const char *s,
lldb::Format &format,
size_t *byte_size_ptr
)
{
format = eFormatInvalid;
Error error;
if (s && s[0])
{
if (byte_size_ptr)
{
if (isdigit (s[0]))
{
char *format_char = nullptr;
unsigned long byte_size = ::strtoul (s, &format_char, 0);
if (byte_size != ULONG_MAX)
*byte_size_ptr = byte_size;
s = format_char;
}
else
*byte_size_ptr = 0;
}
const bool partial_match_ok = true;
if (!FormatManager::GetFormatFromCString (s, partial_match_ok, format))
{
StreamString error_strm;
error_strm.Printf ("Invalid format character or name '%s'. Valid values are:\n", s);
for (Format f = eFormatDefault; f < kNumFormats; f = Format(f+1))
{
char format_char = FormatManager::GetFormatAsFormatChar(f);
if (format_char)
error_strm.Printf ("'%c' or ", format_char);
error_strm.Printf ("\"%s\"", FormatManager::GetFormatAsCString(f));
error_strm.EOL();
}
if (byte_size_ptr)
error_strm.PutCString ("An optional byte size can precede the format character.\n");
error.SetErrorString(error_strm.GetString().c_str());
}
if (error.Fail())
return error;
}
else
{
error.SetErrorStringWithFormat("%s option string", s ? "empty" : "invalid");
}
return error;
}
lldb::Encoding
Args::StringToEncoding (const char *s, lldb::Encoding fail_value)
{
if (s && s[0])
{
if (strcmp(s, "uint") == 0)
return eEncodingUint;
else if (strcmp(s, "sint") == 0)
return eEncodingSint;
else if (strcmp(s, "ieee754") == 0)
return eEncodingIEEE754;
else if (strcmp(s, "vector") == 0)
return eEncodingVector;
}
return fail_value;
}
uint32_t
Args::StringToGenericRegister (const char *s)
{
if (s && s[0])
{
if (strcmp(s, "pc") == 0)
return LLDB_REGNUM_GENERIC_PC;
else if (strcmp(s, "sp") == 0)
return LLDB_REGNUM_GENERIC_SP;
else if (strcmp(s, "fp") == 0)
return LLDB_REGNUM_GENERIC_FP;
else if (strcmp(s, "ra") == 0 || strcmp(s, "lr") == 0)
return LLDB_REGNUM_GENERIC_RA;
else if (strcmp(s, "flags") == 0)
return LLDB_REGNUM_GENERIC_FLAGS;
else if (strncmp(s, "arg", 3) == 0)
{
if (s[3] && s[4] == '\0')
{
switch (s[3])
{
case '1': return LLDB_REGNUM_GENERIC_ARG1;
case '2': return LLDB_REGNUM_GENERIC_ARG2;
case '3': return LLDB_REGNUM_GENERIC_ARG3;
case '4': return LLDB_REGNUM_GENERIC_ARG4;
case '5': return LLDB_REGNUM_GENERIC_ARG5;
case '6': return LLDB_REGNUM_GENERIC_ARG6;
case '7': return LLDB_REGNUM_GENERIC_ARG7;
case '8': return LLDB_REGNUM_GENERIC_ARG8;
}
}
}
}
return LLDB_INVALID_REGNUM;
}
void
Args::LongestCommonPrefix (std::string &common_prefix)
{
arg_sstr_collection::iterator pos, end = m_args.end();
pos = m_args.begin();
if (pos == end)
common_prefix.clear();
else
common_prefix = (*pos);
for (++pos; pos != end; ++pos)
{
size_t new_size = (*pos).size();
// First trim common_prefix if it is longer than the current element:
if (common_prefix.size() > new_size)
common_prefix.erase (new_size);
// Then trim it at the first disparity:
for (size_t i = 0; i < common_prefix.size(); i++)
{
if ((*pos)[i] != common_prefix[i])
{
common_prefix.erase(i);
break;
}
}
// If we've emptied the common prefix, we're done.
if (common_prefix.empty())
break;
}
}
bool
Args::ContainsEnvironmentVariable(const char *env_var_name) const
{
// Validate args.
if (!env_var_name)
return false;
// Check each arg to see if it matches the env var name.
for (size_t i = 0; i < GetArgumentCount(); ++i)
{
// Get the arg value.
const char *argument_value = GetArgumentAtIndex(i);
if (!argument_value)
continue;
// Check if we are the "{env_var_name}={env_var_value}" style.
const char *equal_p = strchr(argument_value, '=');
if (equal_p)
{
if (strncmp(env_var_name, argument_value,
equal_p - argument_value) == 0)
{
// We matched.
return true;
}
}
else
{
// We're a simple {env_var_name}-style entry.
if (strcmp(argument_value, env_var_name) == 0)
{
// We matched.
return true;
}
}
}
// We didn't find a match.
return false;
}
size_t
Args::FindArgumentIndexForOption (Option *long_options, int long_options_index)
{
char short_buffer[3];
char long_buffer[255];
::snprintf (short_buffer, sizeof (short_buffer), "-%c", long_options[long_options_index].val);
::snprintf (long_buffer, sizeof (long_buffer), "--%s", long_options[long_options_index].definition->long_option);
size_t end = GetArgumentCount ();
size_t idx = 0;
while (idx < end)
{
if ((::strncmp (GetArgumentAtIndex (idx), short_buffer, strlen (short_buffer)) == 0)
|| (::strncmp (GetArgumentAtIndex (idx), long_buffer, strlen (long_buffer)) == 0))
{
return idx;
}
++idx;
}
return end;
}
bool
Args::IsPositionalArgument (const char *arg)
{
if (arg == nullptr)
return false;
bool is_positional = true;
const char *cptr = arg;
if (cptr[0] == '%')
{
++cptr;
while (isdigit (cptr[0]))
++cptr;
if (cptr[0] != '\0')
is_positional = false;
}
else
is_positional = false;
return is_positional;
}
void
Args::ParseAliasOptions (Options &options,
CommandReturnObject &result,
OptionArgVector *option_arg_vector,
std::string &raw_input_string)
{
StreamString sstr;
int i;
Option *long_options = options.GetLongOptions();
if (long_options == nullptr)
{
result.AppendError ("invalid long options");
result.SetStatus (eReturnStatusFailed);
return;
}
for (i = 0; long_options[i].definition != nullptr; ++i)
{
if (long_options[i].flag == nullptr)
{
sstr << (char) long_options[i].val;
switch (long_options[i].definition->option_has_arg)
{
default:
case OptionParser::eNoArgument:
break;
case OptionParser::eRequiredArgument:
sstr << ":";
break;
case OptionParser::eOptionalArgument:
sstr << "::";
break;
}
}
}
std::unique_lock<std::mutex> lock;
OptionParser::Prepare(lock);
int val;
while (1)
{
int long_options_index = -1;
val = OptionParser::Parse (GetArgumentCount(),
GetArgumentVector(),
sstr.GetData(),
long_options,
&long_options_index);
if (val == -1)
break;
if (val == '?')
{
result.AppendError ("unknown or ambiguous option");
result.SetStatus (eReturnStatusFailed);
break;
}
if (val == 0)
continue;
options.OptionSeen (val);
// Look up the long option index
if (long_options_index == -1)
{
for (int j = 0;
long_options[j].definition || long_options[j].flag || long_options[j].val;
++j)
{
if (long_options[j].val == val)
{
long_options_index = j;
break;
}
}
}
// See if the option takes an argument, and see if one was supplied.
if (long_options_index >= 0)
{
StreamString option_str;
option_str.Printf ("-%c", val);
const OptionDefinition *def = long_options[long_options_index].definition;
int has_arg = (def == nullptr) ? OptionParser::eNoArgument : def->option_has_arg;
switch (has_arg)
{
case OptionParser::eNoArgument:
option_arg_vector->push_back (OptionArgPair (std::string (option_str.GetData()),
OptionArgValue (OptionParser::eNoArgument, "<no-argument>")));
result.SetStatus (eReturnStatusSuccessFinishNoResult);
break;
case OptionParser::eRequiredArgument:
if (OptionParser::GetOptionArgument() != nullptr)
{
option_arg_vector->push_back (OptionArgPair (std::string (option_str.GetData()),
OptionArgValue (OptionParser::eRequiredArgument,
std::string (OptionParser::GetOptionArgument()))));
result.SetStatus (eReturnStatusSuccessFinishNoResult);
}
else
{
result.AppendErrorWithFormat ("Option '%s' is missing argument specifier.\n",
option_str.GetData());
result.SetStatus (eReturnStatusFailed);
}
break;
case OptionParser::eOptionalArgument:
if (OptionParser::GetOptionArgument() != nullptr)
{
option_arg_vector->push_back (OptionArgPair (std::string (option_str.GetData()),
OptionArgValue (OptionParser::eOptionalArgument,
std::string (OptionParser::GetOptionArgument()))));
result.SetStatus (eReturnStatusSuccessFinishNoResult);
}
else
{
option_arg_vector->push_back (OptionArgPair (std::string (option_str.GetData()),
OptionArgValue (OptionParser::eOptionalArgument, "<no-argument>")));
result.SetStatus (eReturnStatusSuccessFinishNoResult);
}
break;
default:
result.AppendErrorWithFormat ("error with options table; invalid value in has_arg field for option '%c'.\n", val);
result.SetStatus (eReturnStatusFailed);
break;
}
}
else
{
result.AppendErrorWithFormat ("Invalid option with value '%c'.\n", val);
result.SetStatus (eReturnStatusFailed);
}
if (long_options_index >= 0)
{
// Find option in the argument list; also see if it was supposed to take an argument and if one was
// supplied. Remove option (and argument, if given) from the argument list. Also remove them from
// the raw_input_string, if one was passed in.
size_t idx = FindArgumentIndexForOption (long_options, long_options_index);
if (idx < GetArgumentCount())
{
if (raw_input_string.size() > 0)
{
const char *tmp_arg = GetArgumentAtIndex (idx);
size_t pos = raw_input_string.find (tmp_arg);
if (pos != std::string::npos)
raw_input_string.erase (pos, strlen (tmp_arg));
}
ReplaceArgumentAtIndex (idx, "");
if ((long_options[long_options_index].definition->option_has_arg != OptionParser::eNoArgument)
&& (OptionParser::GetOptionArgument() != nullptr)
&& (idx+1 < GetArgumentCount())
&& (strcmp (OptionParser::GetOptionArgument(), GetArgumentAtIndex(idx+1)) == 0))
{
if (raw_input_string.size() > 0)
{
const char *tmp_arg = GetArgumentAtIndex (idx+1);
size_t pos = raw_input_string.find (tmp_arg);
if (pos != std::string::npos)
raw_input_string.erase (pos, strlen (tmp_arg));
}
ReplaceArgumentAtIndex (idx+1, "");
}
}
}
if (!result.Succeeded())
break;
}
}
void
Args::ParseArgsForCompletion
(
Options &options,
OptionElementVector &option_element_vector,
uint32_t cursor_index
)
{
StreamString sstr;
Option *long_options = options.GetLongOptions();
option_element_vector.clear();
if (long_options == nullptr)
{
return;
}
// Leading : tells getopt to return a : for a missing option argument AND
// to suppress error messages.
sstr << ":";
for (int i = 0; long_options[i].definition != nullptr; ++i)
{
if (long_options[i].flag == nullptr)
{
sstr << (char) long_options[i].val;
switch (long_options[i].definition->option_has_arg)
{
default:
case OptionParser::eNoArgument:
break;
case OptionParser::eRequiredArgument:
sstr << ":";
break;
case OptionParser::eOptionalArgument:
sstr << "::";
break;
}
}
}
std::unique_lock<std::mutex> lock;
OptionParser::Prepare(lock);
OptionParser::EnableError(false);
int val;
const OptionDefinition *opt_defs = options.GetDefinitions();
// Fooey... OptionParser::Parse permutes the GetArgumentVector to move the options to the front.
// So we have to build another Arg and pass that to OptionParser::Parse so it doesn't
// change the one we have.
std::vector<const char *> dummy_vec (GetArgumentVector(), GetArgumentVector() + GetArgumentCount() + 1);
bool failed_once = false;
uint32_t dash_dash_pos = -1;
while (1)
{
bool missing_argument = false;
int long_options_index = -1;
val = OptionParser::Parse (dummy_vec.size() - 1,
const_cast<char *const *>(&dummy_vec.front()),
sstr.GetData(),
long_options,
&long_options_index);
if (val == -1)
{
// When we're completing a "--" which is the last option on line,
if (failed_once)
break;
failed_once = true;
// If this is a bare "--" we mark it as such so we can complete it successfully later.
// Handling the "--" is a little tricky, since that may mean end of options or arguments, or the
// user might want to complete options by long name. I make this work by checking whether the
// cursor is in the "--" argument, and if so I assume we're completing the long option, otherwise
// I let it pass to OptionParser::Parse which will terminate the option parsing.
// Note, in either case we continue parsing the line so we can figure out what other options
// were passed. This will be useful when we come to restricting completions based on what other
// options we've seen on the line.
if (static_cast<size_t>(OptionParser::GetOptionIndex()) < dummy_vec.size() - 1
&& (strcmp (dummy_vec[OptionParser::GetOptionIndex()-1], "--") == 0))
{
dash_dash_pos = OptionParser::GetOptionIndex() - 1;
if (static_cast<size_t>(OptionParser::GetOptionIndex() - 1) == cursor_index)
{
option_element_vector.push_back (OptionArgElement (OptionArgElement::eBareDoubleDash, OptionParser::GetOptionIndex() - 1,
OptionArgElement::eBareDoubleDash));
continue;
}
else
break;
}
else
break;
}
else if (val == '?')
{
option_element_vector.push_back (OptionArgElement (OptionArgElement::eUnrecognizedArg, OptionParser::GetOptionIndex() - 1,
OptionArgElement::eUnrecognizedArg));
continue;
}
else if (val == 0)
{
continue;
}
else if (val == ':')
{
// This is a missing argument.
val = OptionParser::GetOptionErrorCause();
missing_argument = true;
}
((Options *) &options)->OptionSeen (val);
// Look up the long option index
if (long_options_index == -1)
{
for (int j = 0;
long_options[j].definition || long_options[j].flag || long_options[j].val;
++j)
{
if (long_options[j].val == val)
{
long_options_index = j;
break;
}
}
}
// See if the option takes an argument, and see if one was supplied.
if (long_options_index >= 0)
{
int opt_defs_index = -1;
for (int i = 0; ; i++)
{
if (opt_defs[i].short_option == 0)
break;
else if (opt_defs[i].short_option == val)
{
opt_defs_index = i;
break;
}
}
const OptionDefinition *def = long_options[long_options_index].definition;
int has_arg = (def == nullptr) ? OptionParser::eNoArgument : def->option_has_arg;
switch (has_arg)
{
case OptionParser::eNoArgument:
option_element_vector.push_back (OptionArgElement (opt_defs_index, OptionParser::GetOptionIndex() - 1, 0));
break;
case OptionParser::eRequiredArgument:
if (OptionParser::GetOptionArgument() != nullptr)
{
int arg_index;
if (missing_argument)
arg_index = -1;
else
arg_index = OptionParser::GetOptionIndex() - 1;
option_element_vector.push_back (OptionArgElement (opt_defs_index, OptionParser::GetOptionIndex() - 2, arg_index));
}
else
{
option_element_vector.push_back (OptionArgElement (opt_defs_index, OptionParser::GetOptionIndex() - 1, -1));
}
break;
case OptionParser::eOptionalArgument:
if (OptionParser::GetOptionArgument() != nullptr)
{
option_element_vector.push_back (OptionArgElement (opt_defs_index, OptionParser::GetOptionIndex() - 2, OptionParser::GetOptionIndex() - 1));
}
else
{
option_element_vector.push_back (OptionArgElement (opt_defs_index, OptionParser::GetOptionIndex() - 2, OptionParser::GetOptionIndex() - 1));
}
break;
default:
// The options table is messed up. Here we'll just continue
option_element_vector.push_back (OptionArgElement (OptionArgElement::eUnrecognizedArg, OptionParser::GetOptionIndex() - 1,
OptionArgElement::eUnrecognizedArg));
break;
}
}
else
{
option_element_vector.push_back (OptionArgElement (OptionArgElement::eUnrecognizedArg, OptionParser::GetOptionIndex() - 1,
OptionArgElement::eUnrecognizedArg));
}
}
// Finally we have to handle the case where the cursor index points at a single "-". We want to mark that in
// the option_element_vector, but only if it is not after the "--". But it turns out that OptionParser::Parse just ignores
// an isolated "-". So we have to look it up by hand here. We only care if it is AT the cursor position.
// Note, a single quoted dash is not the same as a single dash...
if ((static_cast<int32_t>(dash_dash_pos) == -1 || cursor_index < dash_dash_pos)
&& m_args_quote_char[cursor_index] == '\0'
&& strcmp (GetArgumentAtIndex(cursor_index), "-") == 0)
{
option_element_vector.push_back (OptionArgElement (OptionArgElement::eBareDash, cursor_index,
OptionArgElement::eBareDash));
}
}
void
Args::EncodeEscapeSequences (const char *src, std::string &dst)
{
dst.clear();
if (src)
{
for (const char *p = src; *p != '\0'; ++p)
{
size_t non_special_chars = ::strcspn (p, "\\");
if (non_special_chars > 0)
{
dst.append(p, non_special_chars);
p += non_special_chars;
if (*p == '\0')
break;
}
if (*p == '\\')
{
++p; // skip the slash
switch (*p)
{
case 'a' : dst.append(1, '\a'); break;
case 'b' : dst.append(1, '\b'); break;
case 'f' : dst.append(1, '\f'); break;
case 'n' : dst.append(1, '\n'); break;
case 'r' : dst.append(1, '\r'); break;
case 't' : dst.append(1, '\t'); break;
case 'v' : dst.append(1, '\v'); break;
case '\\': dst.append(1, '\\'); break;
case '\'': dst.append(1, '\''); break;
case '"' : dst.append(1, '"'); break;
case '0' :
// 1 to 3 octal chars
{
// Make a string that can hold onto the initial zero char,
// up to 3 octal digits, and a terminating NULL.
char oct_str[5] = { '\0', '\0', '\0', '\0', '\0' };
int i;
for (i=0; (p[i] >= '0' && p[i] <= '7') && i<4; ++i)
oct_str[i] = p[i];
// We don't want to consume the last octal character since
// the main for loop will do this for us, so we advance p by
// one less than i (even if i is zero)
p += i - 1;
unsigned long octal_value = ::strtoul (oct_str, nullptr, 8);
if (octal_value <= UINT8_MAX)
{
dst.append(1, (char)octal_value);
}
}
break;
case 'x':
// hex number in the format
if (isxdigit(p[1]))
{
++p; // Skip the 'x'
// Make a string that can hold onto two hex chars plus a
// NULL terminator
char hex_str[3] = { *p, '\0', '\0' };
if (isxdigit(p[1]))
{
++p; // Skip the first of the two hex chars
hex_str[1] = *p;
}
unsigned long hex_value = strtoul (hex_str, nullptr, 16);
if (hex_value <= UINT8_MAX)
dst.append (1, (char)hex_value);
}
else
{
dst.append(1, 'x');
}
break;
default:
// Just desensitize any other character by just printing what
// came after the '\'
dst.append(1, *p);
break;
}
}
}
}
}
void
Args::ExpandEscapedCharacters (const char *src, std::string &dst)
{
dst.clear();
if (src)
{
for (const char *p = src; *p != '\0'; ++p)
{
if (isprint8(*p))
dst.append(1, *p);
else
{
switch (*p)
{
case '\a': dst.append("\\a"); break;
case '\b': dst.append("\\b"); break;
case '\f': dst.append("\\f"); break;
case '\n': dst.append("\\n"); break;
case '\r': dst.append("\\r"); break;
case '\t': dst.append("\\t"); break;
case '\v': dst.append("\\v"); break;
case '\'': dst.append("\\'"); break;
case '"': dst.append("\\\""); break;
case '\\': dst.append("\\\\"); break;
default:
{
// Just encode as octal
dst.append("\\0");
char octal_str[32];
snprintf(octal_str, sizeof(octal_str), "%o", *p);
dst.append(octal_str);
}
break;
}
}
}
}
}
std::string
Args::EscapeLLDBCommandArgument (const std::string& arg, char quote_char)
{
const char* chars_to_escape = nullptr;
switch (quote_char)
{
case '\0':
chars_to_escape = " \t\\'\"`";
break;
case '\'':
chars_to_escape = "";
break;
case '"':
chars_to_escape = "$\"`\\";
break;
default:
assert(false && "Unhandled quote character");
}
std::string res;
res.reserve(arg.size());
for (char c : arg)
{
if (::strchr(chars_to_escape, c))
res.push_back('\\');
res.push_back(c);
}
return res;
}