b1603638e3
- s/desciptor/descriptor/ MFC after: 5 days
2670 lines
69 KiB
C
2670 lines
69 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-4-Clause
|
|
*
|
|
* Copyright (c) 1997, 1998
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* VIA Rhine fast ethernet PCI NIC driver
|
|
*
|
|
* Supports various network adapters based on the VIA Rhine
|
|
* and Rhine II PCI controllers, including the D-Link DFE530TX.
|
|
* Datasheets are available at http://www.via.com.tw.
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* The VIA Rhine controllers are similar in some respects to the
|
|
* the DEC tulip chips, except less complicated. The controller
|
|
* uses an MII bus and an external physical layer interface. The
|
|
* receiver has a one entry perfect filter and a 64-bit hash table
|
|
* multicast filter. Transmit and receive descriptors are similar
|
|
* to the tulip.
|
|
*
|
|
* Some Rhine chips has a serious flaw in its transmit DMA mechanism:
|
|
* transmit buffers must be longword aligned. Unfortunately,
|
|
* FreeBSD doesn't guarantee that mbufs will be filled in starting
|
|
* at longword boundaries, so we have to do a buffer copy before
|
|
* transmission.
|
|
*/
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/vr/if_vrreg.h>
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
MODULE_DEPEND(vr, pci, 1, 1, 1);
|
|
MODULE_DEPEND(vr, ether, 1, 1, 1);
|
|
MODULE_DEPEND(vr, miibus, 1, 1, 1);
|
|
|
|
/* Define to show Rx/Tx error status. */
|
|
#undef VR_SHOW_ERRORS
|
|
#define VR_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
/*
|
|
* Various supported device vendors/types, their names & quirks.
|
|
*/
|
|
#define VR_Q_NEEDALIGN (1<<0)
|
|
#define VR_Q_CSUM (1<<1)
|
|
#define VR_Q_CAM (1<<2)
|
|
|
|
static const struct vr_type {
|
|
u_int16_t vr_vid;
|
|
u_int16_t vr_did;
|
|
int vr_quirks;
|
|
const char *vr_name;
|
|
} vr_devs[] = {
|
|
{ VIA_VENDORID, VIA_DEVICEID_RHINE,
|
|
VR_Q_NEEDALIGN,
|
|
"VIA VT3043 Rhine I 10/100BaseTX" },
|
|
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
|
|
VR_Q_NEEDALIGN,
|
|
"VIA VT86C100A Rhine II 10/100BaseTX" },
|
|
{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
|
|
0,
|
|
"VIA VT6102 Rhine II 10/100BaseTX" },
|
|
{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
|
|
0,
|
|
"VIA VT6105 Rhine III 10/100BaseTX" },
|
|
{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
|
|
VR_Q_CSUM,
|
|
"VIA VT6105M Rhine III 10/100BaseTX" },
|
|
{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
|
|
VR_Q_NEEDALIGN,
|
|
"Delta Electronics Rhine II 10/100BaseTX" },
|
|
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
|
|
VR_Q_NEEDALIGN,
|
|
"Addtron Technology Rhine II 10/100BaseTX" },
|
|
{ 0, 0, 0, NULL }
|
|
};
|
|
|
|
static int vr_probe(device_t);
|
|
static int vr_attach(device_t);
|
|
static int vr_detach(device_t);
|
|
static int vr_shutdown(device_t);
|
|
static int vr_suspend(device_t);
|
|
static int vr_resume(device_t);
|
|
|
|
static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
static int vr_dma_alloc(struct vr_softc *);
|
|
static void vr_dma_free(struct vr_softc *);
|
|
static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
|
|
static int vr_newbuf(struct vr_softc *, int);
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static __inline void vr_fixup_rx(struct mbuf *);
|
|
#endif
|
|
static int vr_rxeof(struct vr_softc *);
|
|
static void vr_txeof(struct vr_softc *);
|
|
static void vr_tick(void *);
|
|
static int vr_error(struct vr_softc *, uint16_t);
|
|
static void vr_tx_underrun(struct vr_softc *);
|
|
static int vr_intr(void *);
|
|
static void vr_int_task(void *, int);
|
|
static void vr_start(struct ifnet *);
|
|
static void vr_start_locked(struct ifnet *);
|
|
static int vr_encap(struct vr_softc *, struct mbuf **);
|
|
static int vr_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void vr_init(void *);
|
|
static void vr_init_locked(struct vr_softc *);
|
|
static void vr_tx_start(struct vr_softc *);
|
|
static void vr_rx_start(struct vr_softc *);
|
|
static int vr_tx_stop(struct vr_softc *);
|
|
static int vr_rx_stop(struct vr_softc *);
|
|
static void vr_stop(struct vr_softc *);
|
|
static void vr_watchdog(struct vr_softc *);
|
|
static int vr_ifmedia_upd(struct ifnet *);
|
|
static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
|
|
static int vr_miibus_readreg(device_t, int, int);
|
|
static int vr_miibus_writereg(device_t, int, int, int);
|
|
static void vr_miibus_statchg(device_t);
|
|
|
|
static void vr_cam_mask(struct vr_softc *, uint32_t, int);
|
|
static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
|
|
static void vr_set_filter(struct vr_softc *);
|
|
static void vr_reset(const struct vr_softc *);
|
|
static int vr_tx_ring_init(struct vr_softc *);
|
|
static int vr_rx_ring_init(struct vr_softc *);
|
|
static void vr_setwol(struct vr_softc *);
|
|
static void vr_clrwol(struct vr_softc *);
|
|
static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
|
|
|
|
static const struct vr_tx_threshold_table {
|
|
int tx_cfg;
|
|
int bcr_cfg;
|
|
int value;
|
|
} vr_tx_threshold_tables[] = {
|
|
{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES, 64 },
|
|
{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
|
|
{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
|
|
{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
|
|
{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
|
|
{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
|
|
};
|
|
|
|
static device_method_t vr_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, vr_probe),
|
|
DEVMETHOD(device_attach, vr_attach),
|
|
DEVMETHOD(device_detach, vr_detach),
|
|
DEVMETHOD(device_shutdown, vr_shutdown),
|
|
DEVMETHOD(device_suspend, vr_suspend),
|
|
DEVMETHOD(device_resume, vr_resume),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, vr_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, vr_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, vr_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t vr_driver = {
|
|
"vr",
|
|
vr_methods,
|
|
sizeof(struct vr_softc)
|
|
};
|
|
|
|
static devclass_t vr_devclass;
|
|
|
|
DRIVER_MODULE(vr, pci, vr_driver, vr_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static int
|
|
vr_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct vr_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* Set the register address. */
|
|
CSR_WRITE_1(sc, VR_MIIADDR, reg);
|
|
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
|
|
|
|
for (i = 0; i < VR_MII_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
|
|
break;
|
|
}
|
|
if (i == VR_MII_TIMEOUT)
|
|
device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
|
|
|
|
return (CSR_READ_2(sc, VR_MIIDATA));
|
|
}
|
|
|
|
static int
|
|
vr_miibus_writereg(device_t dev, int phy, int reg, int data)
|
|
{
|
|
struct vr_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
/* Set the register address and data to write. */
|
|
CSR_WRITE_1(sc, VR_MIIADDR, reg);
|
|
CSR_WRITE_2(sc, VR_MIIDATA, data);
|
|
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
|
|
|
|
for (i = 0; i < VR_MII_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
|
|
break;
|
|
}
|
|
if (i == VR_MII_TIMEOUT)
|
|
device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
|
|
reg);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* In order to fiddle with the
|
|
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
|
|
* first have to put the transmit and/or receive logic in the idle state.
|
|
*/
|
|
static void
|
|
vr_miibus_statchg(device_t dev)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
int lfdx, mfdx;
|
|
uint8_t cr0, cr1, fc;
|
|
|
|
sc = device_get_softc(dev);
|
|
mii = device_get_softc(sc->vr_miibus);
|
|
ifp = sc->vr_ifp;
|
|
if (mii == NULL || ifp == NULL ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
|
|
sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
sc->vr_flags |= VR_F_LINK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((sc->vr_flags & VR_F_LINK) != 0) {
|
|
cr0 = CSR_READ_1(sc, VR_CR0);
|
|
cr1 = CSR_READ_1(sc, VR_CR1);
|
|
mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
|
|
lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
|
|
if (mfdx != lfdx) {
|
|
if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
|
|
if (vr_tx_stop(sc) != 0 ||
|
|
vr_rx_stop(sc) != 0) {
|
|
device_printf(sc->vr_dev,
|
|
"%s: Tx/Rx shutdown error -- "
|
|
"resetting\n", __func__);
|
|
sc->vr_flags |= VR_F_RESTART;
|
|
VR_UNLOCK(sc);
|
|
return;
|
|
}
|
|
}
|
|
if (lfdx)
|
|
cr1 |= VR_CR1_FULLDUPLEX;
|
|
else
|
|
cr1 &= ~VR_CR1_FULLDUPLEX;
|
|
CSR_WRITE_1(sc, VR_CR1, cr1);
|
|
}
|
|
fc = 0;
|
|
/* Configure flow-control. */
|
|
if (sc->vr_revid >= REV_ID_VT6105_A0) {
|
|
fc = CSR_READ_1(sc, VR_FLOWCR1);
|
|
fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
|
|
if ((IFM_OPTIONS(mii->mii_media_active) &
|
|
IFM_ETH_RXPAUSE) != 0)
|
|
fc |= VR_FLOWCR1_RXPAUSE;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) &
|
|
IFM_ETH_TXPAUSE) != 0) {
|
|
fc |= VR_FLOWCR1_TXPAUSE;
|
|
sc->vr_flags |= VR_F_TXPAUSE;
|
|
}
|
|
CSR_WRITE_1(sc, VR_FLOWCR1, fc);
|
|
} else if (sc->vr_revid >= REV_ID_VT6102_A) {
|
|
/* No Tx puase capability available for Rhine II. */
|
|
fc = CSR_READ_1(sc, VR_MISC_CR0);
|
|
fc &= ~VR_MISCCR0_RXPAUSE;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) &
|
|
IFM_ETH_RXPAUSE) != 0)
|
|
fc |= VR_MISCCR0_RXPAUSE;
|
|
CSR_WRITE_1(sc, VR_MISC_CR0, fc);
|
|
}
|
|
vr_rx_start(sc);
|
|
vr_tx_start(sc);
|
|
} else {
|
|
if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
|
|
device_printf(sc->vr_dev,
|
|
"%s: Tx/Rx shutdown error -- resetting\n",
|
|
__func__);
|
|
sc->vr_flags |= VR_F_RESTART;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
|
|
{
|
|
|
|
if (type == VR_MCAST_CAM)
|
|
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
|
|
else
|
|
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
|
|
CSR_WRITE_4(sc, VR_CAMMASK, mask);
|
|
CSR_WRITE_1(sc, VR_CAMCTL, 0);
|
|
}
|
|
|
|
static int
|
|
vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
|
|
{
|
|
int i;
|
|
|
|
if (type == VR_MCAST_CAM) {
|
|
if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
|
|
return (EINVAL);
|
|
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
|
|
} else
|
|
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
|
|
|
|
/* Set CAM entry address. */
|
|
CSR_WRITE_1(sc, VR_CAMADDR, idx);
|
|
/* Set CAM entry data. */
|
|
if (type == VR_MCAST_CAM) {
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
|
|
} else {
|
|
CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
|
|
CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
|
|
}
|
|
DELAY(10);
|
|
/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
|
|
CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
|
|
for (i = 0; i < VR_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VR_TIMEOUT)
|
|
device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
|
|
__func__);
|
|
CSR_WRITE_1(sc, VR_CAMCTL, 0);
|
|
|
|
return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
|
|
}
|
|
|
|
struct vr_hash_maddr_cam_ctx {
|
|
struct vr_softc *sc;
|
|
uint32_t mask;
|
|
int error;
|
|
};
|
|
|
|
static u_int
|
|
vr_hash_maddr_cam(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
|
|
{
|
|
struct vr_hash_maddr_cam_ctx *ctx = arg;
|
|
|
|
if (ctx->error != 0)
|
|
return (0);
|
|
ctx->error = vr_cam_data(ctx->sc, VR_MCAST_CAM, mcnt, LLADDR(sdl));
|
|
if (ctx->error != 0) {
|
|
ctx->mask = 0;
|
|
return (0);
|
|
}
|
|
ctx->mask |= 1 << mcnt;
|
|
|
|
return (1);
|
|
}
|
|
|
|
static u_int
|
|
vr_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
|
|
{
|
|
uint32_t *hashes = arg;
|
|
int h;
|
|
|
|
h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Program the 64-bit multicast hash filter.
|
|
*/
|
|
static void
|
|
vr_set_filter(struct vr_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint32_t hashes[2] = { 0, 0 };
|
|
uint8_t rxfilt;
|
|
int error, mcnt;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vr_ifp;
|
|
rxfilt = CSR_READ_1(sc, VR_RXCFG);
|
|
rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
|
|
VR_RXCFG_RX_MULTI);
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
rxfilt |= VR_RXCFG_RX_BROAD;
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
rxfilt |= VR_RXCFG_RX_MULTI;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
rxfilt |= VR_RXCFG_RX_PROMISC;
|
|
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
|
|
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
|
|
return;
|
|
}
|
|
|
|
/* Now program new ones. */
|
|
error = 0;
|
|
if ((sc->vr_quirks & VR_Q_CAM) != 0) {
|
|
struct vr_hash_maddr_cam_ctx ctx;
|
|
|
|
/*
|
|
* For hardwares that have CAM capability, use
|
|
* 32 entries multicast perfect filter.
|
|
*/
|
|
ctx.sc = sc;
|
|
ctx.mask = 0;
|
|
ctx.error = 0;
|
|
mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr_cam, &ctx);
|
|
vr_cam_mask(sc, VR_MCAST_CAM, ctx.mask);
|
|
}
|
|
|
|
if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
|
|
/*
|
|
* If there are too many multicast addresses or
|
|
* setting multicast CAM filter failed, use hash
|
|
* table based filtering.
|
|
*/
|
|
mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr, hashes);
|
|
}
|
|
|
|
if (mcnt > 0)
|
|
rxfilt |= VR_RXCFG_RX_MULTI;
|
|
|
|
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
|
|
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
|
|
}
|
|
|
|
static void
|
|
vr_reset(const struct vr_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
|
|
|
|
CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
|
|
if (sc->vr_revid < REV_ID_VT6102_A) {
|
|
/* VT86C100A needs more delay after reset. */
|
|
DELAY(100);
|
|
}
|
|
for (i = 0; i < VR_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
|
|
break;
|
|
}
|
|
if (i == VR_TIMEOUT) {
|
|
if (sc->vr_revid < REV_ID_VT6102_A)
|
|
device_printf(sc->vr_dev, "reset never completed!\n");
|
|
else {
|
|
/* Use newer force reset command. */
|
|
device_printf(sc->vr_dev,
|
|
"Using force reset command.\n");
|
|
VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
|
|
/*
|
|
* Wait a little while for the chip to get its brains
|
|
* in order.
|
|
*/
|
|
DELAY(2000);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Probe for a VIA Rhine chip. Check the PCI vendor and device
|
|
* IDs against our list and return a match or NULL
|
|
*/
|
|
static const struct vr_type *
|
|
vr_match(device_t dev)
|
|
{
|
|
const struct vr_type *t = vr_devs;
|
|
|
|
for (t = vr_devs; t->vr_name != NULL; t++)
|
|
if ((pci_get_vendor(dev) == t->vr_vid) &&
|
|
(pci_get_device(dev) == t->vr_did))
|
|
return (t);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Probe for a VIA Rhine chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int
|
|
vr_probe(device_t dev)
|
|
{
|
|
const struct vr_type *t;
|
|
|
|
t = vr_match(dev);
|
|
if (t != NULL) {
|
|
device_set_desc(dev, t->vr_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
vr_attach(device_t dev)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct ifnet *ifp;
|
|
const struct vr_type *t;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
int error, rid;
|
|
int i, phy, pmc;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->vr_dev = dev;
|
|
t = vr_match(dev);
|
|
KASSERT(t != NULL, ("Lost if_vr device match"));
|
|
sc->vr_quirks = t->vr_quirks;
|
|
device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
|
|
|
|
mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
|
|
sc, 0, vr_sysctl_stats, "I", "Statistics");
|
|
|
|
error = 0;
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
sc->vr_revid = pci_get_revid(dev);
|
|
device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
|
|
|
|
sc->vr_res_id = PCIR_BAR(0);
|
|
sc->vr_res_type = SYS_RES_IOPORT;
|
|
sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
|
|
&sc->vr_res_id, RF_ACTIVE);
|
|
if (sc->vr_res == NULL) {
|
|
device_printf(dev, "couldn't map ports\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate interrupt. */
|
|
rid = 0;
|
|
sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->vr_irq == NULL) {
|
|
device_printf(dev, "couldn't map interrupt\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate ifnet structure. */
|
|
ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "couldn't allocate ifnet structure\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = vr_ioctl;
|
|
ifp->if_start = vr_start;
|
|
ifp->if_init = vr_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
|
|
ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
NET_TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
|
|
|
|
/* Configure Tx FIFO threshold. */
|
|
sc->vr_txthresh = VR_TXTHRESH_MIN;
|
|
if (sc->vr_revid < REV_ID_VT6105_A0) {
|
|
/*
|
|
* Use store and forward mode for Rhine I/II.
|
|
* Otherwise they produce a lot of Tx underruns and
|
|
* it would take a while to get working FIFO threshold
|
|
* value.
|
|
*/
|
|
sc->vr_txthresh = VR_TXTHRESH_MAX;
|
|
}
|
|
if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
|
|
ifp->if_hwassist = VR_CSUM_FEATURES;
|
|
ifp->if_capabilities |= IFCAP_HWCSUM;
|
|
/*
|
|
* To update checksum field the hardware may need to
|
|
* store entire frames into FIFO before transmitting.
|
|
*/
|
|
sc->vr_txthresh = VR_TXTHRESH_MAX;
|
|
}
|
|
|
|
if (sc->vr_revid >= REV_ID_VT6102_A &&
|
|
pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
|
|
ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
|
|
|
|
/* Rhine supports oversized VLAN frame. */
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
|
|
/*
|
|
* Windows may put the chip in suspend mode when it
|
|
* shuts down. Be sure to kick it in the head to wake it
|
|
* up again.
|
|
*/
|
|
if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
|
|
VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
|
|
|
|
/*
|
|
* Get station address. The way the Rhine chips work,
|
|
* you're not allowed to directly access the EEPROM once
|
|
* they've been programmed a special way. Consequently,
|
|
* we need to read the node address from the PAR0 and PAR1
|
|
* registers.
|
|
* Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
|
|
* VR_CFGC and VR_CFGD such that memory mapped IO configured
|
|
* by driver is reset to default state.
|
|
*/
|
|
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
|
|
for (i = VR_TIMEOUT; i > 0; i--) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
device_printf(dev, "Reloading EEPROM timeout!\n");
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
|
|
|
|
/* Reset the adapter. */
|
|
vr_reset(sc);
|
|
/* Ack intr & disable further interrupts. */
|
|
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
|
|
CSR_WRITE_2(sc, VR_IMR, 0);
|
|
if (sc->vr_revid >= REV_ID_VT6102_A)
|
|
CSR_WRITE_2(sc, VR_MII_IMR, 0);
|
|
|
|
if (sc->vr_revid < REV_ID_VT6102_A) {
|
|
pci_write_config(dev, VR_PCI_MODE2,
|
|
pci_read_config(dev, VR_PCI_MODE2, 1) |
|
|
VR_MODE2_MODE10T, 1);
|
|
} else {
|
|
/* Report error instead of retrying forever. */
|
|
pci_write_config(dev, VR_PCI_MODE2,
|
|
pci_read_config(dev, VR_PCI_MODE2, 1) |
|
|
VR_MODE2_PCEROPT, 1);
|
|
/* Detect MII coding error. */
|
|
pci_write_config(dev, VR_PCI_MODE3,
|
|
pci_read_config(dev, VR_PCI_MODE3, 1) |
|
|
VR_MODE3_MIION, 1);
|
|
if (sc->vr_revid >= REV_ID_VT6105_LOM &&
|
|
sc->vr_revid < REV_ID_VT6105M_A0)
|
|
pci_write_config(dev, VR_PCI_MODE2,
|
|
pci_read_config(dev, VR_PCI_MODE2, 1) |
|
|
VR_MODE2_MODE10T, 1);
|
|
/* Enable Memory-Read-Multiple. */
|
|
if (sc->vr_revid >= REV_ID_VT6107_A1 &&
|
|
sc->vr_revid < REV_ID_VT6105M_A0)
|
|
pci_write_config(dev, VR_PCI_MODE2,
|
|
pci_read_config(dev, VR_PCI_MODE2, 1) |
|
|
VR_MODE2_MRDPL, 1);
|
|
}
|
|
/* Disable MII AUTOPOLL. */
|
|
VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
|
|
|
|
if (vr_dma_alloc(sc) != 0) {
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Do MII setup. */
|
|
if (sc->vr_revid >= REV_ID_VT6105_A0)
|
|
phy = 1;
|
|
else
|
|
phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
|
|
error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
|
|
vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
|
|
sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
|
|
if (error != 0) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Call MI attach routine. */
|
|
ether_ifattach(ifp, eaddr);
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
* Must appear after the call to ether_ifattach() because
|
|
* ether_ifattach() sets ifi_hdrlen to the default value.
|
|
*/
|
|
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/* Hook interrupt last to avoid having to lock softc. */
|
|
error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
vr_intr, NULL, sc, &sc->vr_intrhand);
|
|
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
vr_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
vr_detach(device_t dev)
|
|
{
|
|
struct vr_softc *sc = device_get_softc(dev);
|
|
struct ifnet *ifp = sc->vr_ifp;
|
|
|
|
KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
/* These should only be active if attach succeeded. */
|
|
if (device_is_attached(dev)) {
|
|
VR_LOCK(sc);
|
|
sc->vr_flags |= VR_F_DETACHED;
|
|
vr_stop(sc);
|
|
VR_UNLOCK(sc);
|
|
callout_drain(&sc->vr_stat_callout);
|
|
taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
|
|
ether_ifdetach(ifp);
|
|
}
|
|
if (sc->vr_miibus)
|
|
device_delete_child(dev, sc->vr_miibus);
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->vr_intrhand)
|
|
bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
|
|
if (sc->vr_irq)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
|
|
if (sc->vr_res)
|
|
bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
|
|
sc->vr_res);
|
|
|
|
if (ifp)
|
|
if_free(ifp);
|
|
|
|
vr_dma_free(sc);
|
|
|
|
mtx_destroy(&sc->vr_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct vr_dmamap_arg {
|
|
bus_addr_t vr_busaddr;
|
|
};
|
|
|
|
static void
|
|
vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct vr_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
ctx = arg;
|
|
ctx->vr_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
vr_dma_alloc(struct vr_softc *sc)
|
|
{
|
|
struct vr_dmamap_arg ctx;
|
|
struct vr_txdesc *txd;
|
|
struct vr_rxdesc *rxd;
|
|
bus_size_t tx_alignment;
|
|
int error, i;
|
|
|
|
/* Create parent DMA tag. */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->vr_dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vr_cdata.vr_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
|
|
goto fail;
|
|
}
|
|
/* Create tag for Tx ring. */
|
|
error = bus_dma_tag_create(
|
|
sc->vr_cdata.vr_parent_tag, /* parent */
|
|
VR_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
VR_TX_RING_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
VR_TX_RING_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vr_cdata.vr_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx ring. */
|
|
error = bus_dma_tag_create(
|
|
sc->vr_cdata.vr_parent_tag, /* parent */
|
|
VR_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
VR_RX_RING_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
VR_RX_RING_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vr_cdata.vr_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
|
|
tx_alignment = sizeof(uint32_t);
|
|
else
|
|
tx_alignment = 1;
|
|
/* Create tag for Tx buffers. */
|
|
error = bus_dma_tag_create(
|
|
sc->vr_cdata.vr_parent_tag, /* parent */
|
|
tx_alignment, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * VR_MAXFRAGS, /* maxsize */
|
|
VR_MAXFRAGS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vr_cdata.vr_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx buffers. */
|
|
error = bus_dma_tag_create(
|
|
sc->vr_cdata.vr_parent_tag, /* parent */
|
|
VR_RX_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vr_cdata.vr_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
|
|
error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
|
|
(void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->vr_dev,
|
|
"failed to allocate DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.vr_busaddr = 0;
|
|
error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
|
|
sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
|
|
VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.vr_busaddr == 0) {
|
|
device_printf(sc->vr_dev,
|
|
"failed to load DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
|
|
error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
|
|
(void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->vr_dev,
|
|
"failed to allocate DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.vr_busaddr = 0;
|
|
error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
|
|
sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
|
|
VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.vr_busaddr == 0) {
|
|
device_printf(sc->vr_dev,
|
|
"failed to load DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < VR_TX_RING_CNT; i++) {
|
|
txd = &sc->vr_cdata.vr_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->vr_dev,
|
|
"failed to create Tx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create DMA maps for Rx buffers. */
|
|
if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
|
|
&sc->vr_cdata.vr_rx_sparemap)) != 0) {
|
|
device_printf(sc->vr_dev,
|
|
"failed to create spare Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < VR_RX_RING_CNT; i++) {
|
|
rxd = &sc->vr_cdata.vr_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->vr_dev,
|
|
"failed to create Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vr_dma_free(struct vr_softc *sc)
|
|
{
|
|
struct vr_txdesc *txd;
|
|
struct vr_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* Tx ring. */
|
|
if (sc->vr_cdata.vr_tx_ring_tag) {
|
|
if (sc->vr_rdata.vr_tx_ring_paddr)
|
|
bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
|
|
sc->vr_cdata.vr_tx_ring_map);
|
|
if (sc->vr_rdata.vr_tx_ring)
|
|
bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
|
|
sc->vr_rdata.vr_tx_ring,
|
|
sc->vr_cdata.vr_tx_ring_map);
|
|
sc->vr_rdata.vr_tx_ring = NULL;
|
|
sc->vr_rdata.vr_tx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
|
|
sc->vr_cdata.vr_tx_ring_tag = NULL;
|
|
}
|
|
/* Rx ring. */
|
|
if (sc->vr_cdata.vr_rx_ring_tag) {
|
|
if (sc->vr_rdata.vr_rx_ring_paddr)
|
|
bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
|
|
sc->vr_cdata.vr_rx_ring_map);
|
|
if (sc->vr_rdata.vr_rx_ring)
|
|
bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
|
|
sc->vr_rdata.vr_rx_ring,
|
|
sc->vr_cdata.vr_rx_ring_map);
|
|
sc->vr_rdata.vr_rx_ring = NULL;
|
|
sc->vr_rdata.vr_rx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
|
|
sc->vr_cdata.vr_rx_ring_tag = NULL;
|
|
}
|
|
/* Tx buffers. */
|
|
if (sc->vr_cdata.vr_tx_tag) {
|
|
for (i = 0; i < VR_TX_RING_CNT; i++) {
|
|
txd = &sc->vr_cdata.vr_txdesc[i];
|
|
if (txd->tx_dmamap) {
|
|
bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
|
|
sc->vr_cdata.vr_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers. */
|
|
if (sc->vr_cdata.vr_rx_tag) {
|
|
for (i = 0; i < VR_RX_RING_CNT; i++) {
|
|
rxd = &sc->vr_cdata.vr_rxdesc[i];
|
|
if (rxd->rx_dmamap) {
|
|
bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc->vr_cdata.vr_rx_sparemap) {
|
|
bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
|
|
sc->vr_cdata.vr_rx_sparemap);
|
|
sc->vr_cdata.vr_rx_sparemap = 0;
|
|
}
|
|
bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
|
|
sc->vr_cdata.vr_rx_tag = NULL;
|
|
}
|
|
|
|
if (sc->vr_cdata.vr_parent_tag) {
|
|
bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
|
|
sc->vr_cdata.vr_parent_tag = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
static int
|
|
vr_tx_ring_init(struct vr_softc *sc)
|
|
{
|
|
struct vr_ring_data *rd;
|
|
struct vr_txdesc *txd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
sc->vr_cdata.vr_tx_prod = 0;
|
|
sc->vr_cdata.vr_tx_cons = 0;
|
|
sc->vr_cdata.vr_tx_cnt = 0;
|
|
sc->vr_cdata.vr_tx_pkts = 0;
|
|
|
|
rd = &sc->vr_rdata;
|
|
bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
|
|
for (i = 0; i < VR_TX_RING_CNT; i++) {
|
|
if (i == VR_TX_RING_CNT - 1)
|
|
addr = VR_TX_RING_ADDR(sc, 0);
|
|
else
|
|
addr = VR_TX_RING_ADDR(sc, i + 1);
|
|
rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
|
|
txd = &sc->vr_cdata.vr_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
|
|
sc->vr_cdata.vr_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
* points back to the first.
|
|
*/
|
|
static int
|
|
vr_rx_ring_init(struct vr_softc *sc)
|
|
{
|
|
struct vr_ring_data *rd;
|
|
struct vr_rxdesc *rxd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
sc->vr_cdata.vr_rx_cons = 0;
|
|
|
|
rd = &sc->vr_rdata;
|
|
bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
|
|
for (i = 0; i < VR_RX_RING_CNT; i++) {
|
|
rxd = &sc->vr_cdata.vr_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->desc = &rd->vr_rx_ring[i];
|
|
if (i == VR_RX_RING_CNT - 1)
|
|
addr = VR_RX_RING_ADDR(sc, 0);
|
|
else
|
|
addr = VR_RX_RING_ADDR(sc, i + 1);
|
|
rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
|
|
if (vr_newbuf(sc, i) != 0)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
|
|
sc->vr_cdata.vr_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline void
|
|
vr_discard_rxbuf(struct vr_rxdesc *rxd)
|
|
{
|
|
struct vr_desc *desc;
|
|
|
|
desc = rxd->desc;
|
|
desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
|
|
desc->vr_status = htole32(VR_RXSTAT_OWN);
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
* Note: the length fields are only 11 bits wide, which means the
|
|
* largest size we can specify is 2047. This is important because
|
|
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
|
|
* overflow the field and make a mess.
|
|
*/
|
|
static int
|
|
vr_newbuf(struct vr_softc *sc, int idx)
|
|
{
|
|
struct vr_desc *desc;
|
|
struct vr_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, sizeof(uint64_t));
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
|
|
sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc->vr_cdata.vr_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
|
|
sc->vr_cdata.vr_rx_sparemap = map;
|
|
bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
desc = rxd->desc;
|
|
desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
|
|
desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
|
|
desc->vr_status = htole32(VR_RXSTAT_OWN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static __inline void
|
|
vr_fixup_rx(struct mbuf *m)
|
|
{
|
|
uint16_t *src, *dst;
|
|
int i;
|
|
|
|
src = mtod(m, uint16_t *);
|
|
dst = src - 1;
|
|
|
|
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
|
|
*dst++ = *src++;
|
|
|
|
m->m_data -= ETHER_ALIGN;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static int
|
|
vr_rxeof(struct vr_softc *sc)
|
|
{
|
|
struct vr_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct vr_desc *cur_rx;
|
|
int cons, prog, total_len, rx_npkts;
|
|
uint32_t rxstat, rxctl;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
ifp = sc->vr_ifp;
|
|
cons = sc->vr_cdata.vr_rx_cons;
|
|
rx_npkts = 0;
|
|
|
|
bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
|
|
sc->vr_cdata.vr_rx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
if (sc->rxcycles <= 0)
|
|
break;
|
|
sc->rxcycles--;
|
|
}
|
|
#endif
|
|
cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
|
|
rxstat = le32toh(cur_rx->vr_status);
|
|
rxctl = le32toh(cur_rx->vr_ctl);
|
|
if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
|
|
break;
|
|
|
|
prog++;
|
|
rxd = &sc->vr_cdata.vr_rxdesc[cons];
|
|
m = rxd->rx_m;
|
|
|
|
/*
|
|
* If an error occurs, update stats, clear the
|
|
* status word and leave the mbuf cluster in place:
|
|
* it should simply get re-used next time this descriptor
|
|
* comes up in the ring.
|
|
* We don't support SG in Rx path yet, so discard
|
|
* partial frame.
|
|
*/
|
|
if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
|
|
(rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
|
|
(VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
sc->vr_stat.rx_errors++;
|
|
if (rxstat & VR_RXSTAT_CRCERR)
|
|
sc->vr_stat.rx_crc_errors++;
|
|
if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
|
|
sc->vr_stat.rx_alignment++;
|
|
if (rxstat & VR_RXSTAT_FIFOOFLOW)
|
|
sc->vr_stat.rx_fifo_overflows++;
|
|
if (rxstat & VR_RXSTAT_GIANT)
|
|
sc->vr_stat.rx_giants++;
|
|
if (rxstat & VR_RXSTAT_RUNT)
|
|
sc->vr_stat.rx_runts++;
|
|
if (rxstat & VR_RXSTAT_BUFFERR)
|
|
sc->vr_stat.rx_no_buffers++;
|
|
#ifdef VR_SHOW_ERRORS
|
|
device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
|
|
__func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
|
|
#endif
|
|
vr_discard_rxbuf(rxd);
|
|
continue;
|
|
}
|
|
|
|
if (vr_newbuf(sc, cons) != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
sc->vr_stat.rx_errors++;
|
|
sc->vr_stat.rx_no_mbufs++;
|
|
vr_discard_rxbuf(rxd);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* XXX The VIA Rhine chip includes the CRC with every
|
|
* received frame, and there's no way to turn this
|
|
* behavior off (at least, I can't find anything in
|
|
* the manual that explains how to do it) so we have
|
|
* to trim off the CRC manually.
|
|
*/
|
|
total_len = VR_RXBYTES(rxstat);
|
|
total_len -= ETHER_CRC_LEN;
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* RX buffers must be 32-bit aligned.
|
|
* Ignore the alignment problems on the non-strict alignment
|
|
* platform. The performance hit incurred due to unaligned
|
|
* accesses is much smaller than the hit produced by forcing
|
|
* buffer copies all the time.
|
|
*/
|
|
vr_fixup_rx(m);
|
|
#endif
|
|
m->m_pkthdr.rcvif = ifp;
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
sc->vr_stat.rx_ok++;
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
|
|
(rxstat & VR_RXSTAT_FRAG) == 0 &&
|
|
(rxctl & VR_RXCTL_IP) != 0) {
|
|
/* Checksum is valid for non-fragmented IP packets. */
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
}
|
|
VR_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
VR_LOCK(sc);
|
|
rx_npkts++;
|
|
}
|
|
|
|
if (prog > 0) {
|
|
/*
|
|
* Let controller know how many number of RX buffers
|
|
* are posted but avoid expensive register access if
|
|
* TX pause capability was not negotiated with link
|
|
* partner.
|
|
*/
|
|
if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
|
|
if (prog >= VR_RX_RING_CNT)
|
|
prog = VR_RX_RING_CNT - 1;
|
|
CSR_WRITE_1(sc, VR_FLOWCR0, prog);
|
|
}
|
|
sc->vr_cdata.vr_rx_cons = cons;
|
|
bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
|
|
sc->vr_cdata.vr_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
return (rx_npkts);
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
static void
|
|
vr_txeof(struct vr_softc *sc)
|
|
{
|
|
struct vr_txdesc *txd;
|
|
struct vr_desc *cur_tx;
|
|
struct ifnet *ifp;
|
|
uint32_t txctl, txstat;
|
|
int cons, prod;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
cons = sc->vr_cdata.vr_tx_cons;
|
|
prod = sc->vr_cdata.vr_tx_prod;
|
|
if (cons == prod)
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
|
|
sc->vr_cdata.vr_tx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
ifp = sc->vr_ifp;
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
|
|
cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
|
|
txctl = le32toh(cur_tx->vr_ctl);
|
|
txstat = le32toh(cur_tx->vr_status);
|
|
if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
|
|
break;
|
|
|
|
sc->vr_cdata.vr_tx_cnt--;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
/* Only the first descriptor in the chain is valid. */
|
|
if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
|
|
continue;
|
|
|
|
txd = &sc->vr_cdata.vr_txdesc[cons];
|
|
KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
|
|
__func__));
|
|
|
|
if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
sc->vr_stat.tx_errors++;
|
|
if ((txstat & VR_TXSTAT_ABRT) != 0) {
|
|
/* Give up and restart Tx. */
|
|
sc->vr_stat.tx_abort++;
|
|
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
VR_INC(cons, VR_TX_RING_CNT);
|
|
sc->vr_cdata.vr_tx_cons = cons;
|
|
if (vr_tx_stop(sc) != 0) {
|
|
device_printf(sc->vr_dev,
|
|
"%s: Tx shutdown error -- "
|
|
"resetting\n", __func__);
|
|
sc->vr_flags |= VR_F_RESTART;
|
|
return;
|
|
}
|
|
vr_tx_start(sc);
|
|
break;
|
|
}
|
|
if ((sc->vr_revid < REV_ID_VT3071_A &&
|
|
(txstat & VR_TXSTAT_UNDERRUN)) ||
|
|
(txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
|
|
sc->vr_stat.tx_underrun++;
|
|
/* Retry and restart Tx. */
|
|
sc->vr_cdata.vr_tx_cnt++;
|
|
sc->vr_cdata.vr_tx_cons = cons;
|
|
cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
|
|
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
|
|
sc->vr_cdata.vr_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
vr_tx_underrun(sc);
|
|
return;
|
|
}
|
|
if ((txstat & VR_TXSTAT_DEFER) != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
|
|
sc->vr_stat.tx_collisions++;
|
|
}
|
|
if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
|
|
sc->vr_stat.tx_late_collisions++;
|
|
}
|
|
} else {
|
|
sc->vr_stat.tx_ok++;
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
|
|
if (sc->vr_revid < REV_ID_VT3071_A) {
|
|
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
|
|
(txstat & VR_TXSTAT_COLLCNT) >> 3);
|
|
sc->vr_stat.tx_collisions +=
|
|
(txstat & VR_TXSTAT_COLLCNT) >> 3;
|
|
} else {
|
|
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0x0f));
|
|
sc->vr_stat.tx_collisions += (txstat & 0x0f);
|
|
}
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
|
|
sc->vr_cdata.vr_tx_cons = cons;
|
|
if (sc->vr_cdata.vr_tx_cnt == 0)
|
|
sc->vr_watchdog_timer = 0;
|
|
}
|
|
|
|
static void
|
|
vr_tick(void *xsc)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = (struct vr_softc *)xsc;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
if ((sc->vr_flags & VR_F_RESTART) != 0) {
|
|
device_printf(sc->vr_dev, "restarting\n");
|
|
sc->vr_stat.num_restart++;
|
|
sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
vr_init_locked(sc);
|
|
sc->vr_flags &= ~VR_F_RESTART;
|
|
}
|
|
|
|
mii = device_get_softc(sc->vr_miibus);
|
|
mii_tick(mii);
|
|
if ((sc->vr_flags & VR_F_LINK) == 0)
|
|
vr_miibus_statchg(sc->vr_dev);
|
|
vr_watchdog(sc);
|
|
callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static poll_handler_t vr_poll;
|
|
static poll_handler_t vr_poll_locked;
|
|
|
|
static int
|
|
vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct vr_softc *sc;
|
|
int rx_npkts;
|
|
|
|
sc = ifp->if_softc;
|
|
rx_npkts = 0;
|
|
|
|
VR_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
rx_npkts = vr_poll_locked(ifp, cmd, count);
|
|
VR_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
|
|
static int
|
|
vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct vr_softc *sc;
|
|
int rx_npkts;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
sc->rxcycles = count;
|
|
rx_npkts = vr_rxeof(sc);
|
|
vr_txeof(sc);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vr_start_locked(ifp);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
uint16_t status;
|
|
|
|
/* Also check status register. */
|
|
status = CSR_READ_2(sc, VR_ISR);
|
|
if (status)
|
|
CSR_WRITE_2(sc, VR_ISR, status);
|
|
|
|
if ((status & VR_INTRS) == 0)
|
|
return (rx_npkts);
|
|
|
|
if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
|
|
VR_ISR_STATSOFLOW)) != 0) {
|
|
if (vr_error(sc, status) != 0)
|
|
return (rx_npkts);
|
|
}
|
|
if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
|
|
#ifdef VR_SHOW_ERRORS
|
|
device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
|
|
__func__, status, VR_ISR_ERR_BITS);
|
|
#endif
|
|
vr_rx_start(sc);
|
|
}
|
|
}
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
/* Back off the transmit threshold. */
|
|
static void
|
|
vr_tx_underrun(struct vr_softc *sc)
|
|
{
|
|
int thresh;
|
|
|
|
device_printf(sc->vr_dev, "Tx underrun -- ");
|
|
if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
|
|
thresh = sc->vr_txthresh;
|
|
sc->vr_txthresh++;
|
|
if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
|
|
sc->vr_txthresh = VR_TXTHRESH_MAX;
|
|
printf("using store and forward mode\n");
|
|
} else
|
|
printf("increasing Tx threshold(%d -> %d)\n",
|
|
vr_tx_threshold_tables[thresh].value,
|
|
vr_tx_threshold_tables[thresh + 1].value);
|
|
} else
|
|
printf("\n");
|
|
sc->vr_stat.tx_underrun++;
|
|
if (vr_tx_stop(sc) != 0) {
|
|
device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
|
|
"resetting\n", __func__);
|
|
sc->vr_flags |= VR_F_RESTART;
|
|
return;
|
|
}
|
|
vr_tx_start(sc);
|
|
}
|
|
|
|
static int
|
|
vr_intr(void *arg)
|
|
{
|
|
struct vr_softc *sc;
|
|
uint16_t status;
|
|
|
|
sc = (struct vr_softc *)arg;
|
|
|
|
status = CSR_READ_2(sc, VR_ISR);
|
|
if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
|
|
return (FILTER_STRAY);
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, VR_IMR, 0x0000);
|
|
|
|
taskqueue_enqueue(taskqueue_fast, &sc->vr_inttask);
|
|
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static void
|
|
vr_int_task(void *arg, int npending)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint16_t status;
|
|
|
|
sc = (struct vr_softc *)arg;
|
|
|
|
VR_LOCK(sc);
|
|
|
|
if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
|
|
goto done_locked;
|
|
|
|
status = CSR_READ_2(sc, VR_ISR);
|
|
ifp = sc->vr_ifp;
|
|
#ifdef DEVICE_POLLING
|
|
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
|
|
goto done_locked;
|
|
#endif
|
|
|
|
/* Suppress unwanted interrupts. */
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
|
|
(sc->vr_flags & VR_F_RESTART) != 0) {
|
|
CSR_WRITE_2(sc, VR_IMR, 0);
|
|
CSR_WRITE_2(sc, VR_ISR, status);
|
|
goto done_locked;
|
|
}
|
|
|
|
for (; (status & VR_INTRS) != 0;) {
|
|
CSR_WRITE_2(sc, VR_ISR, status);
|
|
if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
|
|
VR_ISR_STATSOFLOW)) != 0) {
|
|
if (vr_error(sc, status) != 0) {
|
|
VR_UNLOCK(sc);
|
|
return;
|
|
}
|
|
}
|
|
vr_rxeof(sc);
|
|
if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
|
|
#ifdef VR_SHOW_ERRORS
|
|
device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
|
|
__func__, status, VR_ISR_ERR_BITS);
|
|
#endif
|
|
/* Restart Rx if RxDMA SM was stopped. */
|
|
vr_rx_start(sc);
|
|
}
|
|
vr_txeof(sc);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vr_start_locked(ifp);
|
|
|
|
status = CSR_READ_2(sc, VR_ISR);
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
|
|
|
|
done_locked:
|
|
VR_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
vr_error(struct vr_softc *sc, uint16_t status)
|
|
{
|
|
uint16_t pcis;
|
|
|
|
status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
|
|
if ((status & VR_ISR_BUSERR) != 0) {
|
|
status &= ~VR_ISR_BUSERR;
|
|
sc->vr_stat.bus_errors++;
|
|
/* Disable further interrupts. */
|
|
CSR_WRITE_2(sc, VR_IMR, 0);
|
|
pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
|
|
device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
|
|
"resetting\n", pcis);
|
|
pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
|
|
sc->vr_flags |= VR_F_RESTART;
|
|
return (EAGAIN);
|
|
}
|
|
if ((status & VR_ISR_LINKSTAT2) != 0) {
|
|
/* Link state change, duplex changes etc. */
|
|
status &= ~VR_ISR_LINKSTAT2;
|
|
}
|
|
if ((status & VR_ISR_STATSOFLOW) != 0) {
|
|
status &= ~VR_ISR_STATSOFLOW;
|
|
if (sc->vr_revid >= REV_ID_VT6105M_A0) {
|
|
/* Update MIB counters. */
|
|
}
|
|
}
|
|
|
|
if (status != 0)
|
|
device_printf(sc->vr_dev,
|
|
"unhandled interrupt, status = 0x%04x\n", status);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int
|
|
vr_encap(struct vr_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct vr_txdesc *txd;
|
|
struct vr_desc *desc;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t txsegs[VR_MAXFRAGS];
|
|
uint32_t csum_flags, txctl;
|
|
int error, i, nsegs, prod, si;
|
|
int padlen;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
M_ASSERTPKTHDR((*m_head));
|
|
|
|
/*
|
|
* Some VIA Rhine wants packet buffers to be longword
|
|
* aligned, but very often our mbufs aren't. Rather than
|
|
* waste time trying to decide when to copy and when not
|
|
* to copy, just do it all the time.
|
|
*/
|
|
if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
|
|
m = m_defrag(*m_head, M_NOWAIT);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
|
|
/*
|
|
* The Rhine chip doesn't auto-pad, so we have to make
|
|
* sure to pad short frames out to the minimum frame length
|
|
* ourselves.
|
|
*/
|
|
if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
|
|
m = *m_head;
|
|
padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
|
|
if (M_WRITABLE(m) == 0) {
|
|
/* Get a writable copy. */
|
|
m = m_dup(*m_head, M_NOWAIT);
|
|
m_freem(*m_head);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
|
|
m = m_defrag(m, M_NOWAIT);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
/*
|
|
* Manually pad short frames, and zero the pad space
|
|
* to avoid leaking data.
|
|
*/
|
|
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
|
|
m->m_pkthdr.len += padlen;
|
|
m->m_len = m->m_pkthdr.len;
|
|
*m_head = m;
|
|
}
|
|
|
|
prod = sc->vr_cdata.vr_tx_prod;
|
|
txd = &sc->vr_cdata.vr_txdesc[prod];
|
|
error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
|
|
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
/* Check number of available descriptors. */
|
|
if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
|
|
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
txd->tx_m = *m_head;
|
|
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Set checksum offload. */
|
|
csum_flags = 0;
|
|
if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
|
|
if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
|
|
csum_flags |= VR_TXCTL_IPCSUM;
|
|
if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
|
|
csum_flags |= VR_TXCTL_TCPCSUM;
|
|
if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
|
|
csum_flags |= VR_TXCTL_UDPCSUM;
|
|
}
|
|
|
|
/*
|
|
* Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
|
|
* is required for all descriptors regardless of single or
|
|
* multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
|
|
* the first descriptor for a multi-fragmented frames. Without
|
|
* that VIA Rhine chip generates Tx underrun interrupts and can't
|
|
* send any frames.
|
|
*/
|
|
si = prod;
|
|
for (i = 0; i < nsegs; i++) {
|
|
desc = &sc->vr_rdata.vr_tx_ring[prod];
|
|
desc->vr_status = 0;
|
|
txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
|
|
if (i == 0)
|
|
txctl |= VR_TXCTL_FIRSTFRAG;
|
|
desc->vr_ctl = htole32(txctl);
|
|
desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
|
|
sc->vr_cdata.vr_tx_cnt++;
|
|
VR_INC(prod, VR_TX_RING_CNT);
|
|
}
|
|
/* Update producer index. */
|
|
sc->vr_cdata.vr_tx_prod = prod;
|
|
|
|
prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
|
|
desc = &sc->vr_rdata.vr_tx_ring[prod];
|
|
|
|
/*
|
|
* Set EOP on the last descriptor and reuqest Tx completion
|
|
* interrupt for every VR_TX_INTR_THRESH-th frames.
|
|
*/
|
|
VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
|
|
if (sc->vr_cdata.vr_tx_pkts == 0)
|
|
desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
|
|
else
|
|
desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
|
|
|
|
/* Lastly turn the first descriptor ownership to hardware. */
|
|
desc = &sc->vr_rdata.vr_tx_ring[si];
|
|
desc->vr_status |= htole32(VR_TXSTAT_OWN);
|
|
|
|
/* Sync descriptors. */
|
|
bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
|
|
sc->vr_cdata.vr_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vr_start(struct ifnet *ifp)
|
|
{
|
|
struct vr_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
VR_LOCK(sc);
|
|
vr_start_locked(ifp);
|
|
VR_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
vr_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
|
|
return;
|
|
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
|
|
sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (vr_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
/* Tell the chip to start transmitting. */
|
|
VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
sc->vr_watchdog_timer = 5;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vr_init(void *xsc)
|
|
{
|
|
struct vr_softc *sc;
|
|
|
|
sc = (struct vr_softc *)xsc;
|
|
VR_LOCK(sc);
|
|
vr_init_locked(sc);
|
|
VR_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
vr_init_locked(struct vr_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vr_ifp;
|
|
mii = device_get_softc(sc->vr_miibus);
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
return;
|
|
|
|
/* Cancel pending I/O and free all RX/TX buffers. */
|
|
vr_stop(sc);
|
|
vr_reset(sc);
|
|
|
|
/* Set our station address. */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
|
|
|
|
/* Set DMA size. */
|
|
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
|
|
VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
|
|
|
|
/*
|
|
* BCR0 and BCR1 can override the RXCFG and TXCFG registers,
|
|
* so we must set both.
|
|
*/
|
|
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
|
|
VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
|
|
|
|
VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
|
|
VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
|
|
|
|
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
|
|
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
|
|
|
|
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
|
|
VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
|
|
|
|
/* Init circular RX list. */
|
|
if (vr_rx_ring_init(sc) != 0) {
|
|
device_printf(sc->vr_dev,
|
|
"initialization failed: no memory for rx buffers\n");
|
|
vr_stop(sc);
|
|
return;
|
|
}
|
|
|
|
/* Init tx descriptors. */
|
|
vr_tx_ring_init(sc);
|
|
|
|
if ((sc->vr_quirks & VR_Q_CAM) != 0) {
|
|
uint8_t vcam[2] = { 0, 0 };
|
|
|
|
/* Disable VLAN hardware tag insertion/stripping. */
|
|
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
|
|
/* Disable VLAN hardware filtering. */
|
|
VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
|
|
/* Disable all CAM entries. */
|
|
vr_cam_mask(sc, VR_MCAST_CAM, 0);
|
|
vr_cam_mask(sc, VR_VLAN_CAM, 0);
|
|
/* Enable the first VLAN CAM. */
|
|
vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
|
|
vr_cam_mask(sc, VR_VLAN_CAM, 1);
|
|
}
|
|
|
|
/*
|
|
* Set up receive filter.
|
|
*/
|
|
vr_set_filter(sc);
|
|
|
|
/*
|
|
* Load the address of the RX ring.
|
|
*/
|
|
addr = VR_RX_RING_ADDR(sc, 0);
|
|
CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
|
|
/*
|
|
* Load the address of the TX ring.
|
|
*/
|
|
addr = VR_TX_RING_ADDR(sc, 0);
|
|
CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
|
|
/* Default : full-duplex, no Tx poll. */
|
|
CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
|
|
|
|
/* Set flow-control parameters for Rhine III. */
|
|
if (sc->vr_revid >= REV_ID_VT6105_A0) {
|
|
/*
|
|
* Configure Rx buffer count available for incoming
|
|
* packet.
|
|
* Even though data sheet says almost nothing about
|
|
* this register, this register should be updated
|
|
* whenever driver adds new RX buffers to controller.
|
|
* Otherwise, XON frame is not sent to link partner
|
|
* even if controller has enough RX buffers and you
|
|
* would be isolated from network.
|
|
* The controller is not smart enough to know number
|
|
* of available RX buffers so driver have to let
|
|
* controller know how many RX buffers are posted.
|
|
* In other words, this register works like a residue
|
|
* counter for RX buffers and should be initialized
|
|
* to the number of total RX buffers - 1 before
|
|
* enabling RX MAC. Note, this register is 8bits so
|
|
* it effectively limits the maximum number of RX
|
|
* buffer to be configured by controller is 255.
|
|
*/
|
|
CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
|
|
/*
|
|
* Tx pause low threshold : 8 free receive buffers
|
|
* Tx pause XON high threshold : 24 free receive buffers
|
|
*/
|
|
CSR_WRITE_1(sc, VR_FLOWCR1,
|
|
VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
|
|
/* Set Tx pause timer. */
|
|
CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
|
|
}
|
|
|
|
/* Enable receiver and transmitter. */
|
|
CSR_WRITE_1(sc, VR_CR0,
|
|
VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
|
|
|
|
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* Disable interrupts if we are polling.
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
CSR_WRITE_2(sc, VR_IMR, 0);
|
|
else
|
|
#endif
|
|
/*
|
|
* Enable interrupts and disable MII intrs.
|
|
*/
|
|
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
|
|
if (sc->vr_revid > REV_ID_VT6102_A)
|
|
CSR_WRITE_2(sc, VR_MII_IMR, 0);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
|
|
mii_mediachg(mii);
|
|
|
|
callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
vr_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct mii_data *mii;
|
|
struct mii_softc *miisc;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
VR_LOCK(sc);
|
|
mii = device_get_softc(sc->vr_miibus);
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
|
|
error = mii_mediachg(mii);
|
|
VR_UNLOCK(sc);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->vr_miibus);
|
|
VR_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
VR_UNLOCK(sc);
|
|
return;
|
|
}
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
VR_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct ifreq *ifr;
|
|
struct mii_data *mii;
|
|
int error, mask;
|
|
|
|
sc = ifp->if_softc;
|
|
ifr = (struct ifreq *)data;
|
|
error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFFLAGS:
|
|
VR_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if ((ifp->if_flags ^ sc->vr_if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI))
|
|
vr_set_filter(sc);
|
|
} else {
|
|
if ((sc->vr_flags & VR_F_DETACHED) == 0)
|
|
vr_init_locked(sc);
|
|
}
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
vr_stop(sc);
|
|
}
|
|
sc->vr_if_flags = ifp->if_flags;
|
|
VR_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
VR_LOCK(sc);
|
|
vr_set_filter(sc);
|
|
VR_UNLOCK(sc);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->vr_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
error = ether_poll_register(vr_poll, ifp);
|
|
if (error != 0)
|
|
break;
|
|
VR_LOCK(sc);
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, VR_IMR, 0x0000);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
VR_UNLOCK(sc);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupts. */
|
|
VR_LOCK(sc);
|
|
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
VR_UNLOCK(sc);
|
|
}
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
|
|
ifp->if_hwassist |= VR_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~VR_CSUM_FEATURES;
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(IFCAP_RXCSUM & ifp->if_capabilities) != 0)
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
if ((mask & IFCAP_WOL_UCAST) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
|
|
ifp->if_capenable ^= IFCAP_WOL_UCAST;
|
|
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
|
|
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vr_watchdog(struct vr_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
|
|
return;
|
|
|
|
ifp = sc->vr_ifp;
|
|
/*
|
|
* Reclaim first as we don't request interrupt for every packets.
|
|
*/
|
|
vr_txeof(sc);
|
|
if (sc->vr_cdata.vr_tx_cnt == 0)
|
|
return;
|
|
|
|
if ((sc->vr_flags & VR_F_LINK) == 0) {
|
|
if (bootverbose)
|
|
if_printf(sc->vr_ifp, "watchdog timeout "
|
|
"(missed link)\n");
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
vr_init_locked(sc);
|
|
return;
|
|
}
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
if_printf(ifp, "watchdog timeout\n");
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
vr_init_locked(sc);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vr_start_locked(ifp);
|
|
}
|
|
|
|
static void
|
|
vr_tx_start(struct vr_softc *sc)
|
|
{
|
|
bus_addr_t addr;
|
|
uint8_t cmd;
|
|
|
|
cmd = CSR_READ_1(sc, VR_CR0);
|
|
if ((cmd & VR_CR0_TX_ON) == 0) {
|
|
addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
|
|
CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
|
|
cmd |= VR_CR0_TX_ON;
|
|
CSR_WRITE_1(sc, VR_CR0, cmd);
|
|
}
|
|
if (sc->vr_cdata.vr_tx_cnt != 0) {
|
|
sc->vr_watchdog_timer = 5;
|
|
VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vr_rx_start(struct vr_softc *sc)
|
|
{
|
|
bus_addr_t addr;
|
|
uint8_t cmd;
|
|
|
|
cmd = CSR_READ_1(sc, VR_CR0);
|
|
if ((cmd & VR_CR0_RX_ON) == 0) {
|
|
addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
|
|
CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
|
|
cmd |= VR_CR0_RX_ON;
|
|
CSR_WRITE_1(sc, VR_CR0, cmd);
|
|
}
|
|
CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
|
|
}
|
|
|
|
static int
|
|
vr_tx_stop(struct vr_softc *sc)
|
|
{
|
|
int i;
|
|
uint8_t cmd;
|
|
|
|
cmd = CSR_READ_1(sc, VR_CR0);
|
|
if ((cmd & VR_CR0_TX_ON) != 0) {
|
|
cmd &= ~VR_CR0_TX_ON;
|
|
CSR_WRITE_1(sc, VR_CR0, cmd);
|
|
for (i = VR_TIMEOUT; i > 0; i--) {
|
|
DELAY(5);
|
|
cmd = CSR_READ_1(sc, VR_CR0);
|
|
if ((cmd & VR_CR0_TX_ON) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
return (ETIMEDOUT);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vr_rx_stop(struct vr_softc *sc)
|
|
{
|
|
int i;
|
|
uint8_t cmd;
|
|
|
|
cmd = CSR_READ_1(sc, VR_CR0);
|
|
if ((cmd & VR_CR0_RX_ON) != 0) {
|
|
cmd &= ~VR_CR0_RX_ON;
|
|
CSR_WRITE_1(sc, VR_CR0, cmd);
|
|
for (i = VR_TIMEOUT; i > 0; i--) {
|
|
DELAY(5);
|
|
cmd = CSR_READ_1(sc, VR_CR0);
|
|
if ((cmd & VR_CR0_RX_ON) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
return (ETIMEDOUT);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
vr_stop(struct vr_softc *sc)
|
|
{
|
|
struct vr_txdesc *txd;
|
|
struct vr_rxdesc *rxd;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vr_ifp;
|
|
sc->vr_watchdog_timer = 0;
|
|
|
|
callout_stop(&sc->vr_stat_callout);
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
|
|
if (vr_rx_stop(sc) != 0)
|
|
device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
|
|
if (vr_tx_stop(sc) != 0)
|
|
device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
|
|
/* Clear pending interrupts. */
|
|
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
|
|
CSR_WRITE_2(sc, VR_IMR, 0x0000);
|
|
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
|
|
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
|
|
|
|
/*
|
|
* Free RX and TX mbufs still in the queues.
|
|
*/
|
|
for (i = 0; i < VR_RX_RING_CNT; i++) {
|
|
rxd = &sc->vr_cdata.vr_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < VR_TX_RING_CNT; i++) {
|
|
txd = &sc->vr_cdata.vr_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static int
|
|
vr_shutdown(device_t dev)
|
|
{
|
|
|
|
return (vr_suspend(dev));
|
|
}
|
|
|
|
static int
|
|
vr_suspend(device_t dev)
|
|
{
|
|
struct vr_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
VR_LOCK(sc);
|
|
vr_stop(sc);
|
|
vr_setwol(sc);
|
|
sc->vr_flags |= VR_F_SUSPENDED;
|
|
VR_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vr_resume(device_t dev)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
VR_LOCK(sc);
|
|
ifp = sc->vr_ifp;
|
|
vr_clrwol(sc);
|
|
vr_reset(sc);
|
|
if (ifp->if_flags & IFF_UP)
|
|
vr_init_locked(sc);
|
|
|
|
sc->vr_flags &= ~VR_F_SUSPENDED;
|
|
VR_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vr_setwol(struct vr_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
int pmc;
|
|
uint16_t pmstat;
|
|
uint8_t v;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
if (sc->vr_revid < REV_ID_VT6102_A ||
|
|
pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
|
|
return;
|
|
|
|
ifp = sc->vr_ifp;
|
|
|
|
/* Clear WOL configuration. */
|
|
CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
|
|
CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
|
|
CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
|
|
CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
|
|
if (sc->vr_revid > REV_ID_VT6105_B0) {
|
|
/* Newer Rhine III supports two additional patterns. */
|
|
CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
|
|
CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
|
|
CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
|
|
}
|
|
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
|
|
CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
|
|
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
|
|
CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
|
|
/*
|
|
* It seems that multicast wakeup frames require programming pattern
|
|
* registers and valid CRC as well as pattern mask for each pattern.
|
|
* While it's possible to setup such a pattern it would complicate
|
|
* WOL configuration so ignore multicast wakeup frames.
|
|
*/
|
|
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
|
|
CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
|
|
v = CSR_READ_1(sc, VR_STICKHW);
|
|
CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
|
|
CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
|
|
}
|
|
|
|
/* Put hardware into sleep. */
|
|
v = CSR_READ_1(sc, VR_STICKHW);
|
|
v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
|
|
CSR_WRITE_1(sc, VR_STICKHW, v);
|
|
|
|
/* Request PME if WOL is requested. */
|
|
pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
|
|
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
|
|
if ((ifp->if_capenable & IFCAP_WOL) != 0)
|
|
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
|
|
}
|
|
|
|
static void
|
|
vr_clrwol(struct vr_softc *sc)
|
|
{
|
|
uint8_t v;
|
|
|
|
VR_LOCK_ASSERT(sc);
|
|
|
|
if (sc->vr_revid < REV_ID_VT6102_A)
|
|
return;
|
|
|
|
/* Take hardware out of sleep. */
|
|
v = CSR_READ_1(sc, VR_STICKHW);
|
|
v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
|
|
CSR_WRITE_1(sc, VR_STICKHW, v);
|
|
|
|
/* Clear WOL configuration as WOL may interfere normal operation. */
|
|
CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
|
|
CSR_WRITE_1(sc, VR_WOLCFG_CLR,
|
|
VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
|
|
CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
|
|
CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
|
|
if (sc->vr_revid > REV_ID_VT6105_B0) {
|
|
/* Newer Rhine III supports two additional patterns. */
|
|
CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
|
|
CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
|
|
CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct vr_softc *sc;
|
|
struct vr_statistics *stat;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
|
|
if (result == 1) {
|
|
sc = (struct vr_softc *)arg1;
|
|
stat = &sc->vr_stat;
|
|
|
|
printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
|
|
printf("Outbound good frames : %ju\n",
|
|
(uintmax_t)stat->tx_ok);
|
|
printf("Inbound good frames : %ju\n",
|
|
(uintmax_t)stat->rx_ok);
|
|
printf("Outbound errors : %u\n", stat->tx_errors);
|
|
printf("Inbound errors : %u\n", stat->rx_errors);
|
|
printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
|
|
printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
|
|
printf("Inbound FIFO overflows : %d\n",
|
|
stat->rx_fifo_overflows);
|
|
printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
|
|
printf("Inbound frame alignment errors : %u\n",
|
|
stat->rx_alignment);
|
|
printf("Inbound giant frames : %u\n", stat->rx_giants);
|
|
printf("Inbound runt frames : %u\n", stat->rx_runts);
|
|
printf("Outbound aborted with excessive collisions : %u\n",
|
|
stat->tx_abort);
|
|
printf("Outbound collisions : %u\n", stat->tx_collisions);
|
|
printf("Outbound late collisions : %u\n",
|
|
stat->tx_late_collisions);
|
|
printf("Outbound underrun : %u\n", stat->tx_underrun);
|
|
printf("PCI bus errors : %u\n", stat->bus_errors);
|
|
printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
|
|
stat->num_restart);
|
|
}
|
|
|
|
return (error);
|
|
}
|