2008-05-07 13:39:42 +00:00

3776 lines
88 KiB
C

/*
* Copyright (c) 1997 - 2004 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "krb5_locl.h"
RCSID("$Id: crypto.c,v 1.73.2.4 2004/03/06 16:38:00 lha Exp $");
/* RCSID("$FreeBSD$"); */
#undef CRYPTO_DEBUG
#ifdef CRYPTO_DEBUG
static void krb5_crypto_debug(krb5_context, int, size_t, krb5_keyblock*);
#endif
struct key_data {
krb5_keyblock *key;
krb5_data *schedule;
};
struct key_usage {
unsigned usage;
struct key_data key;
};
struct krb5_crypto_data {
struct encryption_type *et;
struct key_data key;
int num_key_usage;
struct key_usage *key_usage;
};
#define CRYPTO_ETYPE(C) ((C)->et->type)
/* bits for `flags' below */
#define F_KEYED 1 /* checksum is keyed */
#define F_CPROOF 2 /* checksum is collision proof */
#define F_DERIVED 4 /* uses derived keys */
#define F_VARIANT 8 /* uses `variant' keys (6.4.3) */
#define F_PSEUDO 16 /* not a real protocol type */
#define F_SPECIAL 32 /* backwards */
struct salt_type {
krb5_salttype type;
const char *name;
krb5_error_code (*string_to_key)(krb5_context, krb5_enctype, krb5_data,
krb5_salt, krb5_data, krb5_keyblock*);
};
struct key_type {
krb5_keytype type; /* XXX */
const char *name;
size_t bits;
size_t size;
size_t schedule_size;
#if 0
krb5_enctype best_etype;
#endif
void (*random_key)(krb5_context, krb5_keyblock*);
void (*schedule)(krb5_context, struct key_data *);
struct salt_type *string_to_key;
};
struct checksum_type {
krb5_cksumtype type;
const char *name;
size_t blocksize;
size_t checksumsize;
unsigned flags;
void (*checksum)(krb5_context context,
struct key_data *key,
const void *buf, size_t len,
unsigned usage,
Checksum *csum);
krb5_error_code (*verify)(krb5_context context,
struct key_data *key,
const void *buf, size_t len,
unsigned usage,
Checksum *csum);
};
struct encryption_type {
krb5_enctype type;
const char *name;
size_t blocksize;
size_t padsize;
size_t confoundersize;
struct key_type *keytype;
struct checksum_type *checksum;
struct checksum_type *keyed_checksum;
unsigned flags;
krb5_error_code (*encrypt)(krb5_context context,
struct key_data *key,
void *data, size_t len,
krb5_boolean encrypt,
int usage,
void *ivec);
};
#define ENCRYPTION_USAGE(U) (((U) << 8) | 0xAA)
#define INTEGRITY_USAGE(U) (((U) << 8) | 0x55)
#define CHECKSUM_USAGE(U) (((U) << 8) | 0x99)
static struct checksum_type *_find_checksum(krb5_cksumtype type);
static struct encryption_type *_find_enctype(krb5_enctype type);
static struct key_type *_find_keytype(krb5_keytype type);
static krb5_error_code _get_derived_key(krb5_context, krb5_crypto,
unsigned, struct key_data**);
static struct key_data *_new_derived_key(krb5_crypto crypto, unsigned usage);
static krb5_error_code derive_key(krb5_context context,
struct encryption_type *et,
struct key_data *key,
const void *constant,
size_t len);
static krb5_error_code hmac(krb5_context context,
struct checksum_type *cm,
const void *data,
size_t len,
unsigned usage,
struct key_data *keyblock,
Checksum *result);
static void free_key_data(krb5_context context, struct key_data *key);
static krb5_error_code usage2arcfour (krb5_context, int *);
/************************************************************
* *
************************************************************/
static void
krb5_DES_random_key(krb5_context context,
krb5_keyblock *key)
{
des_cblock *k = key->keyvalue.data;
do {
krb5_generate_random_block(k, sizeof(des_cblock));
des_set_odd_parity(k);
} while(des_is_weak_key(k));
}
static void
krb5_DES_schedule(krb5_context context,
struct key_data *key)
{
des_set_key(key->key->keyvalue.data, key->schedule->data);
}
static void
DES_string_to_key_int(unsigned char *data, size_t length, des_cblock *key)
{
des_key_schedule schedule;
int i;
int reverse = 0;
unsigned char *p;
unsigned char swap[] = { 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf };
memset(key, 0, 8);
p = (unsigned char*)key;
for (i = 0; i < length; i++) {
unsigned char tmp = data[i];
if (!reverse)
*p++ ^= (tmp << 1);
else
*--p ^= (swap[tmp & 0xf] << 4) | swap[(tmp & 0xf0) >> 4];
if((i % 8) == 7)
reverse = !reverse;
}
des_set_odd_parity(key);
if(des_is_weak_key(key))
(*key)[7] ^= 0xF0;
des_set_key(key, schedule);
des_cbc_cksum((void*)data, key, length, schedule, key);
memset(schedule, 0, sizeof(schedule));
des_set_odd_parity(key);
}
static krb5_error_code
krb5_DES_string_to_key(krb5_context context,
krb5_enctype enctype,
krb5_data password,
krb5_salt salt,
krb5_data opaque,
krb5_keyblock *key)
{
unsigned char *s;
size_t len;
des_cblock tmp;
len = password.length + salt.saltvalue.length;
s = malloc(len);
if(len > 0 && s == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
memcpy(s, password.data, password.length);
memcpy(s + password.length, salt.saltvalue.data, salt.saltvalue.length);
DES_string_to_key_int(s, len, &tmp);
key->keytype = enctype;
krb5_data_copy(&key->keyvalue, tmp, sizeof(tmp));
memset(&tmp, 0, sizeof(tmp));
memset(s, 0, len);
free(s);
return 0;
}
/* This defines the Andrew string_to_key function. It accepts a password
* string as input and converts its via a one-way encryption algorithm to a DES
* encryption key. It is compatible with the original Andrew authentication
* service password database.
*/
/*
* Short passwords, i.e 8 characters or less.
*/
static void
krb5_DES_AFS3_CMU_string_to_key (krb5_data pw,
krb5_data cell,
des_cblock *key)
{
char password[8+1]; /* crypt is limited to 8 chars anyway */
int i;
for(i = 0; i < 8; i++) {
char c = ((i < pw.length) ? ((char*)pw.data)[i] : 0) ^
((i < cell.length) ?
tolower(((unsigned char*)cell.data)[i]) : 0);
password[i] = c ? c : 'X';
}
password[8] = '\0';
memcpy(key, crypt(password, "p1") + 2, sizeof(des_cblock));
/* parity is inserted into the LSB so left shift each byte up one
bit. This allows ascii characters with a zero MSB to retain as
much significance as possible. */
for (i = 0; i < sizeof(des_cblock); i++)
((unsigned char*)key)[i] <<= 1;
des_set_odd_parity (key);
}
/*
* Long passwords, i.e 9 characters or more.
*/
static void
krb5_DES_AFS3_Transarc_string_to_key (krb5_data pw,
krb5_data cell,
des_cblock *key)
{
des_key_schedule schedule;
des_cblock temp_key;
des_cblock ivec;
char password[512];
size_t passlen;
memcpy(password, pw.data, min(pw.length, sizeof(password)));
if(pw.length < sizeof(password)) {
int len = min(cell.length, sizeof(password) - pw.length);
int i;
memcpy(password + pw.length, cell.data, len);
for (i = pw.length; i < pw.length + len; ++i)
password[i] = tolower((unsigned char)password[i]);
}
passlen = min(sizeof(password), pw.length + cell.length);
memcpy(&ivec, "kerberos", 8);
memcpy(&temp_key, "kerberos", 8);
des_set_odd_parity (&temp_key);
des_set_key (&temp_key, schedule);
des_cbc_cksum (password, &ivec, passlen, schedule, &ivec);
memcpy(&temp_key, &ivec, 8);
des_set_odd_parity (&temp_key);
des_set_key (&temp_key, schedule);
des_cbc_cksum (password, key, passlen, schedule, &ivec);
memset(&schedule, 0, sizeof(schedule));
memset(&temp_key, 0, sizeof(temp_key));
memset(&ivec, 0, sizeof(ivec));
memset(password, 0, sizeof(password));
des_set_odd_parity (key);
}
static krb5_error_code
DES_AFS3_string_to_key(krb5_context context,
krb5_enctype enctype,
krb5_data password,
krb5_salt salt,
krb5_data opaque,
krb5_keyblock *key)
{
des_cblock tmp;
if(password.length > 8)
krb5_DES_AFS3_Transarc_string_to_key(password, salt.saltvalue, &tmp);
else
krb5_DES_AFS3_CMU_string_to_key(password, salt.saltvalue, &tmp);
key->keytype = enctype;
krb5_data_copy(&key->keyvalue, tmp, sizeof(tmp));
memset(&key, 0, sizeof(key));
return 0;
}
static void
DES3_random_key(krb5_context context,
krb5_keyblock *key)
{
des_cblock *k = key->keyvalue.data;
do {
krb5_generate_random_block(k, 3 * sizeof(des_cblock));
des_set_odd_parity(&k[0]);
des_set_odd_parity(&k[1]);
des_set_odd_parity(&k[2]);
} while(des_is_weak_key(&k[0]) ||
des_is_weak_key(&k[1]) ||
des_is_weak_key(&k[2]));
}
static void
DES3_schedule(krb5_context context,
struct key_data *key)
{
des_cblock *k = key->key->keyvalue.data;
des_key_schedule *s = key->schedule->data;
des_set_key(&k[0], s[0]);
des_set_key(&k[1], s[1]);
des_set_key(&k[2], s[2]);
}
/*
* A = A xor B. A & B are 8 bytes.
*/
static void
xor (des_cblock *key, const unsigned char *b)
{
unsigned char *a = (unsigned char*)key;
a[0] ^= b[0];
a[1] ^= b[1];
a[2] ^= b[2];
a[3] ^= b[3];
a[4] ^= b[4];
a[5] ^= b[5];
a[6] ^= b[6];
a[7] ^= b[7];
}
static krb5_error_code
DES3_string_to_key(krb5_context context,
krb5_enctype enctype,
krb5_data password,
krb5_salt salt,
krb5_data opaque,
krb5_keyblock *key)
{
char *str;
size_t len;
unsigned char tmp[24];
des_cblock keys[3];
len = password.length + salt.saltvalue.length;
str = malloc(len);
if(len != 0 && str == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
memcpy(str, password.data, password.length);
memcpy(str + password.length, salt.saltvalue.data, salt.saltvalue.length);
{
des_cblock ivec;
des_key_schedule s[3];
int i;
_krb5_n_fold(str, len, tmp, 24);
for(i = 0; i < 3; i++){
memcpy(keys + i, tmp + i * 8, sizeof(keys[i]));
des_set_odd_parity(keys + i);
if(des_is_weak_key(keys + i))
xor(keys + i, (const unsigned char*)"\0\0\0\0\0\0\0\xf0");
des_set_key(keys + i, s[i]);
}
memset(&ivec, 0, sizeof(ivec));
des_ede3_cbc_encrypt(tmp,
tmp, sizeof(tmp),
s[0], s[1], s[2], &ivec, DES_ENCRYPT);
memset(s, 0, sizeof(s));
memset(&ivec, 0, sizeof(ivec));
for(i = 0; i < 3; i++){
memcpy(keys + i, tmp + i * 8, sizeof(keys[i]));
des_set_odd_parity(keys + i);
if(des_is_weak_key(keys + i))
xor(keys + i, (const unsigned char*)"\0\0\0\0\0\0\0\xf0");
}
memset(tmp, 0, sizeof(tmp));
}
key->keytype = enctype;
krb5_data_copy(&key->keyvalue, keys, sizeof(keys));
memset(keys, 0, sizeof(keys));
memset(str, 0, len);
free(str);
return 0;
}
static krb5_error_code
DES3_string_to_key_derived(krb5_context context,
krb5_enctype enctype,
krb5_data password,
krb5_salt salt,
krb5_data opaque,
krb5_keyblock *key)
{
krb5_error_code ret;
size_t len = password.length + salt.saltvalue.length;
char *s;
s = malloc(len);
if(len != 0 && s == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
memcpy(s, password.data, password.length);
memcpy(s + password.length, salt.saltvalue.data, salt.saltvalue.length);
ret = krb5_string_to_key_derived(context,
s,
len,
enctype,
key);
memset(s, 0, len);
free(s);
return ret;
}
/*
* ARCFOUR
*/
static void
ARCFOUR_random_key(krb5_context context, krb5_keyblock *key)
{
krb5_generate_random_block (key->keyvalue.data,
key->keyvalue.length);
}
static void
ARCFOUR_schedule(krb5_context context, struct key_data *kd)
{
RC4_set_key (kd->schedule->data,
kd->key->keyvalue.length, kd->key->keyvalue.data);
}
static krb5_error_code
ARCFOUR_string_to_key(krb5_context context,
krb5_enctype enctype,
krb5_data password,
krb5_salt salt,
krb5_data opaque,
krb5_keyblock *key)
{
char *s, *p;
size_t len;
int i;
MD4_CTX m;
len = 2 * password.length;
s = malloc (len);
if (len != 0 && s == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
for (p = s, i = 0; i < password.length; ++i) {
*p++ = ((char *)password.data)[i];
*p++ = 0;
}
MD4_Init (&m);
MD4_Update (&m, s, len);
key->keytype = enctype;
krb5_data_alloc (&key->keyvalue, 16);
MD4_Final (key->keyvalue.data, &m);
memset (s, 0, len);
free (s);
return 0;
}
#ifdef ENABLE_AES
/*
* AES
*/
/* iter is really 1 based, so iter == 0 will be 1 iteration */
krb5_error_code
krb5_PKCS5_PBKDF2(krb5_context context, krb5_cksumtype cktype,
krb5_data password, krb5_salt salt, u_int32_t iter,
krb5_keytype type, krb5_keyblock *key)
{
struct checksum_type *c = _find_checksum(cktype);
struct key_type *kt;
size_t datalen, leftofkey;
krb5_error_code ret;
u_int32_t keypart;
struct key_data ksign;
krb5_keyblock kb;
Checksum result;
char *data, *tmpcksum;
int i, j;
char *p;
if (c == NULL) {
krb5_set_error_string(context, "checksum %d not supported", cktype);
return KRB5_PROG_KEYTYPE_NOSUPP;
}
kt = _find_keytype(type);
if (kt == NULL) {
krb5_set_error_string(context, "key type %d not supported", type);
return KRB5_PROG_KEYTYPE_NOSUPP;
}
key->keytype = type;
ret = krb5_data_alloc (&key->keyvalue, kt->bits / 8);
if (ret) {
krb5_set_error_string(context, "malloc: out of memory");
return ret;
}
ret = krb5_data_alloc (&result.checksum, c->checksumsize);
if (ret) {
krb5_set_error_string(context, "malloc: out of memory");
krb5_data_free (&key->keyvalue);
return ret;
}
tmpcksum = malloc(c->checksumsize);
if (tmpcksum == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
krb5_data_free (&key->keyvalue);
krb5_data_free (&result.checksum);
return ENOMEM;
}
datalen = salt.saltvalue.length + 4;
data = malloc(datalen);
if (data == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
free(tmpcksum);
krb5_data_free (&key->keyvalue);
krb5_data_free (&result.checksum);
return ENOMEM;
}
kb.keyvalue = password;
ksign.key = &kb;
memcpy(data, salt.saltvalue.data, salt.saltvalue.length);
keypart = 1;
leftofkey = key->keyvalue.length;
p = key->keyvalue.data;
while (leftofkey) {
int len;
if (leftofkey > c->checksumsize)
len = c->checksumsize;
else
len = leftofkey;
_krb5_put_int(data + datalen - 4, keypart, 4);
ret = hmac(context, c, data, datalen, 0, &ksign, &result);
if (ret)
krb5_abortx(context, "hmac failed");
memcpy(p, result.checksum.data, len);
memcpy(tmpcksum, result.checksum.data, result.checksum.length);
for (i = 0; i < iter; i++) {
ret = hmac(context, c, tmpcksum, result.checksum.length,
0, &ksign, &result);
if (ret)
krb5_abortx(context, "hmac failed");
memcpy(tmpcksum, result.checksum.data, result.checksum.length);
for (j = 0; j < len; j++)
p[j] ^= tmpcksum[j];
}
p += len;
leftofkey -= len;
keypart++;
}
free(data);
free(tmpcksum);
krb5_data_free (&result.checksum);
return 0;
}
static krb5_error_code
AES_string_to_key(krb5_context context,
krb5_enctype enctype,
krb5_data password,
krb5_salt salt,
krb5_data opaque,
krb5_keyblock *key)
{
krb5_error_code ret;
u_int32_t iter;
struct encryption_type *et;
struct key_data kd;
if (opaque.length == 0)
iter = 45056 - 1;
else if (opaque.length == 4) {
unsigned long v;
_krb5_get_int(opaque.data, &v, 4);
iter = ((u_int32_t)v) - 1;
} else
return KRB5_PROG_KEYTYPE_NOSUPP; /* XXX */
et = _find_enctype(enctype);
if (et == NULL)
return KRB5_PROG_KEYTYPE_NOSUPP;
ret = krb5_PKCS5_PBKDF2(context, CKSUMTYPE_SHA1, password, salt,
iter, enctype, key);
if (ret)
return ret;
ret = krb5_copy_keyblock(context, key, &kd.key);
kd.schedule = NULL;
ret = derive_key(context, et, &kd, "kerberos", strlen("kerberos"));
if (ret) {
krb5_data_free(&key->keyvalue);
} else {
ret = krb5_copy_keyblock_contents(context, kd.key, key);
free_key_data(context, &kd);
}
return ret;
}
static void
AES_schedule(krb5_context context, struct key_data *kd)
{
AES_KEY *key = kd->schedule->data;
int bits = kd->key->keyvalue.length * 8;
AES_set_encrypt_key(kd->key->keyvalue.data, bits, &key[0]);
AES_set_decrypt_key(kd->key->keyvalue.data, bits, &key[1]);
}
/*
*
*/
extern struct salt_type AES_salt[];
#endif /* ENABLE_AES */
extern struct salt_type des_salt[],
des3_salt[], des3_salt_derived[], arcfour_salt[];
struct key_type keytype_null = {
KEYTYPE_NULL,
"null",
0,
0,
0,
NULL,
NULL,
NULL
};
struct key_type keytype_des = {
KEYTYPE_DES,
"des",
56,
sizeof(des_cblock),
sizeof(des_key_schedule),
krb5_DES_random_key,
krb5_DES_schedule,
des_salt
};
struct key_type keytype_des3 = {
KEYTYPE_DES3,
"des3",
168,
3 * sizeof(des_cblock),
3 * sizeof(des_key_schedule),
DES3_random_key,
DES3_schedule,
des3_salt
};
struct key_type keytype_des3_derived = {
KEYTYPE_DES3,
"des3",
168,
3 * sizeof(des_cblock),
3 * sizeof(des_key_schedule),
DES3_random_key,
DES3_schedule,
des3_salt_derived
};
#ifdef ENABLE_AES
struct key_type keytype_aes128 = {
KEYTYPE_AES128,
"aes-128",
128,
16,
sizeof(AES_KEY) * 2,
NULL,
AES_schedule,
AES_salt
};
struct key_type keytype_aes256 = {
KEYTYPE_AES256,
"aes-256",
256,
16,
sizeof(AES_KEY) * 2,
NULL,
AES_schedule,
AES_salt
};
#endif /* ENABLE_AES */
struct key_type keytype_arcfour = {
KEYTYPE_ARCFOUR,
"arcfour",
128,
16,
sizeof(RC4_KEY),
ARCFOUR_random_key,
ARCFOUR_schedule,
arcfour_salt
};
struct key_type *keytypes[] = {
&keytype_null,
&keytype_des,
&keytype_des3_derived,
&keytype_des3,
#ifdef ENABLE_AES
&keytype_aes128,
&keytype_aes256,
#endif /* ENABLE_AES */
&keytype_arcfour
};
static int num_keytypes = sizeof(keytypes) / sizeof(keytypes[0]);
static struct key_type *
_find_keytype(krb5_keytype type)
{
int i;
for(i = 0; i < num_keytypes; i++)
if(keytypes[i]->type == type)
return keytypes[i];
return NULL;
}
struct salt_type des_salt[] = {
{
KRB5_PW_SALT,
"pw-salt",
krb5_DES_string_to_key
},
{
KRB5_AFS3_SALT,
"afs3-salt",
DES_AFS3_string_to_key
},
{ 0 }
};
struct salt_type des3_salt[] = {
{
KRB5_PW_SALT,
"pw-salt",
DES3_string_to_key
},
{ 0 }
};
struct salt_type des3_salt_derived[] = {
{
KRB5_PW_SALT,
"pw-salt",
DES3_string_to_key_derived
},
{ 0 }
};
#ifdef ENABLE_AES
struct salt_type AES_salt[] = {
{
KRB5_PW_SALT,
"pw-salt",
AES_string_to_key
},
{ 0 }
};
#endif /* ENABLE_AES */
struct salt_type arcfour_salt[] = {
{
KRB5_PW_SALT,
"pw-salt",
ARCFOUR_string_to_key
},
{ 0 }
};
krb5_error_code
krb5_salttype_to_string (krb5_context context,
krb5_enctype etype,
krb5_salttype stype,
char **string)
{
struct encryption_type *e;
struct salt_type *st;
e = _find_enctype (etype);
if (e == NULL) {
krb5_set_error_string(context, "encryption type %d not supported",
etype);
return KRB5_PROG_ETYPE_NOSUPP;
}
for (st = e->keytype->string_to_key; st && st->type; st++) {
if (st->type == stype) {
*string = strdup (st->name);
if (*string == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
return 0;
}
}
krb5_set_error_string(context, "salttype %d not supported", stype);
return HEIM_ERR_SALTTYPE_NOSUPP;
}
krb5_error_code
krb5_string_to_salttype (krb5_context context,
krb5_enctype etype,
const char *string,
krb5_salttype *salttype)
{
struct encryption_type *e;
struct salt_type *st;
e = _find_enctype (etype);
if (e == NULL) {
krb5_set_error_string(context, "encryption type %d not supported",
etype);
return KRB5_PROG_ETYPE_NOSUPP;
}
for (st = e->keytype->string_to_key; st && st->type; st++) {
if (strcasecmp (st->name, string) == 0) {
*salttype = st->type;
return 0;
}
}
krb5_set_error_string(context, "salttype %s not supported", string);
return HEIM_ERR_SALTTYPE_NOSUPP;
}
krb5_error_code
krb5_get_pw_salt(krb5_context context,
krb5_const_principal principal,
krb5_salt *salt)
{
size_t len;
int i;
krb5_error_code ret;
char *p;
salt->salttype = KRB5_PW_SALT;
len = strlen(principal->realm);
for (i = 0; i < principal->name.name_string.len; ++i)
len += strlen(principal->name.name_string.val[i]);
ret = krb5_data_alloc (&salt->saltvalue, len);
if (ret)
return ret;
p = salt->saltvalue.data;
memcpy (p, principal->realm, strlen(principal->realm));
p += strlen(principal->realm);
for (i = 0; i < principal->name.name_string.len; ++i) {
memcpy (p,
principal->name.name_string.val[i],
strlen(principal->name.name_string.val[i]));
p += strlen(principal->name.name_string.val[i]);
}
return 0;
}
krb5_error_code
krb5_free_salt(krb5_context context,
krb5_salt salt)
{
krb5_data_free(&salt.saltvalue);
return 0;
}
krb5_error_code
krb5_string_to_key_data (krb5_context context,
krb5_enctype enctype,
krb5_data password,
krb5_principal principal,
krb5_keyblock *key)
{
krb5_error_code ret;
krb5_salt salt;
ret = krb5_get_pw_salt(context, principal, &salt);
if(ret)
return ret;
ret = krb5_string_to_key_data_salt(context, enctype, password, salt, key);
krb5_free_salt(context, salt);
return ret;
}
krb5_error_code
krb5_string_to_key (krb5_context context,
krb5_enctype enctype,
const char *password,
krb5_principal principal,
krb5_keyblock *key)
{
krb5_data pw;
pw.data = (void*)password;
pw.length = strlen(password);
return krb5_string_to_key_data(context, enctype, pw, principal, key);
}
krb5_error_code
krb5_string_to_key_data_salt (krb5_context context,
krb5_enctype enctype,
krb5_data password,
krb5_salt salt,
krb5_keyblock *key)
{
krb5_data opaque;
krb5_data_zero(&opaque);
return krb5_string_to_key_data_salt_opaque(context, enctype, password,
salt, opaque, key);
}
/*
* Do a string -> key for encryption type `enctype' operation on
* `password' (with salt `salt' and the enctype specific data string
* `opaque'), returning the resulting key in `key'
*/
krb5_error_code
krb5_string_to_key_data_salt_opaque (krb5_context context,
krb5_enctype enctype,
krb5_data password,
krb5_salt salt,
krb5_data opaque,
krb5_keyblock *key)
{
struct encryption_type *et =_find_enctype(enctype);
struct salt_type *st;
if(et == NULL) {
krb5_set_error_string(context, "encryption type %d not supported",
enctype);
return KRB5_PROG_ETYPE_NOSUPP;
}
for(st = et->keytype->string_to_key; st && st->type; st++)
if(st->type == salt.salttype)
return (*st->string_to_key)(context, enctype, password,
salt, opaque, key);
krb5_set_error_string(context, "salt type %d not supported",
salt.salttype);
return HEIM_ERR_SALTTYPE_NOSUPP;
}
/*
* Do a string -> key for encryption type `enctype' operation on the
* string `password' (with salt `salt'), returning the resulting key
* in `key'
*/
krb5_error_code
krb5_string_to_key_salt (krb5_context context,
krb5_enctype enctype,
const char *password,
krb5_salt salt,
krb5_keyblock *key)
{
krb5_data pw;
pw.data = (void*)password;
pw.length = strlen(password);
return krb5_string_to_key_data_salt(context, enctype, pw, salt, key);
}
krb5_error_code
krb5_keytype_to_string(krb5_context context,
krb5_keytype keytype,
char **string)
{
struct key_type *kt = _find_keytype(keytype);
if(kt == NULL) {
krb5_set_error_string(context, "key type %d not supported", keytype);
return KRB5_PROG_KEYTYPE_NOSUPP;
}
*string = strdup(kt->name);
if(*string == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
return 0;
}
krb5_error_code
krb5_string_to_keytype(krb5_context context,
const char *string,
krb5_keytype *keytype)
{
int i;
for(i = 0; i < num_keytypes; i++)
if(strcasecmp(keytypes[i]->name, string) == 0){
*keytype = keytypes[i]->type;
return 0;
}
krb5_set_error_string(context, "key type %s not supported", string);
return KRB5_PROG_KEYTYPE_NOSUPP;
}
krb5_error_code
krb5_enctype_keysize(krb5_context context,
krb5_enctype type,
size_t *keysize)
{
struct encryption_type *et = _find_enctype(type);
if(et == NULL) {
krb5_set_error_string(context, "encryption type %d not supported",
type);
return KRB5_PROG_ETYPE_NOSUPP;
}
*keysize = et->keytype->size;
return 0;
}
krb5_error_code
krb5_generate_random_keyblock(krb5_context context,
krb5_enctype type,
krb5_keyblock *key)
{
krb5_error_code ret;
struct encryption_type *et = _find_enctype(type);
if(et == NULL) {
krb5_set_error_string(context, "encryption type %d not supported",
type);
return KRB5_PROG_ETYPE_NOSUPP;
}
ret = krb5_data_alloc(&key->keyvalue, et->keytype->size);
if(ret)
return ret;
key->keytype = type;
if(et->keytype->random_key)
(*et->keytype->random_key)(context, key);
else
krb5_generate_random_block(key->keyvalue.data,
key->keyvalue.length);
return 0;
}
static krb5_error_code
_key_schedule(krb5_context context,
struct key_data *key)
{
krb5_error_code ret;
struct encryption_type *et = _find_enctype(key->key->keytype);
struct key_type *kt = et->keytype;
if(kt->schedule == NULL)
return 0;
if (key->schedule != NULL)
return 0;
ALLOC(key->schedule, 1);
if(key->schedule == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
ret = krb5_data_alloc(key->schedule, kt->schedule_size);
if(ret) {
free(key->schedule);
key->schedule = NULL;
return ret;
}
(*kt->schedule)(context, key);
return 0;
}
/************************************************************
* *
************************************************************/
static void
NONE_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
}
static void
CRC32_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
u_int32_t crc;
unsigned char *r = C->checksum.data;
_krb5_crc_init_table ();
crc = _krb5_crc_update (data, len, 0);
r[0] = crc & 0xff;
r[1] = (crc >> 8) & 0xff;
r[2] = (crc >> 16) & 0xff;
r[3] = (crc >> 24) & 0xff;
}
static void
RSA_MD4_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
MD4_CTX m;
MD4_Init (&m);
MD4_Update (&m, data, len);
MD4_Final (C->checksum.data, &m);
}
static void
RSA_MD4_DES_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *cksum)
{
MD4_CTX md4;
des_cblock ivec;
unsigned char *p = cksum->checksum.data;
krb5_generate_random_block(p, 8);
MD4_Init (&md4);
MD4_Update (&md4, p, 8);
MD4_Update (&md4, data, len);
MD4_Final (p + 8, &md4);
memset (&ivec, 0, sizeof(ivec));
des_cbc_encrypt(p,
p,
24,
key->schedule->data,
&ivec,
DES_ENCRYPT);
}
static krb5_error_code
RSA_MD4_DES_verify(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
MD4_CTX md4;
unsigned char tmp[24];
unsigned char res[16];
des_cblock ivec;
krb5_error_code ret = 0;
memset(&ivec, 0, sizeof(ivec));
des_cbc_encrypt(C->checksum.data,
(void*)tmp,
C->checksum.length,
key->schedule->data,
&ivec,
DES_DECRYPT);
MD4_Init (&md4);
MD4_Update (&md4, tmp, 8); /* confounder */
MD4_Update (&md4, data, len);
MD4_Final (res, &md4);
if(memcmp(res, tmp + 8, sizeof(res)) != 0) {
krb5_clear_error_string (context);
ret = KRB5KRB_AP_ERR_BAD_INTEGRITY;
}
memset(tmp, 0, sizeof(tmp));
memset(res, 0, sizeof(res));
return ret;
}
static void
RSA_MD5_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
MD5_CTX m;
MD5_Init (&m);
MD5_Update(&m, data, len);
MD5_Final (C->checksum.data, &m);
}
static void
RSA_MD5_DES_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
MD5_CTX md5;
des_cblock ivec;
unsigned char *p = C->checksum.data;
krb5_generate_random_block(p, 8);
MD5_Init (&md5);
MD5_Update (&md5, p, 8);
MD5_Update (&md5, data, len);
MD5_Final (p + 8, &md5);
memset (&ivec, 0, sizeof(ivec));
des_cbc_encrypt(p,
p,
24,
key->schedule->data,
&ivec,
DES_ENCRYPT);
}
static krb5_error_code
RSA_MD5_DES_verify(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
MD5_CTX md5;
unsigned char tmp[24];
unsigned char res[16];
des_cblock ivec;
des_key_schedule *sched = key->schedule->data;
krb5_error_code ret = 0;
memset(&ivec, 0, sizeof(ivec));
des_cbc_encrypt(C->checksum.data,
(void*)tmp,
C->checksum.length,
sched[0],
&ivec,
DES_DECRYPT);
MD5_Init (&md5);
MD5_Update (&md5, tmp, 8); /* confounder */
MD5_Update (&md5, data, len);
MD5_Final (res, &md5);
if(memcmp(res, tmp + 8, sizeof(res)) != 0) {
krb5_clear_error_string (context);
ret = KRB5KRB_AP_ERR_BAD_INTEGRITY;
}
memset(tmp, 0, sizeof(tmp));
memset(res, 0, sizeof(res));
return ret;
}
static void
RSA_MD5_DES3_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
MD5_CTX md5;
des_cblock ivec;
unsigned char *p = C->checksum.data;
des_key_schedule *sched = key->schedule->data;
krb5_generate_random_block(p, 8);
MD5_Init (&md5);
MD5_Update (&md5, p, 8);
MD5_Update (&md5, data, len);
MD5_Final (p + 8, &md5);
memset (&ivec, 0, sizeof(ivec));
des_ede3_cbc_encrypt(p,
p,
24,
sched[0], sched[1], sched[2],
&ivec,
DES_ENCRYPT);
}
static krb5_error_code
RSA_MD5_DES3_verify(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
MD5_CTX md5;
unsigned char tmp[24];
unsigned char res[16];
des_cblock ivec;
des_key_schedule *sched = key->schedule->data;
krb5_error_code ret = 0;
memset(&ivec, 0, sizeof(ivec));
des_ede3_cbc_encrypt(C->checksum.data,
(void*)tmp,
C->checksum.length,
sched[0], sched[1], sched[2],
&ivec,
DES_DECRYPT);
MD5_Init (&md5);
MD5_Update (&md5, tmp, 8); /* confounder */
MD5_Update (&md5, data, len);
MD5_Final (res, &md5);
if(memcmp(res, tmp + 8, sizeof(res)) != 0) {
krb5_clear_error_string (context);
ret = KRB5KRB_AP_ERR_BAD_INTEGRITY;
}
memset(tmp, 0, sizeof(tmp));
memset(res, 0, sizeof(res));
return ret;
}
static void
SHA1_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *C)
{
SHA_CTX m;
SHA1_Init(&m);
SHA1_Update(&m, data, len);
SHA1_Final(C->checksum.data, &m);
}
/* HMAC according to RFC2104 */
static krb5_error_code
hmac(krb5_context context,
struct checksum_type *cm,
const void *data,
size_t len,
unsigned usage,
struct key_data *keyblock,
Checksum *result)
{
unsigned char *ipad, *opad;
unsigned char *key;
size_t key_len;
int i;
ipad = malloc(cm->blocksize + len);
if (ipad == NULL)
return ENOMEM;
opad = malloc(cm->blocksize + cm->checksumsize);
if (opad == NULL) {
free(ipad);
return ENOMEM;
}
memset(ipad, 0x36, cm->blocksize);
memset(opad, 0x5c, cm->blocksize);
if(keyblock->key->keyvalue.length > cm->blocksize){
(*cm->checksum)(context,
keyblock,
keyblock->key->keyvalue.data,
keyblock->key->keyvalue.length,
usage,
result);
key = result->checksum.data;
key_len = result->checksum.length;
} else {
key = keyblock->key->keyvalue.data;
key_len = keyblock->key->keyvalue.length;
}
for(i = 0; i < key_len; i++){
ipad[i] ^= key[i];
opad[i] ^= key[i];
}
memcpy(ipad + cm->blocksize, data, len);
(*cm->checksum)(context, keyblock, ipad, cm->blocksize + len,
usage, result);
memcpy(opad + cm->blocksize, result->checksum.data,
result->checksum.length);
(*cm->checksum)(context, keyblock, opad,
cm->blocksize + cm->checksumsize, usage, result);
memset(ipad, 0, cm->blocksize + len);
free(ipad);
memset(opad, 0, cm->blocksize + cm->checksumsize);
free(opad);
return 0;
}
krb5_error_code
krb5_hmac(krb5_context context,
krb5_cksumtype cktype,
const void *data,
size_t len,
unsigned usage,
krb5_keyblock *key,
Checksum *result)
{
struct checksum_type *c = _find_checksum(cktype);
struct key_data kd;
krb5_error_code ret;
if (c == NULL) {
krb5_set_error_string (context, "checksum type %d not supported",
cktype);
return KRB5_PROG_SUMTYPE_NOSUPP;
}
kd.key = key;
kd.schedule = NULL;
ret = hmac(context, c, data, len, usage, &kd, result);
if (kd.schedule)
krb5_free_data(context, kd.schedule);
return ret;
}
static void
SP_HMAC_SHA1_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *result)
{
struct checksum_type *c = _find_checksum(CKSUMTYPE_SHA1);
Checksum res;
char sha1_data[20];
krb5_error_code ret;
res.checksum.data = sha1_data;
res.checksum.length = sizeof(sha1_data);
ret = hmac(context, c, data, len, usage, key, &res);
if (ret)
krb5_abortx(context, "hmac failed");
memcpy(result->checksum.data, res.checksum.data, result->checksum.length);
}
/*
* checksum according to section 5. of draft-brezak-win2k-krb-rc4-hmac-03.txt
*/
static void
HMAC_MD5_checksum(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *result)
{
MD5_CTX md5;
struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5);
const char signature[] = "signaturekey";
Checksum ksign_c;
struct key_data ksign;
krb5_keyblock kb;
unsigned char t[4];
unsigned char tmp[16];
unsigned char ksign_c_data[16];
krb5_error_code ret;
ksign_c.checksum.length = sizeof(ksign_c_data);
ksign_c.checksum.data = ksign_c_data;
ret = hmac(context, c, signature, sizeof(signature), 0, key, &ksign_c);
if (ret)
krb5_abortx(context, "hmac failed");
ksign.key = &kb;
kb.keyvalue = ksign_c.checksum;
MD5_Init (&md5);
t[0] = (usage >> 0) & 0xFF;
t[1] = (usage >> 8) & 0xFF;
t[2] = (usage >> 16) & 0xFF;
t[3] = (usage >> 24) & 0xFF;
MD5_Update (&md5, t, 4);
MD5_Update (&md5, data, len);
MD5_Final (tmp, &md5);
ret = hmac(context, c, tmp, sizeof(tmp), 0, &ksign, result);
if (ret)
krb5_abortx(context, "hmac failed");
}
/*
* same as previous but being used while encrypting.
*/
static void
HMAC_MD5_checksum_enc(krb5_context context,
struct key_data *key,
const void *data,
size_t len,
unsigned usage,
Checksum *result)
{
struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5);
Checksum ksign_c;
struct key_data ksign;
krb5_keyblock kb;
unsigned char t[4];
unsigned char ksign_c_data[16];
krb5_error_code ret;
t[0] = (usage >> 0) & 0xFF;
t[1] = (usage >> 8) & 0xFF;
t[2] = (usage >> 16) & 0xFF;
t[3] = (usage >> 24) & 0xFF;
ksign_c.checksum.length = sizeof(ksign_c_data);
ksign_c.checksum.data = ksign_c_data;
ret = hmac(context, c, t, sizeof(t), 0, key, &ksign_c);
if (ret)
krb5_abortx(context, "hmac failed");
ksign.key = &kb;
kb.keyvalue = ksign_c.checksum;
ret = hmac(context, c, data, len, 0, &ksign, result);
if (ret)
krb5_abortx(context, "hmac failed");
}
struct checksum_type checksum_none = {
CKSUMTYPE_NONE,
"none",
1,
0,
0,
NONE_checksum,
NULL
};
struct checksum_type checksum_crc32 = {
CKSUMTYPE_CRC32,
"crc32",
1,
4,
0,
CRC32_checksum,
NULL
};
struct checksum_type checksum_rsa_md4 = {
CKSUMTYPE_RSA_MD4,
"rsa-md4",
64,
16,
F_CPROOF,
RSA_MD4_checksum,
NULL
};
struct checksum_type checksum_rsa_md4_des = {
CKSUMTYPE_RSA_MD4_DES,
"rsa-md4-des",
64,
24,
F_KEYED | F_CPROOF | F_VARIANT,
RSA_MD4_DES_checksum,
RSA_MD4_DES_verify
};
#if 0
struct checksum_type checksum_des_mac = {
CKSUMTYPE_DES_MAC,
"des-mac",
0,
0,
0,
DES_MAC_checksum
};
struct checksum_type checksum_des_mac_k = {
CKSUMTYPE_DES_MAC_K,
"des-mac-k",
0,
0,
0,
DES_MAC_K_checksum
};
struct checksum_type checksum_rsa_md4_des_k = {
CKSUMTYPE_RSA_MD4_DES_K,
"rsa-md4-des-k",
0,
0,
0,
RSA_MD4_DES_K_checksum,
RSA_MD4_DES_K_verify
};
#endif
struct checksum_type checksum_rsa_md5 = {
CKSUMTYPE_RSA_MD5,
"rsa-md5",
64,
16,
F_CPROOF,
RSA_MD5_checksum,
NULL
};
struct checksum_type checksum_rsa_md5_des = {
CKSUMTYPE_RSA_MD5_DES,
"rsa-md5-des",
64,
24,
F_KEYED | F_CPROOF | F_VARIANT,
RSA_MD5_DES_checksum,
RSA_MD5_DES_verify
};
struct checksum_type checksum_rsa_md5_des3 = {
CKSUMTYPE_RSA_MD5_DES3,
"rsa-md5-des3",
64,
24,
F_KEYED | F_CPROOF | F_VARIANT,
RSA_MD5_DES3_checksum,
RSA_MD5_DES3_verify
};
struct checksum_type checksum_sha1 = {
CKSUMTYPE_SHA1,
"sha1",
64,
20,
F_CPROOF,
SHA1_checksum,
NULL
};
struct checksum_type checksum_hmac_sha1_des3 = {
CKSUMTYPE_HMAC_SHA1_DES3,
"hmac-sha1-des3",
64,
20,
F_KEYED | F_CPROOF | F_DERIVED,
SP_HMAC_SHA1_checksum,
NULL
};
#ifdef ENABLE_AES
struct checksum_type checksum_hmac_sha1_aes128 = {
CKSUMTYPE_HMAC_SHA1_96_AES_128,
"hmac-sha1-96-aes128",
64,
12,
F_KEYED | F_CPROOF | F_DERIVED,
SP_HMAC_SHA1_checksum,
NULL
};
struct checksum_type checksum_hmac_sha1_aes256 = {
CKSUMTYPE_HMAC_SHA1_96_AES_256,
"hmac-sha1-96-aes256",
64,
12,
F_KEYED | F_CPROOF | F_DERIVED,
SP_HMAC_SHA1_checksum,
NULL
};
#endif /* ENABLE_AES */
struct checksum_type checksum_hmac_md5 = {
CKSUMTYPE_HMAC_MD5,
"hmac-md5",
64,
16,
F_KEYED | F_CPROOF,
HMAC_MD5_checksum,
NULL
};
struct checksum_type checksum_hmac_md5_enc = {
CKSUMTYPE_HMAC_MD5_ENC,
"hmac-md5-enc",
64,
16,
F_KEYED | F_CPROOF | F_PSEUDO,
HMAC_MD5_checksum_enc,
NULL
};
struct checksum_type *checksum_types[] = {
&checksum_none,
&checksum_crc32,
&checksum_rsa_md4,
&checksum_rsa_md4_des,
#if 0
&checksum_des_mac,
&checksum_des_mac_k,
&checksum_rsa_md4_des_k,
#endif
&checksum_rsa_md5,
&checksum_rsa_md5_des,
&checksum_rsa_md5_des3,
&checksum_sha1,
&checksum_hmac_sha1_des3,
#ifdef ENABLE_AES
&checksum_hmac_sha1_aes128,
&checksum_hmac_sha1_aes256,
#endif
&checksum_hmac_md5,
&checksum_hmac_md5_enc
};
static int num_checksums = sizeof(checksum_types) / sizeof(checksum_types[0]);
static struct checksum_type *
_find_checksum(krb5_cksumtype type)
{
int i;
for(i = 0; i < num_checksums; i++)
if(checksum_types[i]->type == type)
return checksum_types[i];
return NULL;
}
static krb5_error_code
get_checksum_key(krb5_context context,
krb5_crypto crypto,
unsigned usage, /* not krb5_key_usage */
struct checksum_type *ct,
struct key_data **key)
{
krb5_error_code ret = 0;
if(ct->flags & F_DERIVED)
ret = _get_derived_key(context, crypto, usage, key);
else if(ct->flags & F_VARIANT) {
int i;
*key = _new_derived_key(crypto, 0xff/* KRB5_KU_RFC1510_VARIANT */);
if(*key == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
ret = krb5_copy_keyblock(context, crypto->key.key, &(*key)->key);
if(ret)
return ret;
for(i = 0; i < (*key)->key->keyvalue.length; i++)
((unsigned char*)(*key)->key->keyvalue.data)[i] ^= 0xF0;
} else {
*key = &crypto->key;
}
if(ret == 0)
ret = _key_schedule(context, *key);
return ret;
}
static krb5_error_code
create_checksum (krb5_context context,
struct checksum_type *ct,
krb5_crypto crypto,
unsigned usage,
void *data,
size_t len,
Checksum *result)
{
krb5_error_code ret;
struct key_data *dkey;
int keyed_checksum;
keyed_checksum = (ct->flags & F_KEYED) != 0;
if(keyed_checksum && crypto == NULL) {
krb5_clear_error_string (context);
return KRB5_PROG_SUMTYPE_NOSUPP; /* XXX */
}
if(keyed_checksum) {
ret = get_checksum_key(context, crypto, usage, ct, &dkey);
if (ret)
return ret;
} else
dkey = NULL;
result->cksumtype = ct->type;
krb5_data_alloc(&result->checksum, ct->checksumsize);
(*ct->checksum)(context, dkey, data, len, usage, result);
return 0;
}
static int
arcfour_checksum_p(struct checksum_type *ct, krb5_crypto crypto)
{
return (ct->type == CKSUMTYPE_HMAC_MD5) &&
(crypto->key.key->keytype == KEYTYPE_ARCFOUR);
}
krb5_error_code
krb5_create_checksum(krb5_context context,
krb5_crypto crypto,
krb5_key_usage usage,
int type,
void *data,
size_t len,
Checksum *result)
{
struct checksum_type *ct = NULL;
unsigned keyusage;
/* type 0 -> pick from crypto */
if (type) {
ct = _find_checksum(type);
} else if (crypto) {
ct = crypto->et->keyed_checksum;
if (ct == NULL)
ct = crypto->et->checksum;
}
if(ct == NULL) {
krb5_set_error_string (context, "checksum type %d not supported",
type);
return KRB5_PROG_SUMTYPE_NOSUPP;
}
if (arcfour_checksum_p(ct, crypto)) {
keyusage = usage;
usage2arcfour(context, &keyusage);
} else
keyusage = CHECKSUM_USAGE(usage);
return create_checksum(context, ct, crypto, keyusage,
data, len, result);
}
static krb5_error_code
verify_checksum(krb5_context context,
krb5_crypto crypto,
unsigned usage, /* not krb5_key_usage */
void *data,
size_t len,
Checksum *cksum)
{
krb5_error_code ret;
struct key_data *dkey;
int keyed_checksum;
Checksum c;
struct checksum_type *ct;
ct = _find_checksum(cksum->cksumtype);
if (ct == NULL) {
krb5_set_error_string (context, "checksum type %d not supported",
cksum->cksumtype);
return KRB5_PROG_SUMTYPE_NOSUPP;
}
if(ct->checksumsize != cksum->checksum.length) {
krb5_clear_error_string (context);
return KRB5KRB_AP_ERR_BAD_INTEGRITY; /* XXX */
}
keyed_checksum = (ct->flags & F_KEYED) != 0;
if(keyed_checksum && crypto == NULL) {
krb5_clear_error_string (context);
return KRB5_PROG_SUMTYPE_NOSUPP; /* XXX */
}
if(keyed_checksum)
ret = get_checksum_key(context, crypto, usage, ct, &dkey);
else
dkey = NULL;
if(ct->verify)
return (*ct->verify)(context, dkey, data, len, usage, cksum);
ret = krb5_data_alloc (&c.checksum, ct->checksumsize);
if (ret)
return ret;
(*ct->checksum)(context, dkey, data, len, usage, &c);
if(c.checksum.length != cksum->checksum.length ||
memcmp(c.checksum.data, cksum->checksum.data, c.checksum.length)) {
krb5_clear_error_string (context);
ret = KRB5KRB_AP_ERR_BAD_INTEGRITY;
} else {
ret = 0;
}
krb5_data_free (&c.checksum);
return ret;
}
krb5_error_code
krb5_verify_checksum(krb5_context context,
krb5_crypto crypto,
krb5_key_usage usage,
void *data,
size_t len,
Checksum *cksum)
{
struct checksum_type *ct;
unsigned keyusage;
ct = _find_checksum(cksum->cksumtype);
if(ct == NULL) {
krb5_set_error_string (context, "checksum type %d not supported",
cksum->cksumtype);
return KRB5_PROG_SUMTYPE_NOSUPP;
}
if (arcfour_checksum_p(ct, crypto)) {
keyusage = usage;
usage2arcfour(context, &keyusage);
} else
keyusage = CHECKSUM_USAGE(usage);
return verify_checksum(context, crypto, keyusage,
data, len, cksum);
}
krb5_error_code
krb5_checksumsize(krb5_context context,
krb5_cksumtype type,
size_t *size)
{
struct checksum_type *ct = _find_checksum(type);
if(ct == NULL) {
krb5_set_error_string (context, "checksum type %d not supported",
type);
return KRB5_PROG_SUMTYPE_NOSUPP;
}
*size = ct->checksumsize;
return 0;
}
krb5_boolean
krb5_checksum_is_keyed(krb5_context context,
krb5_cksumtype type)
{
struct checksum_type *ct = _find_checksum(type);
if(ct == NULL) {
krb5_set_error_string (context, "checksum type %d not supported",
type);
return KRB5_PROG_SUMTYPE_NOSUPP;
}
return ct->flags & F_KEYED;
}
krb5_boolean
krb5_checksum_is_collision_proof(krb5_context context,
krb5_cksumtype type)
{
struct checksum_type *ct = _find_checksum(type);
if(ct == NULL) {
krb5_set_error_string (context, "checksum type %d not supported",
type);
return KRB5_PROG_SUMTYPE_NOSUPP;
}
return ct->flags & F_CPROOF;
}
/************************************************************
* *
************************************************************/
static krb5_error_code
NULL_encrypt(krb5_context context,
struct key_data *key,
void *data,
size_t len,
krb5_boolean encrypt,
int usage,
void *ivec)
{
return 0;
}
static krb5_error_code
DES_CBC_encrypt_null_ivec(krb5_context context,
struct key_data *key,
void *data,
size_t len,
krb5_boolean encrypt,
int usage,
void *ignore_ivec)
{
des_cblock ivec;
des_key_schedule *s = key->schedule->data;
memset(&ivec, 0, sizeof(ivec));
des_cbc_encrypt(data, data, len, *s, &ivec, encrypt);
return 0;
}
static krb5_error_code
DES_CBC_encrypt_key_ivec(krb5_context context,
struct key_data *key,
void *data,
size_t len,
krb5_boolean encrypt,
int usage,
void *ignore_ivec)
{
des_cblock ivec;
des_key_schedule *s = key->schedule->data;
memcpy(&ivec, key->key->keyvalue.data, sizeof(ivec));
des_cbc_encrypt(data, data, len, *s, &ivec, encrypt);
return 0;
}
static krb5_error_code
DES3_CBC_encrypt(krb5_context context,
struct key_data *key,
void *data,
size_t len,
krb5_boolean encrypt,
int usage,
void *ivec)
{
des_cblock local_ivec;
des_key_schedule *s = key->schedule->data;
if(ivec == NULL) {
ivec = &local_ivec;
memset(local_ivec, 0, sizeof(local_ivec));
}
des_ede3_cbc_encrypt(data, data, len, s[0], s[1], s[2], ivec, encrypt);
return 0;
}
static krb5_error_code
DES_CFB64_encrypt_null_ivec(krb5_context context,
struct key_data *key,
void *data,
size_t len,
krb5_boolean encrypt,
int usage,
void *ignore_ivec)
{
des_cblock ivec;
int num = 0;
des_key_schedule *s = key->schedule->data;
memset(&ivec, 0, sizeof(ivec));
des_cfb64_encrypt(data, data, len, *s, &ivec, &num, encrypt);
return 0;
}
static krb5_error_code
DES_PCBC_encrypt_key_ivec(krb5_context context,
struct key_data *key,
void *data,
size_t len,
krb5_boolean encrypt,
int usage,
void *ignore_ivec)
{
des_cblock ivec;
des_key_schedule *s = key->schedule->data;
memcpy(&ivec, key->key->keyvalue.data, sizeof(ivec));
des_pcbc_encrypt(data, data, len, *s, &ivec, encrypt);
return 0;
}
#ifdef ENABLE_AES
/*
* AES draft-raeburn-krb-rijndael-krb-02
*/
void
_krb5_aes_cts_encrypt(const unsigned char *in, unsigned char *out,
size_t len, const void *aes_key,
unsigned char *ivec, const int enc)
{
unsigned char tmp[AES_BLOCK_SIZE];
const AES_KEY *key = aes_key; /* XXX remove this when we always have AES */
int i;
/*
* In the framework of kerberos, the length can never be shorter
* then at least one blocksize.
*/
if (enc == AES_ENCRYPT) {
while(len > AES_BLOCK_SIZE) {
for (i = 0; i < AES_BLOCK_SIZE; i++)
tmp[i] = in[i] ^ ivec[i];
AES_encrypt(tmp, out, key);
memcpy(ivec, out, AES_BLOCK_SIZE);
len -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
for (i = 0; i < len; i++)
tmp[i] = in[i] ^ ivec[i];
for (; i < AES_BLOCK_SIZE; i++)
tmp[i] = 0 ^ ivec[i];
AES_encrypt(tmp, out - AES_BLOCK_SIZE, key);
memcpy(out, ivec, len);
} else {
char tmp2[AES_BLOCK_SIZE];
char tmp3[AES_BLOCK_SIZE];
while(len > AES_BLOCK_SIZE * 2) {
memcpy(tmp, in, AES_BLOCK_SIZE);
AES_decrypt(in, out, key);
for (i = 0; i < AES_BLOCK_SIZE; i++)
out[i] ^= ivec[i];
memcpy(ivec, tmp, AES_BLOCK_SIZE);
len -= AES_BLOCK_SIZE;
in += AES_BLOCK_SIZE;
out += AES_BLOCK_SIZE;
}
len -= AES_BLOCK_SIZE;
AES_decrypt(in, tmp2, key);
memcpy(tmp3, in + AES_BLOCK_SIZE, len);
memcpy(tmp3 + len, tmp2 + len, AES_BLOCK_SIZE - len); /* xor 0 */
for (i = 0; i < len; i++)
out[i + AES_BLOCK_SIZE] = tmp2[i] ^ tmp3[i];
AES_decrypt(tmp3, out, key);
for (i = 0; i < AES_BLOCK_SIZE; i++)
out[i] ^= ivec[i];
}
}
static krb5_error_code
AES_CTS_encrypt(krb5_context context,
struct key_data *key,
void *data,
size_t len,
krb5_boolean encrypt,
int usage,
void *ivec)
{
AES_KEY *k = key->schedule->data;
char local_ivec[AES_BLOCK_SIZE];
if (encrypt)
k = &k[0];
else
k = &k[1];
if (len < AES_BLOCK_SIZE)
krb5_abortx(context, "invalid use of AES_CTS_encrypt");
if (len == AES_BLOCK_SIZE) {
if (encrypt)
AES_encrypt(data, data, k);
else
AES_decrypt(data, data, k);
} else {
if(ivec == NULL) {
memset(local_ivec, 0, sizeof(local_ivec));
ivec = local_ivec;
}
_krb5_aes_cts_encrypt(data, data, len, k, ivec, encrypt);
}
return 0;
}
#endif /* ENABLE_AES */
/*
* section 6 of draft-brezak-win2k-krb-rc4-hmac-03
*
* warning: not for small children
*/
static krb5_error_code
ARCFOUR_subencrypt(krb5_context context,
struct key_data *key,
void *data,
size_t len,
int usage,
void *ivec)
{
struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5);
Checksum k1_c, k2_c, k3_c, cksum;
struct key_data ke;
krb5_keyblock kb;
unsigned char t[4];
RC4_KEY rc4_key;
unsigned char *cdata = data;
unsigned char k1_c_data[16], k2_c_data[16], k3_c_data[16];
krb5_error_code ret;
t[0] = (usage >> 0) & 0xFF;
t[1] = (usage >> 8) & 0xFF;
t[2] = (usage >> 16) & 0xFF;
t[3] = (usage >> 24) & 0xFF;
k1_c.checksum.length = sizeof(k1_c_data);
k1_c.checksum.data = k1_c_data;
ret = hmac(NULL, c, t, sizeof(t), 0, key, &k1_c);
if (ret)
krb5_abortx(context, "hmac failed");
memcpy (k2_c_data, k1_c_data, sizeof(k1_c_data));
k2_c.checksum.length = sizeof(k2_c_data);
k2_c.checksum.data = k2_c_data;
ke.key = &kb;
kb.keyvalue = k2_c.checksum;
cksum.checksum.length = 16;
cksum.checksum.data = data;
ret = hmac(NULL, c, cdata + 16, len - 16, 0, &ke, &cksum);
if (ret)
krb5_abortx(context, "hmac failed");
ke.key = &kb;
kb.keyvalue = k1_c.checksum;
k3_c.checksum.length = sizeof(k3_c_data);
k3_c.checksum.data = k3_c_data;
ret = hmac(NULL, c, data, 16, 0, &ke, &k3_c);
if (ret)
krb5_abortx(context, "hmac failed");
RC4_set_key (&rc4_key, k3_c.checksum.length, k3_c.checksum.data);
RC4 (&rc4_key, len - 16, cdata + 16, cdata + 16);
memset (k1_c_data, 0, sizeof(k1_c_data));
memset (k2_c_data, 0, sizeof(k2_c_data));
memset (k3_c_data, 0, sizeof(k3_c_data));
return 0;
}
static krb5_error_code
ARCFOUR_subdecrypt(krb5_context context,
struct key_data *key,
void *data,
size_t len,
int usage,
void *ivec)
{
struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5);
Checksum k1_c, k2_c, k3_c, cksum;
struct key_data ke;
krb5_keyblock kb;
unsigned char t[4];
RC4_KEY rc4_key;
unsigned char *cdata = data;
unsigned char k1_c_data[16], k2_c_data[16], k3_c_data[16];
unsigned char cksum_data[16];
krb5_error_code ret;
t[0] = (usage >> 0) & 0xFF;
t[1] = (usage >> 8) & 0xFF;
t[2] = (usage >> 16) & 0xFF;
t[3] = (usage >> 24) & 0xFF;
k1_c.checksum.length = sizeof(k1_c_data);
k1_c.checksum.data = k1_c_data;
ret = hmac(NULL, c, t, sizeof(t), 0, key, &k1_c);
if (ret)
krb5_abortx(context, "hmac failed");
memcpy (k2_c_data, k1_c_data, sizeof(k1_c_data));
k2_c.checksum.length = sizeof(k2_c_data);
k2_c.checksum.data = k2_c_data;
ke.key = &kb;
kb.keyvalue = k1_c.checksum;
k3_c.checksum.length = sizeof(k3_c_data);
k3_c.checksum.data = k3_c_data;
ret = hmac(NULL, c, cdata, 16, 0, &ke, &k3_c);
if (ret)
krb5_abortx(context, "hmac failed");
RC4_set_key (&rc4_key, k3_c.checksum.length, k3_c.checksum.data);
RC4 (&rc4_key, len - 16, cdata + 16, cdata + 16);
ke.key = &kb;
kb.keyvalue = k2_c.checksum;
cksum.checksum.length = 16;
cksum.checksum.data = cksum_data;
ret = hmac(NULL, c, cdata + 16, len - 16, 0, &ke, &cksum);
if (ret)
krb5_abortx(context, "hmac failed");
memset (k1_c_data, 0, sizeof(k1_c_data));
memset (k2_c_data, 0, sizeof(k2_c_data));
memset (k3_c_data, 0, sizeof(k3_c_data));
if (memcmp (cksum.checksum.data, data, 16) != 0) {
krb5_clear_error_string (context);
return KRB5KRB_AP_ERR_BAD_INTEGRITY;
} else {
return 0;
}
}
/*
* convert the usage numbers used in
* draft-ietf-cat-kerb-key-derivation-00.txt to the ones in
* draft-brezak-win2k-krb-rc4-hmac-04.txt
*/
static krb5_error_code
usage2arcfour (krb5_context context, int *usage)
{
switch (*usage) {
case KRB5_KU_AS_REP_ENC_PART : /* 3 */
case KRB5_KU_TGS_REP_ENC_PART_SUB_KEY : /* 9 */
*usage = 8;
return 0;
case KRB5_KU_USAGE_SEAL : /* 22 */
*usage = 13;
return 0;
case KRB5_KU_USAGE_SIGN : /* 23 */
*usage = 15;
return 0;
case KRB5_KU_USAGE_SEQ: /* 24 */
*usage = 0;
return 0;
default :
return 0;
}
}
static krb5_error_code
ARCFOUR_encrypt(krb5_context context,
struct key_data *key,
void *data,
size_t len,
krb5_boolean encrypt,
int usage,
void *ivec)
{
krb5_error_code ret;
if((ret = usage2arcfour (context, &usage)) != 0)
return ret;
if (encrypt)
return ARCFOUR_subencrypt (context, key, data, len, usage, ivec);
else
return ARCFOUR_subdecrypt (context, key, data, len, usage, ivec);
}
/*
* these should currently be in reverse preference order.
* (only relevant for !F_PSEUDO) */
static struct encryption_type enctype_null = {
ETYPE_NULL,
"null",
1,
1,
0,
&keytype_null,
&checksum_none,
NULL,
0,
NULL_encrypt,
};
static struct encryption_type enctype_des_cbc_crc = {
ETYPE_DES_CBC_CRC,
"des-cbc-crc",
8,
8,
8,
&keytype_des,
&checksum_crc32,
NULL,
0,
DES_CBC_encrypt_key_ivec,
};
static struct encryption_type enctype_des_cbc_md4 = {
ETYPE_DES_CBC_MD4,
"des-cbc-md4",
8,
8,
8,
&keytype_des,
&checksum_rsa_md4,
&checksum_rsa_md4_des,
0,
DES_CBC_encrypt_null_ivec,
};
static struct encryption_type enctype_des_cbc_md5 = {
ETYPE_DES_CBC_MD5,
"des-cbc-md5",
8,
8,
8,
&keytype_des,
&checksum_rsa_md5,
&checksum_rsa_md5_des,
0,
DES_CBC_encrypt_null_ivec,
};
static struct encryption_type enctype_arcfour_hmac_md5 = {
ETYPE_ARCFOUR_HMAC_MD5,
"arcfour-hmac-md5",
1,
1,
8,
&keytype_arcfour,
&checksum_hmac_md5,
/* &checksum_hmac_md5_enc */ NULL,
F_SPECIAL,
ARCFOUR_encrypt
};
static struct encryption_type enctype_des3_cbc_md5 = {
ETYPE_DES3_CBC_MD5,
"des3-cbc-md5",
8,
8,
8,
&keytype_des3,
&checksum_rsa_md5,
&checksum_rsa_md5_des3,
0,
DES3_CBC_encrypt,
};
static struct encryption_type enctype_des3_cbc_sha1 = {
ETYPE_DES3_CBC_SHA1,
"des3-cbc-sha1",
8,
8,
8,
&keytype_des3_derived,
&checksum_sha1,
&checksum_hmac_sha1_des3,
F_DERIVED,
DES3_CBC_encrypt,
};
static struct encryption_type enctype_old_des3_cbc_sha1 = {
ETYPE_OLD_DES3_CBC_SHA1,
"old-des3-cbc-sha1",
8,
8,
8,
&keytype_des3,
&checksum_sha1,
&checksum_hmac_sha1_des3,
0,
DES3_CBC_encrypt,
};
#ifdef ENABLE_AES
static struct encryption_type enctype_aes128_cts_hmac_sha1 = {
ETYPE_AES128_CTS_HMAC_SHA1_96,
"aes128-cts-hmac-sha1-96",
16,
1,
16,
&keytype_aes128,
&checksum_sha1,
&checksum_hmac_sha1_aes128,
0,
AES_CTS_encrypt,
};
static struct encryption_type enctype_aes256_cts_hmac_sha1 = {
ETYPE_AES256_CTS_HMAC_SHA1_96,
"aes256-cts-hmac-sha1-96",
16,
1,
16,
&keytype_aes256,
&checksum_sha1,
&checksum_hmac_sha1_aes256,
0,
AES_CTS_encrypt,
};
#endif /* ENABLE_AES */
static struct encryption_type enctype_des_cbc_none = {
ETYPE_DES_CBC_NONE,
"des-cbc-none",
8,
8,
0,
&keytype_des,
&checksum_none,
NULL,
F_PSEUDO,
DES_CBC_encrypt_null_ivec,
};
static struct encryption_type enctype_des_cfb64_none = {
ETYPE_DES_CFB64_NONE,
"des-cfb64-none",
1,
1,
0,
&keytype_des,
&checksum_none,
NULL,
F_PSEUDO,
DES_CFB64_encrypt_null_ivec,
};
static struct encryption_type enctype_des_pcbc_none = {
ETYPE_DES_PCBC_NONE,
"des-pcbc-none",
8,
8,
0,
&keytype_des,
&checksum_none,
NULL,
F_PSEUDO,
DES_PCBC_encrypt_key_ivec,
};
static struct encryption_type enctype_des3_cbc_none = {
ETYPE_DES3_CBC_NONE,
"des3-cbc-none",
8,
8,
0,
&keytype_des3_derived,
&checksum_none,
NULL,
F_PSEUDO,
DES3_CBC_encrypt,
};
static struct encryption_type *etypes[] = {
&enctype_null,
&enctype_des_cbc_crc,
&enctype_des_cbc_md4,
&enctype_des_cbc_md5,
&enctype_arcfour_hmac_md5,
&enctype_des3_cbc_md5,
&enctype_des3_cbc_sha1,
&enctype_old_des3_cbc_sha1,
#ifdef ENABLE_AES
&enctype_aes128_cts_hmac_sha1,
&enctype_aes256_cts_hmac_sha1,
#endif
&enctype_des_cbc_none,
&enctype_des_cfb64_none,
&enctype_des_pcbc_none,
&enctype_des3_cbc_none
};
static unsigned num_etypes = sizeof(etypes) / sizeof(etypes[0]);
static struct encryption_type *
_find_enctype(krb5_enctype type)
{
int i;
for(i = 0; i < num_etypes; i++)
if(etypes[i]->type == type)
return etypes[i];
return NULL;
}
krb5_error_code
krb5_enctype_to_string(krb5_context context,
krb5_enctype etype,
char **string)
{
struct encryption_type *e;
e = _find_enctype(etype);
if(e == NULL) {
krb5_set_error_string (context, "encryption type %d not supported",
etype);
return KRB5_PROG_ETYPE_NOSUPP;
}
*string = strdup(e->name);
if(*string == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
return 0;
}
krb5_error_code
krb5_string_to_enctype(krb5_context context,
const char *string,
krb5_enctype *etype)
{
int i;
for(i = 0; i < num_etypes; i++)
if(strcasecmp(etypes[i]->name, string) == 0){
*etype = etypes[i]->type;
return 0;
}
krb5_set_error_string (context, "encryption type %s not supported",
string);
return KRB5_PROG_ETYPE_NOSUPP;
}
krb5_error_code
krb5_enctype_to_keytype(krb5_context context,
krb5_enctype etype,
krb5_keytype *keytype)
{
struct encryption_type *e = _find_enctype(etype);
if(e == NULL) {
krb5_set_error_string (context, "encryption type %d not supported",
etype);
return KRB5_PROG_ETYPE_NOSUPP;
}
*keytype = e->keytype->type; /* XXX */
return 0;
}
#if 0
krb5_error_code
krb5_keytype_to_enctype(krb5_context context,
krb5_keytype keytype,
krb5_enctype *etype)
{
struct key_type *kt = _find_keytype(keytype);
krb5_warnx(context, "krb5_keytype_to_enctype(%u)", keytype);
if(kt == NULL)
return KRB5_PROG_KEYTYPE_NOSUPP;
*etype = kt->best_etype;
return 0;
}
#endif
krb5_error_code
krb5_keytype_to_enctypes (krb5_context context,
krb5_keytype keytype,
unsigned *len,
krb5_enctype **val)
{
int i;
unsigned n = 0;
krb5_enctype *ret;
for (i = num_etypes - 1; i >= 0; --i) {
if (etypes[i]->keytype->type == keytype
&& !(etypes[i]->flags & F_PSEUDO))
++n;
}
ret = malloc(n * sizeof(*ret));
if (ret == NULL && n != 0) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
n = 0;
for (i = num_etypes - 1; i >= 0; --i) {
if (etypes[i]->keytype->type == keytype
&& !(etypes[i]->flags & F_PSEUDO))
ret[n++] = etypes[i]->type;
}
*len = n;
*val = ret;
return 0;
}
/*
* First take the configured list of etypes for `keytype' if available,
* else, do `krb5_keytype_to_enctypes'.
*/
krb5_error_code
krb5_keytype_to_enctypes_default (krb5_context context,
krb5_keytype keytype,
unsigned *len,
krb5_enctype **val)
{
int i, n;
krb5_enctype *ret;
if (keytype != KEYTYPE_DES || context->etypes_des == NULL)
return krb5_keytype_to_enctypes (context, keytype, len, val);
for (n = 0; context->etypes_des[n]; ++n)
;
ret = malloc (n * sizeof(*ret));
if (ret == NULL && n != 0) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
for (i = 0; i < n; ++i)
ret[i] = context->etypes_des[i];
*len = n;
*val = ret;
return 0;
}
krb5_error_code
krb5_enctype_valid(krb5_context context,
krb5_enctype etype)
{
return _find_enctype(etype) != NULL;
}
/* if two enctypes have compatible keys */
krb5_boolean
krb5_enctypes_compatible_keys(krb5_context context,
krb5_enctype etype1,
krb5_enctype etype2)
{
struct encryption_type *e1 = _find_enctype(etype1);
struct encryption_type *e2 = _find_enctype(etype2);
return e1 != NULL && e2 != NULL && e1->keytype == e2->keytype;
}
static krb5_boolean
derived_crypto(krb5_context context,
krb5_crypto crypto)
{
return (crypto->et->flags & F_DERIVED) != 0;
}
static krb5_boolean
special_crypto(krb5_context context,
krb5_crypto crypto)
{
return (crypto->et->flags & F_SPECIAL) != 0;
}
#define CHECKSUMSIZE(C) ((C)->checksumsize)
#define CHECKSUMTYPE(C) ((C)->type)
static krb5_error_code
encrypt_internal_derived(krb5_context context,
krb5_crypto crypto,
unsigned usage,
void *data,
size_t len,
krb5_data *result,
void *ivec)
{
size_t sz, block_sz, checksum_sz, total_sz;
Checksum cksum;
unsigned char *p, *q;
krb5_error_code ret;
struct key_data *dkey;
const struct encryption_type *et = crypto->et;
checksum_sz = CHECKSUMSIZE(et->keyed_checksum);
sz = et->confoundersize + len;
block_sz = (sz + et->padsize - 1) &~ (et->padsize - 1); /* pad */
total_sz = block_sz + checksum_sz;
p = calloc(1, total_sz);
if(p == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
q = p;
krb5_generate_random_block(q, et->confoundersize); /* XXX */
q += et->confoundersize;
memcpy(q, data, len);
ret = create_checksum(context,
et->keyed_checksum,
crypto,
INTEGRITY_USAGE(usage),
p,
block_sz,
&cksum);
if(ret == 0 && cksum.checksum.length != checksum_sz) {
free_Checksum (&cksum);
krb5_clear_error_string (context);
ret = KRB5_CRYPTO_INTERNAL;
}
if(ret)
goto fail;
memcpy(p + block_sz, cksum.checksum.data, cksum.checksum.length);
free_Checksum (&cksum);
ret = _get_derived_key(context, crypto, ENCRYPTION_USAGE(usage), &dkey);
if(ret)
goto fail;
ret = _key_schedule(context, dkey);
if(ret)
goto fail;
#ifdef CRYPTO_DEBUG
krb5_crypto_debug(context, 1, block_sz, dkey->key);
#endif
ret = (*et->encrypt)(context, dkey, p, block_sz, 1, usage, ivec);
if (ret)
goto fail;
result->data = p;
result->length = total_sz;
return 0;
fail:
memset(p, 0, total_sz);
free(p);
return ret;
}
static krb5_error_code
encrypt_internal(krb5_context context,
krb5_crypto crypto,
void *data,
size_t len,
krb5_data *result,
void *ivec)
{
size_t sz, block_sz, checksum_sz;
Checksum cksum;
unsigned char *p, *q;
krb5_error_code ret;
const struct encryption_type *et = crypto->et;
checksum_sz = CHECKSUMSIZE(et->checksum);
sz = et->confoundersize + checksum_sz + len;
block_sz = (sz + et->padsize - 1) &~ (et->padsize - 1); /* pad */
p = calloc(1, block_sz);
if(p == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
q = p;
krb5_generate_random_block(q, et->confoundersize); /* XXX */
q += et->confoundersize;
memset(q, 0, checksum_sz);
q += checksum_sz;
memcpy(q, data, len);
ret = create_checksum(context,
et->checksum,
crypto,
0,
p,
block_sz,
&cksum);
if(ret == 0 && cksum.checksum.length != checksum_sz) {
krb5_clear_error_string (context);
free_Checksum(&cksum);
ret = KRB5_CRYPTO_INTERNAL;
}
if(ret)
goto fail;
memcpy(p + et->confoundersize, cksum.checksum.data, cksum.checksum.length);
free_Checksum(&cksum);
ret = _key_schedule(context, &crypto->key);
if(ret)
goto fail;
#ifdef CRYPTO_DEBUG
krb5_crypto_debug(context, 1, block_sz, crypto->key.key);
#endif
ret = (*et->encrypt)(context, &crypto->key, p, block_sz, 1, 0, ivec);
if (ret) {
memset(p, 0, block_sz);
free(p);
return ret;
}
result->data = p;
result->length = block_sz;
return 0;
fail:
memset(p, 0, block_sz);
free(p);
return ret;
}
static krb5_error_code
encrypt_internal_special(krb5_context context,
krb5_crypto crypto,
int usage,
void *data,
size_t len,
krb5_data *result,
void *ivec)
{
struct encryption_type *et = crypto->et;
size_t cksum_sz = CHECKSUMSIZE(et->checksum);
size_t sz = len + cksum_sz + et->confoundersize;
char *tmp, *p;
krb5_error_code ret;
tmp = malloc (sz);
if (tmp == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
p = tmp;
memset (p, 0, cksum_sz);
p += cksum_sz;
krb5_generate_random_block(p, et->confoundersize);
p += et->confoundersize;
memcpy (p, data, len);
ret = (*et->encrypt)(context, &crypto->key, tmp, sz, TRUE, usage, ivec);
if (ret) {
memset(tmp, 0, sz);
free(tmp);
return ret;
}
result->data = tmp;
result->length = sz;
return 0;
}
static krb5_error_code
decrypt_internal_derived(krb5_context context,
krb5_crypto crypto,
unsigned usage,
void *data,
size_t len,
krb5_data *result,
void *ivec)
{
size_t checksum_sz;
Checksum cksum;
unsigned char *p;
krb5_error_code ret;
struct key_data *dkey;
struct encryption_type *et = crypto->et;
unsigned long l;
checksum_sz = CHECKSUMSIZE(et->keyed_checksum);
if (len < checksum_sz) {
krb5_clear_error_string (context);
return EINVAL; /* XXX - better error code? */
}
if (((len - checksum_sz) % et->padsize) != 0) {
krb5_clear_error_string(context);
return KRB5_BAD_MSIZE;
}
p = malloc(len);
if(len != 0 && p == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
memcpy(p, data, len);
len -= checksum_sz;
ret = _get_derived_key(context, crypto, ENCRYPTION_USAGE(usage), &dkey);
if(ret) {
free(p);
return ret;
}
ret = _key_schedule(context, dkey);
if(ret) {
free(p);
return ret;
}
#ifdef CRYPTO_DEBUG
krb5_crypto_debug(context, 0, len, dkey->key);
#endif
ret = (*et->encrypt)(context, dkey, p, len, 0, usage, ivec);
if (ret) {
free(p);
return ret;
}
cksum.checksum.data = p + len;
cksum.checksum.length = checksum_sz;
cksum.cksumtype = CHECKSUMTYPE(et->keyed_checksum);
ret = verify_checksum(context,
crypto,
INTEGRITY_USAGE(usage),
p,
len,
&cksum);
if(ret) {
free(p);
return ret;
}
l = len - et->confoundersize;
memmove(p, p + et->confoundersize, l);
result->data = realloc(p, l);
if(result->data == NULL) {
free(p);
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
result->length = l;
return 0;
}
static krb5_error_code
decrypt_internal(krb5_context context,
krb5_crypto crypto,
void *data,
size_t len,
krb5_data *result,
void *ivec)
{
krb5_error_code ret;
unsigned char *p;
Checksum cksum;
size_t checksum_sz, l;
struct encryption_type *et = crypto->et;
if ((len % et->padsize) != 0) {
krb5_clear_error_string(context);
return KRB5_BAD_MSIZE;
}
checksum_sz = CHECKSUMSIZE(et->checksum);
p = malloc(len);
if(len != 0 && p == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
memcpy(p, data, len);
ret = _key_schedule(context, &crypto->key);
if(ret) {
free(p);
return ret;
}
#ifdef CRYPTO_DEBUG
krb5_crypto_debug(context, 0, len, crypto->key.key);
#endif
ret = (*et->encrypt)(context, &crypto->key, p, len, 0, 0, ivec);
if (ret) {
free(p);
return ret;
}
ret = krb5_data_copy(&cksum.checksum, p + et->confoundersize, checksum_sz);
if(ret) {
free(p);
return ret;
}
memset(p + et->confoundersize, 0, checksum_sz);
cksum.cksumtype = CHECKSUMTYPE(et->checksum);
ret = verify_checksum(context, NULL, 0, p, len, &cksum);
free_Checksum(&cksum);
if(ret) {
free(p);
return ret;
}
l = len - et->confoundersize - checksum_sz;
memmove(p, p + et->confoundersize + checksum_sz, l);
result->data = realloc(p, l);
if(result->data == NULL) {
free(p);
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
result->length = l;
return 0;
}
static krb5_error_code
decrypt_internal_special(krb5_context context,
krb5_crypto crypto,
int usage,
void *data,
size_t len,
krb5_data *result,
void *ivec)
{
struct encryption_type *et = crypto->et;
size_t cksum_sz = CHECKSUMSIZE(et->checksum);
size_t sz = len - cksum_sz - et->confoundersize;
unsigned char *p;
krb5_error_code ret;
if ((len % et->padsize) != 0) {
krb5_clear_error_string(context);
return KRB5_BAD_MSIZE;
}
p = malloc (len);
if (p == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
memcpy(p, data, len);
ret = (*et->encrypt)(context, &crypto->key, p, len, FALSE, usage, ivec);
if (ret) {
free(p);
return ret;
}
memmove (p, p + cksum_sz + et->confoundersize, sz);
result->data = realloc(p, sz);
if(result->data == NULL) {
free(p);
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
result->length = sz;
return 0;
}
krb5_error_code
krb5_encrypt_ivec(krb5_context context,
krb5_crypto crypto,
unsigned usage,
void *data,
size_t len,
krb5_data *result,
void *ivec)
{
if(derived_crypto(context, crypto))
return encrypt_internal_derived(context, crypto, usage,
data, len, result, ivec);
else if (special_crypto(context, crypto))
return encrypt_internal_special (context, crypto, usage,
data, len, result, ivec);
else
return encrypt_internal(context, crypto, data, len, result, ivec);
}
krb5_error_code
krb5_encrypt(krb5_context context,
krb5_crypto crypto,
unsigned usage,
void *data,
size_t len,
krb5_data *result)
{
return krb5_encrypt_ivec(context, crypto, usage, data, len, result, NULL);
}
krb5_error_code
krb5_encrypt_EncryptedData(krb5_context context,
krb5_crypto crypto,
unsigned usage,
void *data,
size_t len,
int kvno,
EncryptedData *result)
{
result->etype = CRYPTO_ETYPE(crypto);
if(kvno){
ALLOC(result->kvno, 1);
*result->kvno = kvno;
}else
result->kvno = NULL;
return krb5_encrypt(context, crypto, usage, data, len, &result->cipher);
}
krb5_error_code
krb5_decrypt_ivec(krb5_context context,
krb5_crypto crypto,
unsigned usage,
void *data,
size_t len,
krb5_data *result,
void *ivec)
{
if(derived_crypto(context, crypto))
return decrypt_internal_derived(context, crypto, usage,
data, len, result, ivec);
else if (special_crypto (context, crypto))
return decrypt_internal_special(context, crypto, usage,
data, len, result, ivec);
else
return decrypt_internal(context, crypto, data, len, result, ivec);
}
krb5_error_code
krb5_decrypt(krb5_context context,
krb5_crypto crypto,
unsigned usage,
void *data,
size_t len,
krb5_data *result)
{
return krb5_decrypt_ivec (context, crypto, usage, data, len, result,
NULL);
}
krb5_error_code
krb5_decrypt_EncryptedData(krb5_context context,
krb5_crypto crypto,
unsigned usage,
const EncryptedData *e,
krb5_data *result)
{
return krb5_decrypt(context, crypto, usage,
e->cipher.data, e->cipher.length, result);
}
/************************************************************
* *
************************************************************/
#ifdef HAVE_OPENSSL
#include <openssl/rand.h>
/* From openssl/crypto/rand/rand_lcl.h */
#define ENTROPY_NEEDED 20
static int
seed_something(void)
{
int fd = -1;
char buf[1024], seedfile[256];
/* If there is a seed file, load it. But such a file cannot be trusted,
so use 0 for the entropy estimate */
if (RAND_file_name(seedfile, sizeof(seedfile))) {
fd = open(seedfile, O_RDONLY);
if (fd >= 0) {
read(fd, buf, sizeof(buf));
/* Use the full buffer anyway */
RAND_add(buf, sizeof(buf), 0.0);
} else
seedfile[0] = '\0';
} else
seedfile[0] = '\0';
/* Calling RAND_status() will try to use /dev/urandom if it exists so
we do not have to deal with it. */
if (RAND_status() != 1) {
krb5_context context;
const char *p;
/* Try using egd */
if (!krb5_init_context(&context)) {
p = krb5_config_get_string(context, NULL, "libdefaults",
"egd_socket", NULL);
if (p != NULL)
RAND_egd_bytes(p, ENTROPY_NEEDED);
krb5_free_context(context);
}
}
if (RAND_status() == 1) {
/* Update the seed file */
if (seedfile[0])
RAND_write_file(seedfile);
return 0;
} else
return -1;
}
void
krb5_generate_random_block(void *buf, size_t len)
{
static int rng_initialized = 0;
if (!rng_initialized) {
if (seed_something())
krb5_abortx(NULL, "Fatal: could not seed the random number generator");
rng_initialized = 1;
}
RAND_bytes(buf, len);
}
#else
void
krb5_generate_random_block(void *buf, size_t len)
{
des_cblock key, out;
static des_cblock counter;
static des_key_schedule schedule;
int i;
static int initialized = 0;
if(!initialized) {
des_new_random_key(&key);
des_set_key(&key, schedule);
memset(&key, 0, sizeof(key));
des_new_random_key(&counter);
}
while(len > 0) {
des_ecb_encrypt(&counter, &out, schedule, DES_ENCRYPT);
for(i = 7; i >=0; i--)
if(counter[i]++)
break;
memcpy(buf, out, min(len, sizeof(out)));
len -= min(len, sizeof(out));
buf = (char*)buf + sizeof(out);
}
}
#endif
static void
DES3_postproc(krb5_context context,
unsigned char *k, size_t len, struct key_data *key)
{
unsigned char x[24];
int i, j;
memset(x, 0, sizeof(x));
for (i = 0; i < 3; ++i) {
unsigned char foo;
for (j = 0; j < 7; ++j) {
unsigned char b = k[7 * i + j];
x[8 * i + j] = b;
}
foo = 0;
for (j = 6; j >= 0; --j) {
foo |= k[7 * i + j] & 1;
foo <<= 1;
}
x[8 * i + 7] = foo;
}
k = key->key->keyvalue.data;
memcpy(k, x, 24);
memset(x, 0, sizeof(x));
if (key->schedule) {
krb5_free_data(context, key->schedule);
key->schedule = NULL;
}
des_set_odd_parity((des_cblock*)k);
des_set_odd_parity((des_cblock*)(k + 8));
des_set_odd_parity((des_cblock*)(k + 16));
}
static krb5_error_code
derive_key(krb5_context context,
struct encryption_type *et,
struct key_data *key,
const void *constant,
size_t len)
{
unsigned char *k;
unsigned int nblocks = 0, i;
krb5_error_code ret = 0;
struct key_type *kt = et->keytype;
ret = _key_schedule(context, key);
if(ret)
return ret;
if(et->blocksize * 8 < kt->bits ||
len != et->blocksize) {
nblocks = (kt->bits + et->blocksize * 8 - 1) / (et->blocksize * 8);
k = malloc(nblocks * et->blocksize);
if(k == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
_krb5_n_fold(constant, len, k, et->blocksize);
for(i = 0; i < nblocks; i++) {
if(i > 0)
memcpy(k + i * et->blocksize,
k + (i - 1) * et->blocksize,
et->blocksize);
(*et->encrypt)(context, key, k + i * et->blocksize, et->blocksize,
1, 0, NULL);
}
} else {
/* this case is probably broken, but won't be run anyway */
void *c = malloc(len);
size_t res_len = (kt->bits + 7) / 8;
if(len != 0 && c == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
memcpy(c, constant, len);
(*et->encrypt)(context, key, c, len, 1, 0, NULL);
k = malloc(res_len);
if(res_len != 0 && k == NULL) {
free(c);
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
_krb5_n_fold(c, len, k, res_len);
free(c);
}
/* XXX keytype dependent post-processing */
switch(kt->type) {
case KEYTYPE_DES3:
DES3_postproc(context, k, nblocks * et->blocksize, key);
break;
#ifdef ENABLE_AES
case KEYTYPE_AES128:
case KEYTYPE_AES256:
memcpy(key->key->keyvalue.data, k, key->key->keyvalue.length);
break;
#endif /* ENABLE_AES */
default:
krb5_set_error_string(context,
"derive_key() called with unknown keytype (%u)",
kt->type);
ret = KRB5_CRYPTO_INTERNAL;
break;
}
memset(k, 0, nblocks * et->blocksize);
free(k);
return ret;
}
static struct key_data *
_new_derived_key(krb5_crypto crypto, unsigned usage)
{
struct key_usage *d = crypto->key_usage;
d = realloc(d, (crypto->num_key_usage + 1) * sizeof(*d));
if(d == NULL)
return NULL;
crypto->key_usage = d;
d += crypto->num_key_usage++;
memset(d, 0, sizeof(*d));
d->usage = usage;
return &d->key;
}
krb5_error_code
krb5_derive_key(krb5_context context,
const krb5_keyblock *key,
krb5_enctype etype,
const void *constant,
size_t constant_len,
krb5_keyblock **derived_key)
{
krb5_error_code ret;
struct encryption_type *et;
struct key_data d;
et = _find_enctype (etype);
if (et == NULL) {
krb5_set_error_string(context, "encryption type %d not supported",
etype);
return KRB5_PROG_ETYPE_NOSUPP;
}
ret = krb5_copy_keyblock(context, key, derived_key);
if (ret)
return ret;
d.key = *derived_key;
d.schedule = NULL;
ret = derive_key(context, et, &d, constant, constant_len);
if (ret)
return ret;
ret = krb5_copy_keyblock(context, d.key, derived_key);
return ret;
}
static krb5_error_code
_get_derived_key(krb5_context context,
krb5_crypto crypto,
unsigned usage,
struct key_data **key)
{
int i;
struct key_data *d;
unsigned char constant[5];
for(i = 0; i < crypto->num_key_usage; i++)
if(crypto->key_usage[i].usage == usage) {
*key = &crypto->key_usage[i].key;
return 0;
}
d = _new_derived_key(crypto, usage);
if(d == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
krb5_copy_keyblock(context, crypto->key.key, &d->key);
_krb5_put_int(constant, usage, 5);
derive_key(context, crypto->et, d, constant, sizeof(constant));
*key = d;
return 0;
}
krb5_error_code
krb5_crypto_init(krb5_context context,
const krb5_keyblock *key,
krb5_enctype etype,
krb5_crypto *crypto)
{
krb5_error_code ret;
ALLOC(*crypto, 1);
if(*crypto == NULL) {
krb5_set_error_string(context, "malloc: out of memory");
return ENOMEM;
}
if(etype == ETYPE_NULL)
etype = key->keytype;
(*crypto)->et = _find_enctype(etype);
if((*crypto)->et == NULL) {
free(*crypto);
krb5_set_error_string (context, "encryption type %d not supported",
etype);
return KRB5_PROG_ETYPE_NOSUPP;
}
if((*crypto)->et->keytype->size != key->keyvalue.length) {
free(*crypto);
krb5_set_error_string (context, "encryption key has bad length");
return KRB5_BAD_KEYSIZE;
}
ret = krb5_copy_keyblock(context, key, &(*crypto)->key.key);
if(ret) {
free(*crypto);
return ret;
}
(*crypto)->key.schedule = NULL;
(*crypto)->num_key_usage = 0;
(*crypto)->key_usage = NULL;
return 0;
}
static void
free_key_data(krb5_context context, struct key_data *key)
{
krb5_free_keyblock(context, key->key);
if(key->schedule) {
memset(key->schedule->data, 0, key->schedule->length);
krb5_free_data(context, key->schedule);
}
}
static void
free_key_usage(krb5_context context, struct key_usage *ku)
{
free_key_data(context, &ku->key);
}
krb5_error_code
krb5_crypto_destroy(krb5_context context,
krb5_crypto crypto)
{
int i;
for(i = 0; i < crypto->num_key_usage; i++)
free_key_usage(context, &crypto->key_usage[i]);
free(crypto->key_usage);
free_key_data(context, &crypto->key);
free (crypto);
return 0;
}
krb5_error_code
krb5_crypto_getblocksize(krb5_context context,
krb5_crypto crypto,
size_t *blocksize)
{
*blocksize = crypto->et->blocksize;
return 0;
}
krb5_error_code
krb5_string_to_key_derived(krb5_context context,
const void *str,
size_t len,
krb5_enctype etype,
krb5_keyblock *key)
{
struct encryption_type *et = _find_enctype(etype);
krb5_error_code ret;
struct key_data kd;
size_t keylen = et->keytype->bits / 8;
u_char *tmp;
if(et == NULL) {
krb5_set_error_string (context, "encryption type %d not supported",
etype);
return KRB5_PROG_ETYPE_NOSUPP;
}
ALLOC(kd.key, 1);
if(kd.key == NULL) {
krb5_set_error_string (context, "malloc: out of memory");
return ENOMEM;
}
ret = krb5_data_alloc(&kd.key->keyvalue, et->keytype->size);
if(ret) {
free(kd.key);
return ret;
}
kd.key->keytype = etype;
tmp = malloc (keylen);
if(tmp == NULL) {
krb5_free_keyblock(context, kd.key);
krb5_set_error_string (context, "malloc: out of memory");
return ENOMEM;
}
_krb5_n_fold(str, len, tmp, keylen);
kd.schedule = NULL;
DES3_postproc (context, tmp, keylen, &kd); /* XXX */
memset(tmp, 0, keylen);
free(tmp);
ret = derive_key(context,
et,
&kd,
"kerberos", /* XXX well known constant */
strlen("kerberos"));
ret = krb5_copy_keyblock_contents(context, kd.key, key);
free_key_data(context, &kd);
return ret;
}
static size_t
wrapped_length (krb5_context context,
krb5_crypto crypto,
size_t data_len)
{
struct encryption_type *et = crypto->et;
size_t padsize = et->padsize;
size_t res;
res = et->confoundersize + et->checksum->checksumsize + data_len;
res = (res + padsize - 1) / padsize * padsize;
return res;
}
static size_t
wrapped_length_dervied (krb5_context context,
krb5_crypto crypto,
size_t data_len)
{
struct encryption_type *et = crypto->et;
size_t padsize = et->padsize;
size_t res;
res = et->confoundersize + data_len;
res = (res + padsize - 1) / padsize * padsize;
res += et->checksum->checksumsize;
return res;
}
/*
* Return the size of an encrypted packet of length `data_len'
*/
size_t
krb5_get_wrapped_length (krb5_context context,
krb5_crypto crypto,
size_t data_len)
{
if (derived_crypto (context, crypto))
return wrapped_length_dervied (context, crypto, data_len);
else
return wrapped_length (context, crypto, data_len);
}
#ifdef CRYPTO_DEBUG
static krb5_error_code
krb5_get_keyid(krb5_context context,
krb5_keyblock *key,
u_int32_t *keyid)
{
MD5_CTX md5;
unsigned char tmp[16];
MD5_Init (&md5);
MD5_Update (&md5, key->keyvalue.data, key->keyvalue.length);
MD5_Final (tmp, &md5);
*keyid = (tmp[12] << 24) | (tmp[13] << 16) | (tmp[14] << 8) | tmp[15];
return 0;
}
static void
krb5_crypto_debug(krb5_context context,
int encrypt,
size_t len,
krb5_keyblock *key)
{
u_int32_t keyid;
char *kt;
krb5_get_keyid(context, key, &keyid);
krb5_enctype_to_string(context, key->keytype, &kt);
krb5_warnx(context, "%s %lu bytes with key-id %#x (%s)",
encrypt ? "encrypting" : "decrypting",
(unsigned long)len,
keyid,
kt);
free(kt);
}
#endif /* CRYPTO_DEBUG */
#if 0
int
main()
{
#if 0
int i;
krb5_context context;
krb5_crypto crypto;
struct key_data *d;
krb5_keyblock key;
char constant[4];
unsigned usage = ENCRYPTION_USAGE(3);
krb5_error_code ret;
ret = krb5_init_context(&context);
if (ret)
errx (1, "krb5_init_context failed: %d", ret);
key.keytype = ETYPE_NEW_DES3_CBC_SHA1;
key.keyvalue.data = "\xb3\x85\x58\x94\xd9\xdc\x7c\xc8"
"\x25\xe9\x85\xab\x3e\xb5\xfb\x0e"
"\xc8\xdf\xab\x26\x86\x64\x15\x25";
key.keyvalue.length = 24;
krb5_crypto_init(context, &key, 0, &crypto);
d = _new_derived_key(crypto, usage);
if(d == NULL)
return ENOMEM;
krb5_copy_keyblock(context, crypto->key.key, &d->key);
_krb5_put_int(constant, usage, 4);
derive_key(context, crypto->et, d, constant, sizeof(constant));
return 0;
#else
int i;
krb5_context context;
krb5_crypto crypto;
struct key_data *d;
krb5_keyblock key;
krb5_error_code ret;
Checksum res;
char *data = "what do ya want for nothing?";
ret = krb5_init_context(&context);
if (ret)
errx (1, "krb5_init_context failed: %d", ret);
key.keytype = ETYPE_NEW_DES3_CBC_SHA1;
key.keyvalue.data = "Jefe";
/* "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"
"\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"; */
key.keyvalue.length = 4;
d = calloc(1, sizeof(*d));
d->key = &key;
res.checksum.length = 20;
res.checksum.data = malloc(res.checksum.length);
SP_HMAC_SHA1_checksum(context, d, data, 28, &res);
return 0;
#endif
}
#endif