3526 lines
89 KiB
C
3526 lines
89 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1982, 1986, 1991, 1993, 1995
|
|
* The Regents of the University of California.
|
|
* Copyright (c) 2007-2009 Robert N. M. Watson
|
|
* Copyright (c) 2010-2011 Juniper Networks, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by Robert N. M. Watson under
|
|
* contract to Juniper Networks, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ratelimit.h"
|
|
#include "opt_pcbgroup.h"
|
|
#include "opt_rss.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/rmlock.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_llatbl.h>
|
|
#include <net/route.h>
|
|
#include <net/rss_config.h>
|
|
#include <net/vnet.h>
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#ifdef INET
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_fib.h>
|
|
#endif
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/tcp_var.h>
|
|
#ifdef TCPHPTS
|
|
#include <netinet/tcp_hpts.h>
|
|
#endif
|
|
#include <netinet/udp.h>
|
|
#include <netinet/udp_var.h>
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#endif /* INET6 */
|
|
#include <net/route/nhop.h>
|
|
#endif
|
|
|
|
#include <netipsec/ipsec_support.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#define INPCBLBGROUP_SIZMIN 8
|
|
#define INPCBLBGROUP_SIZMAX 256
|
|
|
|
static struct callout ipport_tick_callout;
|
|
|
|
/*
|
|
* These configure the range of local port addresses assigned to
|
|
* "unspecified" outgoing connections/packets/whatever.
|
|
*/
|
|
VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */
|
|
VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */
|
|
VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */
|
|
VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */
|
|
VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */
|
|
VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */
|
|
|
|
/*
|
|
* Reserved ports accessible only to root. There are significant
|
|
* security considerations that must be accounted for when changing these,
|
|
* but the security benefits can be great. Please be careful.
|
|
*/
|
|
VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */
|
|
VNET_DEFINE(int, ipport_reservedlow);
|
|
|
|
/* Variables dealing with random ephemeral port allocation. */
|
|
VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */
|
|
VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */
|
|
VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */
|
|
VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */
|
|
VNET_DEFINE(int, ipport_tcpallocs);
|
|
VNET_DEFINE_STATIC(int, ipport_tcplastcount);
|
|
|
|
#define V_ipport_tcplastcount VNET(ipport_tcplastcount)
|
|
|
|
static void in_pcbremlists(struct inpcb *inp);
|
|
#ifdef INET
|
|
static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
|
|
struct in_addr faddr, u_int fport_arg,
|
|
struct in_addr laddr, u_int lport_arg,
|
|
int lookupflags, struct ifnet *ifp);
|
|
|
|
#define RANGECHK(var, min, max) \
|
|
if ((var) < (min)) { (var) = (min); } \
|
|
else if ((var) > (max)) { (var) = (max); }
|
|
|
|
static int
|
|
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, arg1, arg2, req);
|
|
if (error == 0) {
|
|
RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#undef RANGECHK
|
|
|
|
static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"IP Ports");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
|
|
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
|
|
&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
|
|
"");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
|
|
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
|
|
&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
|
|
"");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
|
|
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
|
|
&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
|
|
"");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
|
|
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
|
|
&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
|
|
"");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
|
|
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
|
|
&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
|
|
"");
|
|
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
|
|
CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
|
|
&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
|
|
"");
|
|
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
|
|
CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
|
|
&VNET_NAME(ipport_reservedhigh), 0, "");
|
|
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
|
|
CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
|
|
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
|
|
CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
|
|
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
|
|
CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
|
|
"allocations before switching to a sequental one");
|
|
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
|
|
CTLFLAG_VNET | CTLFLAG_RW,
|
|
&VNET_NAME(ipport_randomtime), 0,
|
|
"Minimum time to keep sequental port "
|
|
"allocation before switching to a random one");
|
|
|
|
#ifdef RATELIMIT
|
|
counter_u64_t rate_limit_active;
|
|
counter_u64_t rate_limit_alloc_fail;
|
|
counter_u64_t rate_limit_set_ok;
|
|
|
|
static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
|
|
"IP Rate Limiting");
|
|
SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
|
|
&rate_limit_active, "Active rate limited connections");
|
|
SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
|
|
&rate_limit_alloc_fail, "Rate limited connection failures");
|
|
SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
|
|
&rate_limit_set_ok, "Rate limited setting succeeded");
|
|
#endif /* RATELIMIT */
|
|
|
|
#endif /* INET */
|
|
|
|
/*
|
|
* in_pcb.c: manage the Protocol Control Blocks.
|
|
*
|
|
* NOTE: It is assumed that most of these functions will be called with
|
|
* the pcbinfo lock held, and often, the inpcb lock held, as these utility
|
|
* functions often modify hash chains or addresses in pcbs.
|
|
*/
|
|
|
|
static struct inpcblbgroup *
|
|
in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
|
|
uint16_t port, const union in_dependaddr *addr, int size)
|
|
{
|
|
struct inpcblbgroup *grp;
|
|
size_t bytes;
|
|
|
|
bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
|
|
grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
|
|
if (!grp)
|
|
return (NULL);
|
|
grp->il_vflag = vflag;
|
|
grp->il_lport = port;
|
|
grp->il_dependladdr = *addr;
|
|
grp->il_inpsiz = size;
|
|
CK_LIST_INSERT_HEAD(hdr, grp, il_list);
|
|
return (grp);
|
|
}
|
|
|
|
static void
|
|
in_pcblbgroup_free_deferred(epoch_context_t ctx)
|
|
{
|
|
struct inpcblbgroup *grp;
|
|
|
|
grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
|
|
free(grp, M_PCB);
|
|
}
|
|
|
|
static void
|
|
in_pcblbgroup_free(struct inpcblbgroup *grp)
|
|
{
|
|
|
|
CK_LIST_REMOVE(grp, il_list);
|
|
NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
|
|
}
|
|
|
|
static struct inpcblbgroup *
|
|
in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
|
|
struct inpcblbgroup *old_grp, int size)
|
|
{
|
|
struct inpcblbgroup *grp;
|
|
int i;
|
|
|
|
grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
|
|
old_grp->il_lport, &old_grp->il_dependladdr, size);
|
|
if (grp == NULL)
|
|
return (NULL);
|
|
|
|
KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
|
|
("invalid new local group size %d and old local group count %d",
|
|
grp->il_inpsiz, old_grp->il_inpcnt));
|
|
|
|
for (i = 0; i < old_grp->il_inpcnt; ++i)
|
|
grp->il_inp[i] = old_grp->il_inp[i];
|
|
grp->il_inpcnt = old_grp->il_inpcnt;
|
|
in_pcblbgroup_free(old_grp);
|
|
return (grp);
|
|
}
|
|
|
|
/*
|
|
* PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
|
|
* and shrink group if possible.
|
|
*/
|
|
static void
|
|
in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
|
|
int i)
|
|
{
|
|
struct inpcblbgroup *grp, *new_grp;
|
|
|
|
grp = *grpp;
|
|
for (; i + 1 < grp->il_inpcnt; ++i)
|
|
grp->il_inp[i] = grp->il_inp[i + 1];
|
|
grp->il_inpcnt--;
|
|
|
|
if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
|
|
grp->il_inpcnt <= grp->il_inpsiz / 4) {
|
|
/* Shrink this group. */
|
|
new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
|
|
if (new_grp != NULL)
|
|
*grpp = new_grp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add PCB to load balance group for SO_REUSEPORT_LB option.
|
|
*/
|
|
static int
|
|
in_pcbinslbgrouphash(struct inpcb *inp)
|
|
{
|
|
const static struct timeval interval = { 60, 0 };
|
|
static struct timeval lastprint;
|
|
struct inpcbinfo *pcbinfo;
|
|
struct inpcblbgrouphead *hdr;
|
|
struct inpcblbgroup *grp;
|
|
uint32_t idx;
|
|
|
|
pcbinfo = inp->inp_pcbinfo;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
INP_HASH_WLOCK_ASSERT(pcbinfo);
|
|
|
|
/*
|
|
* Don't allow jailed socket to join local group.
|
|
*/
|
|
if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
|
|
return (0);
|
|
|
|
#ifdef INET6
|
|
/*
|
|
* Don't allow IPv4 mapped INET6 wild socket.
|
|
*/
|
|
if ((inp->inp_vflag & INP_IPV4) &&
|
|
inp->inp_laddr.s_addr == INADDR_ANY &&
|
|
INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
|
|
hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
|
|
CK_LIST_FOREACH(grp, hdr, il_list) {
|
|
if (grp->il_vflag == inp->inp_vflag &&
|
|
grp->il_lport == inp->inp_lport &&
|
|
memcmp(&grp->il_dependladdr,
|
|
&inp->inp_inc.inc_ie.ie_dependladdr,
|
|
sizeof(grp->il_dependladdr)) == 0)
|
|
break;
|
|
}
|
|
if (grp == NULL) {
|
|
/* Create new load balance group. */
|
|
grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
|
|
inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
|
|
INPCBLBGROUP_SIZMIN);
|
|
if (grp == NULL)
|
|
return (ENOBUFS);
|
|
} else if (grp->il_inpcnt == grp->il_inpsiz) {
|
|
if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
|
|
if (ratecheck(&lastprint, &interval))
|
|
printf("lb group port %d, limit reached\n",
|
|
ntohs(grp->il_lport));
|
|
return (0);
|
|
}
|
|
|
|
/* Expand this local group. */
|
|
grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
|
|
if (grp == NULL)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
KASSERT(grp->il_inpcnt < grp->il_inpsiz,
|
|
("invalid local group size %d and count %d", grp->il_inpsiz,
|
|
grp->il_inpcnt));
|
|
|
|
grp->il_inp[grp->il_inpcnt] = inp;
|
|
grp->il_inpcnt++;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove PCB from load balance group.
|
|
*/
|
|
static void
|
|
in_pcbremlbgrouphash(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *pcbinfo;
|
|
struct inpcblbgrouphead *hdr;
|
|
struct inpcblbgroup *grp;
|
|
int i;
|
|
|
|
pcbinfo = inp->inp_pcbinfo;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
INP_HASH_WLOCK_ASSERT(pcbinfo);
|
|
|
|
hdr = &pcbinfo->ipi_lbgrouphashbase[
|
|
INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
|
|
CK_LIST_FOREACH(grp, hdr, il_list) {
|
|
for (i = 0; i < grp->il_inpcnt; ++i) {
|
|
if (grp->il_inp[i] != inp)
|
|
continue;
|
|
|
|
if (grp->il_inpcnt == 1) {
|
|
/* We are the last, free this local group. */
|
|
in_pcblbgroup_free(grp);
|
|
} else {
|
|
/* Pull up inpcbs, shrink group if possible. */
|
|
in_pcblbgroup_reorder(hdr, &grp, i);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Different protocols initialize their inpcbs differently - giving
|
|
* different name to the lock. But they all are disposed the same.
|
|
*/
|
|
static void
|
|
inpcb_fini(void *mem, int size)
|
|
{
|
|
struct inpcb *inp = mem;
|
|
|
|
INP_LOCK_DESTROY(inp);
|
|
}
|
|
|
|
/*
|
|
* Initialize an inpcbinfo -- we should be able to reduce the number of
|
|
* arguments in time.
|
|
*/
|
|
void
|
|
in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
|
|
struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
|
|
char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
|
|
{
|
|
|
|
porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
|
|
|
|
INP_INFO_LOCK_INIT(pcbinfo, name);
|
|
INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */
|
|
INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
|
|
#ifdef VIMAGE
|
|
pcbinfo->ipi_vnet = curvnet;
|
|
#endif
|
|
pcbinfo->ipi_listhead = listhead;
|
|
CK_LIST_INIT(pcbinfo->ipi_listhead);
|
|
pcbinfo->ipi_count = 0;
|
|
pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
|
|
&pcbinfo->ipi_hashmask);
|
|
pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
|
|
&pcbinfo->ipi_porthashmask);
|
|
pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
|
|
&pcbinfo->ipi_lbgrouphashmask);
|
|
#ifdef PCBGROUP
|
|
in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
|
|
#endif
|
|
pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
|
|
NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
|
|
uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
|
|
uma_zone_set_warning(pcbinfo->ipi_zone,
|
|
"kern.ipc.maxsockets limit reached");
|
|
}
|
|
|
|
/*
|
|
* Destroy an inpcbinfo.
|
|
*/
|
|
void
|
|
in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
|
|
{
|
|
|
|
KASSERT(pcbinfo->ipi_count == 0,
|
|
("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
|
|
|
|
hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
|
|
hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
|
|
pcbinfo->ipi_porthashmask);
|
|
hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
|
|
pcbinfo->ipi_lbgrouphashmask);
|
|
#ifdef PCBGROUP
|
|
in_pcbgroup_destroy(pcbinfo);
|
|
#endif
|
|
uma_zdestroy(pcbinfo->ipi_zone);
|
|
INP_LIST_LOCK_DESTROY(pcbinfo);
|
|
INP_HASH_LOCK_DESTROY(pcbinfo);
|
|
INP_INFO_LOCK_DESTROY(pcbinfo);
|
|
}
|
|
|
|
/*
|
|
* Allocate a PCB and associate it with the socket.
|
|
* On success return with the PCB locked.
|
|
*/
|
|
int
|
|
in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
|
|
{
|
|
struct inpcb *inp;
|
|
int error;
|
|
|
|
error = 0;
|
|
inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
|
|
if (inp == NULL)
|
|
return (ENOBUFS);
|
|
bzero(&inp->inp_start_zero, inp_zero_size);
|
|
#ifdef NUMA
|
|
inp->inp_numa_domain = M_NODOM;
|
|
#endif
|
|
inp->inp_pcbinfo = pcbinfo;
|
|
inp->inp_socket = so;
|
|
inp->inp_cred = crhold(so->so_cred);
|
|
inp->inp_inc.inc_fibnum = so->so_fibnum;
|
|
#ifdef MAC
|
|
error = mac_inpcb_init(inp, M_NOWAIT);
|
|
if (error != 0)
|
|
goto out;
|
|
mac_inpcb_create(so, inp);
|
|
#endif
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
error = ipsec_init_pcbpolicy(inp);
|
|
if (error != 0) {
|
|
#ifdef MAC
|
|
mac_inpcb_destroy(inp);
|
|
#endif
|
|
goto out;
|
|
}
|
|
#endif /*IPSEC*/
|
|
#ifdef INET6
|
|
if (INP_SOCKAF(so) == AF_INET6) {
|
|
inp->inp_vflag |= INP_IPV6PROTO;
|
|
if (V_ip6_v6only)
|
|
inp->inp_flags |= IN6P_IPV6_V6ONLY;
|
|
}
|
|
#endif
|
|
INP_WLOCK(inp);
|
|
INP_LIST_WLOCK(pcbinfo);
|
|
CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
|
|
pcbinfo->ipi_count++;
|
|
so->so_pcb = (caddr_t)inp;
|
|
#ifdef INET6
|
|
if (V_ip6_auto_flowlabel)
|
|
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
|
|
#endif
|
|
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
|
|
refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */
|
|
|
|
/*
|
|
* Routes in inpcb's can cache L2 as well; they are guaranteed
|
|
* to be cleaned up.
|
|
*/
|
|
inp->inp_route.ro_flags = RT_LLE_CACHE;
|
|
INP_LIST_WUNLOCK(pcbinfo);
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
|
|
out:
|
|
if (error != 0) {
|
|
crfree(inp->inp_cred);
|
|
uma_zfree(pcbinfo->ipi_zone, inp);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
#ifdef INET
|
|
int
|
|
in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
|
|
{
|
|
int anonport, error;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
|
|
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
|
|
return (EINVAL);
|
|
anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
|
|
error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
|
|
&inp->inp_lport, cred);
|
|
if (error)
|
|
return (error);
|
|
if (in_pcbinshash(inp) != 0) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
inp->inp_lport = 0;
|
|
return (EAGAIN);
|
|
}
|
|
if (anonport)
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
/*
|
|
* Assign a local port like in_pcb_lport(), but also used with connect()
|
|
* and a foreign address and port. If fsa is non-NULL, choose a local port
|
|
* that is unused with those, otherwise one that is completely unused.
|
|
* lsa can be NULL for IPv6.
|
|
*/
|
|
int
|
|
in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
|
|
struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
|
|
{
|
|
struct inpcbinfo *pcbinfo;
|
|
struct inpcb *tmpinp;
|
|
unsigned short *lastport;
|
|
int count, dorandom, error;
|
|
u_short aux, first, last, lport;
|
|
#ifdef INET
|
|
struct in_addr laddr, faddr;
|
|
#endif
|
|
#ifdef INET6
|
|
struct in6_addr *laddr6, *faddr6;
|
|
#endif
|
|
|
|
pcbinfo = inp->inp_pcbinfo;
|
|
|
|
/*
|
|
* Because no actual state changes occur here, a global write lock on
|
|
* the pcbinfo isn't required.
|
|
*/
|
|
INP_LOCK_ASSERT(inp);
|
|
INP_HASH_LOCK_ASSERT(pcbinfo);
|
|
|
|
if (inp->inp_flags & INP_HIGHPORT) {
|
|
first = V_ipport_hifirstauto; /* sysctl */
|
|
last = V_ipport_hilastauto;
|
|
lastport = &pcbinfo->ipi_lasthi;
|
|
} else if (inp->inp_flags & INP_LOWPORT) {
|
|
error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
|
|
if (error)
|
|
return (error);
|
|
first = V_ipport_lowfirstauto; /* 1023 */
|
|
last = V_ipport_lowlastauto; /* 600 */
|
|
lastport = &pcbinfo->ipi_lastlow;
|
|
} else {
|
|
first = V_ipport_firstauto; /* sysctl */
|
|
last = V_ipport_lastauto;
|
|
lastport = &pcbinfo->ipi_lastport;
|
|
}
|
|
/*
|
|
* For UDP(-Lite), use random port allocation as long as the user
|
|
* allows it. For TCP (and as of yet unknown) connections,
|
|
* use random port allocation only if the user allows it AND
|
|
* ipport_tick() allows it.
|
|
*/
|
|
if (V_ipport_randomized &&
|
|
(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
|
|
pcbinfo == &V_ulitecbinfo))
|
|
dorandom = 1;
|
|
else
|
|
dorandom = 0;
|
|
/*
|
|
* It makes no sense to do random port allocation if
|
|
* we have the only port available.
|
|
*/
|
|
if (first == last)
|
|
dorandom = 0;
|
|
/* Make sure to not include UDP(-Lite) packets in the count. */
|
|
if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
|
|
V_ipport_tcpallocs++;
|
|
/*
|
|
* Instead of having two loops further down counting up or down
|
|
* make sure that first is always <= last and go with only one
|
|
* code path implementing all logic.
|
|
*/
|
|
if (first > last) {
|
|
aux = first;
|
|
first = last;
|
|
last = aux;
|
|
}
|
|
|
|
#ifdef INET
|
|
laddr.s_addr = INADDR_ANY;
|
|
if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
|
|
if (lsa != NULL)
|
|
laddr = ((struct sockaddr_in *)lsa)->sin_addr;
|
|
if (fsa != NULL)
|
|
faddr = ((struct sockaddr_in *)fsa)->sin_addr;
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
laddr6 = NULL;
|
|
if ((inp->inp_vflag & INP_IPV6) != 0) {
|
|
if (lsa != NULL)
|
|
laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
|
|
if (fsa != NULL)
|
|
faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
|
|
}
|
|
#endif
|
|
|
|
tmpinp = NULL;
|
|
lport = *lportp;
|
|
|
|
if (dorandom)
|
|
*lastport = first + (arc4random() % (last - first));
|
|
|
|
count = last - first;
|
|
|
|
do {
|
|
if (count-- < 0) /* completely used? */
|
|
return (EADDRNOTAVAIL);
|
|
++*lastport;
|
|
if (*lastport < first || *lastport > last)
|
|
*lastport = first;
|
|
lport = htons(*lastport);
|
|
|
|
if (fsa != NULL) {
|
|
#ifdef INET
|
|
if (lsa->sa_family == AF_INET) {
|
|
tmpinp = in_pcblookup_hash_locked(pcbinfo,
|
|
faddr, fport, laddr, lport, lookupflags,
|
|
NULL);
|
|
}
|
|
#endif
|
|
#ifdef INET6
|
|
if (lsa->sa_family == AF_INET6) {
|
|
tmpinp = in6_pcblookup_hash_locked(pcbinfo,
|
|
faddr6, fport, laddr6, lport, lookupflags,
|
|
NULL);
|
|
}
|
|
#endif
|
|
} else {
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV6) != 0)
|
|
tmpinp = in6_pcblookup_local(pcbinfo,
|
|
&inp->in6p_laddr, lport, lookupflags, cred);
|
|
#endif
|
|
#if defined(INET) && defined(INET6)
|
|
else
|
|
#endif
|
|
#ifdef INET
|
|
tmpinp = in_pcblookup_local(pcbinfo, laddr,
|
|
lport, lookupflags, cred);
|
|
#endif
|
|
}
|
|
} while (tmpinp != NULL);
|
|
|
|
*lportp = lport;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Select a local port (number) to use.
|
|
*/
|
|
int
|
|
in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
|
|
struct ucred *cred, int lookupflags)
|
|
{
|
|
struct sockaddr_in laddr;
|
|
|
|
if (laddrp) {
|
|
bzero(&laddr, sizeof(laddr));
|
|
laddr.sin_family = AF_INET;
|
|
laddr.sin_addr = *laddrp;
|
|
}
|
|
return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
|
|
NULL, lportp, NULL, 0, cred, lookupflags));
|
|
}
|
|
|
|
/*
|
|
* Return cached socket options.
|
|
*/
|
|
int
|
|
inp_so_options(const struct inpcb *inp)
|
|
{
|
|
int so_options;
|
|
|
|
so_options = 0;
|
|
|
|
if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
|
|
so_options |= SO_REUSEPORT_LB;
|
|
if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
|
|
so_options |= SO_REUSEPORT;
|
|
if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
|
|
so_options |= SO_REUSEADDR;
|
|
return (so_options);
|
|
}
|
|
#endif /* INET || INET6 */
|
|
|
|
/*
|
|
* Check if a new BINDMULTI socket is allowed to be created.
|
|
*
|
|
* ni points to the new inp.
|
|
* oi points to the exisitng inp.
|
|
*
|
|
* This checks whether the existing inp also has BINDMULTI and
|
|
* whether the credentials match.
|
|
*/
|
|
int
|
|
in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
|
|
{
|
|
/* Check permissions match */
|
|
if ((ni->inp_flags2 & INP_BINDMULTI) &&
|
|
(ni->inp_cred->cr_uid !=
|
|
oi->inp_cred->cr_uid))
|
|
return (0);
|
|
|
|
/* Check the existing inp has BINDMULTI set */
|
|
if ((ni->inp_flags2 & INP_BINDMULTI) &&
|
|
((oi->inp_flags2 & INP_BINDMULTI) == 0))
|
|
return (0);
|
|
|
|
/*
|
|
* We're okay - either INP_BINDMULTI isn't set on ni, or
|
|
* it is and it matches the checks.
|
|
*/
|
|
return (1);
|
|
}
|
|
|
|
#ifdef INET
|
|
/*
|
|
* Set up a bind operation on a PCB, performing port allocation
|
|
* as required, but do not actually modify the PCB. Callers can
|
|
* either complete the bind by setting inp_laddr/inp_lport and
|
|
* calling in_pcbinshash(), or they can just use the resulting
|
|
* port and address to authorise the sending of a once-off packet.
|
|
*
|
|
* On error, the values of *laddrp and *lportp are not changed.
|
|
*/
|
|
int
|
|
in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
|
|
u_short *lportp, struct ucred *cred)
|
|
{
|
|
struct socket *so = inp->inp_socket;
|
|
struct sockaddr_in *sin;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct in_addr laddr;
|
|
u_short lport = 0;
|
|
int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
|
|
int error;
|
|
|
|
/*
|
|
* XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
|
|
* so that we don't have to add to the (already messy) code below.
|
|
*/
|
|
int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
|
|
|
|
/*
|
|
* No state changes, so read locks are sufficient here.
|
|
*/
|
|
INP_LOCK_ASSERT(inp);
|
|
INP_HASH_LOCK_ASSERT(pcbinfo);
|
|
|
|
if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
|
|
return (EADDRNOTAVAIL);
|
|
laddr.s_addr = *laddrp;
|
|
if (nam != NULL && laddr.s_addr != INADDR_ANY)
|
|
return (EINVAL);
|
|
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
|
|
lookupflags = INPLOOKUP_WILDCARD;
|
|
if (nam == NULL) {
|
|
if ((error = prison_local_ip4(cred, &laddr)) != 0)
|
|
return (error);
|
|
} else {
|
|
sin = (struct sockaddr_in *)nam;
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
#ifdef notdef
|
|
/*
|
|
* We should check the family, but old programs
|
|
* incorrectly fail to initialize it.
|
|
*/
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
#endif
|
|
error = prison_local_ip4(cred, &sin->sin_addr);
|
|
if (error)
|
|
return (error);
|
|
if (sin->sin_port != *lportp) {
|
|
/* Don't allow the port to change. */
|
|
if (*lportp != 0)
|
|
return (EINVAL);
|
|
lport = sin->sin_port;
|
|
}
|
|
/* NB: lport is left as 0 if the port isn't being changed. */
|
|
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
|
|
/*
|
|
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
|
|
* allow complete duplication of binding if
|
|
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
|
|
* and a multicast address is bound on both
|
|
* new and duplicated sockets.
|
|
*/
|
|
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
|
|
reuseport = SO_REUSEADDR|SO_REUSEPORT;
|
|
/*
|
|
* XXX: How to deal with SO_REUSEPORT_LB here?
|
|
* Treat same as SO_REUSEPORT for now.
|
|
*/
|
|
if ((so->so_options &
|
|
(SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
|
|
reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
|
|
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
|
|
sin->sin_port = 0; /* yech... */
|
|
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
|
|
/*
|
|
* Is the address a local IP address?
|
|
* If INP_BINDANY is set, then the socket may be bound
|
|
* to any endpoint address, local or not.
|
|
*/
|
|
if ((inp->inp_flags & INP_BINDANY) == 0 &&
|
|
ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
laddr = sin->sin_addr;
|
|
if (lport) {
|
|
struct inpcb *t;
|
|
struct tcptw *tw;
|
|
|
|
/* GROSS */
|
|
if (ntohs(lport) <= V_ipport_reservedhigh &&
|
|
ntohs(lport) >= V_ipport_reservedlow &&
|
|
priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
|
|
return (EACCES);
|
|
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
|
|
priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
|
|
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
|
|
lport, INPLOOKUP_WILDCARD, cred);
|
|
/*
|
|
* XXX
|
|
* This entire block sorely needs a rewrite.
|
|
*/
|
|
if (t &&
|
|
((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
|
|
((t->inp_flags & INP_TIMEWAIT) == 0) &&
|
|
(so->so_type != SOCK_STREAM ||
|
|
ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
|
|
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
|
|
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
|
|
(t->inp_flags2 & INP_REUSEPORT) ||
|
|
(t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
|
|
(inp->inp_cred->cr_uid !=
|
|
t->inp_cred->cr_uid))
|
|
return (EADDRINUSE);
|
|
|
|
/*
|
|
* If the socket is a BINDMULTI socket, then
|
|
* the credentials need to match and the
|
|
* original socket also has to have been bound
|
|
* with BINDMULTI.
|
|
*/
|
|
if (t && (! in_pcbbind_check_bindmulti(inp, t)))
|
|
return (EADDRINUSE);
|
|
}
|
|
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
|
|
lport, lookupflags, cred);
|
|
if (t && (t->inp_flags & INP_TIMEWAIT)) {
|
|
/*
|
|
* XXXRW: If an incpb has had its timewait
|
|
* state recycled, we treat the address as
|
|
* being in use (for now). This is better
|
|
* than a panic, but not desirable.
|
|
*/
|
|
tw = intotw(t);
|
|
if (tw == NULL ||
|
|
((reuseport & tw->tw_so_options) == 0 &&
|
|
(reuseport_lb &
|
|
tw->tw_so_options) == 0)) {
|
|
return (EADDRINUSE);
|
|
}
|
|
} else if (t &&
|
|
((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
|
|
(reuseport & inp_so_options(t)) == 0 &&
|
|
(reuseport_lb & inp_so_options(t)) == 0) {
|
|
#ifdef INET6
|
|
if (ntohl(sin->sin_addr.s_addr) !=
|
|
INADDR_ANY ||
|
|
ntohl(t->inp_laddr.s_addr) !=
|
|
INADDR_ANY ||
|
|
(inp->inp_vflag & INP_IPV6PROTO) == 0 ||
|
|
(t->inp_vflag & INP_IPV6PROTO) == 0)
|
|
#endif
|
|
return (EADDRINUSE);
|
|
if (t && (! in_pcbbind_check_bindmulti(inp, t)))
|
|
return (EADDRINUSE);
|
|
}
|
|
}
|
|
}
|
|
if (*lportp != 0)
|
|
lport = *lportp;
|
|
if (lport == 0) {
|
|
error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
*laddrp = laddr.s_addr;
|
|
*lportp = lport;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Connect from a socket to a specified address.
|
|
* Both address and port must be specified in argument sin.
|
|
* If don't have a local address for this socket yet,
|
|
* then pick one.
|
|
*/
|
|
int
|
|
in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
|
|
struct ucred *cred, struct mbuf *m, bool rehash)
|
|
{
|
|
u_short lport, fport;
|
|
in_addr_t laddr, faddr;
|
|
int anonport, error;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
|
|
lport = inp->inp_lport;
|
|
laddr = inp->inp_laddr.s_addr;
|
|
anonport = (lport == 0);
|
|
error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
|
|
NULL, cred);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Do the initial binding of the local address if required. */
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
|
|
KASSERT(rehash == true,
|
|
("Rehashing required for unbound inps"));
|
|
inp->inp_lport = lport;
|
|
inp->inp_laddr.s_addr = laddr;
|
|
if (in_pcbinshash(inp) != 0) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
inp->inp_lport = 0;
|
|
return (EAGAIN);
|
|
}
|
|
}
|
|
|
|
/* Commit the remaining changes. */
|
|
inp->inp_lport = lport;
|
|
inp->inp_laddr.s_addr = laddr;
|
|
inp->inp_faddr.s_addr = faddr;
|
|
inp->inp_fport = fport;
|
|
if (rehash) {
|
|
in_pcbrehash_mbuf(inp, m);
|
|
} else {
|
|
in_pcbinshash_mbuf(inp, m);
|
|
}
|
|
|
|
if (anonport)
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
|
|
{
|
|
|
|
return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
|
|
}
|
|
|
|
/*
|
|
* Do proper source address selection on an unbound socket in case
|
|
* of connect. Take jails into account as well.
|
|
*/
|
|
int
|
|
in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
|
|
struct ucred *cred)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct sockaddr *sa;
|
|
struct sockaddr_in *sin, dst;
|
|
struct nhop_object *nh;
|
|
int error;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
|
|
/*
|
|
* Bypass source address selection and use the primary jail IP
|
|
* if requested.
|
|
*/
|
|
if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
|
|
return (0);
|
|
|
|
error = 0;
|
|
|
|
nh = NULL;
|
|
bzero(&dst, sizeof(dst));
|
|
sin = &dst;
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(struct sockaddr_in);
|
|
sin->sin_addr.s_addr = faddr->s_addr;
|
|
|
|
/*
|
|
* If route is known our src addr is taken from the i/f,
|
|
* else punt.
|
|
*
|
|
* Find out route to destination.
|
|
*/
|
|
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
|
|
nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
|
|
0, NHR_NONE, 0);
|
|
|
|
/*
|
|
* If we found a route, use the address corresponding to
|
|
* the outgoing interface.
|
|
*
|
|
* Otherwise assume faddr is reachable on a directly connected
|
|
* network and try to find a corresponding interface to take
|
|
* the source address from.
|
|
*/
|
|
if (nh == NULL || nh->nh_ifp == NULL) {
|
|
struct in_ifaddr *ia;
|
|
struct ifnet *ifp;
|
|
|
|
ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
|
|
inp->inp_socket->so_fibnum));
|
|
if (ia == NULL) {
|
|
ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
|
|
inp->inp_socket->so_fibnum));
|
|
}
|
|
if (ia == NULL) {
|
|
error = ENETUNREACH;
|
|
goto done;
|
|
}
|
|
|
|
if (cred == NULL || !prison_flag(cred, PR_IP4)) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
ifp = ia->ia_ifp;
|
|
ia = NULL;
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
sa = ifa->ifa_addr;
|
|
if (sa->sa_family != AF_INET)
|
|
continue;
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
|
|
ia = (struct in_ifaddr *)ifa;
|
|
break;
|
|
}
|
|
}
|
|
if (ia != NULL) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* 3. As a last resort return the 'default' jail address. */
|
|
error = prison_get_ip4(cred, laddr);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If the outgoing interface on the route found is not
|
|
* a loopback interface, use the address from that interface.
|
|
* In case of jails do those three steps:
|
|
* 1. check if the interface address belongs to the jail. If so use it.
|
|
* 2. check if we have any address on the outgoing interface
|
|
* belonging to this jail. If so use it.
|
|
* 3. as a last resort return the 'default' jail address.
|
|
*/
|
|
if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
|
|
struct in_ifaddr *ia;
|
|
struct ifnet *ifp;
|
|
|
|
/* If not jailed, use the default returned. */
|
|
if (cred == NULL || !prison_flag(cred, PR_IP4)) {
|
|
ia = (struct in_ifaddr *)nh->nh_ifa;
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* Jailed. */
|
|
/* 1. Check if the iface address belongs to the jail. */
|
|
sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
|
|
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
|
|
ia = (struct in_ifaddr *)nh->nh_ifa;
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* 2. Check if we have any address on the outgoing interface
|
|
* belonging to this jail.
|
|
*/
|
|
ia = NULL;
|
|
ifp = nh->nh_ifp;
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
sa = ifa->ifa_addr;
|
|
if (sa->sa_family != AF_INET)
|
|
continue;
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
|
|
ia = (struct in_ifaddr *)ifa;
|
|
break;
|
|
}
|
|
}
|
|
if (ia != NULL) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* 3. As a last resort return the 'default' jail address. */
|
|
error = prison_get_ip4(cred, laddr);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* The outgoing interface is marked with 'loopback net', so a route
|
|
* to ourselves is here.
|
|
* Try to find the interface of the destination address and then
|
|
* take the address from there. That interface is not necessarily
|
|
* a loopback interface.
|
|
* In case of jails, check that it is an address of the jail
|
|
* and if we cannot find, fall back to the 'default' jail address.
|
|
*/
|
|
if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
|
|
struct in_ifaddr *ia;
|
|
|
|
ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
|
|
inp->inp_socket->so_fibnum));
|
|
if (ia == NULL)
|
|
ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
|
|
inp->inp_socket->so_fibnum));
|
|
if (ia == NULL)
|
|
ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
|
|
|
|
if (cred == NULL || !prison_flag(cred, PR_IP4)) {
|
|
if (ia == NULL) {
|
|
error = ENETUNREACH;
|
|
goto done;
|
|
}
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* Jailed. */
|
|
if (ia != NULL) {
|
|
struct ifnet *ifp;
|
|
|
|
ifp = ia->ia_ifp;
|
|
ia = NULL;
|
|
CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
sa = ifa->ifa_addr;
|
|
if (sa->sa_family != AF_INET)
|
|
continue;
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (prison_check_ip4(cred,
|
|
&sin->sin_addr) == 0) {
|
|
ia = (struct in_ifaddr *)ifa;
|
|
break;
|
|
}
|
|
}
|
|
if (ia != NULL) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* 3. As a last resort return the 'default' jail address. */
|
|
error = prison_get_ip4(cred, laddr);
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set up for a connect from a socket to the specified address.
|
|
* On entry, *laddrp and *lportp should contain the current local
|
|
* address and port for the PCB; these are updated to the values
|
|
* that should be placed in inp_laddr and inp_lport to complete
|
|
* the connect.
|
|
*
|
|
* On success, *faddrp and *fportp will be set to the remote address
|
|
* and port. These are not updated in the error case.
|
|
*
|
|
* If the operation fails because the connection already exists,
|
|
* *oinpp will be set to the PCB of that connection so that the
|
|
* caller can decide to override it. In all other cases, *oinpp
|
|
* is set to NULL.
|
|
*/
|
|
int
|
|
in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
|
|
in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
|
|
struct inpcb **oinpp, struct ucred *cred)
|
|
{
|
|
struct rm_priotracker in_ifa_tracker;
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
|
|
struct in_ifaddr *ia;
|
|
struct inpcb *oinp;
|
|
struct in_addr laddr, faddr;
|
|
u_short lport, fport;
|
|
int error;
|
|
|
|
/*
|
|
* Because a global state change doesn't actually occur here, a read
|
|
* lock is sufficient.
|
|
*/
|
|
NET_EPOCH_ASSERT();
|
|
INP_LOCK_ASSERT(inp);
|
|
INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
|
|
|
|
if (oinpp != NULL)
|
|
*oinpp = NULL;
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
if (sin->sin_port == 0)
|
|
return (EADDRNOTAVAIL);
|
|
laddr.s_addr = *laddrp;
|
|
lport = *lportp;
|
|
faddr = sin->sin_addr;
|
|
fport = sin->sin_port;
|
|
|
|
if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
|
|
/*
|
|
* If the destination address is INADDR_ANY,
|
|
* use the primary local address.
|
|
* If the supplied address is INADDR_BROADCAST,
|
|
* and the primary interface supports broadcast,
|
|
* choose the broadcast address for that interface.
|
|
*/
|
|
if (faddr.s_addr == INADDR_ANY) {
|
|
IN_IFADDR_RLOCK(&in_ifa_tracker);
|
|
faddr =
|
|
IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
|
|
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
|
|
if (cred != NULL &&
|
|
(error = prison_get_ip4(cred, &faddr)) != 0)
|
|
return (error);
|
|
} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
|
|
IN_IFADDR_RLOCK(&in_ifa_tracker);
|
|
if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
|
|
IFF_BROADCAST)
|
|
faddr = satosin(&CK_STAILQ_FIRST(
|
|
&V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
|
|
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
|
|
}
|
|
}
|
|
if (laddr.s_addr == INADDR_ANY) {
|
|
error = in_pcbladdr(inp, &faddr, &laddr, cred);
|
|
/*
|
|
* If the destination address is multicast and an outgoing
|
|
* interface has been set as a multicast option, prefer the
|
|
* address of that interface as our source address.
|
|
*/
|
|
if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
|
|
inp->inp_moptions != NULL) {
|
|
struct ip_moptions *imo;
|
|
struct ifnet *ifp;
|
|
|
|
imo = inp->inp_moptions;
|
|
if (imo->imo_multicast_ifp != NULL) {
|
|
ifp = imo->imo_multicast_ifp;
|
|
IN_IFADDR_RLOCK(&in_ifa_tracker);
|
|
CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
|
|
if ((ia->ia_ifp == ifp) &&
|
|
(cred == NULL ||
|
|
prison_check_ip4(cred,
|
|
&ia->ia_addr.sin_addr) == 0))
|
|
break;
|
|
}
|
|
if (ia == NULL)
|
|
error = EADDRNOTAVAIL;
|
|
else {
|
|
laddr = ia->ia_addr.sin_addr;
|
|
error = 0;
|
|
}
|
|
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
|
|
}
|
|
}
|
|
if (error)
|
|
return (error);
|
|
}
|
|
if (lport != 0) {
|
|
oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
|
|
fport, laddr, lport, 0, NULL);
|
|
if (oinp != NULL) {
|
|
if (oinpp != NULL)
|
|
*oinpp = oinp;
|
|
return (EADDRINUSE);
|
|
}
|
|
} else {
|
|
struct sockaddr_in lsin, fsin;
|
|
|
|
bzero(&lsin, sizeof(lsin));
|
|
bzero(&fsin, sizeof(fsin));
|
|
lsin.sin_family = AF_INET;
|
|
lsin.sin_addr = laddr;
|
|
fsin.sin_family = AF_INET;
|
|
fsin.sin_addr = faddr;
|
|
error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
|
|
&lport, (struct sockaddr *)& fsin, fport, cred,
|
|
INPLOOKUP_WILDCARD);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
*laddrp = laddr.s_addr;
|
|
*lportp = lport;
|
|
*faddrp = faddr.s_addr;
|
|
*fportp = fport;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
in_pcbdisconnect(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
|
|
inp->inp_faddr.s_addr = INADDR_ANY;
|
|
inp->inp_fport = 0;
|
|
in_pcbrehash(inp);
|
|
}
|
|
#endif /* INET */
|
|
|
|
/*
|
|
* in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
|
|
* For most protocols, this will be invoked immediately prior to calling
|
|
* in_pcbfree(). However, with TCP the inpcb may significantly outlive the
|
|
* socket, in which case in_pcbfree() is deferred.
|
|
*/
|
|
void
|
|
in_pcbdetach(struct inpcb *inp)
|
|
{
|
|
|
|
KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
|
|
|
|
#ifdef RATELIMIT
|
|
if (inp->inp_snd_tag != NULL)
|
|
in_pcbdetach_txrtlmt(inp);
|
|
#endif
|
|
inp->inp_socket->so_pcb = NULL;
|
|
inp->inp_socket = NULL;
|
|
}
|
|
|
|
/*
|
|
* in_pcbref() bumps the reference count on an inpcb in order to maintain
|
|
* stability of an inpcb pointer despite the inpcb lock being released. This
|
|
* is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
|
|
* but where the inpcb lock may already held, or when acquiring a reference
|
|
* via a pcbgroup.
|
|
*
|
|
* in_pcbref() should be used only to provide brief memory stability, and
|
|
* must always be followed by a call to INP_WLOCK() and in_pcbrele() to
|
|
* garbage collect the inpcb if it has been in_pcbfree()'d from another
|
|
* context. Until in_pcbrele() has returned that the inpcb is still valid,
|
|
* lock and rele are the *only* safe operations that may be performed on the
|
|
* inpcb.
|
|
*
|
|
* While the inpcb will not be freed, releasing the inpcb lock means that the
|
|
* connection's state may change, so the caller should be careful to
|
|
* revalidate any cached state on reacquiring the lock. Drop the reference
|
|
* using in_pcbrele().
|
|
*/
|
|
void
|
|
in_pcbref(struct inpcb *inp)
|
|
{
|
|
|
|
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
|
|
|
|
refcount_acquire(&inp->inp_refcount);
|
|
}
|
|
|
|
/*
|
|
* Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
|
|
* in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
|
|
* return a flag indicating whether or not the inpcb remains valid. If it is
|
|
* valid, we return with the inpcb lock held.
|
|
*
|
|
* Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
|
|
* reference on an inpcb. Historically more work was done here (actually, in
|
|
* in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
|
|
* need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely
|
|
* about memory stability (and continued use of the write lock).
|
|
*/
|
|
int
|
|
in_pcbrele_rlocked(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *pcbinfo;
|
|
|
|
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
|
|
|
|
INP_RLOCK_ASSERT(inp);
|
|
|
|
if (refcount_release(&inp->inp_refcount) == 0) {
|
|
/*
|
|
* If the inpcb has been freed, let the caller know, even if
|
|
* this isn't the last reference.
|
|
*/
|
|
if (inp->inp_flags2 & INP_FREED) {
|
|
INP_RUNLOCK(inp);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
|
|
#ifdef TCPHPTS
|
|
if (inp->inp_in_hpts || inp->inp_in_input) {
|
|
struct tcp_hpts_entry *hpts;
|
|
/*
|
|
* We should not be on the hpts at
|
|
* this point in any form. we must
|
|
* get the lock to be sure.
|
|
*/
|
|
hpts = tcp_hpts_lock(inp);
|
|
if (inp->inp_in_hpts)
|
|
panic("Hpts:%p inp:%p at free still on hpts",
|
|
hpts, inp);
|
|
mtx_unlock(&hpts->p_mtx);
|
|
hpts = tcp_input_lock(inp);
|
|
if (inp->inp_in_input)
|
|
panic("Hpts:%p inp:%p at free still on input hpts",
|
|
hpts, inp);
|
|
mtx_unlock(&hpts->p_mtx);
|
|
}
|
|
#endif
|
|
INP_RUNLOCK(inp);
|
|
pcbinfo = inp->inp_pcbinfo;
|
|
uma_zfree(pcbinfo->ipi_zone, inp);
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
in_pcbrele_wlocked(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *pcbinfo;
|
|
|
|
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if (refcount_release(&inp->inp_refcount) == 0) {
|
|
/*
|
|
* If the inpcb has been freed, let the caller know, even if
|
|
* this isn't the last reference.
|
|
*/
|
|
if (inp->inp_flags2 & INP_FREED) {
|
|
INP_WUNLOCK(inp);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
|
|
#ifdef TCPHPTS
|
|
if (inp->inp_in_hpts || inp->inp_in_input) {
|
|
struct tcp_hpts_entry *hpts;
|
|
/*
|
|
* We should not be on the hpts at
|
|
* this point in any form. we must
|
|
* get the lock to be sure.
|
|
*/
|
|
hpts = tcp_hpts_lock(inp);
|
|
if (inp->inp_in_hpts)
|
|
panic("Hpts:%p inp:%p at free still on hpts",
|
|
hpts, inp);
|
|
mtx_unlock(&hpts->p_mtx);
|
|
hpts = tcp_input_lock(inp);
|
|
if (inp->inp_in_input)
|
|
panic("Hpts:%p inp:%p at free still on input hpts",
|
|
hpts, inp);
|
|
mtx_unlock(&hpts->p_mtx);
|
|
}
|
|
#endif
|
|
INP_WUNLOCK(inp);
|
|
pcbinfo = inp->inp_pcbinfo;
|
|
uma_zfree(pcbinfo->ipi_zone, inp);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Temporary wrapper.
|
|
*/
|
|
int
|
|
in_pcbrele(struct inpcb *inp)
|
|
{
|
|
|
|
return (in_pcbrele_wlocked(inp));
|
|
}
|
|
|
|
void
|
|
in_pcblist_rele_rlocked(epoch_context_t ctx)
|
|
{
|
|
struct in_pcblist *il;
|
|
struct inpcb *inp;
|
|
struct inpcbinfo *pcbinfo;
|
|
int i, n;
|
|
|
|
il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
|
|
pcbinfo = il->il_pcbinfo;
|
|
n = il->il_count;
|
|
INP_INFO_WLOCK(pcbinfo);
|
|
for (i = 0; i < n; i++) {
|
|
inp = il->il_inp_list[i];
|
|
INP_RLOCK(inp);
|
|
if (!in_pcbrele_rlocked(inp))
|
|
INP_RUNLOCK(inp);
|
|
}
|
|
INP_INFO_WUNLOCK(pcbinfo);
|
|
free(il, M_TEMP);
|
|
}
|
|
|
|
static void
|
|
inpcbport_free(epoch_context_t ctx)
|
|
{
|
|
struct inpcbport *phd;
|
|
|
|
phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
|
|
free(phd, M_PCB);
|
|
}
|
|
|
|
static void
|
|
in_pcbfree_deferred(epoch_context_t ctx)
|
|
{
|
|
struct inpcb *inp;
|
|
int released __unused;
|
|
|
|
inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
|
|
|
|
INP_WLOCK(inp);
|
|
CURVNET_SET(inp->inp_vnet);
|
|
#ifdef INET
|
|
struct ip_moptions *imo = inp->inp_moptions;
|
|
inp->inp_moptions = NULL;
|
|
#endif
|
|
/* XXXRW: Do as much as possible here. */
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
if (inp->inp_sp != NULL)
|
|
ipsec_delete_pcbpolicy(inp);
|
|
#endif
|
|
#ifdef INET6
|
|
struct ip6_moptions *im6o = NULL;
|
|
if (inp->inp_vflag & INP_IPV6PROTO) {
|
|
ip6_freepcbopts(inp->in6p_outputopts);
|
|
im6o = inp->in6p_moptions;
|
|
inp->in6p_moptions = NULL;
|
|
}
|
|
#endif
|
|
if (inp->inp_options)
|
|
(void)m_free(inp->inp_options);
|
|
inp->inp_vflag = 0;
|
|
crfree(inp->inp_cred);
|
|
#ifdef MAC
|
|
mac_inpcb_destroy(inp);
|
|
#endif
|
|
released = in_pcbrele_wlocked(inp);
|
|
MPASS(released);
|
|
#ifdef INET6
|
|
ip6_freemoptions(im6o);
|
|
#endif
|
|
#ifdef INET
|
|
inp_freemoptions(imo);
|
|
#endif
|
|
CURVNET_RESTORE();
|
|
}
|
|
|
|
/*
|
|
* Unconditionally schedule an inpcb to be freed by decrementing its
|
|
* reference count, which should occur only after the inpcb has been detached
|
|
* from its socket. If another thread holds a temporary reference (acquired
|
|
* using in_pcbref()) then the free is deferred until that reference is
|
|
* released using in_pcbrele(), but the inpcb is still unlocked. Almost all
|
|
* work, including removal from global lists, is done in this context, where
|
|
* the pcbinfo lock is held.
|
|
*/
|
|
void
|
|
in_pcbfree(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
|
|
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
|
|
KASSERT((inp->inp_flags2 & INP_FREED) == 0,
|
|
("%s: called twice for pcb %p", __func__, inp));
|
|
if (inp->inp_flags2 & INP_FREED) {
|
|
INP_WUNLOCK(inp);
|
|
return;
|
|
}
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
INP_LIST_WLOCK(pcbinfo);
|
|
in_pcbremlists(inp);
|
|
INP_LIST_WUNLOCK(pcbinfo);
|
|
RO_INVALIDATE_CACHE(&inp->inp_route);
|
|
/* mark as destruction in progress */
|
|
inp->inp_flags2 |= INP_FREED;
|
|
INP_WUNLOCK(inp);
|
|
NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
|
|
}
|
|
|
|
/*
|
|
* in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
|
|
* port reservation, and preventing it from being returned by inpcb lookups.
|
|
*
|
|
* It is used by TCP to mark an inpcb as unused and avoid future packet
|
|
* delivery or event notification when a socket remains open but TCP has
|
|
* closed. This might occur as a result of a shutdown()-initiated TCP close
|
|
* or a RST on the wire, and allows the port binding to be reused while still
|
|
* maintaining the invariant that so_pcb always points to a valid inpcb until
|
|
* in_pcbdetach().
|
|
*
|
|
* XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
|
|
* in_pcbnotifyall() and in_pcbpurgeif0()?
|
|
*/
|
|
void
|
|
in_pcbdrop(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
#ifdef INVARIANTS
|
|
if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
|
|
MPASS(inp->inp_refcount > 1);
|
|
#endif
|
|
|
|
/*
|
|
* XXXRW: Possibly we should protect the setting of INP_DROPPED with
|
|
* the hash lock...?
|
|
*/
|
|
inp->inp_flags |= INP_DROPPED;
|
|
if (inp->inp_flags & INP_INHASHLIST) {
|
|
struct inpcbport *phd = inp->inp_phd;
|
|
|
|
INP_HASH_WLOCK(inp->inp_pcbinfo);
|
|
in_pcbremlbgrouphash(inp);
|
|
CK_LIST_REMOVE(inp, inp_hash);
|
|
CK_LIST_REMOVE(inp, inp_portlist);
|
|
if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
|
|
CK_LIST_REMOVE(phd, phd_hash);
|
|
NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
|
|
}
|
|
INP_HASH_WUNLOCK(inp->inp_pcbinfo);
|
|
inp->inp_flags &= ~INP_INHASHLIST;
|
|
#ifdef PCBGROUP
|
|
in_pcbgroup_remove(inp);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef INET
|
|
/*
|
|
* Common routines to return the socket addresses associated with inpcbs.
|
|
*/
|
|
struct sockaddr *
|
|
in_sockaddr(in_port_t port, struct in_addr *addr_p)
|
|
{
|
|
struct sockaddr_in *sin;
|
|
|
|
sin = malloc(sizeof *sin, M_SONAME,
|
|
M_WAITOK | M_ZERO);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = *addr_p;
|
|
sin->sin_port = port;
|
|
|
|
return (struct sockaddr *)sin;
|
|
}
|
|
|
|
int
|
|
in_getsockaddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in_addr addr;
|
|
in_port_t port;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
|
|
|
|
INP_RLOCK(inp);
|
|
port = inp->inp_lport;
|
|
addr = inp->inp_laddr;
|
|
INP_RUNLOCK(inp);
|
|
|
|
*nam = in_sockaddr(port, &addr);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
in_getpeeraddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in_addr addr;
|
|
in_port_t port;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
|
|
|
|
INP_RLOCK(inp);
|
|
port = inp->inp_fport;
|
|
addr = inp->inp_faddr;
|
|
INP_RUNLOCK(inp);
|
|
|
|
*nam = in_sockaddr(port, &addr);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
|
|
struct inpcb *(*notify)(struct inpcb *, int))
|
|
{
|
|
struct inpcb *inp, *inp_temp;
|
|
|
|
INP_INFO_WLOCK(pcbinfo);
|
|
CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
|
|
INP_WLOCK(inp);
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV4) == 0) {
|
|
INP_WUNLOCK(inp);
|
|
continue;
|
|
}
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != faddr.s_addr ||
|
|
inp->inp_socket == NULL) {
|
|
INP_WUNLOCK(inp);
|
|
continue;
|
|
}
|
|
if ((*notify)(inp, errno))
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
INP_INFO_WUNLOCK(pcbinfo);
|
|
}
|
|
|
|
void
|
|
in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in_multi *inm;
|
|
struct in_mfilter *imf;
|
|
struct ip_moptions *imo;
|
|
|
|
INP_INFO_WLOCK(pcbinfo);
|
|
CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
|
|
INP_WLOCK(inp);
|
|
imo = inp->inp_moptions;
|
|
if ((inp->inp_vflag & INP_IPV4) &&
|
|
imo != NULL) {
|
|
/*
|
|
* Unselect the outgoing interface if it is being
|
|
* detached.
|
|
*/
|
|
if (imo->imo_multicast_ifp == ifp)
|
|
imo->imo_multicast_ifp = NULL;
|
|
|
|
/*
|
|
* Drop multicast group membership if we joined
|
|
* through the interface being detached.
|
|
*
|
|
* XXX This can all be deferred to an epoch_call
|
|
*/
|
|
restart:
|
|
IP_MFILTER_FOREACH(imf, &imo->imo_head) {
|
|
if ((inm = imf->imf_inm) == NULL)
|
|
continue;
|
|
if (inm->inm_ifp != ifp)
|
|
continue;
|
|
ip_mfilter_remove(&imo->imo_head, imf);
|
|
IN_MULTI_LOCK_ASSERT();
|
|
in_leavegroup_locked(inm, NULL);
|
|
ip_mfilter_free(imf);
|
|
goto restart;
|
|
}
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
INP_INFO_WUNLOCK(pcbinfo);
|
|
}
|
|
|
|
/*
|
|
* Lookup a PCB based on the local address and port. Caller must hold the
|
|
* hash lock. No inpcb locks or references are acquired.
|
|
*/
|
|
#define INP_LOOKUP_MAPPED_PCB_COST 3
|
|
struct inpcb *
|
|
in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
|
|
u_short lport, int lookupflags, struct ucred *cred)
|
|
{
|
|
struct inpcb *inp;
|
|
#ifdef INET6
|
|
int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
|
|
#else
|
|
int matchwild = 3;
|
|
#endif
|
|
int wildcard;
|
|
|
|
KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
|
|
("%s: invalid lookup flags %d", __func__, lookupflags));
|
|
|
|
INP_HASH_LOCK_ASSERT(pcbinfo);
|
|
|
|
if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
|
|
struct inpcbhead *head;
|
|
/*
|
|
* Look for an unconnected (wildcard foreign addr) PCB that
|
|
* matches the local address and port we're looking for.
|
|
*/
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
|
|
0, pcbinfo->ipi_hashmask)];
|
|
CK_LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == INADDR_ANY &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* Found?
|
|
*/
|
|
if (cred == NULL ||
|
|
prison_equal_ip4(cred->cr_prison,
|
|
inp->inp_cred->cr_prison))
|
|
return (inp);
|
|
}
|
|
}
|
|
/*
|
|
* Not found.
|
|
*/
|
|
return (NULL);
|
|
} else {
|
|
struct inpcbporthead *porthash;
|
|
struct inpcbport *phd;
|
|
struct inpcb *match = NULL;
|
|
/*
|
|
* Best fit PCB lookup.
|
|
*
|
|
* First see if this local port is in use by looking on the
|
|
* port hash list.
|
|
*/
|
|
porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
|
|
pcbinfo->ipi_porthashmask)];
|
|
CK_LIST_FOREACH(phd, porthash, phd_hash) {
|
|
if (phd->phd_port == lport)
|
|
break;
|
|
}
|
|
if (phd != NULL) {
|
|
/*
|
|
* Port is in use by one or more PCBs. Look for best
|
|
* fit.
|
|
*/
|
|
CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
|
|
wildcard = 0;
|
|
if (cred != NULL &&
|
|
!prison_equal_ip4(inp->inp_cred->cr_prison,
|
|
cred->cr_prison))
|
|
continue;
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
/*
|
|
* We never select the PCB that has
|
|
* INP_IPV6 flag and is bound to :: if
|
|
* we have another PCB which is bound
|
|
* to 0.0.0.0. If a PCB has the
|
|
* INP_IPV6 flag, then we set its cost
|
|
* higher than IPv4 only PCBs.
|
|
*
|
|
* Note that the case only happens
|
|
* when a socket is bound to ::, under
|
|
* the condition that the use of the
|
|
* mapped address is allowed.
|
|
*/
|
|
if ((inp->inp_vflag & INP_IPV6) != 0)
|
|
wildcard += INP_LOOKUP_MAPPED_PCB_COST;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
if (inp->inp_laddr.s_addr != INADDR_ANY) {
|
|
if (laddr.s_addr == INADDR_ANY)
|
|
wildcard++;
|
|
else if (inp->inp_laddr.s_addr != laddr.s_addr)
|
|
continue;
|
|
} else {
|
|
if (laddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
}
|
|
if (wildcard < matchwild) {
|
|
match = inp;
|
|
matchwild = wildcard;
|
|
if (matchwild == 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return (match);
|
|
}
|
|
}
|
|
#undef INP_LOOKUP_MAPPED_PCB_COST
|
|
|
|
static struct inpcb *
|
|
in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
|
|
const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
|
|
uint16_t fport, int lookupflags)
|
|
{
|
|
struct inpcb *local_wild;
|
|
const struct inpcblbgrouphead *hdr;
|
|
struct inpcblbgroup *grp;
|
|
uint32_t idx;
|
|
|
|
INP_HASH_LOCK_ASSERT(pcbinfo);
|
|
|
|
hdr = &pcbinfo->ipi_lbgrouphashbase[
|
|
INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
|
|
|
|
/*
|
|
* Order of socket selection:
|
|
* 1. non-wild.
|
|
* 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
|
|
*
|
|
* NOTE:
|
|
* - Load balanced group does not contain jailed sockets
|
|
* - Load balanced group does not contain IPv4 mapped INET6 wild sockets
|
|
*/
|
|
local_wild = NULL;
|
|
CK_LIST_FOREACH(grp, hdr, il_list) {
|
|
#ifdef INET6
|
|
if (!(grp->il_vflag & INP_IPV4))
|
|
continue;
|
|
#endif
|
|
if (grp->il_lport != lport)
|
|
continue;
|
|
|
|
idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
|
|
grp->il_inpcnt;
|
|
if (grp->il_laddr.s_addr == laddr->s_addr)
|
|
return (grp->il_inp[idx]);
|
|
if (grp->il_laddr.s_addr == INADDR_ANY &&
|
|
(lookupflags & INPLOOKUP_WILDCARD) != 0)
|
|
local_wild = grp->il_inp[idx];
|
|
}
|
|
return (local_wild);
|
|
}
|
|
|
|
#ifdef PCBGROUP
|
|
/*
|
|
* Lookup PCB in hash list, using pcbgroup tables.
|
|
*/
|
|
static struct inpcb *
|
|
in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
|
|
struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
|
|
u_int lport_arg, int lookupflags, struct ifnet *ifp)
|
|
{
|
|
struct inpcbhead *head;
|
|
struct inpcb *inp, *tmpinp;
|
|
u_short fport = fport_arg, lport = lport_arg;
|
|
bool locked;
|
|
|
|
/*
|
|
* First look for an exact match.
|
|
*/
|
|
tmpinp = NULL;
|
|
INP_GROUP_LOCK(pcbgroup);
|
|
head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
|
|
pcbgroup->ipg_hashmask)];
|
|
CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == faddr.s_addr &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_fport == fport &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* XXX We should be able to directly return
|
|
* the inp here, without any checks.
|
|
* Well unless both bound with SO_REUSEPORT?
|
|
*/
|
|
if (prison_flag(inp->inp_cred, PR_IP4))
|
|
goto found;
|
|
if (tmpinp == NULL)
|
|
tmpinp = inp;
|
|
}
|
|
}
|
|
if (tmpinp != NULL) {
|
|
inp = tmpinp;
|
|
goto found;
|
|
}
|
|
|
|
#ifdef RSS
|
|
/*
|
|
* For incoming connections, we may wish to do a wildcard
|
|
* match for an RSS-local socket.
|
|
*/
|
|
if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
|
|
struct inpcb *local_wild = NULL, *local_exact = NULL;
|
|
#ifdef INET6
|
|
struct inpcb *local_wild_mapped = NULL;
|
|
#endif
|
|
struct inpcb *jail_wild = NULL;
|
|
struct inpcbhead *head;
|
|
int injail;
|
|
|
|
/*
|
|
* Order of socket selection - we always prefer jails.
|
|
* 1. jailed, non-wild.
|
|
* 2. jailed, wild.
|
|
* 3. non-jailed, non-wild.
|
|
* 4. non-jailed, wild.
|
|
*/
|
|
|
|
head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
|
|
lport, 0, pcbgroup->ipg_hashmask)];
|
|
CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY ||
|
|
inp->inp_lport != lport)
|
|
continue;
|
|
|
|
injail = prison_flag(inp->inp_cred, PR_IP4);
|
|
if (injail) {
|
|
if (prison_check_ip4(inp->inp_cred,
|
|
&laddr) != 0)
|
|
continue;
|
|
} else {
|
|
if (local_exact != NULL)
|
|
continue;
|
|
}
|
|
|
|
if (inp->inp_laddr.s_addr == laddr.s_addr) {
|
|
if (injail)
|
|
goto found;
|
|
else
|
|
local_exact = inp;
|
|
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
#ifdef INET6
|
|
/* XXX inp locking, NULL check */
|
|
if (inp->inp_vflag & INP_IPV6PROTO)
|
|
local_wild_mapped = inp;
|
|
else
|
|
#endif
|
|
if (injail)
|
|
jail_wild = inp;
|
|
else
|
|
local_wild = inp;
|
|
}
|
|
} /* LIST_FOREACH */
|
|
|
|
inp = jail_wild;
|
|
if (inp == NULL)
|
|
inp = local_exact;
|
|
if (inp == NULL)
|
|
inp = local_wild;
|
|
#ifdef INET6
|
|
if (inp == NULL)
|
|
inp = local_wild_mapped;
|
|
#endif
|
|
if (inp != NULL)
|
|
goto found;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Then look for a wildcard match, if requested.
|
|
*/
|
|
if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
|
|
struct inpcb *local_wild = NULL, *local_exact = NULL;
|
|
#ifdef INET6
|
|
struct inpcb *local_wild_mapped = NULL;
|
|
#endif
|
|
struct inpcb *jail_wild = NULL;
|
|
struct inpcbhead *head;
|
|
int injail;
|
|
|
|
/*
|
|
* Order of socket selection - we always prefer jails.
|
|
* 1. jailed, non-wild.
|
|
* 2. jailed, wild.
|
|
* 3. non-jailed, non-wild.
|
|
* 4. non-jailed, wild.
|
|
*/
|
|
head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
|
|
0, pcbinfo->ipi_wildmask)];
|
|
CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY ||
|
|
inp->inp_lport != lport)
|
|
continue;
|
|
|
|
injail = prison_flag(inp->inp_cred, PR_IP4);
|
|
if (injail) {
|
|
if (prison_check_ip4(inp->inp_cred,
|
|
&laddr) != 0)
|
|
continue;
|
|
} else {
|
|
if (local_exact != NULL)
|
|
continue;
|
|
}
|
|
|
|
if (inp->inp_laddr.s_addr == laddr.s_addr) {
|
|
if (injail)
|
|
goto found;
|
|
else
|
|
local_exact = inp;
|
|
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
#ifdef INET6
|
|
/* XXX inp locking, NULL check */
|
|
if (inp->inp_vflag & INP_IPV6PROTO)
|
|
local_wild_mapped = inp;
|
|
else
|
|
#endif
|
|
if (injail)
|
|
jail_wild = inp;
|
|
else
|
|
local_wild = inp;
|
|
}
|
|
} /* LIST_FOREACH */
|
|
inp = jail_wild;
|
|
if (inp == NULL)
|
|
inp = local_exact;
|
|
if (inp == NULL)
|
|
inp = local_wild;
|
|
#ifdef INET6
|
|
if (inp == NULL)
|
|
inp = local_wild_mapped;
|
|
#endif
|
|
if (inp != NULL)
|
|
goto found;
|
|
} /* if (lookupflags & INPLOOKUP_WILDCARD) */
|
|
INP_GROUP_UNLOCK(pcbgroup);
|
|
return (NULL);
|
|
|
|
found:
|
|
if (lookupflags & INPLOOKUP_WLOCKPCB)
|
|
locked = INP_TRY_WLOCK(inp);
|
|
else if (lookupflags & INPLOOKUP_RLOCKPCB)
|
|
locked = INP_TRY_RLOCK(inp);
|
|
else
|
|
panic("%s: locking bug", __func__);
|
|
if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
|
|
if (lookupflags & INPLOOKUP_WLOCKPCB)
|
|
INP_WUNLOCK(inp);
|
|
else
|
|
INP_RUNLOCK(inp);
|
|
return (NULL);
|
|
} else if (!locked)
|
|
in_pcbref(inp);
|
|
INP_GROUP_UNLOCK(pcbgroup);
|
|
if (!locked) {
|
|
if (lookupflags & INPLOOKUP_WLOCKPCB) {
|
|
INP_WLOCK(inp);
|
|
if (in_pcbrele_wlocked(inp))
|
|
return (NULL);
|
|
} else {
|
|
INP_RLOCK(inp);
|
|
if (in_pcbrele_rlocked(inp))
|
|
return (NULL);
|
|
}
|
|
}
|
|
#ifdef INVARIANTS
|
|
if (lookupflags & INPLOOKUP_WLOCKPCB)
|
|
INP_WLOCK_ASSERT(inp);
|
|
else
|
|
INP_RLOCK_ASSERT(inp);
|
|
#endif
|
|
return (inp);
|
|
}
|
|
#endif /* PCBGROUP */
|
|
|
|
/*
|
|
* Lookup PCB in hash list, using pcbinfo tables. This variation assumes
|
|
* that the caller has locked the hash list, and will not perform any further
|
|
* locking or reference operations on either the hash list or the connection.
|
|
*/
|
|
static struct inpcb *
|
|
in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
|
|
u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
|
|
struct ifnet *ifp)
|
|
{
|
|
struct inpcbhead *head;
|
|
struct inpcb *inp, *tmpinp;
|
|
u_short fport = fport_arg, lport = lport_arg;
|
|
|
|
KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
|
|
("%s: invalid lookup flags %d", __func__, lookupflags));
|
|
INP_HASH_LOCK_ASSERT(pcbinfo);
|
|
|
|
/*
|
|
* First look for an exact match.
|
|
*/
|
|
tmpinp = NULL;
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
|
|
pcbinfo->ipi_hashmask)];
|
|
CK_LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == faddr.s_addr &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_fport == fport &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* XXX We should be able to directly return
|
|
* the inp here, without any checks.
|
|
* Well unless both bound with SO_REUSEPORT?
|
|
*/
|
|
if (prison_flag(inp->inp_cred, PR_IP4))
|
|
return (inp);
|
|
if (tmpinp == NULL)
|
|
tmpinp = inp;
|
|
}
|
|
}
|
|
if (tmpinp != NULL)
|
|
return (tmpinp);
|
|
|
|
/*
|
|
* Then look in lb group (for wildcard match).
|
|
*/
|
|
if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
|
|
inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
|
|
fport, lookupflags);
|
|
if (inp != NULL)
|
|
return (inp);
|
|
}
|
|
|
|
/*
|
|
* Then look for a wildcard match, if requested.
|
|
*/
|
|
if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
|
|
struct inpcb *local_wild = NULL, *local_exact = NULL;
|
|
#ifdef INET6
|
|
struct inpcb *local_wild_mapped = NULL;
|
|
#endif
|
|
struct inpcb *jail_wild = NULL;
|
|
int injail;
|
|
|
|
/*
|
|
* Order of socket selection - we always prefer jails.
|
|
* 1. jailed, non-wild.
|
|
* 2. jailed, wild.
|
|
* 3. non-jailed, non-wild.
|
|
* 4. non-jailed, wild.
|
|
*/
|
|
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
|
|
0, pcbinfo->ipi_hashmask)];
|
|
CK_LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY ||
|
|
inp->inp_lport != lport)
|
|
continue;
|
|
|
|
injail = prison_flag(inp->inp_cred, PR_IP4);
|
|
if (injail) {
|
|
if (prison_check_ip4(inp->inp_cred,
|
|
&laddr) != 0)
|
|
continue;
|
|
} else {
|
|
if (local_exact != NULL)
|
|
continue;
|
|
}
|
|
|
|
if (inp->inp_laddr.s_addr == laddr.s_addr) {
|
|
if (injail)
|
|
return (inp);
|
|
else
|
|
local_exact = inp;
|
|
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
#ifdef INET6
|
|
/* XXX inp locking, NULL check */
|
|
if (inp->inp_vflag & INP_IPV6PROTO)
|
|
local_wild_mapped = inp;
|
|
else
|
|
#endif
|
|
if (injail)
|
|
jail_wild = inp;
|
|
else
|
|
local_wild = inp;
|
|
}
|
|
} /* LIST_FOREACH */
|
|
if (jail_wild != NULL)
|
|
return (jail_wild);
|
|
if (local_exact != NULL)
|
|
return (local_exact);
|
|
if (local_wild != NULL)
|
|
return (local_wild);
|
|
#ifdef INET6
|
|
if (local_wild_mapped != NULL)
|
|
return (local_wild_mapped);
|
|
#endif
|
|
} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Lookup PCB in hash list, using pcbinfo tables. This variation locks the
|
|
* hash list lock, and will return the inpcb locked (i.e., requires
|
|
* INPLOOKUP_LOCKPCB).
|
|
*/
|
|
static struct inpcb *
|
|
in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
|
|
u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
|
|
struct ifnet *ifp)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
|
|
(lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
|
|
if (inp != NULL) {
|
|
if (lookupflags & INPLOOKUP_WLOCKPCB) {
|
|
INP_WLOCK(inp);
|
|
if (__predict_false(inp->inp_flags2 & INP_FREED)) {
|
|
INP_WUNLOCK(inp);
|
|
inp = NULL;
|
|
}
|
|
} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
|
|
INP_RLOCK(inp);
|
|
if (__predict_false(inp->inp_flags2 & INP_FREED)) {
|
|
INP_RUNLOCK(inp);
|
|
inp = NULL;
|
|
}
|
|
} else
|
|
panic("%s: locking bug", __func__);
|
|
#ifdef INVARIANTS
|
|
if (inp != NULL) {
|
|
if (lookupflags & INPLOOKUP_WLOCKPCB)
|
|
INP_WLOCK_ASSERT(inp);
|
|
else
|
|
INP_RLOCK_ASSERT(inp);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return (inp);
|
|
}
|
|
|
|
/*
|
|
* Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
|
|
* from which a pre-calculated hash value may be extracted.
|
|
*
|
|
* Possibly more of this logic should be in in_pcbgroup.c.
|
|
*/
|
|
struct inpcb *
|
|
in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
|
|
struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
|
|
{
|
|
#if defined(PCBGROUP) && !defined(RSS)
|
|
struct inpcbgroup *pcbgroup;
|
|
#endif
|
|
|
|
KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
|
|
("%s: invalid lookup flags %d", __func__, lookupflags));
|
|
KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
|
|
("%s: LOCKPCB not set", __func__));
|
|
|
|
/*
|
|
* When not using RSS, use connection groups in preference to the
|
|
* reservation table when looking up 4-tuples. When using RSS, just
|
|
* use the reservation table, due to the cost of the Toeplitz hash
|
|
* in software.
|
|
*
|
|
* XXXRW: This policy belongs in the pcbgroup code, as in principle
|
|
* we could be doing RSS with a non-Toeplitz hash that is affordable
|
|
* in software.
|
|
*/
|
|
#if defined(PCBGROUP) && !defined(RSS)
|
|
if (in_pcbgroup_enabled(pcbinfo)) {
|
|
pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
|
|
fport);
|
|
return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
|
|
laddr, lport, lookupflags, ifp));
|
|
}
|
|
#endif
|
|
return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
|
|
lookupflags, ifp));
|
|
}
|
|
|
|
struct inpcb *
|
|
in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
|
|
u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
|
|
struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
#ifdef PCBGROUP
|
|
struct inpcbgroup *pcbgroup;
|
|
#endif
|
|
|
|
KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
|
|
("%s: invalid lookup flags %d", __func__, lookupflags));
|
|
KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
|
|
("%s: LOCKPCB not set", __func__));
|
|
|
|
#ifdef PCBGROUP
|
|
/*
|
|
* If we can use a hardware-generated hash to look up the connection
|
|
* group, use that connection group to find the inpcb. Otherwise
|
|
* fall back on a software hash -- or the reservation table if we're
|
|
* using RSS.
|
|
*
|
|
* XXXRW: As above, that policy belongs in the pcbgroup code.
|
|
*/
|
|
if (in_pcbgroup_enabled(pcbinfo) &&
|
|
!(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
|
|
pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
|
|
m->m_pkthdr.flowid);
|
|
if (pcbgroup != NULL)
|
|
return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
|
|
fport, laddr, lport, lookupflags, ifp));
|
|
#ifndef RSS
|
|
pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
|
|
fport);
|
|
return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
|
|
laddr, lport, lookupflags, ifp));
|
|
#endif
|
|
}
|
|
#endif
|
|
return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
|
|
lookupflags, ifp));
|
|
}
|
|
#endif /* INET */
|
|
|
|
/*
|
|
* Insert PCB onto various hash lists.
|
|
*/
|
|
static int
|
|
in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
|
|
{
|
|
struct inpcbhead *pcbhash;
|
|
struct inpcbporthead *pcbporthash;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct inpcbport *phd;
|
|
u_int32_t hashkey_faddr;
|
|
int so_options;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
INP_HASH_WLOCK_ASSERT(pcbinfo);
|
|
|
|
KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
|
|
("in_pcbinshash: INP_INHASHLIST"));
|
|
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6)
|
|
hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
|
|
else
|
|
#endif
|
|
hashkey_faddr = inp->inp_faddr.s_addr;
|
|
|
|
pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
|
|
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
|
|
|
|
pcbporthash = &pcbinfo->ipi_porthashbase[
|
|
INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
|
|
|
|
/*
|
|
* Add entry to load balance group.
|
|
* Only do this if SO_REUSEPORT_LB is set.
|
|
*/
|
|
so_options = inp_so_options(inp);
|
|
if (so_options & SO_REUSEPORT_LB) {
|
|
int ret = in_pcbinslbgrouphash(inp);
|
|
if (ret) {
|
|
/* pcb lb group malloc fail (ret=ENOBUFS). */
|
|
return (ret);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Go through port list and look for a head for this lport.
|
|
*/
|
|
CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
|
|
if (phd->phd_port == inp->inp_lport)
|
|
break;
|
|
}
|
|
/*
|
|
* If none exists, malloc one and tack it on.
|
|
*/
|
|
if (phd == NULL) {
|
|
phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
|
|
if (phd == NULL) {
|
|
return (ENOBUFS); /* XXX */
|
|
}
|
|
bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
|
|
phd->phd_port = inp->inp_lport;
|
|
CK_LIST_INIT(&phd->phd_pcblist);
|
|
CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
|
|
}
|
|
inp->inp_phd = phd;
|
|
CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
|
|
CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
|
|
inp->inp_flags |= INP_INHASHLIST;
|
|
#ifdef PCBGROUP
|
|
if (m != NULL) {
|
|
in_pcbgroup_update_mbuf(inp, m);
|
|
} else {
|
|
in_pcbgroup_update(inp);
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
in_pcbinshash(struct inpcb *inp)
|
|
{
|
|
|
|
return (in_pcbinshash_internal(inp, NULL));
|
|
}
|
|
|
|
int
|
|
in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
|
|
{
|
|
|
|
return (in_pcbinshash_internal(inp, m));
|
|
}
|
|
|
|
/*
|
|
* Move PCB to the proper hash bucket when { faddr, fport } have been
|
|
* changed. NOTE: This does not handle the case of the lport changing (the
|
|
* hashed port list would have to be updated as well), so the lport must
|
|
* not change after in_pcbinshash() has been called.
|
|
*/
|
|
void
|
|
in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
|
|
{
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct inpcbhead *head;
|
|
u_int32_t hashkey_faddr;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
INP_HASH_WLOCK_ASSERT(pcbinfo);
|
|
|
|
KASSERT(inp->inp_flags & INP_INHASHLIST,
|
|
("in_pcbrehash: !INP_INHASHLIST"));
|
|
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6)
|
|
hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
|
|
else
|
|
#endif
|
|
hashkey_faddr = inp->inp_faddr.s_addr;
|
|
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
|
|
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
|
|
|
|
CK_LIST_REMOVE(inp, inp_hash);
|
|
CK_LIST_INSERT_HEAD(head, inp, inp_hash);
|
|
|
|
#ifdef PCBGROUP
|
|
if (m != NULL)
|
|
in_pcbgroup_update_mbuf(inp, m);
|
|
else
|
|
in_pcbgroup_update(inp);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
in_pcbrehash(struct inpcb *inp)
|
|
{
|
|
|
|
in_pcbrehash_mbuf(inp, NULL);
|
|
}
|
|
|
|
/*
|
|
* Remove PCB from various lists.
|
|
*/
|
|
static void
|
|
in_pcbremlists(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
INP_LIST_WLOCK_ASSERT(pcbinfo);
|
|
|
|
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
|
|
if (inp->inp_flags & INP_INHASHLIST) {
|
|
struct inpcbport *phd = inp->inp_phd;
|
|
|
|
INP_HASH_WLOCK(pcbinfo);
|
|
|
|
/* XXX: Only do if SO_REUSEPORT_LB set? */
|
|
in_pcbremlbgrouphash(inp);
|
|
|
|
CK_LIST_REMOVE(inp, inp_hash);
|
|
CK_LIST_REMOVE(inp, inp_portlist);
|
|
if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
|
|
CK_LIST_REMOVE(phd, phd_hash);
|
|
NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
|
|
}
|
|
INP_HASH_WUNLOCK(pcbinfo);
|
|
inp->inp_flags &= ~INP_INHASHLIST;
|
|
}
|
|
CK_LIST_REMOVE(inp, inp_list);
|
|
pcbinfo->ipi_count--;
|
|
#ifdef PCBGROUP
|
|
in_pcbgroup_remove(inp);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check for alternatives when higher level complains
|
|
* about service problems. For now, invalidate cached
|
|
* routing information. If the route was created dynamically
|
|
* (by a redirect), time to try a default gateway again.
|
|
*/
|
|
void
|
|
in_losing(struct inpcb *inp)
|
|
{
|
|
|
|
RO_INVALIDATE_CACHE(&inp->inp_route);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A set label operation has occurred at the socket layer, propagate the
|
|
* label change into the in_pcb for the socket.
|
|
*/
|
|
void
|
|
in_pcbsosetlabel(struct socket *so)
|
|
{
|
|
#ifdef MAC
|
|
struct inpcb *inp;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
|
|
|
|
INP_WLOCK(inp);
|
|
SOCK_LOCK(so);
|
|
mac_inpcb_sosetlabel(so, inp);
|
|
SOCK_UNLOCK(so);
|
|
INP_WUNLOCK(inp);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* ipport_tick runs once per second, determining if random port allocation
|
|
* should be continued. If more than ipport_randomcps ports have been
|
|
* allocated in the last second, then we return to sequential port
|
|
* allocation. We return to random allocation only once we drop below
|
|
* ipport_randomcps for at least ipport_randomtime seconds.
|
|
*/
|
|
static void
|
|
ipport_tick(void *xtp)
|
|
{
|
|
VNET_ITERATOR_DECL(vnet_iter);
|
|
|
|
VNET_LIST_RLOCK_NOSLEEP();
|
|
VNET_FOREACH(vnet_iter) {
|
|
CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
|
|
if (V_ipport_tcpallocs <=
|
|
V_ipport_tcplastcount + V_ipport_randomcps) {
|
|
if (V_ipport_stoprandom > 0)
|
|
V_ipport_stoprandom--;
|
|
} else
|
|
V_ipport_stoprandom = V_ipport_randomtime;
|
|
V_ipport_tcplastcount = V_ipport_tcpallocs;
|
|
CURVNET_RESTORE();
|
|
}
|
|
VNET_LIST_RUNLOCK_NOSLEEP();
|
|
callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
|
|
}
|
|
|
|
static void
|
|
ip_fini(void *xtp)
|
|
{
|
|
|
|
callout_stop(&ipport_tick_callout);
|
|
}
|
|
|
|
/*
|
|
* The ipport_callout should start running at about the time we attach the
|
|
* inet or inet6 domains.
|
|
*/
|
|
static void
|
|
ipport_tick_init(const void *unused __unused)
|
|
{
|
|
|
|
/* Start ipport_tick. */
|
|
callout_init(&ipport_tick_callout, 1);
|
|
callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
|
|
EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
|
|
SHUTDOWN_PRI_DEFAULT);
|
|
}
|
|
SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
|
|
ipport_tick_init, NULL);
|
|
|
|
void
|
|
inp_wlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK(inp);
|
|
}
|
|
|
|
void
|
|
inp_wunlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
|
|
void
|
|
inp_rlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_RLOCK(inp);
|
|
}
|
|
|
|
void
|
|
inp_runlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_RUNLOCK(inp);
|
|
}
|
|
|
|
#ifdef INVARIANT_SUPPORT
|
|
void
|
|
inp_lock_assert(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
}
|
|
|
|
void
|
|
inp_unlock_assert(struct inpcb *inp)
|
|
{
|
|
|
|
INP_UNLOCK_ASSERT(inp);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
INP_INFO_WLOCK(&V_tcbinfo);
|
|
CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
|
|
INP_WLOCK(inp);
|
|
func(inp, arg);
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
INP_INFO_WUNLOCK(&V_tcbinfo);
|
|
}
|
|
|
|
struct socket *
|
|
inp_inpcbtosocket(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
return (inp->inp_socket);
|
|
}
|
|
|
|
struct tcpcb *
|
|
inp_inpcbtotcpcb(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
return ((struct tcpcb *)inp->inp_ppcb);
|
|
}
|
|
|
|
int
|
|
inp_ip_tos_get(const struct inpcb *inp)
|
|
{
|
|
|
|
return (inp->inp_ip_tos);
|
|
}
|
|
|
|
void
|
|
inp_ip_tos_set(struct inpcb *inp, int val)
|
|
{
|
|
|
|
inp->inp_ip_tos = val;
|
|
}
|
|
|
|
void
|
|
inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
|
|
uint32_t *faddr, uint16_t *fp)
|
|
{
|
|
|
|
INP_LOCK_ASSERT(inp);
|
|
*laddr = inp->inp_laddr.s_addr;
|
|
*faddr = inp->inp_faddr.s_addr;
|
|
*lp = inp->inp_lport;
|
|
*fp = inp->inp_fport;
|
|
}
|
|
|
|
struct inpcb *
|
|
so_sotoinpcb(struct socket *so)
|
|
{
|
|
|
|
return (sotoinpcb(so));
|
|
}
|
|
|
|
struct tcpcb *
|
|
so_sototcpcb(struct socket *so)
|
|
{
|
|
|
|
return (sototcpcb(so));
|
|
}
|
|
|
|
/*
|
|
* Create an external-format (``xinpcb'') structure using the information in
|
|
* the kernel-format in_pcb structure pointed to by inp. This is done to
|
|
* reduce the spew of irrelevant information over this interface, to isolate
|
|
* user code from changes in the kernel structure, and potentially to provide
|
|
* information-hiding if we decide that some of this information should be
|
|
* hidden from users.
|
|
*/
|
|
void
|
|
in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
|
|
{
|
|
|
|
bzero(xi, sizeof(*xi));
|
|
xi->xi_len = sizeof(struct xinpcb);
|
|
if (inp->inp_socket)
|
|
sotoxsocket(inp->inp_socket, &xi->xi_socket);
|
|
bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
|
|
xi->inp_gencnt = inp->inp_gencnt;
|
|
xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
|
|
xi->inp_flow = inp->inp_flow;
|
|
xi->inp_flowid = inp->inp_flowid;
|
|
xi->inp_flowtype = inp->inp_flowtype;
|
|
xi->inp_flags = inp->inp_flags;
|
|
xi->inp_flags2 = inp->inp_flags2;
|
|
xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
|
|
xi->in6p_cksum = inp->in6p_cksum;
|
|
xi->in6p_hops = inp->in6p_hops;
|
|
xi->inp_ip_tos = inp->inp_ip_tos;
|
|
xi->inp_vflag = inp->inp_vflag;
|
|
xi->inp_ip_ttl = inp->inp_ip_ttl;
|
|
xi->inp_ip_p = inp->inp_ip_p;
|
|
xi->inp_ip_minttl = inp->inp_ip_minttl;
|
|
}
|
|
|
|
#ifdef DDB
|
|
static void
|
|
db_print_indent(int indent)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < indent; i++)
|
|
db_printf(" ");
|
|
}
|
|
|
|
static void
|
|
db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
|
|
{
|
|
char faddr_str[48], laddr_str[48];
|
|
|
|
db_print_indent(indent);
|
|
db_printf("%s at %p\n", name, inc);
|
|
|
|
indent += 2;
|
|
|
|
#ifdef INET6
|
|
if (inc->inc_flags & INC_ISIPV6) {
|
|
/* IPv6. */
|
|
ip6_sprintf(laddr_str, &inc->inc6_laddr);
|
|
ip6_sprintf(faddr_str, &inc->inc6_faddr);
|
|
} else
|
|
#endif
|
|
{
|
|
/* IPv4. */
|
|
inet_ntoa_r(inc->inc_laddr, laddr_str);
|
|
inet_ntoa_r(inc->inc_faddr, faddr_str);
|
|
}
|
|
db_print_indent(indent);
|
|
db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
|
|
ntohs(inc->inc_lport));
|
|
db_print_indent(indent);
|
|
db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
|
|
ntohs(inc->inc_fport));
|
|
}
|
|
|
|
static void
|
|
db_print_inpflags(int inp_flags)
|
|
{
|
|
int comma;
|
|
|
|
comma = 0;
|
|
if (inp_flags & INP_RECVOPTS) {
|
|
db_printf("%sINP_RECVOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVRETOPTS) {
|
|
db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVDSTADDR) {
|
|
db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_ORIGDSTADDR) {
|
|
db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_HDRINCL) {
|
|
db_printf("%sINP_HDRINCL", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_HIGHPORT) {
|
|
db_printf("%sINP_HIGHPORT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_LOWPORT) {
|
|
db_printf("%sINP_LOWPORT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_ANONPORT) {
|
|
db_printf("%sINP_ANONPORT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVIF) {
|
|
db_printf("%sINP_RECVIF", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_MTUDISC) {
|
|
db_printf("%sINP_MTUDISC", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVTTL) {
|
|
db_printf("%sINP_RECVTTL", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_DONTFRAG) {
|
|
db_printf("%sINP_DONTFRAG", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVTOS) {
|
|
db_printf("%sINP_RECVTOS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_IPV6_V6ONLY) {
|
|
db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_PKTINFO) {
|
|
db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_HOPLIMIT) {
|
|
db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_HOPOPTS) {
|
|
db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_DSTOPTS) {
|
|
db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_RTHDR) {
|
|
db_printf("%sIN6P_RTHDR", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_RTHDRDSTOPTS) {
|
|
db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_TCLASS) {
|
|
db_printf("%sIN6P_TCLASS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_AUTOFLOWLABEL) {
|
|
db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_TIMEWAIT) {
|
|
db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_ONESBCAST) {
|
|
db_printf("%sINP_ONESBCAST", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_DROPPED) {
|
|
db_printf("%sINP_DROPPED", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_SOCKREF) {
|
|
db_printf("%sINP_SOCKREF", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_RFC2292) {
|
|
db_printf("%sIN6P_RFC2292", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_MTU) {
|
|
db_printf("IN6P_MTU%s", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
db_print_inpvflag(u_char inp_vflag)
|
|
{
|
|
int comma;
|
|
|
|
comma = 0;
|
|
if (inp_vflag & INP_IPV4) {
|
|
db_printf("%sINP_IPV4", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_IPV6) {
|
|
db_printf("%sINP_IPV6", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_IPV6PROTO) {
|
|
db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
db_print_inpcb(struct inpcb *inp, const char *name, int indent)
|
|
{
|
|
|
|
db_print_indent(indent);
|
|
db_printf("%s at %p\n", name, inp);
|
|
|
|
indent += 2;
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_flow: 0x%x\n", inp->inp_flow);
|
|
|
|
db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n",
|
|
inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_label: %p inp_flags: 0x%x (",
|
|
inp->inp_label, inp->inp_flags);
|
|
db_print_inpflags(inp->inp_flags);
|
|
db_printf(")\n");
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
|
|
inp->inp_vflag);
|
|
db_print_inpvflag(inp->inp_vflag);
|
|
db_printf(")\n");
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
|
|
inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
|
|
|
|
db_print_indent(indent);
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
db_printf("in6p_options: %p in6p_outputopts: %p "
|
|
"in6p_moptions: %p\n", inp->in6p_options,
|
|
inp->in6p_outputopts, inp->in6p_moptions);
|
|
db_printf("in6p_icmp6filt: %p in6p_cksum %d "
|
|
"in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
|
|
inp->in6p_hops);
|
|
} else
|
|
#endif
|
|
{
|
|
db_printf("inp_ip_tos: %d inp_ip_options: %p "
|
|
"inp_ip_moptions: %p\n", inp->inp_ip_tos,
|
|
inp->inp_options, inp->inp_moptions);
|
|
}
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd,
|
|
(uintmax_t)inp->inp_gencnt);
|
|
}
|
|
|
|
DB_SHOW_COMMAND(inpcb, db_show_inpcb)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
if (!have_addr) {
|
|
db_printf("usage: show inpcb <addr>\n");
|
|
return;
|
|
}
|
|
inp = (struct inpcb *)addr;
|
|
|
|
db_print_inpcb(inp, "inpcb", 0);
|
|
}
|
|
#endif /* DDB */
|
|
|
|
#ifdef RATELIMIT
|
|
/*
|
|
* Modify TX rate limit based on the existing "inp->inp_snd_tag",
|
|
* if any.
|
|
*/
|
|
int
|
|
in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
|
|
{
|
|
union if_snd_tag_modify_params params = {
|
|
.rate_limit.max_rate = max_pacing_rate,
|
|
.rate_limit.flags = M_NOWAIT,
|
|
};
|
|
struct m_snd_tag *mst;
|
|
struct ifnet *ifp;
|
|
int error;
|
|
|
|
mst = inp->inp_snd_tag;
|
|
if (mst == NULL)
|
|
return (EINVAL);
|
|
|
|
ifp = mst->ifp;
|
|
if (ifp == NULL)
|
|
return (EINVAL);
|
|
|
|
if (ifp->if_snd_tag_modify == NULL) {
|
|
error = EOPNOTSUPP;
|
|
} else {
|
|
error = ifp->if_snd_tag_modify(mst, ¶ms);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Query existing TX rate limit based on the existing
|
|
* "inp->inp_snd_tag", if any.
|
|
*/
|
|
int
|
|
in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
|
|
{
|
|
union if_snd_tag_query_params params = { };
|
|
struct m_snd_tag *mst;
|
|
struct ifnet *ifp;
|
|
int error;
|
|
|
|
mst = inp->inp_snd_tag;
|
|
if (mst == NULL)
|
|
return (EINVAL);
|
|
|
|
ifp = mst->ifp;
|
|
if (ifp == NULL)
|
|
return (EINVAL);
|
|
|
|
if (ifp->if_snd_tag_query == NULL) {
|
|
error = EOPNOTSUPP;
|
|
} else {
|
|
error = ifp->if_snd_tag_query(mst, ¶ms);
|
|
if (error == 0 && p_max_pacing_rate != NULL)
|
|
*p_max_pacing_rate = params.rate_limit.max_rate;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Query existing TX queue level based on the existing
|
|
* "inp->inp_snd_tag", if any.
|
|
*/
|
|
int
|
|
in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
|
|
{
|
|
union if_snd_tag_query_params params = { };
|
|
struct m_snd_tag *mst;
|
|
struct ifnet *ifp;
|
|
int error;
|
|
|
|
mst = inp->inp_snd_tag;
|
|
if (mst == NULL)
|
|
return (EINVAL);
|
|
|
|
ifp = mst->ifp;
|
|
if (ifp == NULL)
|
|
return (EINVAL);
|
|
|
|
if (ifp->if_snd_tag_query == NULL)
|
|
return (EOPNOTSUPP);
|
|
|
|
error = ifp->if_snd_tag_query(mst, ¶ms);
|
|
if (error == 0 && p_txqueue_level != NULL)
|
|
*p_txqueue_level = params.rate_limit.queue_level;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new TX rate limit send tag from the network interface
|
|
* given by the "ifp" argument and save it in "inp->inp_snd_tag":
|
|
*/
|
|
int
|
|
in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
|
|
uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
|
|
|
|
{
|
|
union if_snd_tag_alloc_params params = {
|
|
.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
|
|
IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
|
|
.rate_limit.hdr.flowid = flowid,
|
|
.rate_limit.hdr.flowtype = flowtype,
|
|
.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
|
|
.rate_limit.max_rate = max_pacing_rate,
|
|
.rate_limit.flags = M_NOWAIT,
|
|
};
|
|
int error;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if (*st != NULL)
|
|
return (EINVAL);
|
|
|
|
if (ifp->if_snd_tag_alloc == NULL) {
|
|
error = EOPNOTSUPP;
|
|
} else {
|
|
error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag);
|
|
|
|
#ifdef INET
|
|
if (error == 0) {
|
|
counter_u64_add(rate_limit_set_ok, 1);
|
|
counter_u64_add(rate_limit_active, 1);
|
|
} else
|
|
counter_u64_add(rate_limit_alloc_fail, 1);
|
|
#endif
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst)
|
|
{
|
|
if (ifp == NULL)
|
|
return;
|
|
|
|
/*
|
|
* If the device was detached while we still had reference(s)
|
|
* on the ifp, we assume if_snd_tag_free() was replaced with
|
|
* stubs.
|
|
*/
|
|
ifp->if_snd_tag_free(mst);
|
|
|
|
/* release reference count on network interface */
|
|
if_rele(ifp);
|
|
#ifdef INET
|
|
counter_u64_add(rate_limit_active, -1);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
|
|
* if any:
|
|
*/
|
|
void
|
|
in_pcbdetach_txrtlmt(struct inpcb *inp)
|
|
{
|
|
struct m_snd_tag *mst;
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
mst = inp->inp_snd_tag;
|
|
inp->inp_snd_tag = NULL;
|
|
|
|
if (mst == NULL)
|
|
return;
|
|
|
|
m_snd_tag_rele(mst);
|
|
}
|
|
|
|
int
|
|
in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* If the existing send tag is for the wrong interface due to
|
|
* a route change, first drop the existing tag. Set the
|
|
* CHANGED flag so that we will keep trying to allocate a new
|
|
* tag if we fail to allocate one this time.
|
|
*/
|
|
if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
|
|
in_pcbdetach_txrtlmt(inp);
|
|
inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
|
|
}
|
|
|
|
/*
|
|
* NOTE: When attaching to a network interface a reference is
|
|
* made to ensure the network interface doesn't go away until
|
|
* all ratelimit connections are gone. The network interface
|
|
* pointers compared below represent valid network interfaces,
|
|
* except when comparing towards NULL.
|
|
*/
|
|
if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
|
|
error = 0;
|
|
} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
|
|
if (inp->inp_snd_tag != NULL)
|
|
in_pcbdetach_txrtlmt(inp);
|
|
error = 0;
|
|
} else if (inp->inp_snd_tag == NULL) {
|
|
/*
|
|
* In order to utilize packet pacing with RSS, we need
|
|
* to wait until there is a valid RSS hash before we
|
|
* can proceed:
|
|
*/
|
|
if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
|
|
error = EAGAIN;
|
|
} else {
|
|
error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
|
|
mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
|
|
}
|
|
} else {
|
|
error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
|
|
}
|
|
if (error == 0 || error == EOPNOTSUPP)
|
|
inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* This function should be called when the INP_RATE_LIMIT_CHANGED flag
|
|
* is set in the fast path and will attach/detach/modify the TX rate
|
|
* limit send tag based on the socket's so_max_pacing_rate value.
|
|
*/
|
|
void
|
|
in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
|
|
{
|
|
struct socket *socket;
|
|
uint32_t max_pacing_rate;
|
|
bool did_upgrade;
|
|
int error;
|
|
|
|
if (inp == NULL)
|
|
return;
|
|
|
|
socket = inp->inp_socket;
|
|
if (socket == NULL)
|
|
return;
|
|
|
|
if (!INP_WLOCKED(inp)) {
|
|
/*
|
|
* NOTE: If the write locking fails, we need to bail
|
|
* out and use the non-ratelimited ring for the
|
|
* transmit until there is a new chance to get the
|
|
* write lock.
|
|
*/
|
|
if (!INP_TRY_UPGRADE(inp))
|
|
return;
|
|
did_upgrade = 1;
|
|
} else {
|
|
did_upgrade = 0;
|
|
}
|
|
|
|
/*
|
|
* NOTE: The so_max_pacing_rate value is read unlocked,
|
|
* because atomic updates are not required since the variable
|
|
* is checked at every mbuf we send. It is assumed that the
|
|
* variable read itself will be atomic.
|
|
*/
|
|
max_pacing_rate = socket->so_max_pacing_rate;
|
|
|
|
error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
|
|
|
|
if (did_upgrade)
|
|
INP_DOWNGRADE(inp);
|
|
}
|
|
|
|
/*
|
|
* Track route changes for TX rate limiting.
|
|
*/
|
|
void
|
|
in_pcboutput_eagain(struct inpcb *inp)
|
|
{
|
|
bool did_upgrade;
|
|
|
|
if (inp == NULL)
|
|
return;
|
|
|
|
if (inp->inp_snd_tag == NULL)
|
|
return;
|
|
|
|
if (!INP_WLOCKED(inp)) {
|
|
/*
|
|
* NOTE: If the write locking fails, we need to bail
|
|
* out and use the non-ratelimited ring for the
|
|
* transmit until there is a new chance to get the
|
|
* write lock.
|
|
*/
|
|
if (!INP_TRY_UPGRADE(inp))
|
|
return;
|
|
did_upgrade = 1;
|
|
} else {
|
|
did_upgrade = 0;
|
|
}
|
|
|
|
/* detach rate limiting */
|
|
in_pcbdetach_txrtlmt(inp);
|
|
|
|
/* make sure new mbuf send tag allocation is made */
|
|
inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
|
|
|
|
if (did_upgrade)
|
|
INP_DOWNGRADE(inp);
|
|
}
|
|
|
|
#ifdef INET
|
|
static void
|
|
rl_init(void *st)
|
|
{
|
|
rate_limit_active = counter_u64_alloc(M_WAITOK);
|
|
rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
|
|
rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
|
|
}
|
|
|
|
SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
|
|
#endif
|
|
#endif /* RATELIMIT */
|